Table of contents

1 Introduction ... 1
 1.1 Silicon in soil-plant system ... 1
 1.2 Role of silicon in plant growth ... 4
 1.3 Plasma membrane H\(^+\)-ATPase, nutrient uptake, and plant growth 6

2 Materials and Methods ... 8
 2.1 Optimal level of silicon for maize (Zea mays L. cv. Amadeo) growth in nutrient solution under controlled conditions ... 8
 2.1.1 Plant cultivation .. 8
 2.1.2 Plant height and leaf-area measurement ... 8
 2.1.3 Plant fresh and dry mass measurement ... 9
 2.1.4 Cation analysis .. 9
 2.1.5 Silicon analysis .. 9
 2.2 Effect of Si on plasma membrane H\(^+\)-ATPase hydrolytic and pumping activity isolated from maize root and shoot .. 11
 2.2.1 Plant cultivation ... 11
 2.2.2 Isolation of plasma membrane vesicles ... 11
 2.2.3 Protein quantification ... 15
 2.2.4 Hydrolytic activity of plasma membrane ATPase ... 16
2.2.5 Measurement of H⁺ pumping activity ... 17
2.2.6 \textit{In vitro} effect Si on H⁺-ATPase hydrolytic and pumping activity 18
2.3 Immunodetection of plasma membrane H⁺-ATPase protein .. 18
2.4 Effect of Si nutrition on the transcription of plasma membrane H⁺-ATPase isoforms. .. 22
2.4.1 Spectrophotometric determination of RNA .. 22
2.4.2 Determination of RNA integrity ... 23
2.4.3 Synthesis of cDNA .. 23
2.4.4 Real-time PCR analysis of H⁺-ATPase isoforms .. 24
2.5 Effect of Si nutrition on apoplastic pH of maize shoot .. 27
2.6 Statistical analysis .. 28
2.7 Chemicals ... 29
3 Results .. 31
3.1 Optimization of silicon concentration in nutrient solution for maize growth 31
3.1.1 Effects of various concentrations of silicon on fresh and dry mass of maize shoot and root .. 31
3.1.2 Effects of various concentrations of silicon on maize plant height and leaf area of young growing leaves ... 32
3.1.3 Effects of various concentrations of silicon on cation concentrations in maize plants ... 33
3.1.4 Effects of various concentrations of silicon in nutrient solution on silicon concentration in young maize shoot .. 37
3.2 Role of silicon in plasma membrane H⁺-ATPase characteristics 39
3.2.1 Effects of silicon supply in nutrient solution on the purity of plasma membrane vesicles isolated from maize shoots and roots

3.2.2 Effect of silicon nutrition on plasma membrane H⁺-ATPase hydrolytic activity isolated from roots and shoots

3.2.3 Effect of silicon nutrition on H⁺ transport activity of plasma membrane ATPase isolated from roots and shoots

3.2.4 Effects of silicon supply in nutrient solution on the kinetic characteristics of plasma membrane H⁺-ATPase isolated from maize shoot

3.2.5 Effects of silicon supply in nutrient solution on the activation energy of plasma membrane ATPase

3.2.6 In vitro effect of silicon on plasma membrane ATPase hydrolytic activity

3.2.7 In vitro effect of silicon on plasma membrane H⁺-ATPase transport activity

3.2.8 In vitro effect of silicon on plasma membrane ATPase kinetic characteristics and activation energy

3.2.9 Effects of silicon supply in nutrient solution on plasma membrane H⁺-ATPase concentration in the plasma membrane vesicles isolated from maize shoots and roots

3.2.10 Relative expression of mRNA of plasma membrane H⁺-ATPase enzyme isoforms

3.3 Effect of silicon supply in nutrient solution on apoplastic pH in growing shoot tissues

4 Discussion

4.1 Exogenously supplied silicon in nutrient solution improves maize growth

4.2 Effect of silicon on plasma membrane ATPase in maize shoots and roots

4.2.1 Effect of silicon supply in nutrient solution on the purity of plasma isolated from maize shoots and roots

4.2.2 Effect of silicon on plasma membrane ATPases in maize shoots
4.2.3 Effect of silicon supply in nutrient solution on plasma membrane ATPases in maize roots ... 67

4.3 Effect of silicon supply in nutrient solution on apoplastic pH in maize leaves 68

5 Summary ... 71

6 Zusammenfassung .. 73

7 References .. 75