Charakterisierung einer neuen Phenoloxidase von *Azotobacter chroococcum* und Anwendungsmöglichkeiten bakterieller und pilzlicher Phenoloxidasen für Aminierungsreaktionen an diphenolischen Substanzen

Inauguraldissertation

zur

Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.)

an der Mathematisch-Naturwissenschaftlichen Fakultät der Ernst-Moritz-Arndt-Universität Greifswald

vorgelegt von

Susanne Herter

geboren am 01.09.1982

in Greifswald

Greifswald, 09. Februar 2012
Dekan: Prof. Dr. K. Fesser

1. Gutachter: Prof. Dr. F. Schauer, Ernst-Moritz-Arndt-Universität Greifswald, Institut für Mikrobiologie

2. Gutachter: Prof. Dr. U. Kragl, Universität Rostock, Institut für Chemie

Tag der Promotion: 08. Mai 2012
1. EINLEITUNG ... 1
 1.1 Zielstellung .. 17

2. MATERIAL UND METHODEN .. 21
 2.1 Mikroorganismen und Stammhaltung ... 21
 2.2 Kultur- und Nährmedien ... 22
 2.2.1 Flüssigmedien ... 22
 2.2.2 Festmedien .. 23
 2.2.3 Physiologisch-biochemische Testungen zur taxonomischen Charakterisierung
 und Identifizierung von Bakterien ... 24
 2.2.4 Substrate .. 27
 2.3 Zellanzucht und Kultivierung für eine Enzymgewinnung 29
 2.3.1 Azotobacter chroococcum ... 29
 2.3.2 Pycnoporus cinnabarinus ... 30
 2.4 Wachstumsanalysen .. 30
 2.4.1 Bestimmung des Wachstums in Flüssikultur ... 31
 2.4.2 Bestimmung des Wachstums auf Festmedium .. 33
 2.5 Bestimmung von Wachstumsparametern ... 33
 2.5.1 Extinktionsmessungen .. 33
 2.5.2 Proteingehalt .. 34
 2.6 Mikroskopische Untersuchungen ... 34
 2.6.1 Analyse von Zellzyklen und Differenzierungsprozessen 34
 2.6.2 Differential- und cytologische Färbungen ... 35
 2.7 16S-rDNA-Analysen ... 37
 2.7.1 DNA-Isolation und Reinigung ... 38
 2.7.2 Amplifikation mittels Polymerase-Kettenreaktion (PCR) und Agarose-
 Gelelektrophorese .. 38
 2.7.3 DNA-Reinigung, Ligation und Klonierung ... 40
 2.7.4 Colony-PCR und Plasmid-Präparation .. 41
 2.7.5 16S-rDNA-Sequenzierung und phylogenetische Identifizierung 42
 2.8 Synthese von Melaninanaloga und Pigmentcharakterisierung 42
 2.8.1 Synthese von DOPA- und Brenzkatechinmelanin nach ARNOW 42
 2.8.2 Pigmentcharakterisierung nach WHITE bzw. SHIVPRASAD & PAGE 43
 2.9 Analyse von Kulturüberständen .. 43
 2.9.1 Bestimmung der Brenzkatechinkonzentration nach BARNUM 43
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.9.2</td>
<td>Analyse von Siderophoren nach PAGE & HUYER</td>
<td>44</td>
</tr>
<tr>
<td>2.10</td>
<td>Gewinnung und Reinigung der Phenoloxidasen AcCL und PcL</td>
<td>45</td>
</tr>
<tr>
<td>2.10.1</td>
<td>Gewinnung und partielle Reinigung der Phenoloxidase AcCL von A. chroococcum</td>
<td>45</td>
</tr>
<tr>
<td>2.10.2</td>
<td>Gewinnung und Reinigung der Phenoloxidase PcL von P. cinnabarinus</td>
<td>48</td>
</tr>
<tr>
<td>2.11</td>
<td>Enzyme für Biotransformationsexperimente und vergleichende Untersuchungen zur Enzymcharakterisierung</td>
<td>49</td>
</tr>
<tr>
<td>2.11.1</td>
<td>Puffer für Transformationsreaktionen und Enzymexperimente</td>
<td>51</td>
</tr>
<tr>
<td>2.11.2</td>
<td>Enzym- und Proteinnachweise</td>
<td>52</td>
</tr>
<tr>
<td>2.11.2.1</td>
<td>Bestimmung der Enzymaktivität</td>
<td>52</td>
</tr>
<tr>
<td>2.11.2.2</td>
<td>Bestimmung des Proteingehalts</td>
<td>56</td>
</tr>
<tr>
<td>2.11.3</td>
<td>Methoden zur Ermittlung aktivitätsbeeinflussender Parameter und der Enzymcharakterisierung</td>
<td>57</td>
</tr>
<tr>
<td>2.11.3.1</td>
<td>Ermittlung des pH-Optimums</td>
<td>57</td>
</tr>
<tr>
<td>2.11.3.2</td>
<td>Ermittlung der Temperaturstabilität</td>
<td>58</td>
</tr>
<tr>
<td>2.11.3.3</td>
<td>Ermittlung des Substratspektrums</td>
<td>58</td>
</tr>
<tr>
<td>2.11.3.4</td>
<td>Prüfung des Einflusses von Metallionen, Enzyminhibitoren und chelatbildenden Agentien</td>
<td>58</td>
</tr>
<tr>
<td>2.11.3.5</td>
<td>Prüfung der Lösungsmittelverträglichkeit</td>
<td>59</td>
</tr>
<tr>
<td>2.12</td>
<td>Transformationsansätze</td>
<td>60</td>
</tr>
<tr>
<td>2.12.1</td>
<td>Biotransformationsansätze mit Phenoloxidases als biologische Kopplungsvermittler</td>
<td>61</td>
</tr>
<tr>
<td>2.12.2</td>
<td>Transformationsansätze mit Natriumiodat als chemischem Kopplungsvermittler</td>
<td>62</td>
</tr>
<tr>
<td>2.13</td>
<td>Probenaufbereitung und Methoden der instrumentellen Analytik</td>
<td>62</td>
</tr>
<tr>
<td>2.13.1</td>
<td>Isolation von Reaktionsprodukten</td>
<td>62</td>
</tr>
<tr>
<td>2.13.1.1</td>
<td>Festphasenextraktion</td>
<td>63</td>
</tr>
<tr>
<td>2.13.1.2</td>
<td>Lyophilisation</td>
<td>63</td>
</tr>
<tr>
<td>2.13.1.3</td>
<td>Flüssig-Flüssig-Extraktion</td>
<td>64</td>
</tr>
<tr>
<td>2.13.2</td>
<td>Instrumentelle Analytik</td>
<td>65</td>
</tr>
<tr>
<td>2.13.2.1</td>
<td>Analytische Hochleistungsflüssigkeitschromatographie (HPLC)</td>
<td>65</td>
</tr>
<tr>
<td>2.13.2.2</td>
<td>Flüssigchromatographie mit Massenspektrometrie-Kopplung (LC-MS)</td>
<td>68</td>
</tr>
<tr>
<td>2.13.2.3</td>
<td>Hochauflösende Massenspektrometrie (HR-MS)</td>
<td>68</td>
</tr>
<tr>
<td>2.13.2.4</td>
<td>Gaschromatographie mit Massenspektrometrie-Kopplung (GC-MS)</td>
<td>69</td>
</tr>
<tr>
<td>2.13.2.5</td>
<td>Kernmagnetresonanz-Spektroskopie (NMR)</td>
<td>69</td>
</tr>
<tr>
<td>2.14</td>
<td>Analyse von Proteinen durch Polyacrylamid-Gelelektrophorese (PAGE)</td>
<td>70</td>
</tr>
<tr>
<td>2.14.1</td>
<td>Denaturierende Polyacrylamid-Gelelektrophorese (SDS-PAGE) nach LAEMMLI</td>
<td>70</td>
</tr>
<tr>
<td>2.14.2</td>
<td>Semi-denaturierende SDS-PAGE nach SOLANO et al.</td>
<td>72</td>
</tr>
<tr>
<td>2.14.3</td>
<td>Nicht-denaturierende Polyacrylamid-Gelelektrophorese (Native PAGE) und Bestimmung des relativen Molekulargewichts nach FERGUSON</td>
<td>73</td>
</tr>
</tbody>
</table>
2.14.4 Proteinvisualisierungsmethoden .. 74
 2.14.4.1 Färbung mit Coomassie ... 74
 2.14.4.2 Silberfärbung .. 75
 2.14.4.3 Aktivitätsfärbung .. 75
2.15 Liste der verwendeten Chemikalien ... 76

