Zell- und molekularbiologische Untersuchungen eines EPO-
mimetischen Peptides während der präklinischen Phase der
Arzneimittelentwicklung

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades einer Doktorin der Naturwissenschaften genehmigte Dissertation

vorgelegt von
Diplom-Biologin
Alexandra Greindl
aus Düren

Berichter: Universitätsprofessor Dr. rer. nat. Ralf Weiskirchen
Universitätsprofessor Dr. techn. Werner Baumgartner

Tag der mündlichen Prüfung:
03. November 2010

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.
Meinen Kindern
1 Einleitung ... 1
1.1 Erythropoetin (EPO) ... 1
1.2 Blut: Zusammensetzung und Funktionen ... 2
1.3 hämatopoese ... 2
1.4 Erythropoese ... 4
1.5 JAK-STAT-Signalweg ... 6
1.6 EPO als Therapeutikum ... 9
1.7 Nebenwirkungen von EPO ... 10
1.8 EPO-Präparate ... 11
1.9 AGEM400-HES: ein EPO-mimetisches Peptid ... 13
1.10 Ziel der Arbeit ... 16

2 Material und Methoden ... 17
2.1 Material ... 17
2.1.1 Geräte ... 17
2.1.2 Verbrauchsmaterialien, Reagenzien, Chemikalien ... 17
2.1.3 Puffer und Lösungen ... 18
2.2 Methoden ... 19
2.2.1 Identifizierung von AGEM400 ... 19
2.2.2 Synthese EPO-mimetischer Peptide (EMP) ... 19
2.2.2.1 Synthese des linearen AGEM400-Peptides ... 20
2.2.2.2 Einführung der ersten Disulfid-Bindung ... 21
2.2.2.3 Einführung der zweiten Disulfidbrücke ... 21
2.2.2.4 Entschützung der endständigen Cysteine ... 22
2.2.2.5 Konjugation an HES (Hydroxyethylstärke) ... 22
2.2.3 Allgemeine Zellkultur: Medien und Kultivierung tierischer Zelllinien 23
 2.2.3.1 Bestimmung der Gesamtzellzahl 23
 2.2.3.2 Bestimmung der Lebendzellzahl mit Trypanblau 23
 2.2.3.3 Auftauen von Zellen .. 23
 2.2.3.4 Einfrieren von Zellen ... 24
 2.2.3.5 Responsivitätstest .. 24
2.2.4 Verwendete Zellen und Zelllinien 24
 2.2.4.1 TF-1 .. 24
 2.2.4.2 UT-7/EPO ... 25
 2.2.4.3 M07e .. 25
 2.2.4.4 SupT1 .. 25
 2.2.4.5 Mononukleäre Zellen (MNC) 25
2.2.5 Ficoll Dichtegradienten: Separation mononukleärer Zellen aus
 Knochenmark .. 26
2.2.6 Proliferationsnachweis mittels MTS-Assay 26
2.2.7 Durchflusszytometrie: FACS-Analyse 28
2.2.8 Detektion des EPO-Rezeptors (EPO/R) und des IL-3-Rezeptors
 (CD131) auf der Oberfläche verschiedener Zelllinien 28
2.2.9 Untersuchung apoptotischer Prozesse 29
 2.2.9.1 Nachweis von Annexin V .. 30
 2.2.9.2 Nachweis aktiver Caspasen 30
2.2.10 Differenzierungsnachweise .. 30
 2.2.10.1 Nachweis der CD34-Abnahme bei TF-1-Zellen 30
 2.2.10.2 CFU-(Colony-Formation-Unit-) Assay 32
 2.2.10.3 Nachweis von CD36 und GlycophorinA (CD235a) 34
 2.2.10.4 Herstellung von Zellextrakten aus Methylcellulose-Kulturen zur
 Hämoglobinbestimmung .. 36
 2.2.10.5 Hämoglobin-Bestimmung nach Luftig (1977) 36
2.2.11 Untersuchungen zur Rezeptorbindung 38
 2.2.11.1 Kompetitionsassay mit einem löslichen EPO/R (sEPO/R) in TF-1
 und UT-7/EPO ... 38
 2.2.11.2 Qualitative Bestimmung des Antagonismus zwischen
 transmembranem (endogenem) und löslichem EPO/R 38
 2.2.11.3 Radioliganden-Bindungsassay 38
Inhaltsverzeichnis

2.2.12 Untersuchungen zur Signaltransduktion .. 39
 2.2.12.1 Aktivierung von STAT5 ... 39
 2.2.12.2 Aktivierung von ERK1/2 ... 40
 2.2.12.3 Herstellung von Zellextrakten .. 40
 2.2.12.4 Diskontinuierliche SDS-PAGE .. 40
 2.2.12.5 Coomassie-Färbung .. 41
 2.2.12.6 Western Blotting ... 41
 2.2.12.7 Immunodetektion von STAT5, Phospho-STAT5, ERK1/2 und P-ERK1/2 aus Zellextrakten ... 41

2.2.13 Immunologische Untersuchungen .. 43
 2.2.13.1 Eurogentec: Immunisierung von Kaninchen 43
 2.2.13.2 Immunodetektion von Erypo® und EMPs mit Antiseren 44
 2.2.13.3 Charles River: Immunisierung von Schafen 44
 2.2.13.4 Sandwich-ELISA: Konzentrationsbestimmung von EMPs in verschiedenen Verdünnungsmedien ... 45

2.2.14 Auswertung und Präsentation der Daten .. 46
 2.2.14.1 Dosis-Wirkungskurven .. 47
 2.2.14.2 Signal-Rausch-Verhältnisse .. 48
 2.2.14.3 Bestimmung der intrinsischen Agonisten-Aktivität a 48
 2.2.14.4 FACS-Analysen ... 49
 2.2.14.5 CFU-Assays ... 50
 2.2.14.6 Schild Plot Analyse: UT-7/EPO-Zellen 50
 2.2.14.7 ELISA: untere Nachweisgrenze .. 51

3 Ergebnisse ... 52
 3.1 Gelelektrophoretische Analysen von AGEM400-HES 52
 3.2 EPO/R und CD131 auf der Oberfläche hämatopoetischer Zelllinien 54
 3.3 Responsivität von UT-7/EPO und TF-1-Zellen in Zytokin-Assays 56
 3.4 MTS-Proliferationsassays mit den Zelllinien TF-1 und UT-7/EPO 58
 3.4.1 TF-1-Zellen ... 58
 3.4.2 UT-7/EPO-Zellen ... 62
 3.4.3 Interassay-Vergleich der EC50-Werte bzw. der relativen Effizienz 66
 3.5 Apoptose ... 67
 3.5.1 Aktivierung von Caspase-3, -7 und -8 in TF-1-Zellen 67
 3.5.2 Annexin V-Nachweis früh apoptotischer Zellen 70
3.5.3 Detektion toter Zellen mit Propidiumiodidfärbung............................. 73
3.6 Differenzierung.. 74
 3.6.1 CD-34 Verlust in TF-1-Zellen ... 74
 3.6.2 CFU-Assays .. 77
 3.6.3 CD36/GlycophorinA (CD235a) .. 80
 3.6.4 Nachweis der Hämoglobinbildung in Affenzellen 81
3.7 Untersuchungen zur Rezeptorbindung... 83
 3.7.1 Kompetitionsassays ... 83
3.8 Aktivierung von STAT5 und ERK1/2 in UT-7/EPO 89
3.9 Immunologische Untersuchungen.. 91
 3.9.1 Nachweis von Kreuzreaktionen zwischen anti-EPO-Antikörpern und
 EPO-mimetischen Peptiden ... 91
3.10 ELISA: Nachweis von AGEM400 und AGEM400-HES in verschiedenen
 Verdünnungsmedien ... 93

4 Diskussion... 95
5 Literatur ... 102
6 Veröffentlichungen... 107
7 Anhang .. 108
<table>
<thead>
<tr>
<th>Abbildungsverzeichnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einleitung</td>
</tr>
<tr>
<td>Abb. 1.1: Hämatopoese ... 3</td>
</tr>
<tr>
<td>Abb. 1.2: Erythropoese (Knochenmark) ... 5</td>
</tr>
<tr>
<td>Abb. 1.3: Aktivierung von STAT5 über den JAK-STAT-Signalweg 7</td>
</tr>
<tr>
<td>Abb. 1.4: Aktivierung von ERK1/2 über den Ras-Raf-Signalweg 8</td>
</tr>
<tr>
<td>Abb. 1.5: Bindung eines EPO-Moleküls bzw. eines EMP-Dimers an den EPO- Receptor ... 12</td>
</tr>
<tr>
<td>Abb. 1.6: Sequenz- und Strukturoptimierung eines EPO-mimetischen Peptides 15</td>
</tr>
<tr>
<td>Material und Methoden</td>
</tr>
<tr>
<td>Abb. 2.1: Aufreinigung des bizyklischen AGEM400 mittels HPLC-MS an einer C18-Säule .. 22</td>
</tr>
<tr>
<td>Abb. 2.2: Digitalaufnahmen verschiedener Kolonietypen (CFU-Assay) 33</td>
</tr>
<tr>
<td>Ergebnisse</td>
</tr>
<tr>
<td>Abb. 3.1: SDS-Gelektrophorese von BB68 und AGEM400 53</td>
</tr>
<tr>
<td>Abb. 3.2: SDS-Gelektrophorese von AGEM400 und AGEM400-HES 53</td>
</tr>
<tr>
<td>Abb. 3.3: Expression von EPO/R und CD131 auf der Oberfläche verschiedener Zelllinien ... 55</td>
</tr>
<tr>
<td>Abb. 3.4: UT-7/EPO; MTS-Assay: Responsivität auf Zytokine 56</td>
</tr>
<tr>
<td>Abb. 3.5: TF-1; MTS-Assay: Responsivität auf Zytokine 57</td>
</tr>
<tr>
<td>Abb. 3.6: TF-1; MTS-Assay: Dosis-Wirkungsprofil 58</td>
</tr>
<tr>
<td>Abb. 3.7: TF-1; MTS-Assay: nicht-lineare Regression 60</td>
</tr>
<tr>
<td>Abb. 3.8: TF-1; MTS-Assay: normierte Werte ... 61</td>
</tr>
<tr>
<td>Abb. 3.9: UT-7/EPO; MTS-Assay: Dosis-Wirkungsprofil 62</td>
</tr>
<tr>
<td>Abb. 3.10: UT-7/EPO; MTS-Assay: nicht-lineare Regression 63</td>
</tr>
<tr>
<td>Abb. 3.11: UT-7/EPO; MTS-Assay: normierte Werte 64</td>
</tr>
<tr>
<td>Abb. 3.12: TF-1; FACS-Analyse: Inhibierung von Caspasen 68</td>
</tr>
<tr>
<td>Abb. 3.13: TF-1; Inhibierung von Caspasen: nicht-lineare Regression 69</td>
</tr>
<tr>
<td>Abb. 3.14: Annexin V: Inhibition apoptotischer Prozesse in TF-1 71</td>
</tr>
<tr>
<td>Abb. 3.15: Detektion toter Zellen mit Propidiumiodid 73</td>
</tr>
<tr>
<td>Abb. 3.16: CD34-Verlust auf TF-1-Zellen .. 74</td>
</tr>
<tr>
<td>Abb. 3.17: TF-1; CD34-Verlust: normierte Werte 75</td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

Abb. 3.18: TF-1; CD34-Verlust: nicht-lineare Regression .. 76
Abb. 3.19: CFU-Assay; Differenzierung von Knochenmarkzellen (Mensch, Cynomologus) ... 78
Abb. 3.20: Prozentuale erythroide Differenzierung von Knochenmarkzellen im CFU-Assay .. 79
Abb. 3.21: CD36 und GlycophorinA auf der Oberfläche humaner MNCs aus Knochenmark ... 80
Abb. 3.22: Erythropoese von Knochenmarkzellen (MNC) aus Cynomologus und Pavian .. 82
Abb. 3.23: Bindung von AGEM400-HES an den EPO/R von TF-1 und UT-7/EPO... 84
Abb. 3.24: Radioliganden-Bindungsassay ... 85
Abb. 3.25: UT-7/EPO, MTS-Assay: Kompetition des membranständigen EPO/R 87
Abb. 3.26: UT-7/EPO, Schild-Plot-Analyse: kompetitiver Antagonismus 88
Abb. 3.27: UT-7/EPO, lineare Regression: Abnahme EPO-induzierter Proliferation durch kompetitiven Antagonisten ... 88
Abb. 3.28: Western Blot Analyse: Aktivierung von STAT5 in UT-7/EPO 89
Abb. 3.29: Western Blot Analyse: Aktivierungsdauer von STAT5 in UT-7/EPO..... 90
Abb. 3.30: Western Blot Analyse: Aktivierungsdauer von ERK1/2 in UT-7/EPO 90
Abb. 3.31: Western Blot Analyse: immunologische Divergenz zwischen EPO und EPO-mimetischen Peptiden .. 91
Abb. 3.32: TF-1, MTS-Assay: immunologische Divergenz zwischen EPO und AGEM400-HES .. 92
Abb. 3.33: ELISA: Detektion von AGEM400 und AGEM400-HES 94

Diskussion
Abb. 4.1: Modell: Bindungsarten von AGEM400-Peptiden an den EPO/R 97
<table>
<thead>
<tr>
<th>Tabelle 3.1:</th>
<th>Berechnung der intrinsischen Agonisten-Aktivität</th>
<th>59</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabelle 3.2:</td>
<td>Vergleich der Effekte von AGEM400-HES in TF-1 und UT-7/EPO</td>
<td>65</td>
</tr>
<tr>
<td>Tabelle 3.3:</td>
<td>MTS-Interassay-Vergleich: EC50-Werte</td>
<td>66</td>
</tr>
<tr>
<td>Tabelle 3.4:</td>
<td>FACS-Analyse: Inhibierung von Caspasen in TF-1-Zellen</td>
<td>70</td>
</tr>
<tr>
<td>Tabelle 3.5:</td>
<td>Annexin V: Inhibition apoptotischer Prozesse in TF-1</td>
<td>72</td>
</tr>
<tr>
<td>Tabelle 3.6:</td>
<td>EC50-Werte (TF-1, CD34-Verlust)</td>
<td>76</td>
</tr>
<tr>
<td>Tabelle 3.7:</td>
<td>Hämoglobinwerte erythroider Zellen aus Cynomolgus und Pavian</td>
<td>81</td>
</tr>
<tr>
<td>Tabelle 3.8:</td>
<td>Radioliganden-Bindungs-Assay; IC50-Werte</td>
<td>85</td>
</tr>
<tr>
<td>Tabelle 3.9:</td>
<td>EC-50-Werte: kompetitive Abnahme der Proliferation in UT-7/EPO</td>
<td>87</td>
</tr>
<tr>
<td>Tabelle 3.10:</td>
<td>ELISA: Detektion von AGEM400 und AGEM400-HES</td>
<td>93</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Bedeutung</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
<td></td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
<td></td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
<td></td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
<td></td>
</tr>
<tr>
<td>EC50</td>
<td>Effective Concentration 50</td>
<td></td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethyldiamintetraacetat</td>
<td></td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked Immunosorbent Assay</td>
<td></td>
</tr>
<tr>
<td>EPO</td>
<td>Erythropoetin</td>
<td></td>
</tr>
<tr>
<td>EPO/R</td>
<td>Erythropoetin-Rezeptor</td>
<td></td>
</tr>
<tr>
<td>ESA</td>
<td>Erythropoiesis stimulating agents</td>
<td></td>
</tr>
<tr>
<td>FCS</td>
<td>Fetal Calf Serum</td>
<td></td>
</tr>
<tr>
<td>FITC</td>
<td>Fluoresceinisothiocyanat</td>
<td></td>
</tr>
<tr>
<td>HBSS</td>
<td>Hanks Buffered Saline Solution</td>
<td></td>
</tr>
<tr>
<td>HES</td>
<td>Hydroxyethylstärke</td>
<td></td>
</tr>
<tr>
<td>HRP</td>
<td>Horseradish-Peroxidase</td>
<td></td>
</tr>
<tr>
<td>IgG</td>
<td>Immunglobulin G</td>
<td></td>
</tr>
<tr>
<td>JAK</td>
<td>Janus Kinase</td>
<td></td>
</tr>
<tr>
<td>kD</td>
<td>kiloDalton</td>
<td></td>
</tr>
<tr>
<td>MNC</td>
<td>Mononuclear Cells</td>
<td></td>
</tr>
<tr>
<td>PAGE</td>
<td>Polyacrylamidgelelektrophorese</td>
<td></td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Saline</td>
<td></td>
</tr>
<tr>
<td>PE</td>
<td>Phycoerythrin</td>
<td></td>
</tr>
<tr>
<td>PEG</td>
<td>Polyethylenglycol</td>
<td></td>
</tr>
<tr>
<td>PI</td>
<td>Propidiumiodid</td>
<td></td>
</tr>
<tr>
<td>PRCA</td>
<td>Pure Red Cell Anemia</td>
<td></td>
</tr>
<tr>
<td>PVDF</td>
<td>Polyvinylidenfluorid</td>
<td></td>
</tr>
<tr>
<td>rhEPO</td>
<td>rekombinantes humanes EPO</td>
<td></td>
</tr>
<tr>
<td>rpm</td>
<td>rounds per minute</td>
<td></td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium Dodecyl Sulfat</td>
<td></td>
</tr>
<tr>
<td>sEPO/R</td>
<td>soluble EPO-receptor</td>
<td></td>
</tr>
<tr>
<td>STAT</td>
<td>Signal Transducer and Activator of Transcription</td>
<td></td>
</tr>
<tr>
<td>TBS(T)</td>
<td>Tris Borat EDTA Puffer (inkl. Tween-20)</td>
<td></td>
</tr>
</tbody>
</table>
Zusammenfassung:

Weiterhin ergaben die Untersuchungen zur Rezeptorbindung, dass die Wirkung von AGEM400-HES spezifisch über den EPO-Rezeptor verläuft und EPO-spezifische Signalwege induziert. In hämatopoetischen Zelllinien wurde gezeigt, dass AGEM400-HES die Phosphorylierung von STAT5 (JAK/STAT-Signalweg) und ERK1/2 (Ras/Raf-Signalweg) bewirkt.

Antikörper gegen EPO, BB68 und AGEM400 wurden generiert und auf Kreuzreaktionen untersucht. Dabei wurde gezeigt, dass EPO und die EPO-mimetischen Peptide immunologisch divergent sind.

Es wurde ein ELISA entwickelt, mit dessen Hilfe AGEM400 und AGEM400-HES in Human- und Rattenserum detektiert werden kann. Die Sensitivität liegt vermutlich in einem klinisch relevanten Konzentrationsbereich. Damit steht bereits ein Nachweisverfahren von AGEM400 bzw. AGEM400-HES für folgende pharmakokinetische und klinische Studien zur Verfügung.

AGEM400-HES ist ein potenter und vielversprechender Kandidat für eine neuartige „EPO-Therapie“, deren Vorteile u.a. in der chemischen Synthese, der Biodegradierbarkeit des Carriers (HES) und der immunologischen Divergenz liegen. Letzteres würde besonders für Patienten, die Antikörper gegen das endogene und rekombinante Protein Erythropoetin während der EPO-Therapie generiert haben, einen wichtigen Vorteil darstellen. Ein mimetisches Peptid könnte für diese Patienten eine alternative Behandlungsmöglichkeit der Anämie sein.
Summary:

In this doctoral thesis BB68 was identified as a potent monomeric EPO-mimetic peptide. One of the main tasks was to characterize the \textit{in vitro} effects of the monomeric peptide (BB68), of the homodimeric peptide (AGEM400) and of the multimeric form AGEM400-HES. The centre of the analysis was focused on AGEM400-HES where on the average of five peptide dimers are coupled multivalent to hydroxyethylstarch (HES).

AGEM400-HES showed strong EPO-mimetic effects for all investigated parameters. The effects of AGEM400-HES on proliferation, apoptosis and differentiation of hematopoietic cells were analysed and compared to the EPO-induced effects. Dependent on the cell line AGEM400-HES induced proliferation, survival and differentiation in a dose-dependent manner and with an efficacy which is comparable to that of EPO.

Experiments with primary cells of bone marrow from human and monkey confirmed the results.

Further on investigations of the receptor binding showed that AGEM400-HES bound specifically to the EPO-receptor and induced same signaling pathways as EPO. AGEM400-HES caused the phosphorylation of STAT5 (JAK/STAT-signaling pathway) and of ERK1/2 (Ras/Raf-signaling pathway) in hematopoietic cell lines.

After the generation of antibodies against EPO, BB68 and AGEM400 it was analysed if there were any crossreactions between the different antibodies and antigens. But no crossreactions could be detected. Both mimetic peptide forms were immunological completely different from EPO.

A very sensitive ELISA for detecting AGEM400 and AGEM400-HES in human serum and rat serum respectively was developed. The detectable concentration range supposable may be in a clinical relevant range and it could be used as a verification procedure for further pharmacokinetic and clinical studies.

AGEM400 is a potent and a promising candidate for a novel “EPO-therapy”. The main advantages are the possibility of a chemical synthesis, the biodegradable carrier molecule (HES) and the immunological diversity to EPO. The latter is a very interesting point regarding patients who had developed antibodies against the endogenous and the recombinant protein EPO during application of EPO. A mimetic peptide could be an alternative to correct anemia in these patients.
Einleitung

1 Einleitung

1.1 Erythropoetin (EPO)

EPO ist ein Glykoprotein mit einem Molekulargewicht von etwa 34 kD. Die Bezeichnung Erythropoetin kommt aus dem Altgriechischen (erythros = rot; poiein = machen).

EPO wandert von der Niere aus in Milz und Knochenmark und fördert dort die Synthese, das Überleben und die Differenzierung von Erythrozyten (roten Blutkörperchen) als Antwort auf einen verminderten Sauerstoffgehalt im Blut. Durch den Anstieg der Erythrozytenzahl bzw. der Hämoglobinkonzentration kann mehr Sauerstoff aus der Lunge in die Gewebe transportiert und auf die hypoxische Situation reagiert werden.

Zahlreiche Studien unterstützen mittlerweile die Tatsache, dass EPO über eine pleiotrope Wirkung verfügt, die weit über seine Funktion als Differenzierungs- und Überlebensfaktor ausschließlich erythroider Vorläuferzellen hinausgeht [23,29].
1.2 Blut: Zusammensetzung und Funktionen

Blut kann als eine Sonderform des Bindegewebes mit vielfältigen Aufgaben betrachtet werden. Es setzt sich für Frauen und Männern mit unterschiedlichen Volumenanteilen aus dem Blutplasma und dem Hämatokrit (Blutzellen) zusammen. Der Hämatokrit besteht zu 99% aus Erythrozyten. Die restlichen 1% setzen sich aus Leuko- (weiße Blutkörperchen) und Thrombozyten (Blutplättchen) zusammen.

1.3 Hämatopoese

Die Hämatopoese wird je nach Entwicklungsrichtung der Zellen in Erythropoese (Bildung roter Blutkörperchen), Leukopoese (Bildung von Abwehrzellen) und Thrombopoese (Bildung von Thrombozyten) unterteilt.

In einem semisoliden Kulturmedium bilden sich in vitro aus differenzierenden hämatopoetischen Vorläuferzellen sog. CFUs (Colony Formation Units) als abgrenzbare Kolonien. Ausgangspunkt dieser Koloniebildung sind die sog. CFU-GEMM (CFU-Granulozyten/Erythrozyten/Monozyten/Megakaryozyten). Die CFU-GEMM-Fraktion ist eine heterogene Gruppe aus hämatopoetischen Vorläuferzellen, die für verschiedene Entwicklungsrichtungen geprägt sind. Diese Vorläuferzellen besitzen noch eine hohe Teilungsfähigkeit, die sie mit zunehmender Differenzierung verlieren. Die Bildung der verschiedenen Vorläufer-Zelltypen ist zunächst ein
Einleitung

stochastischer Prozess. Das weitere Schicksal dieser Zellen wird durch Zytokine reguliert.

Zytokine sind Wachstumsfaktoren, die spezifisch Proliferation, Differenzierung bzw. das Überleben einer Zellgruppe nach Bedarf regulieren können. Zu diesen Zytokinen gehören neben vielen anderen IL-3, IL-5, GM-CSF, G-CSF, M-CSF und Erythropoetin (EPO).

Abb. 1.1: Hämatopoese
1.4 Erythropoese

Die BFU-E-Kolonien (mehr als 200 Zellen/Kolonie) erscheinen in Form mehrerer großer Cluster, deren Ränder ausgefranst sind. Ab dem BFU-E-Stadium ist die Entwicklung dieser Zellen zum Erythrozyten determiniert.

Das folgende Schema stellt die einzelnen Entwicklungsstadien vom CFU-GEMM-Stadium hämatopoetischer Vorläuferzellen bis zum Erythrozyten graphisch dar.
Einleitung

Abb. 1.2: Erythropoese (Knochenmark)
1.5 JAK-STAT-Signalweg

Abb. 1.3: Aktivierung von STAT5 über den JAK-STAT-Signalweg.

Abb. 1.4: Aktivierung von ERK1/2 über den Ras-Raf-Signalweg.
Der aktivierte Rezeptor induziert parallel auch andere Signalwege wie den JAK-STAT-Signalweg oder die Aktivierung der PI3-Kinase.
Einleitung

1.6 EPO als Therapeutikum

In den letzten Jahren wurde EPO aufgrund seiner zytoproaktiven Eigenschaften auch im Bereich neurologischer (Schlaganfall), neurodegenerativer (Schizophrenie) und sogar neuropsychologischer (Depressionen) Erkrankungen immer interessanter [30,31,32]. Klinische Anwendungen von EPO in diesem Bereich sind jedoch noch nicht voll etabliert.

Bei den derzeitigen Doping-Tests hat man die Wahl zwischen einem indirekten und einem direkten Nachweisverfahren. Beim indirekten Verfahren werden mittels einer Blutprobe z.B. Auffälligkeiten des Hämatoirks bzw. der Erythrozytenkonzentration

1.7 Nebenwirkungen von EPO

1.8 EPO-Präparate

Der große Erfolg der ersten EPO-Präparate führte dazu, dass neue Strategien verfolgt wurden, um eine verbesserte zweite Generation von EPO-Präparaten zu generieren. Ein großes Bestreben bestand vor allem darin, die Serumhalbwertszeit, die abhängig vom Verteilungsvolumen und von der Elimination des Wirkstoffs im Organismus ist, zu verlängern bzw. die Affinität zum EPO-Rezeptor zu erhöhen [56]. Das Augenmerk wurde auch auf eine vereinfachte Anwendung des Präparates für den Patienten gerichtet.

Abb. 1.5: Bindung eines EPO-Moleküls bzw. eines EMP-Dimers an den EPO-Rezeptor
1.9 AGEM400-HES: ein EPO-mimetisches Peptid

Einen großen Vorteil bieten diese Peptide bei der Vorbeugung von PRCA bzw. bei der Behandlung von Patienten mit PRCA. Selbst wenn diese Peptide zu einer Bildung von Antikörpern führen würden, wäre das endogene EPO aufgrund der fehlenden Sequenzhomologie davon nicht betroffen [58].

Ebenso wichtig ist die Tatsache, dass die Herstellung dieser Peptide mit deutlich geringeren Kosten im Vergleich zum rekombinanten Herstellungsverfahren verbunden ist. Im Gegensatz zum rekombinanten Herstellungsverfahren ist die Synthese der Peptide vom ersten Syntheseschritt an komplett kontrollier- und steuerbar.

Ein Nachteil der Peptide ist ihre kurze Serumhalbwertszeit, da die Peptide schnell über die Niere ausgeschieden werden.

Das EPO-mimetisches Peptid BB68 (AplaGen GmbH, Baesweiler) wurde nach Homodimerisierung oligoivalent an ein Makromolekül gekoppelt wurde. Als Makromolekül wurde die aus Maisstärke generierte Hydroxyethylstärke (HES) verwendet.

Zunächst wurden aus einem Pool von über 200 monomeren 20-mer Peptiden die Peptide ermittelt, welche im MTS-Assay mit TF-1-Zellen eine
proliferationsstimulierende Wirkung zeigten. Von den proliferationsstimulierenden Peptiden zeigte das Peptid BB68 die größte Effizienz. BB68 leitet sich wie Hematide® und CNTO 530 von der EMP-1 Sequenz ab, unterscheidet sich aber u.a. durch den Austausch von Tryptophan gegen die künstliche Aminosäure Naphtylalanin (Nal) an Position 13 und den Austausch der Proline gegen Lysine an der Position 10 und 17 der EMP-1 Sequenz.

Der Einsatz von Naphtylalanin sollte für eine höhere Stabilität sorgen. Wie Tryptophan enthält Naphtylalanin einen aromatischen Heterozyklus. Im Gegensatz zu Tryptophan enthält der Heterozyklus von Naphtylalanin keine polare Aminogruppe und erreicht wegen dieser geringeren Polarität innerhalb des Moleküls eine höhere Strukturstabilität.

Zur Optimierung der Wirksamkeit wurde BB68 zu einem bivalenten C-N-verknüpften linearen Peptid (AGEM400) dimerisiert und über eine Disulfidbrücke an den beiden Cysteinen zyklisiert. Anschließend wurden die zyklisierten Peptid-Dimere oligovalent an das Backbone eines Hydroxyethylstärke (HES)-Moleküls von etwa 220 kD gekoppelt. Die Kopplung an HES erfolgte C-terminal.

Dieses Peptid-HES-Konjugat stellt den direkten Vorläufer des späteren Arzneistoffes dar. Es besteht aus einem HES-Molekül, an das 4-5 Peptid-Dimere gekoppelt wurden. Dabei entspricht der Peptid-Anteil am Gesamt molekül AGEM400-HES durchschnittlich etwa 10 %.

Die folgende Graphik stellt ein vereinfachtes Schema der Syntheseschritte von AGEM400-HES dar:

BB68
GGTYSCHFGKLT-Nal-VCKKQRG

AGEM400
GGTYSCHFGKLT-Nal-VCKKQRG · GGTYSCHFGKLT-Na1-VCKKQRG

• EPO-mimetisch

Abb. 1.6: Sequenz- und Strukturoptimierung eines EPO-mimetischen Peptides.

BB68 ist ein lineares monomeres Peptid mit einem Molekulargewicht von ca. 2.3kD. AGEM400 ist ein bivalent gekoppeltes, lineares Peptid-Dimer aus BB68-Monomeren und besitzt ein Molekulargewicht von etwa 4.6kD. AGEM400-HES besteht aus einem HES-Molekül, an das AGEM400-Dimere über einen Linker gekoppelt wurden, und besitzt ein mittleres Molekulargewicht von etwa 220kD.
1.10 Ziel der Arbeit

Vor dem Hintergrund der Entwicklung einer alternativen Generation von EPO-Präparaten sollte in dieser Arbeit ein neues EPO-mimetisches Peptid identifiziert werden. Es sollte gezeigt werden, dass es sich bei diesem Peptid nach Modifizierung (Dimerisierung [AGEM400] bzw. Kopplung an HES [AGEM400-HES]) um einen potenzen EPO/R-Agonisten handelt, der immunologisch divergent zum EPO-Protein ist.

Es sollten Antikörper gegen ein rekombinantes Erythropoetin und gegen das EPO-mimetische Peptid generiert werden, um die Annahme einer immunologischen Divergenz von EPO und dem Peptid zu bestätigen. Weiterhin sollte auf Basis dieser Antikörper ein Sandwich-ELISA als Nachweisverfahren des mimetischen Peptides in Humanserum für spätere präklinische und klinische Studien entwickelt werden.

Mit dieser Arbeit sollten die nötigen in vitro Testverfahren als Basis für alle weiteren Schritte im Rahmen einer Arzneimittelentwicklung geleistet werden.
Material und Methoden

2 Material und Methoden

2.1 Material

2.1.1 Geräte
Sterile Werkbank (Laminar Flow; Typ: KR-210; KOJAIR, Vilpula-Finnland), Durchflusscytometer (FACSCalibur; BD, Heidelberg-Deutschland), kühlbare Tischzentrifuge (Typ: 5415 R; Eppendorf, Hamburg-Deutschland), Thermomixer (Comfort 1.5 ml; Typ: 5355 08852; Eppendorf, Hamburg-Deutschland), Zentrifuge (Heraeus; Multifuge 3 S-R; Thermo Fisher Scientific, Dreieich-Deutschland), Photometer (GENios; Art.-Nr. F129004; TECAN, Crailsheim-Deutschland), Gelelektrophorese- und Blotting Module (NuPAGE Sytem; Invitrogen, Karlsruhe-Deutschland), Brutschrank (Typ: 9140-0003; Binder, Tuttlingen-Deutschland), Stickstoffaufbewahrungsbehälter (LS750; Taylor-Wharton, Husum-Deutschland), Autoklav (Typ: AMA250; Astell Scientific, England), Reinstwasseranlage (Typ: HP 5 UF; TKA-Lab Reinstwassersystem, Niederehlert-Deutschland), Schüttelplatte (Titramax 101; Heidolph, Schwabach-Deutschland), Vortex (REAX top; Heidolph, Schwabach-Deutschland), Stromversorgungsgerät (E835; CONSORT, Turnhout-Belgien), handelsübliche Mikrowelle

2.1.2 Verbrauchsmaterialien, Reagenzien, Chemikalien
Serologische Einwegpipetten, Zellkultur-Flaschen, diverse Reaktionsgefäße, Multititer-Platten und Pipettenspitzen wurden von den Firmen Sarstedt und Greiner bezogen.
Die verwendeten Chemikalien waren von analytischem Reinheitsgrad und wurden von den Firmen Sigma; Carl Roth; Gibco, Fluka, Merck und Becton Dickinson bezogen.

Das EPO-Präparat Erypo®FS2000, das von der JANSSEN-CILAG GmbH vertrieben wird, wurde als rekombinantes EPO für die Zellkulturversuche verwendet. Es wurde gentechnisch aus Ovarialzellen des chinesischen Hamsters (CHO-K1) hergestellt. 0.5 ml dieses Präparates enthalten 2000 I.E. (internationale Einheiten), die 16,8 µg entsprechen. Dies entspricht einer molaren Konzentration von 980 nM.
Die Herkunft von Produkten anderer Firmen wurde separat im Methodenteil angegeben.

2.1.3 Puffer und Lösungen

- PBS- und HBSS-Puffer: je 10 mM (Sigma)
- 10x Propidiumiodid(PI)-Stammlösung: 100 µg/ml in PBS
- Blocking-Puffer in den FACS-Analysen: 10 mM PBS
 - 5% Humanserum
 - 5% FCS
- MACS-Puffer: 10 mM PBS
 - 2 mM EDTA
 - 0.5% BSA
- Lysepuffer zur Zellextraktion: 150 mM NaCl
 - 50 mM Tris-HCl
 - 1% TritonX-100
 - pH 8

 In 10 ml Lysepuffer wurden eine Tablette Protease Inhibitor Cocktail (Roche; Complete, Mini Tablets, #1836153) gelöst.

- TBST: 10 mM Tris-HCl (pH 7.9)
 - 150 mM NaCl
 - 0.05 % Tween20

- Blocking-Puffer (Western Blot Analyse): TBST mit 3% fetttfreiem Milchpulver (Sigma)

- MOPS-Puffer (pH 7.0): 200 mM 3(N-Morpholino)-Propansulfonsäure
 - 50 mM Natriumacetat
 - 10 mM EDTA
2.2 Methoden

2.2.1 Identifizierung von AGEM400

Es entstand ein Pool von über 200 monomeren synthetischen 20-mer Peptiden, die in einem MTS-Proliferationsassay mit TF-1-Zellen auf eine proliferations-stimulierende Wirkung getestet wurden.

Von den identifizierten proliferationsstimulierenden Peptidagonisten zeigte das Peptid BB68, das im Vergleich zu EMP-1 u.a. neben einer prolinfreien Sequenz die künstliche Aminosäure Naphtylalanin (Nal) enthält, die größte Effizienz. Zur Optimierung der Wirksamkeit wurde BB68 zu einem bivalenten C-N-verknüpften linearen Peptid (AGEM400) dimerisiert und über eine Disulfidbrücke an den beiden Cysteinen zyklisiert. Anschließend wurden durchschnittlich fünf zyklisierte Peptid-Dimere multivalent an ein Hydroxyethylstärke (HES)-Molekül von etwa 220kD gekoppelt.

Angestrebt wurde ein durchschnittlicher Peptidanteil von 10% des Gesamt moleküls. Der Peptidanteil schwankte chargenbedingt und lag bei 7-12%.

2.2.2 Synthese EPO-mimetischer Peptide (EMP)

Die EPO-mimetischen Peptide wurden intern in der Abteilung für Peptid-Chemie der AplaGen GmbH unter Leitung von Dr. Andreas Rybka hergestellt:

Peptidsequenz von AGEM400-HES:

Ac-GGTYSCHFGKLT<1-Nal>VCKKORG-GGTYSCHFGKLT<1-Nal>VCKKORG-C-<BA–T-HES
AGEM400 ist ein lineares Peptid-Homodimer mit BB68 (2.3 kDa) als monomeren Sequenzbaustein. Der C-Terminus des Dimers wurde um die Aminosäure Cystein verlängert, um über eine SH-Gruppe die Kopplung an aktivierte Hydroxyethylstärke (HES) zu ermöglichen. Die beiden Termini des Moleküls wurden N-terminal acetyliert (Ac) und C-terminal amidiert (Am). Dies wurde zum Schutz vor Exopeptidasen bzw. zum Ausschluss von unerwünschten Ladungseffekten vorgenommen. Über einen Butylamino-Linker (BA) wurde AGEM400 an HES (220kD), die einen Verzweigungsgrad von 0.5 besaß, gekoppelt. HES wurde dazu mit dem Reagens TEMPO oxidiert (T-HES).

2.2.2.1 Synthese des linearen AGEM400-Peptides

AGEM400 ist ein Peptid, das über eine bivalente C→N-Dimerisierung aus zwei monomeren BB68-Peptiden synthetisiert wurde.