3. ERGEBNISSE .. 79

3.1 Physiologische Testungen zur taxonomischen Charakterisierung und
 Identifizierung des Bakterienisolats SBUG 1484 .. 79
3.2 16S-rDNA-Analyse zur abschließenden Identifizierung 83
3.3 Mikroskopische Analysen zum Lebenszyklus von A. chroococcum 85
 3.3.1 Mikroskopische Untersuchungen von Objektträgerkulturen 85
 3.3.2 Zellfärbever suche zur Visualisierung und Identifizierung von Zellbestandteilen
 in stickstofffixierenden Kulturen ... 88
 3.3.3 Mikroskopische Untersuchungen zur Zellmorphologie von A. chroococcum
 bei Kultivierung mit exogenen Stickstoffquellen 91
 3.3.4 Vergleichende Untersuchungen mit Azotobacter salinestris und
 Bacillus megaterium .. 93
3.4 Wachstum von A. chroococcum in Gegenwart exogener Stickstoffquellen bzw.
 unter Assimilation von Luftstickstoff .. 95
 3.4.1 Wachstum mit anorganischen Stickstoffverbindungen 96
 3.4.2 Wachstum mit organischen stickstoffhaltigen Verbindungen 98
3.5 Identifizierung des zellassozierten Pigments und Analyse von
 Kulturüberständen ... 100
 3.5.1 Analyse des zellassozierten Pigments .. 100
 3.5.2 Untersuchung zellfreier Kulturüberstände ... 102
 3.5.2.1 Strukturaufklärung extrazellulär akkumulierter Substanzen 104
 3.5.2.2 Einfluss der Nitrogenase-relevanten Metallionen Na₂MoO₄ und FeSO₄ 107
 3.5.2.3 Einfluss einer Kupfersupplementierung auf stickstofffixierende Kulturen 110
3.6 Nachweis einer Phenoloxidase-Aktivität in A. chroococcum 112
 3.6.1 Untersuchung der Phenoloxidase-Aktivität in stickstofffixierenden
 Kulturen ... 114
 3.6.2 Lokalisation der Phenoloxidase .. 115
 3.6.3 Beeinflussung der Phenoloxidase-Aktivität durch eine
 Kupfersupplementierung stickstofffixierender Kulturen 119
3.7 Charakterisierung der prokaryotischen Phenoloxidase AcCL von
 A. chroococcum .. 120
 3.7.1 Ermittlung des pH-Optimums ... 120
 3.7.2 Untersuchungen zur Temperaturstabilität ... 122
 3.7.3 Prüfung des Einflusses von Lösungsmitteln 123
 3.7.4 Prüfung des Einflusses organischer Säuren 125
INHALTSVERZEICHNIS

3.7.5 Prüfung des Einflusses von Metallionen.. 127
3.7.6 Vergleichende Untersuchungen bezüglich des Inhibitor- und Substratspektrums unter Einbeziehung eukaryotischer Referenzenzyme .. 128
 3.7.6.1 Einfluss von Inhibitoren auf AcCL von A. chroococcum und eukaryotische Referenzenzyme .. 129
 3.7.6.2 Ermittlung des Spektrums an AcCL-Enzymsubstraten im Vergleich zu eukaryotischen Referenzenzymen .. 131
3.7.7 Enzymkinetikstudien.. 135
3.7.8 Gelelektrophoretische Analysen .. 138
 3.7.8.1 Untersuchungen mittels denaturierender und semi-denaturierender SDS-PAGE .. 138
 3.7.8.2 Untersuchungen mittels nativer PAGE .. 142
3.8 Versuche zur Biotransformation von ortho- und para-dihydroxylierten Verbindungen .. 146
 3.8.1 Homomolekulare Kopplung von ortho-dihydroxylierten Verbindungen 148
 3.8.1.1 Homomolekulare Kopplungsreaktionen mit den pilzlichen Phenoloxidasen PcL und MtL ... 148
 3.8.1.2 Homomolekulare Kopplungsreaktionen mit den rekombinanten pilzlichen Phenoloxidase-Isoenzymen PcL35, TvL5 und TvL10 sowie den bakteriellen Phenoloxidinen AcCL, CotA und SLAC ... 153
 3.8.1.3 Homomolekulare Kopplungsreaktionen mit dem chemischen Kopplungsvermittler Natriumiodat ... 155
 3.8.2 Homomolekulare Kopplung von para-dihydroxylierten Verbindungen 157
 3.8.3 Homomolekulare Kopplung von para-dihydroxylierten mehrfach-substituierten ein- und zweikernigen Aromaten ... 160
 3.8.4 Untersuchungen zur Transformation von 2,6-Dimethoxyphenol durch die bakterielle Phenoloxidase AcCL von A. chroococcum ... 161
 3.8.5 Strukturaufklärung der homomolekularen Kopplungsprodukte 163
 3.8.5.1 Eigenreaktionsprodukte des 3-Methylbenzocatechins 163
 3.8.5.2 Eigenreaktionsprodukte des 3-Methoxybenzocatechins 167
 3.8.5.3 Eigenreaktionsprodukte des 4-tert-Butylbenzocatechins 169
 3.8.5.4 Eigenreaktionsprodukte des Methylhydrochinons .. 171
3.9 Heteromolekulare Kopplung von ortho-dihydroxylierten Verbindungen 173
 3.9.1 Heteromolekulare Kopplungsreaktionen von 3-Methylbenzocatechin mit linearen aliphatischen Aminen ... 173
 3.9.1.1 Kopplungsreaktionen mit den pilzlichen Phenoloxidasen PcL und MtL 173
 3.9.1.2 Kopplungsreaktionen mit den rekombinant exprimierten pilzlichen Phenoloxidase-Isoenzymen PcL35, TvL5 und TvL10 ... 179
 3.9.1.3 Kopplungsreaktionen mit der rekombinant exprimierten bakteriellen Phenoloxidase CotA ... 181
 3.9.1.4 Kopplungsreaktionen mit der rekombinant exprimierten bakteriellen Phenoloxidase SLAC ... 183
...Kopplungsreaktionen mit der bakteriellen Phenoloxidase \textit{A. chroococcum} .. 185
3.9.1.6 Vergleich von Biotransformationsreaktionen mit NaIO\textsubscript{3}-katalysierten Reaktionen .. 187
3.9.1.6.1 Produktgewinnung in biologisch- und chemisch-katalysierten Reaktionssystemen .. 188
3.9.1.6.2 Nebenreaktionsprodukte in biologisch- und chemisch-katalysierten Reaktionssystemen .. 191
3.9.2 Isolation und Strukturaufklärung der heteromolekularen Kopplungsprodukte aus Reaktionen des 3-Methylbrenzkatechins mit linearen aliphatischen Aminen ... 194
3.9.3 Ermittlung der \textit{n}-Octanol/Wasserverteilungskoeffizienten der heteromolekularen Kopplungsprodukte ... 200
3.9.4 Heteromolekulare Kopplungsreaktionen von 3-Methylbrenzkatechin mit verzweigtkettigen aliphatischen Aminen .. 201
3.9.5 Isolation und Strukturaufklärung der heteromolekularen Kopplungsprodukte aus Reaktionen des 3-Methylbrenzkatechins mit verzweigtkettigen aliphatischen Aminen .. 206
3.9.6 Heteromolekulare Kopplungsreaktionen von 3-Methylbrenzkatechin mit alicyclischen Aminen .. 209
3.9.7 Isolation und Strukturaufklärung der heteromolekularen Kopplungsprodukte aus Reaktionen des 3-Methylbrenzkatechins mit alicyclischen Aminen 211
3.9.8 Heteromolekulare Kopplungsreaktionen von 3-Methoxybrenzkatechin und 4-\textit{tert}-Butylbrenzkatechin mit dem aliphatischen Amin \textit{n}-Hexylamin 215
3.9.9 Isolation und Strukturaufklärung der heteromolekularen Kopplungsprodukte aus Reaktionen des 3-Methoxy- und 4-\textit{tert}-Butylbrenzkatechins 219
3.10 Heteromolekulare Kopplung von \textit{para}-dihydroxylierten Verbindungen ... 222
3.10.1 Heteromolekulare Kopplungsreaktionen von monosubstituierten einkernigen \textit{para}-dihydroxylierten Verbindungen ... 222
3.10.1.1 Heteromolekulare Kopplungsreaktionen von Methylhydrochinon 224
3.10.1.2 Heteromolekulare Kopplungsreaktionen von Methoxyhydrochinon 225
3.10.1.3 Heteromolekulare Kopplungsreaktionen von \textit{tert}-Butylhydrochinon 226
3.10.1.4 Isolation und Strukturaufklärung der heteromolekularen Kopplungsprodukte ... 228
3.10.1.4.1 Kopplungsprodukte des Methylhydrochinons ... 229
3.10.1.4.2 Kopplungsprodukte des Methoxyhydrochinons ... 230
3.10.1.4.3 Kopplungsprodukte des \textit{tert}-Butylhydrochinons .. 232
3.10.2 Heteromolekulare Kopplungsreaktionen von mehrfachsubstituierten ein- und zweikernigen \textit{para}-dihydroxylierten Verbindungen ... 234
3.10.2.1 Heteromolekulare Kopplungsreaktionen von 2-Methoxy-3-methylhydrochinon ... 234
3.10.2.2 Heteromolekulare Kopplungsreaktionen von 2,3-Dimethoxy-5-methylhydrochinon ... 239
3.10.2.3 Heteromolekulare Kopplungsreaktionen von 2-Methylnaphtho-
hydrochinon .. 240
3.10.2.4 Isolation und Strukturaufklärung der heteromolekularen Kopplungsprodukte
aus Reaktionen des 2-Methoxy-3-methylhydrochinons................................. 242