Das Peptid wurde durch Einführung von Ac-Gly-OH als letzten Baustein acetyliert. Anschließend wurde das Peptid mit DCM gewaschen und durch Zugabe von 20 ml eines sog. Cleavage-Cocktails (94% TFA, 1.0% TIS, 2.5% H₂O, 2.5% DTT) abgespalten. Die Abspaltung erfolgte über drei Stunden bei Raumtemperatur. Das Peptid wurde in kaltem Ether präzipitiert, in Acetonitril/Wasser (2:1) gelöst und sofort über LCMS auf Basis eines Nebula Aufreinigungssystems (Gilson) gereinigt.
2.2.2.2 Einführung der ersten Disulfid-Bindung

Patente der AplaGen GmbH zum Zyklisierungskonzept mit AGOX

US20090081145A1 PROCESS FOR FORMING DISULPHIDE BRIDGES 2009-03-26
WO2008077621A1 METHOD FOR FORMING DISULFIDE BRIDGES 2008-07-03
WO2007076993A1 PROCESS FOR FORMING DISULPHIDE BRIDGES 2007-07-12
EP1966231A1 PROCESS FOR FORMING DISULPHIDE BRIDGES 2008-09-10

2.2.2.3 Einführung der zweiten Disulfidbrücke

Das nun monozyklische Peptid (20mg) wurde in 40 ml 80%iger Essigsäure gelöst. Nach Zugabe von 0.512 ml HCl (0.1M) und 3.424 ml Iod-Lösung (50 mM) wurde die Lösung 2.5 Stunden gerührt. Der Überschuss von Iod wurde solange durch Zugabe von Ascorbinsäure entfernt, bis die Lösung wieder farblos wurde. Anschließend wurde die Lösung auf ein Volumen von 400 ml mit Wasser verdünnt und auf eine C18-SPE-Säule gegeben. Die Säule wurde mit 200 ml Wasser gewaschen. Das Peptid wurde mit 50 ml Acetonitril/Wasser (95:5 Volumenteile) von der Säule eluiert. Direkt im Anschluss wurde das Roh-Peptid über LCMS auf Basis eines Nebula Aufreinigungssystems (Gilson) gereinigt. Insgesamt wurde das 41mere Peptid dreimal über HPLC aufgereinigt. Das per Mikrowellenpeptidsynthese synthetisierte lineare Peptid AGEM400 wurde nach der Synthese mittels HPLC-MS an einer C18-Säule (Reprosil) aufgereinigt. Nach Zyklisierung und erneuter Aufreinigung ergab sich bereits eine Reinheit von über 85%. Nach Schließung der 2. Disulfidbrücke und erneuter Aufreinigung konnte eine
Reinheit von über 90% erzielt werden. In der nachfolgenden Grafik ist die Aufreinigung des zweifach zyklisierten Peptides zu sehen, dessen Reinheit aufgrund des Einsatzes von Mikrowellenpeptidsynthese sowie von 3 Aufreinigungsschritten per HPLC angesichts der Länge und Komplexität des Peptides erstaunlich hoch ist.

![Diagramm](image)

Abb. 2.1: Aufreinigung des bizyklischen AGEM400 mittels HPLC-MS an einer C18-Säule
(Reposil 10-100A) – rote Spur: UV-Signal bei 216 nM, grüne Spur: MS-Signalintensität der korrekten Masse

2.2.2.4 Entschützung der endständigen Cysteine

2.2.2.5 Konjugation an HES (Hydroxyethylstärke)

Zur Konjugation des fertigen bivalenten Peptides mit einer freien Thiol-Gruppe wurde eine kleine Menge von 10-20% des Peptides in Phosphatpuffer (50 mM Phosphat, 150 mM NaCl, pH 6,5) 1-2 Stunden zur Kopplung an den polymeren Carrier mit
aktiven Maleimid-Gruppen verwendet. Die Bedingungen wurden dazu optimiert, um
einerseits die Stabilität der Polymerstruktur, der Maleimid-Gruppen und der Disulfid-
Brücken zu gewährleisten bzw. um andererseits den quantitativen Umsatz der
Maleimid-Gruppen beobachten zu können. Nach Ultrafiltration betrug der
Massenertrag an gebildetem Konjugat bis zu 95%.

2.2.3 Allgemeine Zellkultur: Medien und Kultivierung tierischer Zelllinien

Die Inkubation der Zellen erfolgte bei 37°C und 5%i ger CO₂-Begasung.
Alle Medien wurden mit Amphotericin B (2.5 µg/ml), Streptomycin (100 µg/ml) und
Penicillin (100 Units/ml) versetzt. Glutamin wurde bereits durch den Hersteller
zugegeben (GibcoGlutamax; Invitrogen).
Alle verwendeten Zelllinien wurden in Suspension kultiviert. Die Zellen wurden alle 2-
3 Tage ausgezählt, zentrifugiert, mit frischem Medium verdünnt und in neue
Flaschen überführt.

2.2.3.1 Bestimmung der Gesamtzellzahl

Die Zellzahl wurde mit Hilfe einer Neubauer-Kammer bestimmt. Dazu wurde der
Mittelwert vier ausgezählter Großquadrate gebildet und mit 1x10⁴ multipliziert. Dies
eröffnet die Zellkonzentration/ml.

2.2.3.2 Bestimmung der Lebendzellzahl mit Trypanblau

Zur Bestimmung der Lebendzellzahl wurde ein kleines Volumen der Zellen 1:1 mit
einer Trypanblau-Lösung gemischt und in der Neubauer-Kammer ausgezählt (Toni

2.2.3.3 Auftauen von Zellen

Eingefrorene Zellen wurden im Wasserbad (37°C) aufgetaut und anschließend in
einen 50 ml Falcon überführt. 10 ml Kulturmedium wurde tropfenweise zugegeben.
Zum Entfernen des Einfriermediums wurden die Zellen zweimal mit je 10 ml
Kulturmedium gewaschen. Anschließend wurden die Zellen in 10 ml Kulturmedium
resuspendiert und 30 min. bei 37°C und 5%i ger CO₂-Begasung inkubiert.
Dann wurden die Zellen zentrifugiert und erneut in 10 ml Kulturmedium resuspendiert. Nach 4 bis 6 Stunden Inkubation bei 37°C und 5% CO₂ wurde das Medium erneut gewechselt.

2.2.3.4 Einfrieren von Zellen
Pro Kryoröhrchen wurden 2-4 Millionen Zellen in einem Gesamtvolumen von 1.8 ml eingefroren. Dazu wurden die Zellen zentrifugiert und in 0.9 ml Kulturmedium resuspendiert und auf Eis gestellt. In jedes Röhrchen wurde tropfenweise 0.9 ml zweifaches Einfriermedium (Medium mit 30% FCS, 20% DMSO) zugegeben. Die Zellen blieben 15 min. auf Eis, wurden dann für 30 min. bei -20°C und anschließend für mindestens eine Stunde bei -80°C gelagert. Die Langzeit-Lagerung der Zellen erfolgte in flüssigem Stickstoff.

2.2.3.5 Responsivitätstest

2.2.4 Verwendete Zellen und Zelllinien

2.2.4.1 TF-1
TF-1 ist die Zelllinie, die von der Europäischen Pharmakopöe zur Untersuchung der EPO-Aktivität empfohlen wird.
2.2.4.2 UT-7/EPO
UT-7/EPO ist eine Sub-Zelllinie, die aus UT-7 etabliert wurde. Diese Zellen wachsen ausschließlich in Abhängigkeit von EPO. Die Zellen wurden in DMEM mit 10% FCS inkl. 0.1 nM EPO kultiviert und alle 2-3 Tage mit einer Dichte von 2-3x10⁵ Zellen/ml ausgesät.
UT-7 ist eine humane Leukämiezelllinie, die in Abhängigkeit von IL-3, GM-CSF oder EPO wächst. UT-7 Zellen haben eine deutlich höhere Anzahl von EPO-Rezeptoren als TF-1.
Die UT-7/EPO-Zellen wurden freundlicherweise von Herrn Prof. Dr. Wolfgang Jelkmann (Institut für Physiologie, Universität zu Lübeck) zur Verfügung gestellt.

2.2.4.3 M07e
M07e (M-07e) ist eine humane akut megakaryoblastische Leukämiezelllinie, die in Abhängigkeit von GM-CSF bzw. IL-3 wächst (DSMZ; ACC104).
Die Zellen wurden in RPMI 1640-Medium mit 20% FCS inkl. 10 ng/ml hIL-3 (Peprotech) kultiviert und alle 2-3 Tage mit einer Zelldichte von 4-6x10⁵ Zellen/ml in frischem Medium ausgesät.

2.2.4.4 SupT1
SupT1 (Sup-T1) ist eine humane CD4-positive lymphoblastische Leukämiezelllinie (DSMZ; ACC 140). Die Zellen wurden in RPMI 1640-Medium mit 10% FCS kultiviert und alle 2-3 Tage mit einer Zelldichte von 1-2x10⁵ Zellen/ml in frischem Medium ausgesät.

2.2.4.5 Mononukleäre Zellen (MNC)
Humane MNC wurden von der Firma StemCell Technologies (ABM007F) bezogen.

2.2.5 Ficoll Dichtegradienten: Separation mononukleärer Zellen aus Knochenmark

2.2.6 Proliferationsnachweis mittels MTS-Assay

Der MTS-Assay (CellTiter 96® AQueous One Solution Cell Proliferation Assay; Promega) beruht auf der Reduktion des Tetrazoliumsalzes MTS (3-[4,5-dimethylthiazol-2-yl]-5-(3-carboxymethoxyphenyl)-2-(4-sulfonphenyl)-2H-tetrazolium) durch Dehydrogenasen (Mitochondrien). Dies geschieht unter Bildung eines Formazan-Farbstoffs. Photometrisch kann die Farbstoffbildung bei 490 nm (Referenzfilter 620 nm) quantifiziert werden. Sie korreliert nach Abzug des Leerwertes direkt mit der Zahl metabolisch aktiver Zellen in der Kultur.

Folgendes Pipettierschema wurde bei einer 96-Well-Platte verwendet:

Material und Methoden

2.2.7 Durchflusszytometrie: FACS-Analyse

Das Vorwärtsstreulicht (FSC=Forward scatter) entsteht durch Beugung des Lichts und wird als Parameter für die Zellgröße verwendet. Das Seitwärtsstreulicht (SSC=Side Scatter) entsteht durch Brechung des Lichts und wird als Parameter für Größe und Struktur (Granularität) des Partikels verwendet. Durch diese beiden Parameter allein kann eine heterogene Zellpopulation in ihre einzelnen Untergruppen aufgetrennt werden.

Darüber hinaus können Oberflächenmarker der Zellen mit spezifischen Antikörpern, die mit Fluoreszenzfarbstoffen wie z.B. FITC (FL-1-Kanal) oder PE (FL-2-Kanal) gelabelt sind, markiert werden. Die Durchflusszytometrie wurde in dieser Arbeit zur Untersuchung von Oberflächenantigenen (CD=Cluster of Differentiation) und Apoptosemarkern eingesetzt.

Bei allen durchflusszytometrischen Bestimmungen wurde zum Ausschluss toter Zellen gleichzeitig eine Färbung mit dem Fluoreszenzfarbstoff Propidiumiodid (PI) durchgeführt. PI ist ein Nukleinsäureinterkalator und kann nur durch perforierte Membranen in die Zelle eindringen. Intakte lebende Zellen sind für PI impermeabel. Das Probenvolumen wurde vor der Messung um 400 µl PBS inkl. 10µg/ml PI erhöht.

2.2.8 Detektion des EPO-Rezeptors (EPO/R) und des IL-3-Rezeptors (CD131) auf der Oberfläche verschiedener Zelllinien

Die Zelllinien UT-7/EPO, TF-1, M07e und SupT1 wurden mit einem FITC-markierten anti-hEPO/R Antikörper (R&D, FAB307F) bzw. mit einem PE-markierten anti-CD131 Antikörper (NatuTec, eBioscience 12-1319-71) inkubiert. Vor der Färbung der Zellen mit dem jeweiligen Antikörper wurden UT-7/EPO- (10% FCS im Medium) und TF-1-

Die Antikörper wurden nach folgendem Schema in Blocking-Puffer verdünnt:

Färbelösung
- anti-EPO/R-FITC 1:3
- anti-CD131-PE 1:6

Kontrollfärbelösung
- IgG1-FITC 1:20
- IgG2a-PE 1:10

2.2.9 Untersuchung apoptotischer Prozesse

Vor Versuchsbeginn wurden TF-1-Zellen mit 7×10^5 Zellen/ml 48 Stunden in Kulturmedium, das nur 5% FCS und kein IL-3 enthielt, vorinkubiert.

Die Zellen wurden anschließend drei Tage mit verschiedenen Konzentrationen von EPO bzw. der Peptide bei 37°C und 5% CO₂-Begasung kultiviert.
2.2.9.1 Nachweis von Annexin V

Eines der Merkmale früher Apoptose ist die Translokation von Phosphatidylserin (PS) von der Membraninnenseite zur Membranaußenseite. Annexin V bindet hochaffin an PS und kann durch Markierung mit einem Fluoreszenzfarbstoff nach Bindung an die Zelle durchflusszytometrisch detektiert werden. Der Nachweis wurde mit dem Annexin V-FITC Apoptosis Detection Kit I (Cat.No.: 556547; BD Pharmingen™) nach Angaben des Herstellers durchgeführt.

2.2.9.2 Nachweis aktiver Caspases

Der Versuch wurde nach dem Protokoll des Herstellers (Vybrant® FAM Caspase-8 Assay Kit (V35119), Vybrant® FAM Caspase-3, -7 Assay Kit (V35118); Molecular Probes) durchgeführt.

2.2.10 Differenzierungsnachweise

2.2.10.1 Nachweis der CD34-Abnahme bei TF-1-Zellen

Humane TF-1-Zellen exprimieren an ihrer Oberfläche den Marker CD34, der charakteristisch für hämatopoetische Vorläuferzellen ist. CD34 ist ein Oberflächenprotein, das mit fortschreitender Differenzierung nicht mehr von den Zellen exprimiert wird und dauerhaft an der Oberfläche verloren geht.
Vergleichend zum rekombinant en EPO wurde der Einfluss von AGEM400 bzw. AGEM400-HES auf die Differenzierung von TF-1-Zellen durch den Verlust von CD34 nachgewiesen.

Für die Immunfärbung wurden 20000 Zellen jeder Verdünnungsstufe in 1.5 ml Eppendorf-Reaktionsgefäßen zentrifugiert (4 min., 4600 rpm) und in 20 µl Färbelösung resuspendiert.

Anschließend wurde zu jedem Ansatz 500 µl MACS-Puffer zugegeben. Die Proben wurden zentrifugiert (4 min. 4600 rpm), die Überstände abgesaugt und die Zellen in 400 µl MACS-Puffer inkl. PI resuspendiert und in FACS-Röhrchen überführt.

Die Antikörper wurden nach folgendem Schema in Blocking Puffer (10 mM PBS, 5 % Humanserum, 5% FCS) verdünnt:
Material und Methoden

Färbelösung
- anti-CD34-FITC 1:20 verdünnt
- anti-CD133-PE 1:20 verdünnt

Kontrollfärbelösung
- IgG1-FITC 1:20 verdünnt
- IgG2a-PE 1:10 verdünnt

2.2.10.2 CFU-(Colony-Formation-Unit-) Assay

Der CFU-Assay ist ein Kolonietest, bei dem der Einfluss von EPO und den Peptiden auf die Differenzierung und Proliferation hämatopoetischer Progenitorzellen (CD34⁺-Zellen) aus dem Knochenmark verschiedener Spezies (Mensch, Cynomolgus) untersucht wurde.

In dieser Arbeit wurde insbesondere die Bildung erythroider Kolonien (CFU-E, BFU-E) in Abhängigkeit von EPO bzw. den EPO-mimetischen Peptiden untersucht. Die gebildeten Kolonien wurden mikroskopisch bewertet und ausgezählt.
Darüber hinaus fand man weiße Kolonien der Zelltypen CFU-M (Colony Forming Unit-Macrophage), CFU-G (Colony Forming Unit-Granulocyte), CFU-GM (Colony Forming Unit-Granulocyte/Macrophage) und CFU-GEMM (Colony Forming Unit-Granulocyte/Erythroblasts/Macrophage/Megakaryocytes), aus denen weitere hämatopoetische Zelltypen ausdifferenzieren können. Die nachfolgenden Aufnahmen zeigen exemplarisch verschiedene Kolonietypen in Methylcellulose.
Material und Methoden

Abb. 2.2: Digitalaufnahmen verschiedener Kolonietypen (CFU-Assay)
Differenzierung humaner Knochenmarkzellen nach Kultivierung mit AGEM400-HES. Die Aufnahmen wurden mit dem Fluoreszenzmikroskop DFC420 von Leica mit einem 4x-Objektiv gemacht.

Die Methylcellulose (MethoCult™GF H), die einen Cocktail humaner Zytokine enthielt, wurde von der Firma Cellsystems bezogen.
Für humane Knochenmarkzellen wurde MethoCult™GF H4535 (inkl. hSCF, hGM-CSF, hIL-3, hIL-6, hG-CSF) verwendet. Für Knochenmarkzellen aus Affen wurde alternativ MethoCult™GF H4534 (inkl. hSCF, hGM-CSF, hIL-3) eingesetzt.
gelassen, damit die entstandenen Luftblasen entweichen konnten. Währenddessen wurden die Knochenmarkzellen aufgetaut, mit Medium gewaschen und die Lebendzellzahl mit Trypanblaufärbung bestimmt. Die Zellen wurden mit entsprechender Dichte (Human: \(6 \times 10^5\) Zellen/ml; Affe: \(8 \times 10^5\) Zellen/ml) in IMDM-Medium mit 2% FCS verdünnt. 70 µl Zellsuspension wurden in jede Methylcellulose-Probe pipettiert. Die Proben wurden erneut gevortex und wieder 10 min. zum Entweichen der Luftblasen stehen gelassen. Im Anschluss wurde von den insgesamt 1,54 ml einer jeden Probe so viel Volumen wie möglich ohne Entstehung von Luftblasen mit einer Spritze aufgezogen (19-gauge Nadeln). Davon wurden 1,1 ml jeder Probe in je einem Well einer 6-Wellplatte pipettiert und durch Schwenken der Platte verteilt. Die humanen Zellen wurden 12 Tage und die Affenzellen (Cynomolgus) wurden 10 Tage im Brutschrank inkubiert.

2.2.10.3 Nachweis von CD36 und GlycophorinA (CD235a)

CD36 kommt auf verschiedenen Zelltypen wie z.B. Erythrozyten, Thrombozyten, Monozyten oder Megakaryozyten vor und ist ebenfalls ein integrales Membranprotein. Es wird in Erythrozyten ab dem Differenzierungsstadium des Erythroblasten auf der Oberfläche der Zellen exprimiert. Für CD36 wurden für die einzelnen Zelltypen verschiedene Funktionen beschrieben, aber konnten zum größten Teil noch nicht eindeutig verifiziert werden.