4. DISKUSSION .. 249

4.1 Untersuchungen des stickstofffixierenden Prokaryoten
Azotobacter chroococcum.. 250
4.1.1 Untersuchungen zur Physiologie und Morphologie sowie zur
Stickstofffixierung, Melanin- und Cystenbildung... 251
 4.1.1.1 Assimilation von exogenen Stickstoffquellen .. 252
 4.1.1.2 Assimilation von Luftstickstoff.. 254
4.1.2 Untersuchungen zur Phenoloxidase von Azotobacter chroococcum 256
 4.1.2.1 Nachweis einer Phenoloxidase-Aktivität ... 256
 4.1.2.2 Phenoloxidase-Aktivität und Melaninbildung... 258
 4.1.2.3 Phenoloxidase-Aktivität und Cysten sowie Lokalisation der Phenoloxidase... 263
4.1.3 Enzymcharakterisierung... 265
 4.1.3.1 pH-Optimum und Temperaturstabilität.. 266
 4.1.3.2 Beeinflussung der Enzymaktivität durch Lösungsmittel....................... 268
 4.1.3.3 Beeinflussung der Enzymaktivität durch Metallionen.......................... 269
 4.1.3.4 Beeinflussung der Enzymaktivität durch Inhibitoren............................ 270
 4.1.3.5 Substratspektrum der Phenoloxidase... 272
 4.1.3.6 Gelelektrophoretische Untersuchungen.. 276
4.2 Phenoloxidase-vermittelte Transformationsreaktionen............................... 278
 4.2.1 Homomolekulare Transformationsreaktionen von ortho- und para-
dihydroxylierten Verbindungen .. 278
 4.2.2 Heteromolekulare Transformationsreaktionen von ortho- und para-
dihydroxylierten Verbindungen .. 292
 4.2.2.1 Aufklärung der Reaktionsmechanismen für Phenoloxidase-vermittelte
 Aminierungsreaktionen in wässrig-organischen Lösungsmittelsystemen...... 293
 4.2.2.2 Einfluss der Stellung der Hydroxylgruppen und der Alkylsubstituenten auf
 die Aminierungsposition.. 296
 4.2.2.3 Einfluss von Reaktionsparametern auf die Gewinnung heteromolekularer
 Kopplungsprodukte .. 303
 4.2.2.4 Abschätzung des möglichen Wirkungsspektrums ausgewählter
 Kopplungsprodukte ... 308

5. ZUSAMMENFASSUNG .. 313

6. LITERATURVERZEICHNIS ... 325
INHALTSVERZEICHNIS

7. ANHANG ... 349
 Anhang A.. A1
 Anhang B.. A10
 Anhang C... A19
 Anhang D... A27

8. EIDESSTATTLICHE ERKLÄRUNG... I

9. LEBENSLAUF... III

10. DANKSAGUNG.. V

11. WISSENSCHAFTLICHE VERÖFFENTLICHUNGEN..................................... IX
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>A. bidest.</td>
<td>zweifach destilliertes Wasser</td>
</tr>
<tr>
<td>Abs.</td>
<td>Absorption</td>
</tr>
<tr>
<td>A/AbT</td>
<td>Tyrosinase von Agaricus bisporus</td>
</tr>
<tr>
<td>ABTS</td>
<td>2,2'-Azino-bis-(3-ethylbenzthiazolin-6-sulfonat)</td>
</tr>
<tr>
<td>AcCL</td>
<td>Phenoloxidase (Laccase) von Azotobacter chroococcum</td>
</tr>
<tr>
<td>ACN</td>
<td>Acetonitril</td>
</tr>
<tr>
<td>A. dest.</td>
<td>destilliertes Wasser</td>
</tr>
<tr>
<td>AG</td>
<td>Arbeitsgruppe</td>
</tr>
<tr>
<td>AK</td>
<td>Autokatalyse</td>
</tr>
<tr>
<td>amu</td>
<td>atomic mass unit</td>
</tr>
<tr>
<td>COSY</td>
<td>correlation spectroscopy (NMR)</td>
</tr>
<tr>
<td>CotA</td>
<td>Phenoloxidase (Laccase) von Bacillus subtilis</td>
</tr>
<tr>
<td>d</td>
<td>Dublett (NMR)</td>
</tr>
<tr>
<td>dd</td>
<td>Dublett von Dublett (NMR)</td>
</tr>
<tr>
<td>ddd</td>
<td>Dublett von Dublett von Dublett (NMR)</td>
</tr>
<tr>
<td>ddt</td>
<td>Dublett von Dublett von Tripplett (NMR)</td>
</tr>
<tr>
<td>ddq</td>
<td>Dublett von Dublett von Quartett (NMR)</td>
</tr>
<tr>
<td>2,6-DMP</td>
<td>2,6-Dimethoxyphenol</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>DOPA</td>
<td>Dopamin</td>
</tr>
<tr>
<td>dq</td>
<td>Dublett von Quartett (NMR)</td>
</tr>
<tr>
<td>DSM</td>
<td>Deutsche Stammsammlung von Mikroorganismen</td>
</tr>
<tr>
<td>dt</td>
<td>Dublett von Tripplett (NMR)</td>
</tr>
<tr>
<td>EC</td>
<td>enzyme commission number</td>
</tr>
<tr>
<td>ERP</td>
<td>Eigenreaktionsprodukt</td>
</tr>
<tr>
<td>et al.</td>
<td>et alii (und andere)</td>
</tr>
<tr>
<td>EtOH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>eV</td>
<td>Elektronenvolt</td>
</tr>
<tr>
<td>FPE</td>
<td>Festphasenextraktion</td>
</tr>
<tr>
<td>GC-MS</td>
<td>Gaschromatographie-Massenspektrometrie</td>
</tr>
<tr>
<td>h</td>
<td>Stunde(n)</td>
</tr>
<tr>
<td>HMBC</td>
<td>heteronuclear multiple bond coherence (NMR)</td>
</tr>
<tr>
<td>HPLC</td>
<td>Hochleistungsflüssigchromatographie (high performance liquid chromatography)</td>
</tr>
<tr>
<td>HR-MS</td>
<td>Hochauflösende Massenspektrometrie (high resolution mass spectrometry)</td>
</tr>
<tr>
<td>HSQC</td>
<td>heteronuclear single quantum coherence (NMR)</td>
</tr>
<tr>
<td>i.d.R.</td>
<td>in der Regel</td>
</tr>
<tr>
<td>J</td>
<td>Kopplungskonstante (Hz, NMR)</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilodalton (Molekulargewicht von Proteinen)</td>
</tr>
<tr>
<td>KKP</td>
<td>Kreuzkopplungsprodukt (heteromolekulares Produkt)</td>
</tr>
<tr>
<td>Km</td>
<td>Michaelis-Menten-Konstante</td>
</tr>
</tbody>
</table>
ABKÜRZUNGSVERZEICHNIS

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff und Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC-MS</td>
<td>Flüssig chromatographie-Massenspektrometrie (liquid chromatography-mass spectrometry)</td>
</tr>
<tr>
<td>logP_{ow}</td>
<td>dekadischer Logarithmus des n-Octanol/Wasser-Verteilungskoeffizienten</td>
</tr>
<tr>
<td>m</td>
<td>Multiplitt (NMR)</td>
</tr>
<tr>
<td>MALDI-TOF-MS</td>
<td>Matrix unterstützte Laser desorption/ionisations-Flugzeit-Massen spektrometrie (matrix assisted laser desorption/ionization - time of flight mass spectrometry)</td>
</tr>
<tr>
<td>mAU</td>
<td>Milliabsorptionseinheit (milli absorption unit, 1 mAU = 235,9 µV)</td>
</tr>
<tr>
<td>M-D</td>
<td>Massendetektion (LC-MS)</td>
</tr>
<tr>
<td>MeOH</td>
<td>Methanol</td>
</tr>
<tr>
<td>[M+H]^+</td>
<td>Addukt (Pseudomolekülion) einer Verbindung bei positiver Ionisation (LC-MS, HR-MS); Massenerhöhung um 1 amu</td>
</tr>
<tr>
<td>min</td>
<td>Minute(n)</td>
</tr>
<tr>
<td>MMA</td>
<td>Mineralsalz-Medium für Azotobacter</td>
</tr>
<tr>
<td>[M+Na]^+</td>
<td>Addukt (Pseudomolekülion) einer Verbindung bei positiver Ionisation (LC-MS, HR-MS); Massenerhöhung um 23 amu</td>
</tr>
<tr>
<td>MtL</td>
<td>Phenoloxidase (Laccase) von Myceliophthora thermophila</td>
</tr>
<tr>
<td>MW</td>
<td>Molekulargewicht</td>
</tr>
<tr>
<td>m/z</td>
<td>Massenzahl (GC-MS) bzw. Massen-Ladungs-Verhältnis (LC-MS, HR-MS)</td>
</tr>
<tr>
<td>NaAC</td>
<td>Natriumacetat-Puffer</td>
</tr>
<tr>
<td>NAg</td>
<td>Nähragar</td>
</tr>
<tr>
<td>NaIO₃</td>
<td>Natriumiodat</td>
</tr>
<tr>
<td>NaP</td>
<td>Natriumphosphat-Puffer</td>
</tr>
<tr>
<td>NMR</td>
<td>Kernmagnetische Resonanzspektroskopie (nuclear magnetic resonance)</td>
</tr>
<tr>
<td>OD_{500nm}</td>
<td>Optische Dichte bei einer Wellenlänge λ = 500 nm</td>
</tr>
<tr>
<td>PAGE</td>
<td>Polyacrylamid-Gelelektrophorese</td>
</tr>
<tr>
<td>PcL</td>
<td>Phenoloxidase (Laccase) von Pycnoporus cinnabarinus</td>
</tr>
<tr>
<td>PcL35</td>
<td>rekombinant exprimiertes Phenoloxidase-Isoenzym von Pycnoporus cinnabarinus</td>
</tr>
<tr>
<td>PCP</td>
<td>Phosphat-Citrat-Puffer</td>
</tr>
<tr>
<td>PO</td>
<td>Phenoloxidase (Laccase)</td>
</tr>
<tr>
<td>ppm</td>
<td>past per million (NMR)</td>
</tr>
<tr>
<td>PPO</td>
<td>Polyphenoloxidase (Tyrosinase, Catechol-Oxidase)</td>
</tr>
<tr>
<td>quint</td>
<td>Quintett (NMR)</td>
</tr>
<tr>
<td>R_f</td>
<td>Retentionszeit bei HPLC, GC-MS oder LC-MS-Analytik; relative Wanderungsgeschwindigkeit bei FERGUSON-Analyse</td>
</tr>
<tr>
<td>rpm</td>
<td>Umdrehung pro Minute (rounds per minute)</td>
</tr>
<tr>
<td>RT</td>
<td>Raumtemperatur</td>
</tr>
<tr>
<td>s</td>
<td>Singulett (NMR)</td>
</tr>
<tr>
<td>SBUG</td>
<td>Stammsammlung des Fachbereiches Biologie der Universität Greifswald am Institut für Mikrobiologie</td>
</tr>
<tr>
<td>SDS</td>
<td>Natriumlaurylsulfat</td>
</tr>
<tr>
<td>SLAC</td>
<td>Phenoloxidase (Laccase) von Streptomyces coelicolor (“small laccase”)</td>
</tr>
<tr>
<td>t</td>
<td>Tripelt (NMR)</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>tert</td>
<td>tertiär</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Erklärung</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>TMS</td>
<td>Tetramethylsilan (NMR)</td>
</tr>
<tr>
<td>TvL</td>
<td>Phenoloxidase (Laccase) von Trametes versicolor</td>
</tr>
<tr>
<td>TvL5/TvL10</td>
<td>rekombinant exprimierte Phenoloxidase-Isoenzyme von Trametes versicolor</td>
</tr>
<tr>
<td>U</td>
<td>Unit (Enzymaktivität)</td>
</tr>
<tr>
<td>u.a.</td>
<td>unter anderem</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolett</td>
</tr>
<tr>
<td>UV-D</td>
<td>UV-Detektion (LC-MS)</td>
</tr>
<tr>
<td>vgl.</td>
<td>vergleiche</td>
</tr>
<tr>
<td>VIS</td>
<td>Visueller Bereich</td>
</tr>
<tr>
<td>V<sub>max</sub></td>
<td>Maximale Reaktionsgeschwindigkeit</td>
</tr>
<tr>
<td>v/v</td>
<td>Volumen pro Volumen</td>
</tr>
<tr>
<td>w/v</td>
<td>Masse pro Volumen</td>
</tr>
<tr>
<td>ΔA</td>
<td>Absorptionsänderung</td>
</tr>
<tr>
<td>λ</td>
<td>Wellenlänge (nm)</td>
</tr>
<tr>
<td>δ</td>
<td>chemische Verschiebung (ppm, NMR)</td>
</tr>
</tbody>
</table>
1. EINLEITUNG

Schon jetzt sind über 2000 Enzyme aus verschiedenen Mikroorganismengruppen isoliert und charakterisiert worden, wobei diese gemäß dem Spektrum an katalysierten Reaktionen, den sechs Hauptgruppen der Transferasen, Hydrolasen, Lyasen, Isomerasen, Ligasen und Oxidoreduktasen zugeordnet werden (LEISOLA et al., 2001). In öffentlichen Datenbanken sind über 35 000 enzymatische Reaktionen publiziert (STRAATHOF et al., 2002). Bislang ist jedoch nur ein relativ geringer Prozentsatz der Enzyme kommerziell erhältlich oder wird in industriellen Anwendungen, insbesondere der Feinchemie, eingesetzt. Circa 75 % der industriell genutzten Enzyme gehören der Enzymklasse der Hydrolasen an (LEISOLA et al., 2001), so beispielsweise Esterasen und Lipasen, mit welchen pharmazeutisch wertvolle organische Synthesebausteine, u.a. enantiomerenreine tertiäre Alkohole, dargestellt werden können (HENKE et al., 2002; KOURIST et al., 2008; HERTER et al., 2011b).

Dies zeigt, dass biokatalytische Verfahren für eine partielle Ablösung konventioneller Bereitstellungswege prinzipiell herangezogen werden können, jedoch das Spektrum an technisch nutzbaren Enzymen nicht die Berücksichtigung findet, die diese Biokatalysatoren für die chemische Industrie offerieren.

Bereits vor 6000 Jahren wurde in Asien das Harz des zu den Sumachgewächsen zählenden Lack-Baumes (Rhus verniciflua) als sehr wertvoller Ausgangsstoff zur Gewinnung von Lacken für die Veredlung von Kunsthandwerken erkannt (HÜTTERMANN et al., 2001). Die Bildung dieses Lackes beruhte auf einer Phenoloxidase-vermittelten oxidativen Polymerisation der in dem Baumsaft hochkonzentriert vorliegenden diphenolischen Verbindung Urushiol (HÜTTERMANN et al., 2001). YOSHIDA (1883) isolierte erstmalig das an der Polymerisationsreaktion beteiligte Enzym und identifizierte dieses als eine Phenoloxidase („Urushiol-Oxidase“). Der Trivialname „Laccase“ wurde von BERTRAND (1894) vergeben.

EINLEITUNG

Holzbesiedelnde und streumineralisierende Weißfäulepilze stellen die wohl größte Quelle von Phenoloxidasen dar (BALDRIAN, 2006; HATAKKA, 2001; LEONOWICZ et al., 2001). Die Phenoloxidasen der Weißfäulepilze werden hauptsächlich als

Pilzliche Phenoloxidasen werden jedoch auch für einen Schutz gegen Bakterien freigesetzt (GEIGER et al., 1986). So katalysiert der Weißfäulepilz Pycnoporus cinnabarinus über die Ausscheidung einer Phenoloxidase die Oxidation von 3-Hydroxyanthranilsäure zu Cinnabarinsäure, welche als biologisch aktive Substanz fungieren kann (EGGERT, 1997).

Assoziation mit der Wurzelrhizosphäre lebenden Bodenbakteriums *Azospirillum lipoferum* wird ebenso während dessen Melaninbildung exprimiert und dient einer Oxidation bzw. Detoxifizierung der phenolischen Sekundärmetaboliten von Pflanzen (GIVAUDAN et al., 1993; FAURE et al., 1994).

Die enorme Diversität in umsetzbaren Molekülstrukturen und katalysierten Reaktionen gewährt damit einen Einsatz dieser Enzyme in vielfältigen biotechnologischen Anwendungen.

Diese Art der enzymvermittelten Kopplung einer nahezu unbegrenzten Vielzahl von Molekülstrukturen, die keine Enzymsubstrate darstellen, macht diese Enzymklasse so attraktiv für industrielle Anwendungen - und damit auch für die Weiße Biotechnologie.

In Untersuchungen der Struktur-Aktivitäts-Beziehungen von Mitomycin-Derivaten konnte festgestellt werden, dass die biologische Wirkung auf dem \textit{para}-Benzochinon-Grundkörper (1), einer stark alkylierenden Funktion, insbesondere einem sekundären Amin (2), und einer Urethan-Funktion (3) basiert (Abb. 2; VERBOOM \textit{et al.}, 1985).

\begin{center}
\textbf{Abb. 2: Struktur des Mitomycins A mit den wesentlichen bioaktiven Motiven eines \textit{para}-benzochinoiden Grundkörpers (1, blau), einer sekundären Aminogruppe (2, rot) sowie einer Urethan-Funktion (3, grün).}
\end{center}

Ein weiterer Anwendungsbereich von Phenoloxidase-katalysierten Reaktionen im Sektor der biokatalytischen Gewinnung pharmazeutischer Vorstufen für die Feinchemie könnte sich in der Synthese von Naturstoffstoffen, wie Vitamin K- und Ubichinon-10-Derivaten, finden. Die Vitamin K-Derivate besitzen einen 2-Methyl-1,4-naphthobenzochinon-Grundkörper mit einer Isoprenseitenkette (Abb. 3). Sie fungieren als Kofaktor der \(\gamma\)-Glutamylcarboxylase, welche Carboxylieungsreaktionen an

Abb. 3: Strukturen von Vitamin K₁ (A) und Ubichinon-10 (B) mit para-benzochinoiden Grundkörpern (1, blau) und verzweigtkettigen bzw. isoprenoiden Alkylresten (2, rot).
Umweltbedenklichkeit der Verfahren, die eine Herstellung dieser Feinchemikalien mit sich bringt.

In einem Großteil der bislang veröffentlichten heteromolekularen C-N-Kopplungsreaktionen mit Phenoloxidaseden, welche unter dem Aspekt einer Synthese pharmazeutisch relevanter Produkte für die Feinchemie durchgeführt wurden, erfolgte der Einsatz von para-dihydroxylierten Verbindungen (Hydrochinone) und aromatischer Aminopartner (MANDA et al., 2005; NIEDERMEYER et al., 2005; MANDA et al., 2006; MIKOLASCH et al., 2008; HAHN et al., 2009).

C-N-Kopplungsreaktion mit alicyclischen Aminopartnern, welche sich strukturenchemisch vom Aminoadamantan ableiten (Abb. 4B), ergeben. Viele Aminoadamant-Derivate waren in den letzten Jahren Gegenstand der Forschung, was sich in vielen Patentanmeldungen, u.a. von antibakteriellen Derivaten zur Behandlung von Tuberkulose sowie weiterer mycobakterieller Infektionskrankheiten (PROTOPOPOVA et al., 2010; BOGATCHEVA et al., 2011), zeigt. Das Aminoadamant-Derivat Isopinocampheylamin besitzt eine antineoplastische Wirkung und ist gegenüber vielen Krebsarten aktiv (CASTRO et al., 2007). Gleichwohl kann es aber auch zur Vorbeugung sowie Behandlung von Influenza A eingesetzt werden (HU et al., 2010). Auch das cis-Myrtanylamin besitzt derartige Aktivitäten (HU et al., 2010). Weitere bioaktive alicyclische Aminoadamant-Derivate stellen das Bornylamin und das exo-2-Aminonorbornan dar, welche als wirksame Verbindungen für eine Behandlung von Adipositas und Insulin-Resistenzen identifiziert wurden (VENIANT et al., 2010). Demnach wären auch alicyclische Aminoadamant-Derivate durchaus interessante Aminopartner für eine Phenoloxidase-katalysierte Synthese von Wirkstoffen mit ortho-benzochinoiden Grundkörpern.