Im Rahmen dieser Untersuchung dienten CD36 und GlycophorinA zum Nachweis der Differenzierung humaner Knochenmarkzellen (MNC) unter dem Einfluss von AGEM400 und AGEM400-HES. Zu Versuchsbeginn waren die eingesetzten Zellen noch undifferenziert und lediglich für einen bestimmten Zelltyp geprägt. Zu diesem Zeitpunkt wurden die beiden Oberflächenantigene CD36 und GlycophorinA noch nicht exprimiert.
Material und Methoden

Färbelösung I

- Anti-CD36-FITC 1:10 verdünnt
- Anti-CD235a-PE 1:10 verdünnt

Färbelösung II

- IgG1-FITC 1:20 verdünnt
- IgG2a-PE 1:10 verdünnt
2.2.10.4 Herstellung von Zellextrakten aus Methylcellulose-Kulturen zur Hämoglobinbestimmung

Die Hämoglobinbestimmung erfolgte im Anschluss an einen CFU-Assay. Dazu wurde die Methylcellulose in jedem Well zunächst verflüssigt (vgl. Nachweis von CD36/CD235a) und in Falcons überführt. Anschließend wurden die Zellen in einer Tischzentriﬁuge 4 min. bei 1500 rpm zentrifugiert. Die Pellets wurden in 1 ml kalten MACS-Puffer resuspendiert und in 1.5 ml Eppis überführt. Die Proben wurden nochmals 5 min. bei 4000 rpm und 4°C zentrifugiert und dann in 500 µl kaltem MACS-Puffer resuspendiert. Nach einem weiteren Zentrifugationsschritt wurden die Pellets in 100 µl PBS/1% TritonX-100 zur Lyse resuspendiert, gevortext und im Anschluss 10 min. auf Eis inkubiert. Die Lysate wurden dann in einer Tischzentriﬁuge bei maximaler Geschwindigkeit und 4°C 15 min. zentrifugiert. Der zellfreie Überstand wurde abgenommen und für die Hämoglobinbestimmung verwendet.

2.2.10.5 Hämoglobin-Bestimmung nach Luftig (1977)

der Rotfärbung korreliert mit der Menge an Hämoglobin und kann colorimetrisch bestimmt werden.

Um die Hämoglobininkonzentration in den Proben bestimmen zu können, wurde eine Verdünnungsreihe von humanem Hämoglobin (Sigma, H7379) bei der Bestimmung und Messung mitgeführt: Für die höchste Konzentration der Standardkurve (Probe 1) wurden 0.58 mg in 250 µl PBS/1% TritonX-100 gelöst. Von dieser Probe ausgehend wurden die Standard-Proben 3-9 in einer 1:2-Verdünnungsreihe hergestellt. Für Probe 2 wurden 0.41 mg in 250 µl PBS/1% TritonX-100 separat gelöst. Die folgende Tabelle zeigt die daraus resultierenden Hämoglobinmengen pro Standard-Probe.

<table>
<thead>
<tr>
<th>Probe</th>
<th>Humanes Hämoglobin (µg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58</td>
</tr>
<tr>
<td>2</td>
<td>41</td>
</tr>
<tr>
<td>3</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>14.5</td>
</tr>
<tr>
<td>5</td>
<td>7.3</td>
</tr>
<tr>
<td>6</td>
<td>3.6</td>
</tr>
<tr>
<td>7</td>
<td>1.8</td>
</tr>
<tr>
<td>8</td>
<td>0.9</td>
</tr>
<tr>
<td>9</td>
<td>0.5</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

Für die Benzidin-Färbung wurden 25 µl jeder Standardprobe verwendet.
2.2.11 Untersuchungen zur Rezeptorbindung

2.2.11.1 Kompetitionsassay mit einem löslichen EPO/R (sEPO/R) in TF-1 und UT-7/EPO

Zur Untersuchung der spezifischen Bindung der Peptide an den EPO-Rezeptor wurden mit TF-1- und UT-7/EPO-Zellen MTS-Assays, bei dem der endogene EPO-Rezeptor durch Zugabe eines löslichen EPO-Rezeptors (Sigma, sEPO/R; E0643) kompetiert werden sollte, durchgeführt. Dazu wurden die Zellen 3 Tage mit verschiedenen EPO-, IL-3- bzw. Peptid-Konzentrationen in Anwesenheit von 2 µg/ml sEPO/R oder ohne sEPO/R kultiviert. Die Kompetition ist durch die Abnahme der Proliferation bzw. der Abnahme metabolisch aktiver Zellen nachweisbar, da der sEPO/R die Testsubstanzen bei einer Kompetition abfangt, und diese den membranständigen EPO-Rezeptor nicht mehr binden und aktivieren können. IL-3 wurde mit 3 ng/ml, EPO und AGEM400-HES wurden jeweils mit 10 ng/ml in der höchsten Konzentration eingesetzt. Von der höchsten Konzentration ausgehend folgten für alle Substanzen vier 1:3.2-Verdünnungen. Der fünfte Wert entsprach der Kontrolle ohne Testsubstanz.

2.2.11.2 Qualitative Bestimmung des Antagonismus zwischen transmembranem (endogenem) und löslichem EPO/R

Der Kompetitionsassay wurde wie oben angegeben in UT-7/EPO mit acht weiteren Konzentrationen des löslichen EPO/R durchgeführt. Als Kontrollen wurden für jede EPO-Konzentrationsreihe der Nullwert (Zellen ohne EPO) bzw. eine EPO-Konzentrationsreihe ohne Antagonist (sEPO/R) mitgeführt.

2.2.11.3 Radioliganden-Bindungsassay

Dieser Assay wurde bei MDS Pharma (Hamburg, Deutschland) durchgeführt. 40 pM \(^{125}\text{I} \)-markiertes rhEPO (R&D Systems) wurden an einen löslichen EPO/R (in NSO-Zellen exprimiert; R&D Systems), der über ein Fc-Fragment an SPA-Beads (Scintillation Proximity Assay) gekoppelt war, in Kalium-Puffer (pH 7.4) aufgebunden. Anschließend wurden verschiedene Konzentrationen von EPO bzw. AGEM400 und AGEM400-HES als Kompetitoren zugegeben. Die nachfolgende Tabelle gibt die eingesetzten Konzentrationen der Testsubstanzen an:
<table>
<thead>
<tr>
<th>EPO (ng/ml)</th>
<th>AGEM400 (ng/ml)</th>
<th>AGEM400-HES (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>460</td>
<td>220</td>
</tr>
<tr>
<td>34</td>
<td>140</td>
<td>70</td>
</tr>
<tr>
<td>10</td>
<td>46</td>
<td>22</td>
</tr>
<tr>
<td>3.4</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>4.6</td>
<td>2.2</td>
<td>0.7</td>
</tr>
</tbody>
</table>

2.2.12 Untersuchungen zur Signaltransduktion

2.2.12.1 Aktivierung von STAT5

Zunächst wurde über eine 30-minütige Stimulation mit einer serial 1:10 verdünnten fünfstufigen Konzentrationsreihe von jeder Substanz jeweils der Konzentrationsbereich bestimmt, der mindestens eingesetzt werden musste, um ein maximales Signal hervorzurufen. EPO wurde mit 340 ng/ml, AGEM400 mit 2200 ng/ml und AGEM400-HES mit 460 ng/ml in der höchsten Dosis eingesetzt. Nachdem die niedrigste Konzentration zur Erreichung des maximalen Effektes bestimmt war,
wurden die Zellen mit dieser Konzentration über 0.5; 1; 2; 4 und 24 Stunden bei 37°C und 5%-iger CO₂-Begasung stimuliert.

2.2.12.2 Aktivierung von ERK1/2
Die Zellen wurden über 0.5, 4 und 24 Stunden mit 3.4 ng/ml EPO oder 10 ng/ml AGEM400-HES bei 37°C und 5%-iger CO₂-Begasung stimuliert.

2.2.12.3 Herstellung von Zellextrakten
Die Stimulationen wurden durch Überführung von 1 ml des Stimulationsansatzes in ein 1.5 ml Reaktionsgefäss und Zentrifugation (4600 rpm, 4 min.) beendet. Die Zellen wurden in 1 ml kaltem PBS resuspendiert und erneut zentrifugiert (4600 rpm, 4 min, 4°C.). Alle weiteren Schritte erfolgten zum Schutz vor enzymatischem Proteinabbau auf Eis. Die Pellets wurden in 100 µl Lysepuffer resuspendiert und für 30 min. auf Eis inkubiert. Anschließend wurden die lysierten Zellen kurz gevortext und zur Entfernung von unlöslichen Zellbestandteilen für 15 min. bei 13000 rpm und 4°C in einer Tischzentrifuge zentrifugiert. Der Überstand wurde abgenommen, in neue 1.5 ml Reaktionsgefäße überführt und bei -20°C gelagert.

2.2.12.4 Diskontinuierliche SDS-PAGE
Die Proben wurden für die SDS-Gelelektrophorese nach folgendem Schema hergestellt:

5 µl	Lysat
3.75 µl	4x Ladepuffer
0.15 µl	1 M DTT-Lösung
6.1 µl	dest. H₂O

Volumen: 15 µl

Die Ansätze wurden 5 min. lang bei 99°C erhitzt und anschließend auf das Gel aufgetragen. Für die Elektrophorese wurde MOPS-Puffer verwendet. Zur
Material und Methoden

Auftrennung der Proben im Gel wurde eine konstante Spannung von 170 V angelegt. Kurz bevor die Lauffront des Ladepuffers das untere Gelende erreichte, wurde der Gellauf beendet.
Als Größenstandard wurde SeebluePlus2 (Invitrogen) verwendet.

2.2.12.5 Coomassie-Färbung

Für die Geltrocknung wurde das DryEase® Mini-Gel Trocknungssystem von Invitrogen nach Angaben des Herstellers verwendet.

Coomassie-Lösung
0.2% Coomassie Blue R250 (Sigma) in 50% Methanol mit 10% Essigsäure

2.2.12.6 Western Blotting

Western Blotting erfolgte mit PVDF-Membranen (Perbio) und wurde mit dem NuPAGE®-System von Invitrogen inkl. aller dazugehöriger Reagenzien und Apparaturen nach Angaben des Herstellers durchgeführt.
Die Blotting Dauer betrug 1.5 Stunden bei konstanten 25 V.

2.2.12.7 Immunodetektion von STAT5, Phospho-STAT5, ERK1/2 und P-ERK1/2 aus Zellextrakten

Anschließend wurde der Blocking-Puffer abgekippt, und die Membranen wurden mit dem in Blocking-Puffer verdünnten Primärantikörper eine Stunde inkubiert. Danach
wurden die Membranen zweimal mit TBST gespült und darauffolgend dreimal 5 min. mit TBST gewaschen. Die Membranen wurden für den zweiten Blockierungsschritt mit Blocking-Puffer überschichtet und für eine weitere Stunde inkubiert. Der Blocking-Puffer wurde entfernt und durch den in Blocking-Puffer verdünnten HRP-markierten Sekundärantikörper ersetzt und eine Stunde inkubiert. Im Anschluss wurden die Membranen zweimal mit TBST gespült und darauffolgend viermal 5 min. mit TBST gewaschen. Anschließend wurden die Membranen noch einmal mit TBS gespült und einmal 5 min. mit TBS gewaschen. Vor der Zugabe des HRP-Substrates (Amersham; *ECL Advance Western Blotting Detection Kit*) wurde überschüssiger Puffer über die Längskanten der Membranen mit Krepp-Papier abgezogen. Pro Membran wurde 1 ml einer 1:1-Mischung der beiden Komponenten des chemilumineszenten HRP-Substrates verteilt und für etwa eine Minute inkubiert. Überschüssiges Substrat wurde über die Längskanten der Membranen mit Krepp-Papier abgezogen. Die Membranen wurden in durchsichtige Folien verpackt und zur Belichtung eines Röntgenfilms (Amersham; *ECL Hyperfilm*) in einer Filmkassette fixiert. Die Signale wurden durch Eintauchen der Filme in Entwicklerlösung (# 515 8621; Kodak) für 2 min. und anschließender Spülung mit Wasser und Einlegen der Filme in eine Fixierlösung (Röntgenfixierbad AL4; # 507 1071; Kodak) für 1 min. visualisiert. In der folgenden Tabelle sind die Verdünnungen der Antikörper angegeben:

<table>
<thead>
<tr>
<th>Primärantikörper</th>
<th>Verdünnung Primärantikörper</th>
<th>Sekundärantikörper</th>
<th>Verdünnung Sekundärantikörper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-STAT5</td>
<td>1:5000</td>
<td>Anti-rabbit-IgG-HRP</td>
<td>1:10000</td>
</tr>
<tr>
<td>(Cell Signaling #9352)</td>
<td></td>
<td>(GE Healthcare #ECL NA934V)</td>
<td></td>
</tr>
<tr>
<td>Anti-Phospho-STAT5</td>
<td>1:10000</td>
<td>Anti-mouse-IgG-HRP</td>
<td>1:30000</td>
</tr>
<tr>
<td>(Cell Signaling #9356)</td>
<td></td>
<td>(DAKO #P0260)</td>
<td></td>
</tr>
<tr>
<td>Anti-ERK1/2</td>
<td>1:25000</td>
<td>Anti-rabbit-IgG-HRP</td>
<td>1:10000</td>
</tr>
<tr>
<td>(Cell Signaling #9102)</td>
<td></td>
<td>(GE Healthcare #ECL NA934V)</td>
<td></td>
</tr>
<tr>
<td>Anti-Phospho-ERK1/2</td>
<td>1:10000</td>
<td>Anti-mouse-IgG-HRP</td>
<td>1:30000</td>
</tr>
<tr>
<td>(Cell Signaling #9106)</td>
<td></td>
<td>(DAKO #P0260)</td>
<td></td>
</tr>
</tbody>
</table>
2.2.13 Immunologische Untersuchungen

2.2.13.1 Eurogentec: Immunisierung von Kaninchen

Die Peptide wurden vor der Immunisierung von Eurogentec an KLH (Keyhole-limpet hemocyanin) gekoppelt.

Pro Peptid wurden zwei Versuchstiere und ein Kontroll-Kaninchen, das nur mit KLH immunisiert wurde, verwendet.

Das folgende Schema zeigt den Ablauf der Immunisierung:

<table>
<thead>
<tr>
<th>Tag</th>
<th>0</th>
<th>14</th>
<th>28</th>
<th>38</th>
<th>56</th>
<th>66</th>
<th>87</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injektion</td>
<td>1.</td>
<td>2.</td>
<td>3.</td>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blutung</td>
<td>präimmun</td>
<td>klein</td>
<td></td>
<td></td>
<td>groß</td>
<td></td>
<td>final</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Blutung</th>
<th>Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>klein</td>
<td>2-3 ml</td>
</tr>
<tr>
<td>groß</td>
<td>20-25 ml</td>
</tr>
<tr>
<td>final</td>
<td>50-60 ml</td>
</tr>
</tbody>
</table>

Es wurden die Antiseren **SA4893** (anti-EPO), **SA5047** (anti-BB68) und **SA5048** (anti-AGEM400) gewonnen.
2.2.13.2 Immunodetektion von Erypo® und EMPs mit Antiseren

Mittels Western Blot Analyse wurde untersucht, ob die Antiseren spezifisch nur mit den entsprechenden Antigenen reagieren oder auch miteinander kreuzreagieren. 1.68 ng EPO und je 750 ng BB68 bzw. AGEM400 wurden über ein SDS-Polyacrylamid-Gel elektrophoretisch aufgetrennt und anschließend auf eine PVDF-Membran geblottet. Die Immunodetektion erfolgte mit den gleichen Puffern, Reagenzien und nach der gleichen Prozedur wie unter 2.2.12.7 beschrieben. Die Membranen wurden mit den Antiseren SA4893 (anti-EPO), SA5047 (anti-BB68) bzw. SA5048 (anti-AGEM400), die 1:200 in Blocking-Puffer verdünnt wurden, inkubiert. Die Detektion erfolgte chemilumineszent durch einen HRP-markierten anti-Kaninchen-IgG Antikörper (Amersham, #NA934).

2.2.13.3 Charles River: Immunisierung von Schafen

Zum Nachweis von AGEM400 bzw. AGEM400-HES aus verschiedenen Verdünnungsmedien wurde ein ELISA mit einem Schaf-anti-AGEM400 Antikörper entwickelt.

2.2.13.4 Sandwich-ELISA: Konzentrationsbestimmung von EMPs in verschiedenen Verdünnungsmedien

Alle Schritte fanden bei Raumtemperatur auf einer Schüttelplatte (300 rpm) statt. Das Wechseln der Lösungen in den Wells wurde durch mehrmaliges kräftiges Ausklopfen der Platten auf stark saugende Papiertücher durchgeführt.

Jede Verdünnungsstufe wurde zur Bestimmung des arithmetischen Mittelwertes und der Standardabweichung in Triplikaten angesetzt.

96-Well-Platten (Greiner, Bio-One 655161) wurden kurz mit 100 µl PBS (Sigma) äquilibriert und anschließend mit in 100 µl PBS verdünntem affinitäts gereinigten Schaf-anti-AGEM400 Antikörper (5 µg/ml) als Erstantikörper für eine Stunde gecoated.

Im Anschluss wurden die Wells dreimal mit jeweils 100 µl PBS gewaschen. Die Wells wurden dann mit 50 µl verschiedener Konzentrationen von AGEM400 bzw. AGEM400-HES in unterschiedlichen Verdünnungsmedien wie Rattenserum, Humanserum, RPMI/10% FCS, PBS/1% BSA bzw. Lysepuffer/1% BSA befüllt. Von den Peptiden wurden in jedem Verdünnungsmedium folgende Konzentrationen (ng/ml) eingesetzt: 20.00/ 15.00/ 10.00/ 7.50/ 5.00 / 3.75/ 2.50/ 1.88/ 1.25/ 0.94/ 0.63/ 0.47/ 0.31/ 0.23/ 0.16/ 0.00.

Nach einer Stunde Inkubation wurden die Wells durch kräftiges Ausschlagen und Ausklopfen der Platten entleert. Danach wurden die Wells dreimal mit jeweils 100 µl PBS gewaschen, um im Anschluss für eine weitere Stunde mit je 200 µl Blocking-Puffer 1 (PBS inkl. 2% Magermilchpulver) wieder befüllt zu werden.

Die Wells wurden nach Ablauf der Inkubationszeit wieder durch starkes Ausklopfen entleert, dreimal mit 100 µl PBS gewaschen und mit 100 µl des vorinkubierten Detektionsantikörpers befüllt und eine weitere Stunde inkubiert. Nach Entfernen des Detektionsantikörpers wurden die Wells erneut dreimal mit 100 µl PBS gewaschen. Die Detektion erfolgte durch Zugabe von 100 µl des HRP-Substrates TMB (ready-to-use-Lösung; sdt GbR, Baesweiler)/Well. Die Umsetzung von TMB durch HRP wird
Material und Methoden

durch eine im Photometer bei 450 nm (Referenzfilter 620 nm) detektierbare Gelbfärbung der Lösungen nach Zugabe von 100 µl Stoplösung (1N HCl-Lösung) begleitet. Die Inkubation mit TMB erfolgte für 10 bis 30 min.