1.1 Zielstellung

Ein weiteres Ziel innerhalb der Durchführung Phenoloxidase-vermittelter heteromolekularer C-N-Kopplungsreaktionen ergab sich aus dem Anliegen, Derivatisierungsreaktionen an Mitomycin-, Vitamin K- und Ubichinon-10-Grundkörpern vorzunehmen, um so neue Wege für eine Gewinnung dieser pharmazeutisch relevanten Feinchemikalien aufzuzeigen. Die Reaktionskinetiken sollten in situ mittels HPLC verfolgt, die Produkte isoliert und eine Strukturaufklärung mittels massenspektrometrischer Analyseverfahren sowie NMR-Analytik vorgenommen werden.
Die Phenoloxidase-vermittelten Synthesereaktionen erfolgten im Rahmen des von der Deutschen Bundesstiftung für Umwelt geförderten Projektes AZ 13191 „Rekombinante Laccasen für die Feinchemie - Identifizierung, Erforschung und rekombinante Herstellung innovativer Laccasen für die Produktion von Feinchemikalien im großtechnischen Maßstab zur Substitution umweltbelastender chemischer Synthesen“, welches in Kooperation mit der AG Biotechnologie und Enzymkatalyse (Prof. Dr. Bornscheuer, Universität Greifswald), der AG Technische Chemie (Prof. Kragl, Universität Rostock), der BRAIN AG (Dr. Liebeton, Dr. Eck; Zwingenberg) und der Sigma-Aldrich Chemie GmbH (Dr. Wohlgemuth, Buchs, Schweiz) bearbeitet wurde.
MATERIAL UND METHODEN

2.1 Mikroorganismen und Stammhaltung

In der vorliegenden Dissertationsarbeit wurde das melanogene Bakterienisolat *Azotobacter chroococcum* SBUG 1484 auf die Bildung einer Phenoloxidase untersucht. Im Rahmen der taxonomischen Charakterisierung erfolgten vergleichende Untersuchungen mit den Bakterienstämmen *Azotobacter salinestris* DSM 11553 und *Bacillus megaterium* SBUG 1152. Für die Durchführung von Biotransformationsexperimenten wurde die Gewinnung einer eukaryotischen Phenoloxidase des Weißfäulepilzes *Pycnoporus cinnabarinus* SBUG-M 1044 vorgenommen (Tab. 1).

<table>
<thead>
<tr>
<th>Organismus</th>
<th>Stamm- (\text{sammlungsnummer})^a</th>
<th>Wachstumstemperatur</th>
<th>Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azotobacter chroococcum</td>
<td>SBUG 1484</td>
<td>30 °C, 37 ºC</td>
<td>Komposterde (Greifswald), Institut für Mikrobiologie, Universität Greifswald</td>
</tr>
<tr>
<td>Azotobacter salinestris</td>
<td>DSM 11553 (ATCC 49674)</td>
<td>30 ºC</td>
<td>Salzhaltiger Boden (Westkanada)^b DSMZ Braunschweig</td>
</tr>
<tr>
<td>Bacillus megaterium</td>
<td>SBUG 1152</td>
<td>30 ºC</td>
<td>Boden (Greifswald), Institut für Mikrobiologie, Universität Greifswald</td>
</tr>
<tr>
<td>Pycnoporus cinnabarinus</td>
<td>SBUG-M 1044</td>
<td>30 ºC</td>
<td>Eichenbaum (Norddeutschland), Institut für Mikrobiologie, Universität Greifswald</td>
</tr>
</tbody>
</table>

a Abkürzungen siehe Abkürzungsverzeichnis.

Die Stammhaltung der Bakterienstämme SBUG 1484 und DSM 11553 erfolgte in mit Glasperlen versehenen 2-mL-Kryoröhrchen (SARSTEDT AG & Co., Nümbrecht) in einem sterilen Suspensionsmedium (stickstofffreies *Azotobacter*-Mineralsalzmedium nach WINOGRADSKY, 15 % Glycerol (v/v), vgl. Kap. 2.2.1) bei -70 ºC in der Stammssammlung des Instituts für Mikrobiologie, Universität Greifswald. Vor jedem Versuch wurden stets 2-3 Glasperlen auf eine Glucose-supplementierte (1%, v/v) stickstofffreie Mineralsalzagarplatte abgerollt und für 7 bis 14 d bei 37 ºC (SBUG 1484) bzw. 30 ºC (DSM 11553) inkubiert. Auf eine kurzzeitige Stammhaltung und
mehrwöchige Lagerung der Kulturen bei Raumtemperatur bzw. 4 °C wurde verzichtet. Es wurde ebenso keine Überimpfung einer alten Kultur auf eine frische Mineralsalzagarplatte vorgenommen. Für eine Prüfung auf eventuelle Kontaminationen wurden von den Bakterienstämmen Vereinzelungsaussstriche auf Nähragarplatten erstellt und diese nach 24-stündiger Inkubation makroskopisch und mikroskopisch auf ihre Reinheit geprüft.

Der Weißfäulepilz *Pycnoporus cinnabarinus* SBUG-M 1044 wurde durch das Übertragen von mycelhaltigen Malzagarblöckchen (1 cm²), welche von einer alten Kultur stammten, auf Malzagarplatten (vgl. Kap. 2.2.2) bei 30 °C für 7 d kultiviert. Eine kurzzeitige Lagerung erfolgte, falls notwendig, bei 4 °C. In einem Abstand von etwa 10 Wochen wurden stets frische Malzagarulturen angesetzt. Eine langfristige Stammhaltung erfolgte als Kryokultur in flüssigem Stickstoff.

2.2 Kultur- und Nährmedien

2.2.1 Flüssigmedien

Stickstofffreies Azotobacter-Mineralsozalmedium nach WINOGRADSKY (1926) zur Kultivierung und Inkubation der Bakterienstämmen *A. chroococcum* und *A. salinestris*.

<table>
<thead>
<tr>
<th>Stickstofffreies Azotobacter-Mineralsozalmedium (WINOGRADSKY, 1926)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>200-fach konzentriertes Grundmedium</td>
<td></td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>50 g</td>
</tr>
<tr>
<td>MgSO₄ x 7 H₂O</td>
<td>25 g</td>
</tr>
<tr>
<td>NaCl</td>
<td>25 g</td>
</tr>
<tr>
<td>FeSO₄ x 7 H₂O</td>
<td>1 g</td>
</tr>
<tr>
<td>Na₂MoO₄ x 2 H₂O</td>
<td>1 g</td>
</tr>
<tr>
<td>MnSO₄ x 4 H₂O</td>
<td>1 g</td>
</tr>
<tr>
<td>Aqua dest.</td>
<td>ad 1000 mL</td>
</tr>
<tr>
<td>Spurenelemente-Stammlösung</td>
<td></td>
</tr>
<tr>
<td>CoCl₂ x 6 H₂O</td>
<td>190 mg</td>
</tr>
<tr>
<td>ZnCl₂</td>
<td>70 mg</td>
</tr>
<tr>
<td>NiCl₂ x 6 H₂O</td>
<td>24 mg</td>
</tr>
<tr>
<td>H₃BO₃</td>
<td>6 mg</td>
</tr>
<tr>
<td>CuCl₂ x 7 H₂O</td>
<td>2 mg</td>
</tr>
<tr>
<td>Aqua dest.</td>
<td>ad 1000 mL</td>
</tr>
</tbody>
</table>

Das Grundmedium wurde mittels 25 %-iger NaOH-Lösung auf einen pH-Wert von 7,2 eingestellt und nachfolgend bei 121 °C für 20 min autoklaviert. Für die Herstellung von 1 L stickstofffreiem *Azotobacter*-Mineralsalzmedium (MMA) wurden 5 mL des
Grundmediums und 1,5 mL der Spurenelemente-Stammlösung in 943,5 mL Aqua dest. vereint und anschließend 0,1 g CaCO₃ zugesetzt. Der pH-Wert wurde abschließend kontrolliert und sofern notwendig auf pH 7,2 eingestellt. Danach wurde das MMA unter den oben angegebenen Bedingungen autoklaviert und bei 4 °C aufbewahrt.

<table>
<thead>
<tr>
<th>Zusammensetzung des Basidiomyceten-Mediums</th>
<th>Mineralsalzlösung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose</td>
<td>Mn(CH₃COO)ₓ x 4 H₂O 0,16 g</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>ZnSO₄ x 7 H₂O 0,04 g</td>
</tr>
<tr>
<td>L-Asparagin</td>
<td>CuSO₄ x 5 H₂O 0,06 g</td>
</tr>
<tr>
<td>Hefeextrakt (MERCK KGaA, Darmstadt)</td>
<td>Ca(NO₃)₂ x 4 H₂O 1 g</td>
</tr>
<tr>
<td>KCl</td>
<td>Aqua dest. ad 1000 mL</td>
</tr>
<tr>
<td>MgSO₄ x 7 H₂O</td>
<td>FeSO₄-Lösung</td>
</tr>
<tr>
<td>Mineralsalzlösung</td>
<td>FeSO₄ x 7 H₂O 0,2 g</td>
</tr>
<tr>
<td>FeSO₄-Lösung</td>
<td>Aqua dest. ad 1000 mL</td>
</tr>
<tr>
<td>Aqua dest.</td>
<td></td>
</tr>
</tbody>
</table>

Nach Vereinigung des Grundmediums mit der Mineralsalz- und Eisensulfatlösung wurde das Kulturmedium autoklaviert. Die Glucose wurde dem Medium nach Abtemperieren (60 °C) in Form einer 50 %-igen wässrigen Glucose-Stammlösung (v/v) in der angegebenen Endkonzentration zugesetzt.

2.2.2 Festmedien

Stickstofffreier Azotobacter-Mineralsalzagar nach WINOGRADSKY (1926) wurde gemäß der in Kap. 2.2.1 angegebenen Zusammensetzung eingesetzt. Vor dem Autoklavieren wurden 18 g L⁻¹ Select Agar (Invitrogen™ GmbH, Karlsruhe) zugefügt, der pH-Wert mittels pH-Papier kontrolliert und gegebenenfalls auf pH 7,2 eingestellt. Für die Herstellung von Weichagar wurden dem *Azotobacter*-Mineralsalzmedium lediglich 3 g L⁻¹ Select Agar zugesetzt. Nach Autoklavieren und Abtemperieren (60 °C) wurde dem Medium Glucose in einer 1 %-igen Endkonzentration (v/v, 20 mL einer 50 %-igen Stammlösung) zugesetzt. Abschließend wurden etwa 15 mL des Mineralsalzagaras in je eine sterile Plastik-Peträschale gegossen.
Nähragar (pH 7,2 ± 0,2) für physiologische Testungen und die Kontrolle auf mögliche Kontaminationen der Bakterienstämmen.

<table>
<thead>
<tr>
<th>Nähragar</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nähragar II (SIFIN, Berlin)</td>
<td>25 g</td>
</tr>
<tr>
<td>Aqua dest.</td>
<td>ad 1000 mL</td>
</tr>
</tbody>
</table>

Malzagar (pH 6,8) diente zur Kultivierung und kurzfristigen Stammhaltung des Weißfäulepilzes *P. cinnabarinus*.

<table>
<thead>
<tr>
<th>Malzagar</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomalz (Villa Natura Gesundheitsprodukte GmbH, Kirn)</td>
<td>25 g</td>
</tr>
<tr>
<td>Agar-Agar (Invitrogen™, Karlsruhe)</td>
<td>18 g</td>
</tr>
<tr>
<td>Hefeeextrakt (MERCK KGaA, Darmstadt)</td>
<td>1 g</td>
</tr>
<tr>
<td>Aqua dest.</td>
<td>ad 1000 mL</td>
</tr>
</tbody>
</table>

Der pH-Wert wurde nach dem Lösen der Komponenten im Dampftopf auf pH 7,2 (Nähragar) bzw. 6,8 (Malzagar) mittels 25 %-iger NaOH-Lösung eingestellt, die Medien anschließend autoklaviert und ca. 10 mL des betreffenden Mediums in sterile Glaspetrishalen (VWR, Darmstadt) gegossen.

2.2.3 Physiologisch-biochemische Testungen zur taxonomischen Charakterisierung und Identifizierung von Bakterien

Weitere durchgeführte Testungen, die im Speziellen für eine Differenzierung von Arten der Gattung *Azotobacter* beschrieben wurden, werden nachfolgend detailliert vorgestellt.

Basalmedium nach STANIER et al. (1966) für den Nachweis von wasserlöslichen, nicht-diffusionsfähigen Pigmenten („water-soluble non-diffusible pigments“) bei *Azotobacter*-Arten. Das Vorhandensein braunlich gefärbter Höfe um die Kolonien würde auf die Bildung dieser spezifischen Pigmentart hindeuten.
Um ein Präzipitieren der Bestandteile zu verhindern, wurde Lösung A mit wenigen Tropfen einer 25 %-igen wässrigen H$_2$SO$_4$-Lösung versehen. Bei der Erstellung von Lösung B wurde zunächst die NTA zu 50 mL der Lösung A addiert, das Gemisch nachfolgend mit einer 25 %-igen wässrigen KOH-Lösung neutralisiert und danach weitere Bestandteile der Lösung B zugefügt. Nach Vereinigung aller Bestandteile wurde Lösung B auf einen pH-Wert von 6,6 (± 0,2) eingestellt und nachfolgend mit Aqua dest. auf ein Gesamtvolumen von 1 L aufgefüllt. Lösung C (0,1 M Na$_2$HPO$_4$ x 2 H$_2$O, 0,1 M KH$_2$PO$_4$) wurde auf pH 6,8 eingestellt. Dem vollständigen Basalmedium wurden 18 g L$^{-1}$ Agar-Agar zugesetzt, dieses anschließend autoklaviert und vor dem Gießen von Platten mit 0,2 % Gluconsäure (v/v) in Form einer 20 %-igen wässrigen Stammlösung versehen. Die Beimpfung erfolgte mit einigen Tropfen einer Kulturlösung stickstofffixierender Zellen.

Basalmedium nach THOMPSON & SKERMAN (1979) zur Untersuchung einer Ausscheidung diffusionsfähiger Homopolysaccharide („diffusible homopolysaccharides“) über eine Bildung diffuser Höfe um die Kolonien.

<table>
<thead>
<tr>
<th>Basalmedium nach THOMPSON und SKERMAN (1979)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>KH$_2$PO$_4$</td>
<td>1 g</td>
</tr>
<tr>
<td>CaCl$_2$ x 2 H$_2$O</td>
<td>0,1 g</td>
</tr>
<tr>
<td>MgSO$_4$ x 7 H$_2$O</td>
<td>0,2 g</td>
</tr>
<tr>
<td>FeSO$_4$ x 7 H$_2$O</td>
<td>50 mg</td>
</tr>
<tr>
<td>Na$_2$Mo$_4$O$_4$ x 2 H$_2$O</td>
<td>5 mg</td>
</tr>
<tr>
<td>Aqua dest.</td>
<td>ad 1000 mL</td>
</tr>
</tbody>
</table>

Zur Herstellung eines Festmediums wurde den gelösten Bestandteilen 10 g L$^{-1}$ Agar-Agar zugesetzt, der pH-Wert auf 6,2 eingestellt und das Basalmedium nachfolgend autoklaviert. Nach Abkühlen auf 60 °C wurden jeweils Saccharose, Raffinose oder Glucose (vgl. Kap. 2.2.4) in einer Endkonzentration von 5 % (v/v) zugesetzt. Das Medium wurde mit einigen Tropfen einer Kulturlösung stickstofffixierender Zellen beimpft.

Reduziertes Basalmedium nach THOMPSON & SKERMAN (1979) zum Nachweis einer Bildung von Pigmenten bei Wachstum unter Eisenmangel. Die Zusammensetzung des reduzierten Basalmediums entsprach im Wesentlichen der des vollständigen Basalmediums (siehe oben), wobei von einem Zusatz von FeSO$_4$ x 7 H$_2$O abgesehen und anstelle von 1 mg Na$_2$Mo$_4$O$_4$ x 2 H$_2$O, 5 mg der betreffenden Verbindung zugesetzt
wurden. Nach dem Autoklavieren wurde dem abgekühlten Medium 1 % Glucose (v/v) in Form einer 50 %-igen Stammlösung zugesetzt. Das ausgehärtete Medium wurde mit wenigen Tropfen Kulturlösung (stickstofffixierende Zellen) inokuliert und die bewachsenen Kulturplatten sowohl bei Tageslicht als auch unter UV-Licht auf das Vorhandensein fluoreszierender Pigmente untersucht.

2.2.4 Substrate

Glucose

Die Kulturen wurden mit D-Glucose in Form einer 50 %-igen wässrigen Stammlösung supplementiert. Ein Lösen der Glucose erfolgte im temperierten Wasserbad und eine Sterilisation der Stammlösung wurde mittels Autoklavieren bei 121 °C für 20 min vorgenommen. Die Glucose wurde den Vor- und Hauptkulturen des Stammes *A. chroococcum*, die einer Biomassegewinnung dienten, stets in einer Endkonzentration von 1 % (v/v) zugesetzt.

Weitere Zuckersubstrate

In Versuchen, die einer Ermittlung des Substratspektrums von *A. chroococcum* dienten (vgl. Kap. 2.2.3), wurden verschiedene Zucker und Zuckeralkohole getestet.

<table>
<thead>
<tr>
<th>Zucker</th>
<th>Zuckeralkohole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fucose</td>
<td>Dulcitol</td>
</tr>
<tr>
<td>Galactose</td>
<td>Glycerol</td>
</tr>
<tr>
<td>Lactose</td>
<td>Inositol</td>
</tr>
<tr>
<td>Maltose</td>
<td>Mannitol</td>
</tr>
<tr>
<td>Mannose</td>
<td>Sorbitol</td>
</tr>
</tbody>
</table>

Die Zuckersubstrate wurden als wässrige 20 %-ige Stammlösungen (w/v) unter Lösung der Komponenten in einem temperierten Wasserbad hergestellt und nachfolgend über hydrophile Spritzenvorsatzfilter (0,22 µm Porenweite, Fisherbrand®; Schwerte) steril
filtriert. Sowohl bei Wachstumsexperimenten in Flüssigkultur als auch in Testungen, die dem Nachweis einer positiven Substratverwertung über eine Säurebildung dienten, wurden die Zuckersubstrate in einer 1 %-igen Endkonzentration (v/v) zu den Kulturen addiert.

n-Alkanole
Die Alkohole Propan-1-ol und Butan-1-ol wurden in Wachstumsversuchen in Flüssigkultur als alleinige Kohlenstoff- und Energiequelle in einer Endkonzentration von 0,001 % und 0,01 % (v/v) getestet (vgl. Kap. 2.4.1). Das Wachstum auf Festmedium wurde in einer *n*-Alkanol-gesättigten Gasphase geprüft (vgl. Kap. 2.4.2).
Eine Sterilisation der *n*-Alkanole wurde durch Sterilfiltration über hydrophobe Spritzenvorsatzfilter (0,2 µm Porenweite, Minisart® SRP 25, Sartorius Stedim Biotech GmbH, Göttingen) realisiert.