Zur Quantifizierung von AGEM400 wurde eine Kalibrierkurve mitgeführt: Für die Kalibrierkurve wurden zunächst 1 mg/ml AGEM400 oder AGEM400-HES in PBS inkl. MgCl₂ (●6H₂O; 0.1 g/l) und BSA (0.1% [w/v]) für zwei Stunden unter Schütteln gelöst. Anschließend wurden Verdünnungen der Peptide in dem Verdünnungsmedium, das im ELISA verwendet werden soll, hergestellt. Dabei wurde auf einen Spitzenwechsel der Pipette nach jedem Verdünnungsschritt geachtet, um eine unspezifische Bindung an die Oberfläche der Pipettenspitze und damit verbundene Konzentrationsschwankungen zu verhindern. Für AGEM400 wurden Verdünnungen in einem Konzentrationsbereich von 1 ng/Well bis 0.05 ng/Well eingesetzt. Für AGEM400-HES wurde ein Konzentrationsbereich von 10 ng/Well bis 0.5 ng/Well gewählt.

2.2.14 Auswertung und Präsentation der Daten

Die Messwerte sind als Mittelwerte ± Standardabweichung vom Mittelwert angegeben. Alle Daten, die ohne Angabe einer Standardabweichung gezeigt werden, stellen repräsentative Ergebnisse dar, die in mehrfachen, voneinander unabhängigen (mind. drei) Wiederholungen des Experimentes vergleichbar bestätigt wurden.

Zwei Schrägstriche auf einer x-Achse mit logarithmischer Skalierung einer Graphik deuten an, dass dort die angezeigte Skalierung unterbrochen wird, um einen Nullwert einzufügen.
2.2.14.1 Dosis-Wirkungskurven

Die Daten der verschiedenen Dosis-Wirkungsversuchen wurden mit Hilfe des Statistik-Programms *Graph Pad Prism 4* graphisch dargestellt und statistisch ausgewertet. Für die Darstellung der Daten in einer sigmoidalen Dosis-Wirkungskurve wurden die Mittelwerte der Dreifach-Bestimmungen logarithmiert (x→logx) und anschließend linear normalisiert. Bei der linearen Normalisierung wurde der niedrigste Wert als null % und der höchste Wert als 100% für jede Datenreihe definiert. Alle dazwischen liegenden Werte verteilen sich entsprechend prozentual. Die sigmoidale Dosis-Wirkungskurve wurde durch nicht-lineare Regression nach folgender Gleichung mit drei Parametern ermittelt:

\[
Y = \text{Bottom} + \frac{\text{Top-Bottom}}{1+10^{\text{LogEC50}-X}}
\]

- **Y**: Messwert (%)
- **Bottom**: niedrigster Messwert (%)
- **Top-Bottom**: höchster Messwert (%)
- **LogEC50**: dekadischer Logarithmus der EC50
- **X**: dekadischer Logarithmus der Konzentration (ng/ml)

Aus der sigmoidalen Dosis-Wirkungskurve wurden die effektiven Konzentrationen EC10, EC50 und EC90 bestimmt. Die EC50-Konzentration wird als die Agonisten-Konzentration definiert, die einen halbmaximalen Effekt auslöst. Die EC50 wurde durch das Programm *Graph Pad Prism* bei der Berechnung der nicht-linearen Regression der Daten kalkuliert und mit dem 95% Konfidenzintervall (95 % CI= *Confidence Interval*) angegeben.

Das 95% CI stellt eine Annäherung eines aktuellen Messwertes an den wahre Wert her, da der wahre Wert nur durch unendlich viele Messungen erhalten werden könnte. Der wahre Wert liegt statistisch mit 95%-iger Wahrscheinlichkeit im Bereich des Konfidenzintervalls.
Bei den effektiven Konzentrationen EC10 und EC90 handelt es sich um Konzentrationen, die einen 10%-igen bzw. einen 90%-igen Effekt des Maximaleffektes bewirken. Die EC10 wurde zur Untersuchung bzw. zum Vergleich des Wirkungseintritts verwendet. Die EC90 wurde zur Analyse des Erreichens des maximalen Wirkplateaus herangezogen. EC10 und EC90 wurden mit Hilfe der EC50-Konzentration nach folgender Gleichung berechnet:

$$ECF = \frac{F}{(100-F)^{1/H}} \times EC50$$

F: Effekt (%)

H: HillSlope (Steigung der Kurve; Bei einer sigmoidalen Standard-Dosis-Wirkungskurve gilt: \(H = 1 \))

EC10 = 0.11 × EC50

EC90 = 9 × EC50

Als Maß für die Varianz der abhängigen Variable y und zur Bewertung der Güte der Regression wurde der korrigierte Determinationskoeffizient R^2 durch *Graph Pad Prism* kalkuliert. R^2 gibt Werte zwischen 0 und 1 (0% -100%) an und beschreibt den Abstand der Werte von der Regressionskurve bzw. den Abstand der Werte von der horizontalen Gerade der Mittelwerte aller y-Werte.

2.2.14.2 Signal-Rausch-Verhältnisse

2.2.14.3 Bestimmung der intrinsischen Agonisten-Aktivität a

Die intrinsische Aktivität eines Vollagonistens, der den maximalen Effekt auslöst, ist mit a=1 definiert. Die intrinsische Aktivität eines Partialagonisten, der nicht den maximal möglichen Effekt bewirkt, liegt zwischen der eines Vollagonistens und der eines Antagonistens (a=0). Für EPO, AGEM400, AGEM400-HES und Aranesp®
wurden die intrinsischen Aktivitäten nach folgender Formel mit den maximal erreichten OD-Mittelwerten jeder Substanz berechnet:

\[a = \frac{E_{\text{max-p}}}{E_{\text{max-f}}} \]

E_{\text{max-p}}: maximaler Effekt des Partialagonistens
E_{\text{max-f}}: maximaler Effekt des Vollagonistens

2.2.14.4 FACS-Analysen

\[\text{Relative Anzahl FITC-positiver Zellen} = \frac{\text{CD}^{+} \text{-FITC-Signal}}{\text{QuantiBrite}^{+}} - \frac{\text{C}^{+} \text{-FITC-Signal}}{\text{QuantiBrite}^{+}} \]

Die QuantiBrite®-Beads sind mit PE markiert und werden in konstanter Anzahl zugegeben. Sie wurden nach Herstellerangaben bei jeder Einzelmessung mitgeführt, wenn die relative Anzahl positiver Zellen ermittelt werden sollte.
2.2.14.5 CFU-Assays

Für die Auswertung wurden die gebildeten roten Kolonien (erythroide Zellen) jeder Verdünnungsstufe mikroskopisch ausgezählt. Die roten Kolonien wurden weiterhin nach Größe der Zell-Cluster in BFU-E (Burst Forming Unit-Erythroid) und CFU-E (Colony Forming Unit-Erythroid) unterteilt:

- BFU-E: > 200 rote Zellen/ Kolonie
- CFU-E: < 200 rote Zellen/ Kolonie

Die ausgezählten Kolonien wurden graphisch gegen die eingesetzte Substanzkonzentration mit Graph Pad Prism veranschaulicht.

2.2.14.6 Schild Plot Analyse: UT-7/EPO-Zellen

Zum Nachweis der Art des gezeigten Antagonismus wurde eine Schild-Plot-Analyse durchgeführt. Für den Schild-Plot wurden alle EC50-Werte über Dosis-Wirkungskurven mittels nicht-linearer Regression mit Graph Pad Prism ermittelt und graphisch dargestellt.

Für jede Antagonisten-Konzentration wurden folgende Verhältnisse berechnet:

\[r = \frac{EC50 + \text{Antagonist}}{EC50 \text{ ohne Antagonist}} \]

Diese Verhältnisse wurden für eine lineare Regression als log(r-1) gegen die molare Konzentration des Antagonisten (sEPO/R) aufgetragen. Eine Steigung einer Regressionsgeraden von eins im Schild-Plot weist auf einen kompetitiven Antagonismus hin. Der Schnittpunkt mit der x-Achse ist der sog. pA₂-Wert, der im Falle einer Steigung der Regressionsgeraden von eins dem Wert der Affinitätskonstanten des Antagonisten entspricht. In der Regel wird unter einem Antagonisten ein Ligand verstanden, der den Agonisten vom Rezeptor verdrängt,
ohne eine Wirkung durch die Rezeptorbindung auszulösen. Der pA\textsubscript{2}-Wert ist ein Maß für die pharmakologische Wirksamkeit eines Antagonisten.

Desweiteren wurden die berechneten Verhältnisse \(r = \text{EC50} + \text{Antagonist} / \text{EC50} \) ohne Antagonist als prozentuale Effizienzverluste gegen die Konzentration von sEPO/R (µg/ml) dargestellt. Die EC50, die bei der EPO-Konzentrationsreihe ohne Zugabe des löslichen EPO/R ermittelt wurde, wurde als 1% definiert. Der Zusammenhang zwischen Effizienzverlust durch Kompetition mit einem Antagonisten wurde mit einer Regressionsgeraden verdeutlicht.

2.2.14.7 ELISA: untere Nachweigrenze

Als untere Nachweigrenze zur Detektion von AGEM400 bzw. AGEM400-HES in verschiedenen Verdünnungsmedien wurde eine Extinktion definiert, die nach Abzug des Leerwertes über der Extinktion des Leerwertes zuzüglich zweifacher Standardabweichung lag.
3 Ergebnisse

Erythropoetin ist ein Schlüsselfaktor im Hinblick auf das Zellverhalten hämatopoetischer Vorläuferzellen. Vergleichend zu einem rekombinannten EPO (Erypo®) wurde der Einfluss von AGEM400-HES auf die Proliferation, Differenzierung und Apoptose hämatopoetischer Vorläuferzellen in in vitro Testsystemen untersucht.

3.1 Gelelektrophoretische Analysen von AGEM400-HES

Das Monomer BB68 und das Dimer AGEM400 ließen sich mittels SDS-Polyacrylamid-Gelelektrophorese größenpezifisch auftrennen und anschließend mit Coomassie anfärben. Abb. 3.1 zeigt die Bande von BB68 knapp oberhalb der 3 kD-Markerbande bzw. die Bande von AGEM400 knapp unterhalb der 6 kD-Markerbande. AGEM400-HES konnte mittels SDS-Gelelektrophorese nicht nach der Molmasse aufgetrennt werden. In Abb. 3.2 erkennt man bei der Probe von AGEM400-HES nur eine schwache Coomassie-Färbung direkt unterhalb der Geltasche.

Für die Auftrennung von AGEM400-HES in einem SDS-Polyacrylamidgel ist das HES-Molekül offensichtlich zu groß und ausladend bzw. der Peptid-Anteil in Bezug auf das Gesamtmolekül zu gering, um mit SDS eine ausreichend negative Ladung zu erreichen.
Ergebnisse

Abb. 3.1: SDS-Gelektrophorese von BB68 und AGEM400

Abb. 3.2: SDS-Gelektrophorese von AGEM400 und AGEM400-HES
Gelektrophoretische Auftrennung von je 750 ng AGEM400 bzw. AGEM400-HES in einem 10%igen SDS Bis/Tris-Polyacrylamidgel mit anschließender Färbung der Peptide mit Coomassie. Die Proben wurden vor dem Auftrag auf das Gel mit DTT reduziert und 5 min. bei 99°C erhitzt. Als Proteinstandard wurde SeebluePlus2 (Invitrogen) verwendet.
3.2 EPO/R und CD131 auf der Oberfläche hämatopoetischer Zelllinien

Zur Überprüfung der relativen EPO/R- bzw. CD131-Konzentration auf den Zelloberflächen und zur näheren Charakterisierung der myeloiden Zelllinien UT-7/EPO, TF-1 und M07e bzw. der lymphoiden Zelllinie SupT1 wurden die Zellen mit anti-EPO/R-FITC bzw. anti-CD131-PE markiert und anschließend im FACS analysiert.

3.3 Responsivität von UT-7/EPO und TF-1-Zellen in Zytokin-Assays

Abb. 3.4: UT-7/EPO; MTS-Assay: Responsivität auf Zytokine
Die Zellen wurden drei Tage in Dreifach-Bestimmungen mit verschiedenen Konzentrationen von EPO, TPO, hIL-2, hIL-3, hG-CSF bzw. mit hGM-CSF kultiviert. Anschließend wurde die relative Anzahl metabolisch aktiver Zellen colorimetrisch als Zunahme der OD bei 492 nm (Referenzfilter: 620 nm) bestimmt. Die Mittelwerte der Dreifach-Bestimmungen wurden gegen die Konzentration aufgetragen und durch eine Punkt-zu-Punkt-Kurve miteinander verbunden.
TF-1 reagierte auf die Zytokine EPO, hIL-3 und hGM-CSF mit einer gleichmäßigen Zunahme metabolisch aktiver Zellen in Abhängigkeit von der steigenden Zytokin-Konzentration. In Abb. 3.5 kann man erkennen, dass TF-1-Zellen eine sehr starke Responsivität auf GM-CSF und IL-3 und eine vergleichsweise schwächere aber dennoch ausgeprägte Reaktion auf EPO zeigten. Die Zellen reagierten auch schwach auf TPO mit einer Zunahme der Zellzahl bei steigender Konzentration. Allerdings wurden mit TPO die niedrigsten Effekte erreicht.

Abb. 3.5: TF-1; MTS-Assay: Responsivität auf Zytokine
Die Zellen wurden drei Tage mit verschiedenen Konzentrationen von EPO, TPO, hIL-3 bzw. mit hGM-CSF kultiviert. Anschließend wurde die relative Anzahl metabolisch aktiver Zellen colorimetrisch als Zunahme der OD bei 492 nm (Referenzfilter: 620 nm) bestimmt. Die Mittelwerte der Dreifach-Bestimmungen wurden gegen die Konzentration aufgetragen und durch eine Punkt-zu-Punkt-Kurve miteinander verbunden.
3.4 MTS-Proliferationsassays mit den Zelllinien TF-1 und UT-7/EPO

3.4.1 TF-1-Zellen

Abb. 3.6 stellt diese Dosis-Wirkungsbeziehungen graphisch als absolute OD-Werte gegen die Substanzkonzentration dar. Es wurde ein partieller Agonismus der Substanzen Aranesp® und AGEM400 beobachtet. Aranesp® und AGEM400 lösten in TF-1-Zellen niedrigere maximale Effekte als AGEM400-HES und EPO aus.

Abb. 3.6: TF-1; MTS-Assay: Dosis-Wirkungsprofil

AGEM400-HES zeigte auf die Proliferation von TF-1-Zellen die stärkste Wirkung und wurde innerhalb dieses Assays als Vollagonist \((a=1)\) definiert. Tab. 3.1 gibt für jede Testsubstanz die intrinsische Agonisten-Aktivität durch das Verhältnis des maximalen Effektes des Partialagonisten \((E_{\text{max-p}})\) und des maximalen Effektes des Vollagonisten \((E_{\text{max-f}})\) an. EPO wirkte mit einer intrinsischen Aktivität von 0.95 vergleichbar mit AGEM400-HES vollagonistisch. Der Partialagonismus der beiden anderen Testsubstanzen zeigte sich über die intrinsischen Aktivitäten von 0.82 für Aranesp\(^\circledR\) bzw. 0.70 für AGEM400.

Tabelle 3.1: Berechnung der intrinsischen Agonisten-Aktivität

Für die Berechnung der intrinsischen Aktivität \(a\) wurden die Verhältnisse zwischen dem maximalen absoluten Effekt (OD-Wert) jeder einzelnen Substanz und dem gesamtmaximalen absoluten Effekt in TF-1-Zellen ermittelt. Die intrinsische Aktivität eines Partialagonisten liegt im Bereich zwischen 1 (Vollagonist) und 0 (Antagonist). In Klammern ist der entsprechende maximale OD-Mittelwert angegeben.

<table>
<thead>
<tr>
<th>Substanz</th>
<th>(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPO</td>
<td>0.95</td>
</tr>
<tr>
<td>Aranesp(^\circledR)</td>
<td>0.82</td>
</tr>
<tr>
<td>AGEM400</td>
<td>0.70</td>
</tr>
<tr>
<td>AGEM400-HES</td>
<td>1</td>
</tr>
</tbody>
</table>
Abb. 3.7 zeigt die Dosis-Wirkungsbeziehung der linear normalisierten Werte gegen die logarithmisierte Konzentration nach nicht-linearer Regression. Durch die lineare Normalisierung der Absolutwerte sind partialagonistische Effekte nicht mehr erkennbar. Diese Dosis-Wirkungskurven wurden zur Ermittlung der effektiven Konzentrationen EC10, EC50 und EC90 herangezogen.

Abb. 3.7: TF-1; MTS-Assay: nicht-lineare Regression
Die absoluten OD-Mittelwerte, die bei verschiedenen Konzentrationen von EPO (-■-), Aranesp® (-●-), AGEM400 (-▲-) bzw. AGEM400-HES (-▼-) ermittelt wurden, wurden linear von 0% bis 100% normalisiert. Anschließend wurden die normalisierten Effekte gegen die logarithmisierte Konzentration aufgetragen. Durch nicht-lineare Regression wurde eine Dosis-Wirkungskurve an die Datenpunkte approximiert und dadurch die Berechnung der effektiven Konzentration EC10, EC50 und EC90 ermöglicht (vgl. Tab. 3.2).
Die OD-Werte, die bei den für TF-1 ermittelten EC10-, EC50- und EC-90-Konzentrationen gemessen wurden, wurden in Abb. 3.8 auf den Kontrollansatz (unstimulierte Zellen) normiert. In dieser Abb. ist die Induktion der Proliferation durch EPO und AGEM400-HES im Vergleich zum Kontrollwert im maximalen Konzentrationsbereich deutlich erkennbar. Der Partialagonismus von Aranesp und AGEM400 äußerte sich bei dieser Darstellungsweise jeweils in einer etwa 1.4-fachen niedrigeren Signalstärke im Bereich der EC90-Konzentration.

![Abb. 3.8: TF-1; MTS-Assay: normierte Werte](image)

3.4.2 UT-7/EPO-Zellen

Abb. 3.9: UT-7/EPO; MTS-Assay: Dosis-Wirkungsprofil

Abb. 3.10 zeigt die Dosis-Wirkungsbeziehung der linear normalisierten Effekte der Testsubstanzen in UT-7/EPO-Zellen nach nicht-linearer Regression. Für alle Testsubstanzen wurden die effektiven Konzentrationen EC10, EC50 und EC90 ermittelt.

Die absoluten OD-Mittelwerte, die bei verschiedenen Konzentrationen von EPO (-■-), AGEM400 (-▲-) bzw. AGEM400-HES (-▼-) ermittelt wurden, wurden linear von 0% bis 100% normalisiert. Anschließend wurden die normalisierten Effekte gegen die logarithmierte Konzentration aufgetragen. Durch nicht-lineare Regression wurde eine Dosis-Wirkungskurve an die Datenpunkte approximiert und dadurch die Berechnung der effektiven Konzentration EC10, EC50 und EC90 ermöglicht (vgl. Tab. 3.2).

\[\log [\text{Konzentration (ng/ml)}] \]

\[\text{normalisierte Effekte (%)} \]
Auch in UT-7/EPO ist eine Induktion der Proliferation durch EPO, AGEM400 oder AGEM400-HES im Vergleich zu den unstimulierten Zellen deutlich nachweisbar. Die bei der Berechnung der Signal-Rausch-Verhältnisse ermittelten Signalstärken waren für alle Substanzen in den betrachteten Konzentrationsbereichen vergleichbar (vgl. Abb. 3.11).