Hefeextrakt
Hefeextrakt wurde als 20 %-ige wässrige Stammlösung (w/v) hergestellt und mittels Autoklavieren sterilisiert. In Vorkulturen von *A. chroococcum* wurde Hefeextrakt in einer 0,4 %-igen Endkonzentration (v/v) als exogene Stickstoffquelle eingesetzt. In Versuchen zur Charakterisierung des Wachstums, der Zellmorphologie und der Enzymexpression bei Anwesenheit verschiedener exogener Stickstoffquellen, wurde dem Kulturen zudem Hefeextrakt als alleinige Kohlenstoff- und Energiequelle in der oben angegebenen Konzentration dargeboten (vgl. Kap. 2.4.1). Weiterhin wurde für mikroskopische Langzeitanalysen ein Weichagarmedium erstellt (vgl. Kap. 2.2.2), welches mit Hefeextrakt in einer Endkonzentration von 0,4 % (v/v) ergänzt wurde.

Weitere Stickstoffquellen
Die Prüfung des Wachstums, eine Analyse von Zellzyklen und der Enzymbildung erfolgte in Gegenwart von anorganischen und organischen Stickstoffquellen.

<table>
<thead>
<tr>
<th>Anorganische N-Quellen</th>
<th>Organische N-Quellen</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\text{NH}_4)\text{SO}_4)</td>
<td>Hefeextrakt</td>
</tr>
<tr>
<td>(\text{NH}_4\text{NO}_3)</td>
<td>Pepton</td>
</tr>
<tr>
<td>(\text{NH}_4\text{Cl})</td>
<td>Harnstoff</td>
</tr>
<tr>
<td>([\text{CH}_3\text{COONH}_4]) (^a)</td>
<td></td>
</tr>
<tr>
<td>(\text{Ca(}\text{NO}_3\text{)}_2)</td>
<td></td>
</tr>
<tr>
<td>(\text{NaNO}_3)</td>
<td></td>
</tr>
<tr>
<td>(\text{KNO}_3)</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) \(\text{NH}_4^+ \)-haltige organische C- und N-Quelle
Von jeder Stickstoffverbindung wurde eine 20 %-ige wässrige Stammlösung hergestellt (w/v) und diese nachfolgend autoklaviert. Anorganische Stickstoffverbindungen (und CH₃COONH₄) wurden den Kulturen in 0,3 %-iger (v/v), organische Stickstoffquellen in 0,4 %-iger Endkonzentration (v/v) zugesetzt. Sowohl anorganische als auch organische Stickstoffverbindungen wurden ebenfalls als alleinige Kohlenstoff- und/oder Energiequelle in Wachstumsexperimenten eingesetzt.

2.3 Zellanzucht und Kultivierung für eine Enzymgewinnung

2.3.1 *Azotobacter chroococcum*

Der Stamm *A. chroococcum* wurde zunächst auf stickstofffreiem *Azotobacter*-Mineralsalzagar (MMA) nach WINOGRADSKY (vgl. Kap. 2.2.2) bis zum Auftreten braun-schwarz gefärbter, melanogener Kolonien (~12 d) bei 37 °C kultiviert. Die längere Kultivierungszeit ergab sich durch die Notwendigkeit einer N₂-Fixierung. Die Zellanzucht in Flüssigkultur erfolgte in mit Wattestopfen verschlossenen, hitzesterilisierten 500-mL-Weithalskolben, welche mit 100 mL MMA und 1 % Glucose (v/v) versehen waren. Für die Zellanzucht wurden, wenn nicht anders beschrieben, 0,4 % Hefeextrakt (v/v) als exogene Stickstoffquelle zugesetzt. Das Kulturmedium wurde mit einer Impföse des Zellmaterials inokuliert und die Kulturansätze bei 30 °C und einer Schüttelfrequenz von 180 rpm für 12 h in einem Etagenschüttler (Infors AG, Bottmingen, Schweiz) inkubiert.

Eine Kultivierung von *A. chroococcum* zur Gewinnung von Biomasse für nachfolgende Untersuchungen (inbes. Enzymexperimente) erfolgte in 500-mL-Weithalskolben, die mit 100 mL stickstofffreiem MMA gefüllt waren. Als C-Quelle wurde dem Kulturmedium 1 % Glucose (v/v) zugesetzt. In Anschluss an die beschriebene Zellanzucht erfolgte die Ernte der Bakterienzellen durch Zentrifugation (Sorvall RC-5B Refrigerated Superspeed Centrifuge, Du Pont Instruments, Bad Homburg) bei 10 °C und 11.000 x g für 20 min. Mit dem Ziel, die aus der Vorkultivierung verbliebene organische Stickstoffquelle zu beseitigen, wurde das Zellpellet zweimal mit 100 mL stickstofffreiem MMA gewaschen und abschließend in diesem resuspendiert. Dem Glucose-supplementierten stickstofffreien *Azotobacter*-Mineralsalzmedium wurde anschließend so viel Zellsuspension zugesetzt, dass sich in den Kulturansätzen eine
OD$_{500\text{nm}}$ von 0,2 bis 0,4 ergab. Für vergleichende morphologische Untersuchungen wurden die Bakterienstämme $A.\ salinestris$ und $B.\ megaterium$ unter denselben Bedingungen kultiviert.

2.3.2 $Pycnoporus\ cinnabarinus$

Nach 7-tägiger Kultivierung des Weißfäulepilzes $P.\ cinnabarinus$ auf Malzagar bei 30 °C, wurden mit einem sterilen Spatel drei mycelhaltige Malzagarblöckchen (1 cm2) ausgeschnitten und in einen 300-mL-Erlenmeyerkolben, welcher mit 60 mL Basidiomyceten-Medium (vgl. Kap. 2.2.1) gefüllt war, übertragen. Dabei wurde das Inokulum so auf die Oberfläche des Vorkulturmediums appliziert, dass es möglichst auf diesem schwamm. Die Kultur wurde als Standkultur, mit dem Ziel einer ausreichend mit Mycel bedeckten Flüssigkeitsoberfläche, bei 30 °C für 7 d inkubiert. Das erhaltene Pilzmycel wurde als Inokulum für eine nachstehende Kultivierung zur Enzymgewinnung eingesetzt. Nach 7-tägiger Anzucht des Weißfäulepilzes in Standkultur bei 30 °C (vgl. Kap. 2.3.2) wurde das inhomogene Pilzmycel dreimal für 10 sec bei 8.000 rpm mit einem sterilen elektrischen Dispergiermesser (Silent Crusher, Heidolph Instruments GmbH & Co. KG, Schwabach) homogenisiert. Für Kulturansätze wurden 2 mL des Homogenisats in mit 40 mL Basidiomyceten-Medium gefüllte, hitzesterilisierte 100-mL-Erlenmeyerkolben übertragen und nachfolgend Veratrylalkohol in einer 10 mM Endkonzentration (v/v), zur Steigerung der extrazellulären Phenoloxidase-Produktion (JONAS et al., 1998), zugefügt. Die Kulturen wurden in einem Schüttelwasserbad (GFL 1092, Gesellschaft für Labortechnik mbH, Burgwedel) bei 30 °C und 158 rpm für 7 d inkubiert.

2.4 Wachstumsanalysen

2.4.1 Bestimmung des Wachstums in Flüssigkultur

Die Wachstumsversuche wurden in 50 mL stickstofffreiem *Azotobacter*-Mineralsalzmedium (MMA) in 100-mL-Erlenmeyerkolben bei 30 °C und 180 rpm durchgeführt. Die Untersuchungen wurden sowohl mit diversen Zuckersubstraten, *n*-Alkanolen, verschiedenen Stickstoffquellen als auch bei einer zusätzlichen Kupfersupplementierung (CuSO₄) und in Abwesenheit Nitrogenase-relevanter Metallionen (Na₂MoO₄, FeSO₄) vorgenommen.

Kultivierung mit Zuckersubstraten

Abweichend von dem in Kap. 2.3.1 beschriebenem Vorgehen, wurde das Wachstum in Gegenwart von Zuckerderivaten (vgl. Kap. 2.2.4) mit den Zellen einer stickstofffixierenden Plattenkultur untersucht. Die Zellen wurden mit MMA von den Platten abgeschwemmt und in einem steril en Falconröhrchen (SARSTEDT AG & Co., Nümbrecht) suspendiert. Als Inokulum wurde dem Kulturmedium die Menge an Zellsuspension zugesetzt, dass in den Kulturansätzen eine OD_{500nm} von 0,2 ± 0,05 erreicht wurde. Das Wachstum von *A. chroococcum* mit je 1 % der steril-filtrierten Zuckerderivate (v/v) wurde über eine in regelmäßigen Intervallen erfolgende Messung der Optischen Dichte erfasst.