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Kontrolle</th>
<th>EPO</th>
<th>AGEM400</th>
<th>AGEM400-HES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolle</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC10</td>
<td>1,039</td>
<td>1,113</td>
<td>1,372</td>
<td></td>
</tr>
<tr>
<td>EC50</td>
<td>1,723</td>
<td>1,433</td>
<td>1,805</td>
<td></td>
</tr>
<tr>
<td>EC90</td>
<td>2,437</td>
<td>2,377</td>
<td>2,225</td>
<td></td>
</tr>
</tbody>
</table>

Abb. 3.11: UT7/EPO; MTS-Assay: normierte Werte
Tab. 3.2 listet die EC10-, EC50- und EC90-Konzentrationen nach nicht-linearer Regression auf, die für alle Testsubstanzen in den MTS-Assays mit TF-1 und UT-7/EPO ermittelt wurden.

UT-7/EPO zeigte eine stärkere Responsivität als TF-1 auf alle Testsubstanzen. In TF-1 zeigte AGEM400 insgesamt eine erniedrigte Effizienz im Vergleich zu EPO, Aranesp® und AGEM400-HES. Dagegen zeigte EPO, AGEM400 und AGEM400-HES in UT-7/EPO über alle Konzentrationsbereiche hinweg vergleichbare Effekte.

Tabelle 3.2: Vergleich der Effekte von AGEM400-HES in TF-1 und UT-7/EPO

Die effektive halbmaximale Konzentration EC50 und das 95% Konfidenzintervall (95% CI) wurden vom Statistikprogramm *Graph Pad Prism* berechnet. Aus der programmermittelten EC50 konnten sukzessiv die effektiven Konzentrationen EC10 und EC90 berechnet werden.

<table>
<thead>
<tr>
<th>Substanz</th>
<th>EC10 ng/ml</th>
<th>EC50 ng/ml (95%CI)</th>
<th>EC90 ng/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TF-1</td>
<td>0.135</td>
<td>1.23 (0.88-1.17)</td>
<td>11.07</td>
</tr>
<tr>
<td>Aranesp®</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TF-1</td>
<td>0.097</td>
<td>0.88 (0.64-1.22)</td>
<td>7.92</td>
</tr>
<tr>
<td>AGEM400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TF-1</td>
<td>0.336</td>
<td>3.06 (2.18-4.29)</td>
<td>27.54</td>
</tr>
<tr>
<td>AGEM400-HES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TF-1</td>
<td>0.07</td>
<td>0.65 (0.49-0.87)</td>
<td>5.85</td>
</tr>
<tr>
<td>EPO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UT-7/EPO</td>
<td>0.045</td>
<td>0.412 (0.32-0.54)</td>
<td>3.708</td>
</tr>
<tr>
<td>AGEM400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UT-7/EPO</td>
<td>0.059</td>
<td>0.535 (0.39-0.73)</td>
<td>4.815</td>
</tr>
<tr>
<td>AGEM400-HES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UT-7/EPO</td>
<td>0.016</td>
<td>0.145 (0.1-0.21)</td>
<td>1.305</td>
</tr>
</tbody>
</table>
3.4.3 Interassay-Vergleich der EC50-Werte bzw. der relativen Effizienz

Tabelle 3.3 zeigt vergleichend die Mittelwerte aller EC50-Werte von EPO, AGEM400 und AGEM400-HES, die aus mehreren unabhängigen MTS-Assays mit den humanen Zelllinien TF-1 und UT-7/EPO ermittelt wurden. UT-7/EPO war die sensitivere Zelllinie für die Testsubstanzen. Alle Substanzen erreichten in UT-7/EPO die niedrigsten EC50-Werte.

In beiden Zelllinien erzielte AGEM400 im Vergleich zu den anderen Testsubstanzen die geringsten Effekte. In UT-7/EPO lag die EC50 von AGEM400 im Gegensatz zur EC50 von AGEM400 in TF-1 noch in der gleichen Größenordnung wie die EC50 von EPO und AGEM400-HES. AGEM400-HES zeigte in den untersuchten Zelllinien eine mit EPO vergleichbare Effizienz.

<table>
<thead>
<tr>
<th>Substanz</th>
<th>EC50 TF-1 (ng/ml)</th>
<th>EC50 UT-7/EPO (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>SD</td>
</tr>
<tr>
<td>EPO</td>
<td>0.87</td>
<td>0.53</td>
</tr>
<tr>
<td>AGEM400</td>
<td>2.65</td>
<td>1.12</td>
</tr>
<tr>
<td>AGEM400-HES</td>
<td>0.66</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Tabelle 3.3: MTS-Interassay-Vergleich: EC50-Werte

x gibt den Mittelwert der EC50-Konzentrationen aus n unabhängigen Experimenten an. SD gibt die Standardabweichung an.
3.5 Apoptose

TF-1-Zellen werden apoptotisch, wenn ihnen IL-3 oder EPO über mehrere Tage entzogen wird. EPO hat auf hämatopoetische Vorläuferzellen eine anti-apoptotische Wirkung. Es sollte untersucht werden, ob AGEM400 bzw. AGEM400-HES ebenfalls apoptotische Prozesse inhibieren können.

Um direkte und unmittelbare Effekte zu bestimmen, wurden frühe Apoptose-Marker wie aktivierte Caspasen bzw. die Bindung von Annexin V an Phosphatidylinerin (PS) zur Detektion früh-apoptotischer Vorgänge herangezogen.

Die Zellen wurden über drei Tage mit verschiedenen Konzentrationen von EPO, AGEM400 und AGEM400-HES kultiviert. Parallel wurde die entsprechende Anzahl toter Zellen mit Propidiumiodid detektiert.

3.5.1 Aktivierung von Caspase-3, -7 und -8 in TF-1-Zellen

AGEM400 und AGEM400-HES waren wie EPO in der Lage die Induktion der Apoptose durch Aktivierung der Caspasen-3, -7 und -8 zu unterbinden. Abb. 3.12 zeigt eine gleichmäßige Abnahme aktiver Caspasen bei steigenden Konzentrationen von EPO, AGEM400 und AGEM400-HES.

Abb. 3.13 zeigt den Zusammenhang zwischen der Substanzkonzentration und der Aktivierung der untersuchten Caspasen in TF-1-Zellen nach nicht-linearer Regression mittels einer Dosis-Wirkungskurve. EPO und AGEM400-HES zeigten bei der Hemmung der Caspasen-3, -7 und -8 eine vergleichbare konzentrationsabhängige Effizienz. Bei allen drei untersuchten Caspasen lagen die IC50-Konzentrationen, die zur halbmaximalen Hemmung benötigt wurden, von EPO und AGEM400-HES in einem Bereich von etwa 0.2 ng/ml (vgl. Tab. 3.4). Die Effektivität von AGEM400 war im Vergleich dazu deutlich niedriger. Um die Aktivierung der Caspasen-3 und -7 halbmaximal zu hemmen, war eine AGEM400-Konzentration nötig, die mit 38.89 ng/ml 195-fach über der IC50-Konzentration von EPO bzw. AGEM400-HES lag. Zur halbmaximalen Hemmung der Aktivierung von Caspase-8 durch AGEM400 war eine Konzentration von 122.01 ng/ml nötig.
Abb. 3.12: TF-1; FACS-Analyse: Inhibierung von Caspasen
Abb. 3.13: TF-1; Inhibierung von Caspasen: nicht-lineare Regression
Tabelle 3.4: FACS-Analyse: Inhibierung von Caspasen in TF-1-Zellen
Mittels nicht-linearer Regression in Form einer Dosis-Wirkungskurve wurden die EC50-Werte für die Testsubstanzen ermittelt. Das 95%-Konfidenzintervall (95% CI) und der korrigierte Determinationskoeffizient (R^2) wurden vom Statistikprogramm Graph Pad Prism berechnet.

<table>
<thead>
<tr>
<th>Substanz</th>
<th>EC50 ng/ml</th>
<th>95%CI ng/ml</th>
<th>R^2</th>
<th>EC50 ng/ml</th>
<th>95%CI ng/ml</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPO</td>
<td>0.168</td>
<td>0.08-0.35</td>
<td>0.99</td>
<td>0.206</td>
<td>0.053-0.81</td>
<td>0.99</td>
</tr>
<tr>
<td>AGEM400</td>
<td>38.89</td>
<td>25.45-59.43</td>
<td>0.99</td>
<td>122.01</td>
<td>32.35-460.6</td>
<td>0.99</td>
</tr>
<tr>
<td>AGEM400-HES</td>
<td>0.231</td>
<td>0.05-1.15</td>
<td>0.98</td>
<td>0.327</td>
<td>0.035-3.05</td>
<td>0.94</td>
</tr>
</tbody>
</table>

3.5.2 Annexin V-Nachweis früh apoptotischer Zellen
Phosphatidylserin (PS) wird im früh-apoptotischen Prozess als Zeichen des Integritätsverlustes der Zellmembran von der Innenseite auf die Außenseite der Membran transloziert und kann durch die hochaffine Bindung von Annexin V-FITC an PS in der FACS-Analyse detektiert werden.
Mit steigenden Konzentrationen von AGEM400 bzw. AGEM400-HES wurde eine Dosis-abhängige Abnahme der Annexin V-Bindung nachgewiesen (vgl. Abb. 3.14 (A) und (B)). Tab. 3.5 zeigt die IC50-Werte der Dosis-Wirkungskurven der Testsubstanzen. EPO zeigte mit einer IC50 von 0.17 ng/ml in TF-1-Zellen die höchste Effizienz. AGEM400 erzielte eine 43-fach und AGEM400-HES eine 13-fach niedrigere Effizienz als EPO.
Ergebnisse

Abb. 3.14: Annexin V: Inhibition apoptotischer Prozesse in TF-1

Der prozentuale Anteil Annexin V-positiver Zellen wurde bei der FACS-Analyse unter Ausschluss bereits toter Zellen ermittelt und graphisch gegen die Konzentration von EPO (■), AGEM400 (▲) bzw. AGEM400-HES (▼) aufgetragen. Die Datenpunkte wurden durch eine Punkt-zu-Punkt-Kurve miteinander verbunden (vgl. Abb. (A)). Es wurden anschließend Dosis-Wirkungskurven durch nicht-lineare Regression der von 0% bis 100% linear normalisierten prozentualen Anteile Annexin V-positiver Zellen gegen die logarithmierte Konzentration ermittelt (vgl. Abb. (B)).

A: Konzentrationsabhängige Abnahme Annexin V-positiver Zellen
B: Dosis-Wirkungsverhältnis nach nicht-linearer Regression
Tabelle 3.5: Annexin V: Inhibition apoptotischer Prozesse in TF-1
Mittels nicht-linearer Regression in Form einer sigmoidalen Dosis-Wirkungskurve wurden die IC50-Werte als vergleichbares Maß für die Effektivität der Testsubstanzen ermittelt. Das 95%-Konfidenzintervall (95% CI) und der korrigierte Determinationskoeffizient (R^2) wurden vom Statistikprogramm *Graph Pad Prism* berechnet.

<table>
<thead>
<tr>
<th>Substanz</th>
<th>IC50 ng/ml</th>
<th>95%CI ng/ml</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPO TF-1</td>
<td>0.167</td>
<td>0.03-1.04</td>
<td>0.98</td>
</tr>
<tr>
<td>AGEM400 TF-1</td>
<td>7.151</td>
<td>0.18-292.6</td>
<td>0.87</td>
</tr>
<tr>
<td>AGEM400-HES TF-1</td>
<td>2.211</td>
<td>0.13-37.52</td>
<td>0.91</td>
</tr>
</tbody>
</table>
3.5.3 Detektion toter Zellen mit Propidiumiodidfärbung

Abb. 3.15 zeigt die Dosis-abhängige Abnahme toter TF-1-Zellen in Korrelation zur Zunahme metabolisch aktiver Zellen. Mit diesem Assay wurde gezeigt, dass die durch EPO-, AGEM400- oder AGEM400-HES-induzierte Zunahme metabolisch aktiver Zellen nicht nur auf Proliferation, sondern auch das Überleben der Zellen in Abhängigkeit von der Konzentration von EPO, AGEM400 bzw. AGEM400-HES basiert. EPO zeigte die höchste und AGEM400 die niedrigste Effizienz.

![Diagramm](image-url)

Abb. 3.15: Detektion toter Zellen mit Propidiumiodid

Propidiumiodid (PI) ist ein DNA-Interkalationsfarbstoff, der nur Membranen toter Zellen passiert und dort mittels FACS-Analyse detektierbar ist. Der prozentuale Anteil PI-positiver Zellen (linke y-Achse) wurde bei der FACS-Analyse ermittelt und gegen die Konzentration von EPO (■), AGEM400 (▲) bzw. AGEM400-HES (▼) aufgetragen. Zusätzlich wurden die Wachstumskurven aus den MTS-Proliferationsassays in die Graphik eingefügt (rechte y-Achse). Die Datenpunkte sind jeweils durch eine Punkt-zu-Punkt-Kurve miteinander verbunden.
3.6 Differenzierung

3.6.1 CD-34 Verlust in TF-1-Zellen

CD34 ist ein charakteristischer Oberflächenmarker hämatopoetischer Progenitorzellen, der im Verlauf der weiteren Differenzierung nicht mehr auf der Zelloberfläche exprimiert wird. AGEM400 und AGEM400-HES bewirkten eine Dosisabhängige Abnahme von CD34 auf der Oberfläche von TF-1.

Abb. 3.16: CD34-Verlust auf TF-1-Zellen
CD34 ist ein Oberflächenmarker hämatopoetischer Vorläuferzellen, der im Zuge der Differenzierung an der Zelloberfläche dauerhaft verlorengeht. Der Verlust von CD34 kann folglich als Differenzierungsmarker eingesetzt werden.

Der prozentuale Anteil CD34-negativer Zellen wurde mittels FACS-Analyse detektiert und gegen die Konzentration von EPO (■), AGEM400 (▲) bzw. AGEM400-HES (▼) aufgetragen. Die Datenpunkte wurden jeweils durch eine Punkt-zu-Punkt-Kurve miteinander verbunden.
Ergebnisse

Abb. 3.17: TF-1; CD34-Verlust: normierte Werte

Abb. 3.18 zeigt die linear normalisierten Dosis-Wirkungskurven der konzentrationsabhängigen Zunahme CD34-negativer Zellen. EPO zeigte mit einer EC50 von 0.144 ng/ml die höchste Effektivität in diesem Assay. Die EC50 von AGEM400-HES lag bei 0.223 ng/ml und war mit der von EPO vergleichbar und 23-fach niedriger als die EC50-Konzentration von AGEM400 (vgl. Tab. 3.6).

![Graph showing dose-effect curves](image)

Abb. 3.18: TF-1; CD34-Verlust: nicht-lineare Regression
Es wurde für alle Testsubstanzen eine Dosis-Wirkungskurve durch nicht-lineare Regression der von 0% bis 100% linear normalisierten prozentualen Anteile CD34-negativer Zellen gegen die logarithmierte Konzentration ermittelt.

Tabelle 3.6: EC50-Werte (TF-1, CD34-Verlust)
Mittels nicht-linearer Regression in Form einer sigmoidalen Dosis-Wirkungskurve wurden die EC50-Werte als vergleichbares Maß für die Effektivität der Testsubstanzen ermittelt. Das 95%-Konfidenzintervall (95% CI) und der korrigierte Determinationskoeffizient (R^2) wurden vom Statistikprogramm *Graph Pad Prism* berechnet. Die effektiven Konzentrationen EC10 und EC90 wurden sukzessiv berechnet.

<table>
<thead>
<tr>
<th>Substanz</th>
<th>EC50 ng/ml</th>
<th>95%CI ng/ml</th>
<th>R^2</th>
<th>EC10 ng/ml</th>
<th>EC90 ng/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPO TF-1</td>
<td>0.144</td>
<td>0.08-2.67</td>
<td>0.98</td>
<td>0.016</td>
<td>1.296</td>
</tr>
<tr>
<td>AGEM400 TF-1</td>
<td>5.15</td>
<td>2.75-9.65</td>
<td>0.98</td>
<td>0.567</td>
<td>46.35</td>
</tr>
<tr>
<td>AGEM400-HES TF-1</td>
<td>0.223</td>
<td>0.13-0.38</td>
<td>0.98</td>
<td>0.024</td>
<td>2.007</td>
</tr>
</tbody>
</table>
3.6.2 CFU-Assays

Der CFU-Assay (Colony Formation Unit-Assay) wurde als Testsystem zur Evaluation der Wirkung von AGEM400-HES im Vergleich zu EPO auf die Differenzierung hämatopoetischer Vorläuferzellen (CD34⁺-Zellen) zu erythroiden Kolonien (BFU-E) verwendet.

Abb. 3.20 zeigt die prozentualen Anteile gebildeter erythroider Kolonien aus Knochenmarkzellen der untersuchten Spezies bezogen auf die zu Beginn des Versuches eingesetzte Gesamtkonzentration mononukleärer Zellen. Die Zunahme erythroider Kolonien erfolgte für EPO in beiden Spezies bis zu einer Konzentration von etwa 11 ng/ml. Mit 0.21% der eingesetzten Gesamtkonzentration mononukleärer Zellen bewirkte EPO einen maximalen Effekt. Eine 10-fach niedrigere Konzentration führte im humanen System zu einer sehr deutlichen Abnahme erythroider Kolonien. AGEM400-HES induzierte im humanen System mit 0.17% der Ausgangszellzahl eine maximale Bildung erythroider Kolonien in einem Konzentrationsbereich von etwa 450 ng/ml. In Knochenmarkzellen aus Cynomolgus führte AGEM400-HES in einem größeren Konzentrationsbereich von etwa 45 – 450 ng/ml zu einem maximalen Effekt von etwa 0.1% erythroider Kolonien bezogen auf die Ausgangszellzahl.
Abb. 3.19: CFU-Assay; Differenzierung von Knochenmarkzellen (Mensch, Cynomolgus)
Zur Auswertung der Bildung erythroider Kolonien wurden die gebildeten großen roten Kolonien als BFU-E (−) und die kleinen roten Kolonien als CFU-E (−) pro Well mikroskopisch ausgezählt. Die ausgezählten Kolonien/Well wurden gegen die dazugehörige Konzentration aufgetragen und jeweils durch eine Punkt-zu-Punkt-Kurve miteinander verbunden.

(A): CFU-Assay; humane Knochenmarkzellen
Humane Knochenmarkzellen wurden 12 Tage mit verschiedenen Konzentrationen von EPO (■) oder AGEM400-HES (▼) in 6-Well-Platten kultiviert.

(B): CFU-Assay; Knochenmarkzellen aus Cynomolgus
Mononukleäre Zellen aus dem Knochenmark von Cynomolgus-Affen wurden 10 Tage mit verschiedenen Konzentrationen von EPO (■) und AGEM400-HES (▼) in Methylcellulose in 6-Well-Platten kultiviert.
Abb. 3.20: Prozentuale erythroide Differenzierung von Knochenmarkzellen im CFU-Assay

3.6.3 CD36/GlycophorinA (CD235a)

CD36 und GlycophorinA sind Oberflächenantigene, die im Laufe der Differenzierung von humanen Knochenmarkzellen auf der Oberfläche exprimiert werden. Abb. 3.21 zeigt die Ergebnisse der FACS-Analyse zur Detektion dieser beiden Differenzierungsmarker auf humanen Knochenmarkzellen. EPO und AGEM400-HES bewirkten mit jeweils steigender Konzentration eine deutliche und gleichmäßige Zunahme beider Marker auf der Zelloberfläche.

Die Zunahme der beiden Marker durch EPO begann ab einem Konzentrationsbereich von 0.01 ng/ml und erreichte ein Plateau im Bereich von 1 ng/ml. Mit AGEM400-HES wurde eine nahezu lineare Zunahme der beiden Marker an der Zelloberfläche ab einer Konzentration von 0.01 ng/ml bis zu einer Konzentration von 10 ng/ml beobachtet.

![Diagramm](attachment:Diagramm.png)

Abb. 3.21: CD36 und GlycophorinA auf der Oberfläche humaner MNCs aus Knochenmark

Nach 12-tägiger Kultivierung humaner Knochenmarkzellen mit verschiedenen Konzentrationen von EPO (■) und AGEM400-HES (▼) in 6-Well-Platten wurden die Oberflächenmarker CD36 (—) und GlycophorinA (→) durchflusszytometrisch bestimmt.
3.6.4 Nachweis der Hämoglobinbildung in Affenzellen

Eine Kultivierung von Knochenmarkzellen aus Cynomolgus und Pavian in Methylcellulose mit Konzentrationsreihen von EPO bzw. AGEM400-HES induzierte eine Dosis-abhängige Entwicklung makroskopisch erkennbarer roter Kolonien. Zur Quantifizierung und zum Nachweis, dass EPO und AGEM400-HES terminale Differenzierung der untersuchten Knochenmarkzellen induzieren, wurde der Hämoglobingehalt biochemisch bestimmt. EPO bewirkte in den Affenzellen eine stärkere Hämoglobinbildung als AGEM400-HES. Die Hämoglobininkonzentration, die mit Cynomolgus-Knochenmarkzellen mit einer EPO-Konzentration oberhalb von 1 ng/ml und mit Pavian-Zellen mit einer EPO-Konzentration oberhalb von 0.1 ng/ml ermittelt werden konnte, war jeweils etwa doppelt so hoch als die Hämoglobininkonzentration, die mit AGEM400-HES im vergleichbaren Konzentrationsbereich erreicht wurde (vgl. Abb. 3.22 und Tabelle. 3.7).

Tabelle 3.7: Hämoglobinwerte erythroider Zellen aus Cynomolgus und Pavian

Die Tabelle zeigt die Hämoglobinwerte (Hb), die während der Erythropoese von Knochenmarkzellen aus Cynomolgus bzw. aus Pavian in einer 1.1 ml Methylcellulosekultur im 6-Well-Format in Gegenwart verschiedener EPO- oder AGEM400-HES-Konzentrationen gebildet wurden.

<table>
<thead>
<tr>
<th>EPO ng/ml</th>
<th>Hb µg/1.1 ml Cynomolgus</th>
<th>EPO ng/ml</th>
<th>Hb µg/1.1 ml Pavian</th>
</tr>
</thead>
<tbody>
<tr>
<td>54.4</td>
<td>5.6</td>
<td>34</td>
<td>7.1</td>
</tr>
<tr>
<td>8.7</td>
<td>8.2</td>
<td>3.4</td>
<td>7.9</td>
</tr>
<tr>
<td>1.4</td>
<td>6.0</td>
<td>0.34</td>
<td>3.7</td>
</tr>
<tr>
<td>0.2</td>
<td>2.7</td>
<td>0.034</td>
<td>1.3</td>
</tr>
<tr>
<td>0.04</td>
<td>3.8</td>
<td>0.0034</td>
<td>1.5</td>
</tr>
<tr>
<td>AGEM400-HES ng/ml</td>
<td>Hb µg/1.1 ml Cynomolgus</td>
<td>AGEM400-HES ng/ml</td>
<td>Hb µg/1.1 ml Pavian</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>35.5</td>
<td>7</td>
<td>22.2</td>
<td>6.0</td>
</tr>
<tr>
<td>5.7</td>
<td>4.1</td>
<td>2.22</td>
<td>3.2</td>
</tr>
<tr>
<td>0.9</td>
<td>3.6</td>
<td>0.222</td>
<td>1.6</td>
</tr>
<tr>
<td>0.1</td>
<td>3.0</td>
<td>0.022</td>
<td>0.9</td>
</tr>
<tr>
<td>0.02</td>
<td>2.3</td>
<td>0.002</td>
<td>1.9</td>
</tr>
</tbody>
</table>
Abb. 3.22: Erythropoese von Knochenmarkzellen (MNC) aus Cynomolgus und Pavian

Die Hämoglobin-Werte beziehen sich auf den Inhalt einer 1.1 ml Methylcellulosekultur von Knochenmarkzellen im 6-Well-Format nach 10-tägiger Inkubation mit Konzentrationsreihen von AGEM400-HES bzw. EPO.

(A): Knochenmarkzellen aus Cynomolgus
(B): Knochenmarkzellen aus Pavian
3.7 Untersuchungen zur Rezeptorbindung

3.7.1 Kompetitionsassays

In den hämatopoetischen Zelllinien TF-1 und UT-7/EPO konnte nachgewiesen werden, dass AGEM400-HES spezifisch an den EPO/R bindet. Die Ko-Kultivierung der Zellen mit einem löslichen EPO/R (sEPO/R) und verschiedenen Konzentrationen von EPO oder AGEM400-HES, bewirkte in beiden Zelllinien die Inhibierung der proliferationsstimulierenden Effekte von EPO bzw. AGEM400-HES. Der stimulatorische Effekt von IL-3 auf die Proliferation von TF-1-Zellen wurde durch sEPO/R dagegen nicht gehemmt (vgl. Abb. 3.23). AGEM400-HES zeigte eine mit EPO vergleichbare Effizienz.

Darüberhinaus wurde die Bindung von AGEM400 und AGEM400-HES an den EPO/R in einem Radioliganden-Bindungs-Experiment bestätigt. Abb. 3.24 zeigt eine gleichmäßige konzentrationsabhängige Verdrängung eines radioaktiv markierten rekombinanten EPOs von einem immobilisierten EPO/R durch EPO, AGEM400 bzw. AGEM400-HES. EPO zeigte mit einer durchschnittlichen IC50 von 9.69 ng/ml den stärksten kompetitiven Effekt. AGEM400 und AGEM400-HES zeigten jeweils vergleichbare Effekte. Für AGEM400 lag die IC50 1.9-fach und für AGEM400-HES 1.4-fach höher als die IC50-Konzentration von EPO (vgl. Tab. 3.8).
Abb. 3.23: Bindung von AGEM400-HES an den EPO/R von TF-1 und UT-7/EPO

Ein löslicher EPO/R (sEPO/R) kompetierte den membranständigen EPO/R und fing die Liganden EPO oder AGEM400-HES ab. Eine Inhibierung des proliferationsstimulierenden Effekts von EPO bzw. AGEM400-HES auf die Zellen spiegelte die spezifische Rezeptorbindung der beiden Substanzen wider. Die proliferationsstimulierende Wirkung von IL-3 in TF-1-Zellen wurde nicht beeinflusst.

Die Zellen wurden in Dreifach-Bestimmungen drei Tage mit verschiedenen Konzentrationen von EPO ohne sEPO/R (■) oder mit 2 µg/ml sEPO/R (□) oder mit verschiedenen Konzentrationen von AGEM400-HES ohne sEPO/R (♦) oder mit 2 µg/ml sEPO/R (◊) bzw. mit IL-3 ohne (●) und mit 2 µg/ml sEPO/R (○) kultiviert. Anschließend wurde der Umsatz eines Farbreagenz durch metabolisch aktive Zellen photometrisch bestimmt. Aus den OD-Werten der Einzelbestimmungen wurden die Mittelwerte berechnet und gegen die Konzentration aufgetragen. Die Datensymbole jeder Konzentrationsreihe wurden durch eine Punkt-zu-Punkt-Kurve miteinander verbunden.
Tabelle 3.8: Radioliganden-Bindungs-Assay; IC50-Werte
Angegeben sind die IC50-Werte mit Standardabweichung (SD) und Anzahl der Einzel-Bestimmungen pro Konzentration (n), die bei der halbmaximalen Verdrängung eines radioaktiv-markierten rhEPO vom EPO/R durch EPO (-■-), AGEM400 (-▲-) bzw. AGEM400-HES (-▼-) ermittelt wurden. Die Werte, die in der IC50-Spalte in Klammern angegeben sind, geben relative IC-50-Werte an, bei denen der IC-50-Wert von EPO als 1 definiert wurde. Die anderen Werte wurden darauf als x-facher Effekt bezogen.

<table>
<thead>
<tr>
<th>Substanz</th>
<th>IC50 (ng/ml)</th>
<th>SD</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>rhEPO</td>
<td>9.69 (1x)</td>
<td>1.43</td>
<td>4</td>
</tr>
<tr>
<td>AGEM400</td>
<td>17.99 (1.9x)</td>
<td>3.73</td>
<td>3</td>
</tr>
<tr>
<td>AGEM400-HES</td>
<td>13.52 (1.4x)</td>
<td>0.63</td>
<td>3</td>
</tr>
</tbody>
</table>

Der lösliche EPO/R antagonisierte den membranständigen EPO/R und bewirkte in UT-7/EPO-Zellen eine konzentrationsabhängige Zunahme der EC50 von EPO. In Abb. 3.25 erkennt man diesen Effizienzverlust aufgrund der Dosis-abhängigen Kompetition durch den löslichen EPO/R an der Rechtsverschiebung der Dosis-Wirkungskurven mit zunehmender Konzentration des löslichen EPO/R. Die ermittelten EC50-Konzentrationen (vgl. Tab. 3.9) wurden für eine Schild-Plot-Analyse herangezogen (vgl. Abb. 3.26), um die Qualität des Antagonismus zu überprüfen.

Da die Steigung der Regressionsgeraden im Schild-Plot nahe an eins ist, wurde ein kompetitiver Antagonismus bestätigt. Bei dem eingesetzten Antagonisten handelt es sich nicht um einen Liganden, sondern ebenfalls um einen Rezeptor. Dies könnte der Grund sein, dass die Steigung nicht gleich eins, sondern nur 0.9 betrug.

Mit Hilfe linearer Regression wurde der Zusammenhang zwischen Effizienzverlust und antagonistischer Rezeptorkonzentration in Abb. 3.27 graphisch verdeutlicht.
Abb. 3.25: UT-7/EPO, MTS-Assay: Kompetition des membranständigen EPO/R
UT-7/EPO-Zellen wurden mit einer 1:5-Verdünnungsreihe von EPO im Konzentrationsbereich von 20 nM bis 2x10^{-4} nM und jeweils 9 verschiedenen Konzentrationen eines lösen EPO/R (sEPO/R) bzw. ohne Zugabe des sEPO/R (Kontrollansatz) drei Tage als Dreifach-Bestimmungen kultiviert. Die Zunahme metabolisch aktiver Zellen wurde photometrisch im Rahmen eines MTS-Assays detektiert. Im Anschluss wurden die Dosis-Wirkungskurven und die EC50-Werte mittels nicht-linearer Regression ermittelt.

Tabelle 3.9: EC-50-Werte: kompetitive Abnahme der Proliferation in UT-7/EPO
Aufgelistet sind die EC50-Werte (Abb. 3.29) mit der entsprechenden zugehörigen Antagonistenkonzentration (sEPO/R).

<table>
<thead>
<tr>
<th>Antagonist µg/ml</th>
<th>EC50 nM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0062</td>
</tr>
<tr>
<td>0.0009</td>
<td>0.0064</td>
</tr>
<tr>
<td>0.0028</td>
<td>0.0069</td>
</tr>
<tr>
<td>0.009</td>
<td>0.0067</td>
</tr>
<tr>
<td>0.028</td>
<td>0.0066</td>
</tr>
<tr>
<td>0.09</td>
<td>0.0132</td>
</tr>
<tr>
<td>0.28</td>
<td>0.0107</td>
</tr>
<tr>
<td>0.9</td>
<td>0.0507</td>
</tr>
<tr>
<td>2.8</td>
<td>0.1355</td>
</tr>
<tr>
<td>9</td>
<td>0.5468</td>
</tr>
</tbody>
</table>
Ergebnisse

Abb. 3.26: UT-7/EPO, Schild-Plot-Analyse: kompetitiver Antagonismus

Abb. 3.27: UT-7/EPO, lineare Regression: Abnahme EPO-induzierter Proliferation durch kompetitiven Antagonisten

3.8 Aktivierung von STAT5 und ERK1/2 in UT-7/EPO

AGEM400 und AGEM400-HES aktivierten wie EPO Komponenten erythroider Signalwege wie z.B. die Phosphorylierung von STAT5 (JAK/STAT-Signalweg) oder die Phosphorylierung von ERK1/2 (Ras-Raf-Signalweg).

Nach Stimulation von UT-7/EPO Zellen mit verschiedenen Konzentrationen von EPO, AGEM400 bzw. AGEM400-HES und anschließender Western Blot Analyse der Zellextrakte konnte eine konzentrationsabhängige Phosphorylierung von STAT5 nachgewiesen werden (vgl. Abb. 3.28). Die Signalstärken, die durch AGEM400 bzw. AGEM400-HES erreicht wurden, waren gleich stark und nur minimal schwächer als die Signale, die mit entsprechenden EPO-Konzentrationen erreicht wurden.

Abb. 3.28: Western Blot Analyse: Aktivierung von STAT5 in UT-7/EPO

UT-7/EPO-Zellen wurden 30 min. mit verschiedenen Konzentrationen der drei Testsubstanzen bzw. ohne Testsubstanz (O) bei 37°C stimuliert. Im Anschluss wurden die Zellen lysiert und die Zellextrakte für die Western Blot Analyse zum Nachweis von Phospho-STAT5 (P-STAT5) bzw. STAT5 verwendet. Nach der Immunfärbung der Blotmembranen war das konstitutive STAT5-Signal und die konzentrationsabhängigen P-STAT5-Signale bei etwa 90 kD erkennbar. Die Signale von P-STAT5 nahmen ab Konzentrationsbereich der Testsubstanzen von 1×10^0 bis 1×10^{-1} ng/ml kontinuierlich ab.
Ein maximales P-STAT5-Signal wurde durch Stimulation mit EPO, AGEM400 oder AGEM400-HES mit Konzentrationen im Bereich von 3.4 bzw. 4.5 ng/ml bereits innerhalb von 30 min. erreicht. Nach zwei Stunden konstanter Stimulation der Zellen mit EPO, AGEM400 (400) oder AGEM400-HES (400-HES) war das Signal deutlich abgeschwächt und nach 24 Stunden konstanter Stimulation kaum noch detektierbar (vgl. Abb. 3.29).

Beim Nachweis der Phosphorylierung von MAP-Kinasen ERK1/2 (p44/42 MAPK) zeigte sich im Western Blot die charakteristische Doppelbande von 42 bzw. 44 kD. EPO (E) und AGEM400-HES (H) bewirkten eine vergleichbar starke Phosphorylierung von ERK1/2 (P-ERK1/2) innerhalb von 30 min. Nach vier Stunden war das P-ERK-Signal nach Stimulation mit EPO oder AGEM400-HES jeweils nur noch sehr schwach detektierbar (vgl. Abb. 3.30).
3.9 Immunologische Untersuchungen

Abb. 3.31: Western Blot Analyse: immunologische Divergenz zwischen EPO und EPO-mimetischen Peptiden
EPO, BB68 und AGEM400 wurden gelektrophoretisch aufgetrennt, auf PVDF-Membranen geblottet und anschließend mit den zugehörigen Antiseren inkubiert. Die Antikörper, die an EPO oder die Peptide gebunden hatten, wurden über einen HRP-markierten anti-rabbit Antikörper und Chemilumineszenz detektiert und zeigten das erwartete Molekulargewicht (kD).
Anti-EPO Antikörper aus dem Kaninchen Antiserum (SA4893/anti-EPO) reagierten nur mit EPO (E), aber nicht mit den EMPs BB68 (68) oder AGEM400 (400). Umgekehrt reagierten anti-BB68 Antikörper (SA5047/anti-BB68) bzw. anti-AGEM400 Antikörper (SA5048/anti-AGEM400) aus den jeweiligen Kaninchen Antisera nur mit den EMPs, aber nicht mit EPO.

3.9.1 Nachweis von Kreuzreaktionen zwischen anti-EPO-Antikörpern und EPO-mimetischen Peptiden
Ein Proliferationsassay mit TF-1-Zellen zeigte, dass die proliferationsstimulierende Wirkung von AGEM400 bzw. AGEM400-HES nicht durch anti-EPO-Antikörper aus dem Serum des mit EPO immunisierten Kaninchens (anti-EPO Antiserum) blockiert wurde (vgl. Abb. 3.32(A)). Eine Inkubation der Zellen mit EPO und dem anti-EPO Antiserum hemmte dagegen den Effekt von EPO auf die Proliferation bzw. das Überleben der TF-1-Zellen (vgl. Abb. 3.32(B)).
(A) TF-1/EPO

Abb. 3.32: TF-1, MTS-Assay: immunologische Divergenz zwischen EPO und AGEM400-HES
TF-1-Zellen wurden in Dreifach-Bestimmungen mit verschiedenen Konzentrationen von EPO (Abb. A) oder AGEM400-HES (Abb. B) ohne Zusatz eines Serums (■), in Gegenwart des Präimmunserums 4893 (□) bzw. in Gegenwart des anti-EPO Antiserums SA4893 (▲) kultiviert. Anschließend wurde die Umsetzung eines Farbreagens durch metabolisch aktive Zellen photometrisch durch Absorptionsmessung bei 492 nm (Referenzfilter 620 nm) bestimmt. Die OD-Mittelwerte wurden mit Standardabweichung gegen die Konzentration aufgetragen und durch eine Punkt-zu-Punkt-Kurve miteinander verbunden.
3.10 ELISA: Nachweis von AGEM400 und AGEM400-HES in verschiedenen Verdünnungsmedien

Mit Hilfe eines bei der Firma Charles River generierten anti-AGEM400 Antikörpers konnte ein sensitiver Sandwich-ELISA mit einer Nachweissgrenze deutlich unterhalb von 1 ng/ml von AGEM400 bzw. AGEM400-HES, etabliert werden (vgl. Abb 3.33). In Tabelle 3.10 sind die ermittelten OD-Werte für die Verdünnungen von AGEM400 bzw. AGEM400-HES in verschiedenen Verdünnungsmedien für Konzentrationen bis 5 ng/ml aufgeführt.

Tabelle 3.10: ELISA: Detektion von AGEM400 und AGEM400-HES

- Aufgelistet sind die Mittelwerte (Mean) der photometrisch bestimmten Extinktionen (OD450 nm) mit zugehöriger Standardabweichung (SD), die für verschiedene Konzentrationen von AGEM400 bzw. AGEM400-HES in unterschiedlichen Verdünnungsmedien ermittelt wurden. Die Nachweise erfolgten in Triplikaten.

<table>
<thead>
<tr>
<th>AGEM400 ng per ml</th>
<th>Rattenserum Mean</th>
<th>SD</th>
<th>Humanserum Mean</th>
<th>SD</th>
<th>RPMI/10% FCS Mean</th>
<th>SD</th>
<th>PBS/BSA Mean</th>
<th>SD</th>
<th>Lysepuffer/BSA Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,00</td>
<td>0.99</td>
<td>0.07</td>
<td>0.96</td>
<td>0.13</td>
<td>0.87</td>
<td>0.03</td>
<td>1.20</td>
<td>0.08</td>
<td>0.44</td>
<td>0.03</td>
</tr>
<tr>
<td>3,75</td>
<td>0.71</td>
<td>0.05</td>
<td>0.64</td>
<td>0.03</td>
<td>0.64</td>
<td>0.06</td>
<td>0.88</td>
<td>0.02</td>
<td>0.44</td>
<td>0.01</td>
</tr>
<tr>
<td>2,50</td>
<td>0.61</td>
<td>0.02</td>
<td>0.47</td>
<td>0.02</td>
<td>0.50</td>
<td>0.03</td>
<td>0.80</td>
<td>0.10</td>
<td>0.37</td>
<td>0.04</td>
</tr>
<tr>
<td>1,88</td>
<td>0.53</td>
<td>0.02</td>
<td>0.40</td>
<td>0.05</td>
<td>0.37</td>
<td>0.01</td>
<td>0.67</td>
<td>0.08</td>
<td>0.35</td>
<td>0.03</td>
</tr>
<tr>
<td>1,25</td>
<td>0.42</td>
<td>0.02</td>
<td>0.35</td>
<td>0.03</td>
<td>0.34</td>
<td>0.03</td>
<td>0.49</td>
<td>0.04</td>
<td>0.33</td>
<td>0.03</td>
</tr>
<tr>
<td>0,94</td>
<td>0.30</td>
<td>0.01</td>
<td>0.25</td>
<td>0.03</td>
<td>0.38</td>
<td>0.03</td>
<td>0.40</td>
<td>0.02</td>
<td>0.31</td>
<td>0.02</td>
</tr>
<tr>
<td>0,63</td>
<td>0.28</td>
<td>0.02</td>
<td>0.21</td>
<td>0.01</td>
<td>0.28</td>
<td>0.01</td>
<td>0.32</td>
<td>0.03</td>
<td>0.30</td>
<td>0.02</td>
</tr>
<tr>
<td>0,47</td>
<td>0.26</td>
<td>0.02</td>
<td>0.19</td>
<td>0.01</td>
<td>0.28</td>
<td>0.03</td>
<td>0.32</td>
<td>0.02</td>
<td>0.29</td>
<td>0.02</td>
</tr>
<tr>
<td>0,31</td>
<td>0.25</td>
<td>0.02</td>
<td>0.24</td>
<td>0.06</td>
<td>0.27</td>
<td>0.05</td>
<td>0.29</td>
<td>0.05</td>
<td>0.32</td>
<td>0.03</td>
</tr>
<tr>
<td>0,23</td>
<td>0.21</td>
<td>0.03</td>
<td>0.15</td>
<td>0.01</td>
<td>0.22</td>
<td>0.00</td>
<td>0.24</td>
<td>0.04</td>
<td>0.31</td>
<td>0.02</td>
</tr>
<tr>
<td>0,16</td>
<td>0.20</td>
<td>0.01</td>
<td>0.16</td>
<td>0.00</td>
<td>0.23</td>
<td>0.01</td>
<td>0.23</td>
<td>0.01</td>
<td>0.29</td>
<td>0.01</td>
</tr>
<tr>
<td>0,00</td>
<td>0.17</td>
<td>0.01</td>
<td>0.14</td>
<td>0.02</td>
<td>0.21</td>
<td>0.01</td>
<td>0.20</td>
<td>0.00</td>
<td>0.28</td>
<td>0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AGEM400-HES ng per ml</th>
<th>Rattenserum Mean</th>
<th>SD</th>
<th>Humanserum Mean</th>
<th>SD</th>
<th>RPMI/10% FCS Mean</th>
<th>SD</th>
<th>PBS/BSA Mean</th>
<th>SD</th>
<th>Lysepuffer/BSA Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,00</td>
<td>1.75</td>
<td>0.09</td>
<td>1.12</td>
<td>0.17</td>
<td>1.59</td>
<td>0.33</td>
<td>1.30</td>
<td>0.30</td>
<td>1.00</td>
<td>0.15</td>
</tr>
<tr>
<td>3,75</td>
<td>1.57</td>
<td>0.19</td>
<td>0.88</td>
<td>0.06</td>
<td>1.16</td>
<td>0.12</td>
<td>1.52</td>
<td>0.07</td>
<td>0.77</td>
<td>0.13</td>
</tr>
<tr>
<td>2,50</td>
<td>1.25</td>
<td>0.11</td>
<td>0.69</td>
<td>0.07</td>
<td>0.87</td>
<td>0.10</td>
<td>1.09</td>
<td>0.10</td>
<td>0.64</td>
<td>0.06</td>
</tr>
<tr>
<td>1,88</td>
<td>1.07</td>
<td>0.11</td>
<td>0.50</td>
<td>0.04</td>
<td>0.78</td>
<td>0.09</td>
<td>0.77</td>
<td>0.09</td>
<td>0.45</td>
<td>0.03</td>
</tr>
<tr>
<td>1,25</td>
<td>0.76</td>
<td>0.05</td>
<td>0.33</td>
<td>0.03</td>
<td>0.62</td>
<td>0.04</td>
<td>0.76</td>
<td>0.07</td>
<td>0.41</td>
<td>0.07</td>
</tr>
<tr>
<td>0,94</td>
<td>0.60</td>
<td>0.01</td>
<td>0.30</td>
<td>0.03</td>
<td>0.45</td>
<td>0.06</td>
<td>0.65</td>
<td>0.09</td>
<td>0.34</td>
<td>0.04</td>
</tr>
<tr>
<td>0,63</td>
<td>0.43</td>
<td>0.04</td>
<td>0.22</td>
<td>0.00</td>
<td>0.36</td>
<td>0.04</td>
<td>0.44</td>
<td>0.06</td>
<td>0.28</td>
<td>0.01</td>
</tr>
<tr>
<td>0,47</td>
<td>0.36</td>
<td>0.04</td>
<td>0.19</td>
<td>0.02</td>
<td>0.28</td>
<td>0.02</td>
<td>0.26</td>
<td>0.03</td>
<td>0.23</td>
<td>0.02</td>
</tr>
<tr>
<td>0,31</td>
<td>0.28</td>
<td>0.01</td>
<td>0.15</td>
<td>0.01</td>
<td>0.25</td>
<td>0.01</td>
<td>0.26</td>
<td>0.02</td>
<td>0.28</td>
<td>0.03</td>
</tr>
<tr>
<td>0,23</td>
<td>0.25</td>
<td>0.03</td>
<td>0.14</td>
<td>0.01</td>
<td>0.22</td>
<td>0.03</td>
<td>0.26</td>
<td>0.01</td>
<td>0.22</td>
<td>0.03</td>
</tr>
<tr>
<td>0,16</td>
<td>0.23</td>
<td>0.02</td>
<td>0.12</td>
<td>0.00</td>
<td>0.19</td>
<td>0.04</td>
<td>0.19</td>
<td>0.02</td>
<td>0.20</td>
<td>0.01</td>
</tr>
<tr>
<td>0,00</td>
<td>0.14</td>
<td>0.01</td>
<td>0.09</td>
<td>0.01</td>
<td>0.12</td>
<td>0.01</td>
<td>0.11</td>
<td>0.01</td>
<td>0.17</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Ergebnisse

(A) AGEM400

Abb. 3.33: ELISA: Detektion von AGEM400 und AGEM400-HES
AGEM400 (Abb. A) und AGEM400-HES (Abb. B) wurden mit verschiedenen Konzentrationen in Rattenserum (-●-), Humanserum (-▲-), RPMI/10% FCS (-▼-), PBS/1% BSA (-♦-) oder in Lysepuffer/1% BSA (-■-) verdünnt und anschließend über einen Erstantikörper Schaf-anti-AGEM400 an die Plattenoberfläche gebunden. Die Detektion erfolgte colorimetrisch durch Messung der optischen Dichte (OD) bei 492 nm (Referenzfilter 620 nm) nach Bindung eines dritten HRP-markierten Detektionsantikörpers an den Zweitantikörper aus einem Kaninchen-anti-AGEM400 Antiserum.
Diskussion

Die Kopplung von Wirkstoffen an Carrier-Moleküle ist eine gängige Methode zur Erhöhung der molekularen Masse, was in vivo mit einer verlängerten Halbwertszeit einhergeht. Bei den Carrier-Molekülen handelt es sich um Makromoleküle, durch die der Arzneistoff an hydrodynamischer Größe gewinnt, was neben der Stabilisierung des Wirkstoffs auch zu einer verbesserten Löslichkeit führt. AGEM400 wurde oligovalent an Hydroxyethylstärke (HES) gekoppelt. Durchschnittlich wurden fünf AGEM400-Dimere an ein HES-Molekül gebunden. Die Kopplung an HES bewirkte in TF-1 eine interessante Effizienzsteigerung von AGEM400. Die Effizienz (EC50) von AGEM400-HES lag in TF-1-Zellen je nach Assay-System 1.6x bis 4x höher als die von AGEM400. Dieser Partialagonismus von AGEM400 in TF-1-Zellen steht möglicherweise im Zusammenhang mit dem aberranten EPO-Rezeptor, der in TF-1-Zellen exprimiert wird [76]. Dabei handelt es sich um einen C-terminal trunkierten EPO-Rezeptor, der für eine gestörte STAT5-Aktivierung verantwortlich ist [77]. Offensichtlich bewirkt die Bindung von EPO an den trunkierten Rezeptor stärkere
Diskussion

Eine mögliche Erklärung für die geringere Aktivität von AGEM400 im Vergleich zu AGEM400-HES in TF-1-Zellen wird z.B. durch die Annahme des Supravalenzeffektes geliefert. Als weitere Ursache, die zu einer niedrigeren Effizienz von AGEM400 beitragen könnte, könnten verschiedene Bindungsarten von Peptid-Dimere an die Rezeptormoleküle bzw. an die Rezeptorkomplexe sein. Abb. 4.1 zeigt Möglichkeiten mit denen AGEM400-Dimere an den EPO/R binden könnten. Es ist bekannt, dass die asymmetrische Bindung eines EPO-Proteins eine andere Konformation des Rezeptorkomplexes (intermolekulare Winkelungen) als die symmetrische Bindung eines vergleichsweise sehr kleinen Peptid-Dimers bewirkt. Vor diesem Hintergrund könnte die niedrigere Aktivität von AGEM400 verglichen mit der Aktivität von AGEM400-HES dadurch erklärt werden, dass ein EPO/R von zwei verschiedenen Dimeren gleichzeitig gebunden wird, und dies zu einer inaktiven Rezeptorkonformation führt. Bei AGEM400-HES wäre eine solche blockierende
Bindung aufgrund der räumlichen Entfernung der gekoppeltten Peptid-Dimere nicht möglich.

Abb. 4.1: Modell: Bindungsarten von AGEM400-Peptiden an den EPO/R

In UT-7/EPO wurde ein Partialagonismus von AGEM400 bzw. ein Multivalenzeffekt von AGEM400-HES nicht beobachtet. Dies hängt vermutlich damit zusammen, dass in UT-7/EPO-Zellen im Gegensatz zu TF-1-Zellen ein voll funktionsfähiger EPO/R verstärkt exprimiert wird, der sich weder quantitativ noch qualitativ limitierend auf die Wirkstärke von AGEM400 auswirkt.

führen [65]. Eine Akkumulation von HES mit niedriger Substitutionsrate wurde nicht beobachtet. Die Applikation von niedrigsubstituiertem HES wird im Allgemeinen auch nach wiederholter Gabe gut vertragen [65,71,72,73].

Es muss beachtet werden, dass sich die Nebenwirkungen von HES in pharmakokinetischen bzw. toxikologischen Studien an Ratten, Schweinen und Menschen in einem Konzentrationsbereich von 0.5-1.0 g/kg Körpergewicht zeigten. Für AGEM400-HES wird zur Bekämpfung einer Anämie eine 1000-fach niedrigere effektive Dosis, die deutlich unter 1 mg/kg Körpergewicht liegt, erwartet. Aus diesem Grund kann davon ausgegangen werden, dass die HES-Komponente des AGEM400-Konjugates in den Konzentrationsbereichen, die zur Behandlung einer Anämie nötig wären, keine Nebenwirkungen verursachen wird.

HES ist in verschiedenen Qualitäten, die sich neben dem Molekulargewicht auch im Grad der Hydroxyethylierung unterscheiden, erhältlich. Der enzymatische Abbau von HES durch Amylasen im Blut und anschließender Filtration der Fragmente in der Niere ist vor allem abhängig vom Grad der Hydroxyethylierung. Somit ist es im Gegensatz zu PEG möglich, die Halbwertszeit bzw. die Dosierung über den Wirkstoffträger durch Verwendung unterschiedlicher HES-Qualitäten zu justieren [65].

Vergleich zu einer transfizierten Mauszelllinie einen aussagekräftigeren Prognosewert hinsichtlich der Übertragung auf die in vivo Situation liefern.

Ein anderes EMP-1-basiertes ESA ist CNTO 530. Dabei handelt es sich um ein homodimeres Fusionsprotein, dessen monomerer Baustein aus einer Antikörper Fc-Domäne, einem Linker und einem anschließenden EMP-1-Peptid besteht. In einem Proliferationsassay mit UT-7/EPO zeigte CNTO 530 mit einer EC50 von 100 pM eine vergleichbare Effizienz wie AGEM400-HES [75].

Die generierten polyklonalen Antikörper gegen EPO, gegen den monomeren Baustein BB68 bzw. gegen das dimere AGEM400-Peptid zeigten in der Western Blot Analyse untereinander keine Kreuzreaktionen. Die anti-Peptid Antikörper haben nicht an das rekombinante EPO gebunden. Umgekehrt fand keine Bindung zwischen den Peptiden und den anti-EPO Antikörpern statt. Diese immunologische Divergenz zwischen EPO und den Peptiden ist eine hervorragende Voraussetzung für die

Bisher gelangen Verbesserungen von EPO-Präparaten nur in pharmakologischen Teilbereichen aber häufig in Verbindung mit Einbußen bei anderen pharmakologischen Parametern. Beispielsweise konnte im Fall von Aranesp® die Halbwertszeit durch Hyperglykosylierung des Präparates erhöht werden, aber im Gegenzug sank die Aktivität des Wirkstoffes. Im Gegensatz zu allen bisherigen Versuchen, neue verbesserte EPO-Präparate zu entwickeln, stellt AGEM400-HES
einen potentiellen Wirkstoff dar, bei dem eine Optimierung der Pharmakodynamik und der Pharmakokinetik gleichermaßen gelungen sein könnte.
5 Literatur

19. Morishita, E. et al., *Erythropoetin receptor is expressed in rat hippocampal and cerebral cortical neurons, and Erythropoetin prevents in vitro glutamate-induced neuronal death.* Neuroscience 1997. **76:** 105-116

33. Darnell, J.E. et al., JAK-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994. 264: 1415-1421

36. Jelkmann, W., Recombinant EPO production-points the nephrologist should know. Nephrol Dial Transplant 2007. Editorial Comment

39. Cotter, D.J. et al., Hematocrit was not validated as a surrogate end point for survival among epoietin-treated hemodialysis patients. J Clin Epidemiol 2004. 57: 1086-1095

66. Lehmann, G.B. et al., HES 130/0.42 shows less alterations of pharmacokinetics than HES 200/0.5 when dosed repeatedly. Br J Anaesth 2007. 98: 635-44

69. Leuschner, J. et al., Tissue storage of 14C-labelled hydroxyethyl starch (HES) 130/0.4 and HES 200/0.5 after repeated intravenous administration to rats. Drugs in R&D 2003. 4: 331-8

71. Waitzinger, J. et al., Pharmacokinetic and tolerability of a new hydroxyethylstarch (HES) specification [HES(130/0.4)] after single-dose infusion of 6% or 10% solutions in healthy volunteers. Clin Drug Invest 1998. 16: 151-60
Literatur

73. Waitzinger, J. et al., *Hydroxyethylstarch (HES) [130/0.4], a new HES specification: pharmacokinetics and safety after multiple infusions of 10% solution in healthy volunteers.* Drugs in R&D 2003. 4: 149-57

77. Chretien, S. et al., *Erythropoietin-induced erythroid differentiation of the human erythroleukemia cell line TF-1 correlates with an impaired STAT5 activation.* EMBO J 1996. 15: 4174-4181

6 Veröffentlichungen

Publikation:

Zitierbare Abstracts/ Posterbeiträge

7 Anhang

Danksagung

An dieser Stelle möchte ich mich bei allen bedanken, die zum Entstehen dieser Arbeit beigetragen haben:

Prof. Dr. rer. nat. Ralf Weiskirchen danke ich überaus für die Aufnahme in seiner Arbeitsgruppe und die engagierte Übernahme des Erstgutachtens dieser Arbeit.

Für die Übernahme des Zweitgutachtens bin ich Prof. Dr. techn. Werner Baumgartner ausgesprochen dankbar.

Prof. Dr. med. Wolfgang Jelkmann bin ich sehr dankbar für die Überlassung der UT-7/EPO-Zellen, die für diese Arbeit von großer Bedeutung waren.

Dr. rer. nat. Steffen Meurer danke ich für das Korrekturlesen der Arbeit und für seine Diskussionsbereitschaft.

Mein herzlichster Dank geht an meine Familie:
Ich bedanke mich bei meinen Kindern Janka und Paul für ihre Liebe, für die Zeit mit ihnen und für die Zeit, die sie mir für meine Arbeit überlassen.
Elmar Hoffmann, meinem treuen Wegbegleiter, danke ich für seine fortwährende Motivation und seinen unerschütterlichen Glauben an mich.
Eidesstattliche Erklärung:

Lebenslauf:

Persönliche Daten:
Name: Greindl
Vorname: Alexandra
Geburtstag: 11.09.1974
Geburtsort: Düren
Staatsangehörigkeit: deutsch

Schulabschluss:
1995 Abitur

Studium:
1995 – 2003 Studium der Biologie an der RWTH Aachen
Abschluss: Diplom

Promotion:

Berufstätigkeiten:
2003-2009 Wissenschaftliche Mitarbeiterin in der Abteilung für Zell- und Molekularbiologie der AplaGen GmbH, Baesweiler
seit 2010 Wissenschaftliche Mitarbeiterin am Institut für Klinische Chemie und Pathobiochemie des Universitätsklinikums der RWTH Aachen

Düren im Juli 2010