Kultivierung mit *n*-Alkanolen

Eine Kultivierung mit Butan-1-ol und Propan-1-ol als alleinige Kohlenstoff- und Energiequelle erfolgte, wie im Falle der Wachstumsanalysen in Gegenwart von Zuckersubstraten beschrieben, mit einer Suspension von Zellen einer stickstofffixierenden Plattenkultur. Von den steril-filtrierten *n*-Alkanolen wurde eine 1 %-ige methanolische Stammlösung (v/v) erstellt und diese 12 h vor Versuchsbeginn in hitzesterilisierte Erlenmeyerkolben überführt, sodass in den Kulturansätzen Endkonzentrationen von 0,001 % bzw. 0,01 % (v/v) erreicht wurden. Nach Abdampfen des Lösungsmittels wurden die Kolben mit sterilem MMA versehen und nachfolgend inokuliert. Das Wachstum wurde über regelmäßige Messungen der Optischen Dichte bemessen. Ergänzend zu den Wachstumsuntersuchungen in Flüssigmedium, wurde das Wachstum ebenso auf Festmedium geprüft (vgl. Kap. 2.4.2).
Kultivierung mit Stickstoffquellen
Für Untersuchungen des Wachstums mit anorganischen und organischen Stickstoffverbindungen, wurde von einer gewaschenen 12-halten stickstoffassimilierenden Flüssig-Vorkultur so viel Zellsuspension zu dem Kulturmedium gegeben, dass in den Kulturansätzen eine OD_{500nm} von 0,2 + 0,05 erreicht wurde. Autoklavierte anorganische Stickstoffquellen wurden in einer 0,3 %-igen (v/v), organische Stickstoffverbindungen hingegen in einer 0,4 %-igen Endkonzentration (v/v) addiert. Als Kohlenstoffquelle wurde Glucose in einer 1 %-igen Endkonzentration (v/v) zugesetzt. Als Kontrolle wurden Kulturansätze ohne einen Glucose-Zusatz mitgeführt. Das Wachstum wurde über die Messung der Optischen Dichte verfolgt.

Kultivierung unter Mangel an Nitrogenase-relevanten Metallionen
Eine Kultivierung von *A. chroococcum* in Abwesenheit von Nitrogenase-relevanten Metallionen erfolgte in 500-mL-Weithalskolben, welche mit 100 mL des modifizierten stickstofffreien MMA gefüllt und mit 1 % Glucose (v/v) versehen waren, bei 30 °C und 180 rpm. Für Inkubationsexperimente unter stickstofffixierenden Bedingungen in Abwesenheit von Eisen- und Molybdänionen wurde das *Azotobacter*-Mineralsalzmedium nach WINOGRADSKY (vgl. Kap. 2.2.1) modifiziert. Eine Kultivierung erfolgte zum einen in Abwesenheit von FeSO_4 x 7 H_2O oder Na_2MoO_4 x 2 H_2O sowie unter Mangel beider Metallverbindungen. Eine Inokulation erfolgte mit gewaschenen Zellen einer stickstoffassimilierenden Vorkultur mit einer Anfangs-OD_{500nm} von 0,5.

Kultivierung bei zusätzlicher Kupfersupplementierung
Die Kultivierung in Gegenwart erhöhter Kupferkonzentrationen erfolgte im Wesentlichen unter den, für eine Kultivierung bei Mangel Nitrogenase-relevanter Metallionen, beschriebenen Parametern (siehe oben). Die Spurenelemente-Stammlösung des stickstofffreien *Azotobacter*-Mineralsalzmediums wurde ohne CuCl_2 x 7 H_2O erstellt und das Kulturmedium, wie in Kap. 2.2.1 beschrieben, hergestellt. Dem Medium wurde vor Versuchsbeginn CuSO_4 in Form einer autoklavierten wässrigen Stammlösung in verschiedenen Endkonzentrationen zugesetzt.
Die Kultivierungsversuche wurden in mindestens zwei Parallelansätzen vorgenommen und als Positivkontrolle diente eine stickstofffixierende Kultur in standardisiertem MMA.

2.4.2 Bestimmung des Wachstums auf Festmedium

Alle Wachstumsversuche wurden in mindestens zwei Parallelansätzen ausgeführt und ein Restwachstum unter den beschriebenen Bedingungen ohne Substratzusatz ermittelt.

2.5 Bestimmung von Wachstumsparametern

2.5.1 Extinktionsmessungen

Die Ermittlung des Wachstums in Flüssigkultur erfolgte über die Methode der Extinktionsmessung. Dazu wurde 1 mL des Kulturüberstandes in eine 1-cm-Plastikküvette mit 1 cm Schichtdicke überführt und die Messung der Optischen Dichte bei einer Wellenlänge von 500 nm an einem Spektralphotometer (Ultrospec® 300, Pharmacia Biotech AG, Dübendorf) vorgenommen. Als Leerwert diente das der Kultivierung zugrundeliegende Medium. Unter Berücksichtigung der Fehlergrenzen des Spektralphotometers und der darauf basierenden Messgenauigkeit, wurde ab einer Optischen Dichte von 0,7 eine Verdünnung der ursprünglichen Zellsuspension in dem entsprechenden Medium vorgenommen.
2.5.2 Proteingehalt

Der Proteingehalt wurde ebenfalls als ein Maß für die bei einer Kultivierung gebildete Biomasse herangezogen. Dazu wurde 1 mL des Kulturüberstandes in ein 1,5-mL-Rotilabo®-Reaktionsgefäß (CARL ROTH GmbH & Co. KG, Karlsruhe) überführt und die Biomasse über Zentrifugation bei 6.000 x g für 5 min (Heraeus® Biofuge® pico, Heraeus Holding GmbH, Hanau) sedimentiert. Der zellfreie Überstand wurde mit einer Pipette vorsichtig abgenommen und verworfen. Das Zellpellet wurde in 500 µL TRIS/HCl-Puffer (8 mM, pH 7,8) resuspendiert und für einen Zellaufschluß mit 500 µL einer wässrigen NaOH-Lösung (0,1 M) versetzt. Die alkalische Zelllyse wurde für 1 h in einem temperierten Wasserbad (Typ U 16, Labortechnik Medingen, Dresden) bei 80 °C vorgenommen. Nach Abkühlen der Aufschlusssuspension wurde diese erneut zentrifugiert und der Überstand für eine Bestimmung des Proteingehalts (vgl. Kap. 2.11.2.2) genutzt.

2.6 Mikroskopische Untersuchungen

Mikroskopische Untersuchungen der Zellmorphologie und Differenzierungsprozesse der Stämme *A. chroococcum*, *A. salinestris* und *B. megaterium* wurden mit einem Axiolab Lichtmikroskop (ZEISS, Jena), welches über Hellfeld- und Phasenkontrastoptiken verfügte, vorgenommen. Eine Dokumentation der Ergebnisse erfolgte mit Hilfe einer digitalen Mikroskop-ProgRes® C5 Kamera (Jenoptik Germany, Jena).

2.6.1 Analyse von Zellzyklen und Differenzierungsprozessen

Die Zellmorphologie in Abhängigkeit von den Kultivierungsbedingungen (z.B. Einfluss von exogenen Stickstoffquellen) wurde sowohl in Flüssigkultur als auch bei Wachstum auf Festmedium analysiert.

Für mikroskopische Untersuchungen von *Flüssigkulturen* wurden ca. 10 µL der Kultur auf einem Objekttträger (VWR, Darmstadt) appliziert und nachfolgend mit einem
Deckgläsen (VWR, Darmstadt) abgedeckt. Die Mikroskopie erfolgte umgehend bei 40- und 100-facher Objektvergrößerung im Phasenkontrastmodus.

2.6.2 Differential- und cytologische Färbungen

Färbung mit Kristallviolett

Färbung nach GRAM

Endosporenfärbung nach WIRTZ

Färbung mit Toluidinblau
Färbung mit Sudanschwarz

Nachweis von Speicherpolysacchariden

Das Zellmaterial wurde in einem auf dem Objektträger befindlichen Tropfen Lugolscher Lösung aufgenommen und nachfolgend mit einem Deckgläschen abgedeckt. Überschüssige Lugolsche Lösung wurde vorsichtig mit einem Zellstofftuch abgesaugt. Mit dieser Färbemethode erscheinen die intrazellulären Stärkegranula blau bis blauschwarz, Granulose blauviolett bis braunviolett und Glykogenspeicher rotbraun.

Geißelfärbung nach KODAKA

2.7 16S-rDNA-Analysen

Ergänzend zu physiologischen und morphologischen Untersuchungen (vgl. Kap. 2.2.3 und Kap. 2.6.1) wurden 16S-rDNA-Analysen zur Identifizierung des in dieser Arbeit untersuchten Bakterienisolats vorgenommen.
2.7.1 DNA-Isolation und Reinigung

2.7.2 Amplifikation mittels Polymerase-Kettenreaktion (PCR) und Agarose-Gelelektrophorese

Für eine Vervielfältigung der isolierten 16S-rDNA wurde eine PCR mit den gensezpezifischen Primern 16s-27f (forward primer) und 1492r (reverse primer) nach PEACE et al. (1994) durchgeführt. Für einen PCR-Ansatz (je 25 µL in einem sterilen 100-µL-Eppendorf-Reaktionsgefäß) wurden die in nachstehender Tabelle aufgelisteten Komponenten in einem sterilen 1-mL-Eppendorf-Reaktionsgefäß als Mastermix vereint und durch kurzes Zentrifugieren (5.000 x g, 2 min) miteinander vermischt (Tab. 2).

<table>
<thead>
<tr>
<th>Mastermix</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puffer (10 x Ampli Buffer B, EURx, Danzig, Polen)</td>
<td>20 µL</td>
</tr>
<tr>
<td>dNTP (10 mM)</td>
<td>2 µL</td>
</tr>
<tr>
<td>Forward primer (16s-27f, 50 pmol, biomers.net GmbH, Ulm)</td>
<td>2 µL</td>
</tr>
<tr>
<td>Reverse primer (1492r, 50 pmol, biomers.net GmbH, Ulm)</td>
<td>2 µL</td>
</tr>
<tr>
<td>DMSO</td>
<td>3 µL</td>
</tr>
</tbody>
</table>

Tab. 2: Zusammensetzung des Mastermixes für 4 Ansätze zur 16S-rDNA-Amplifikation.
Es erfolgte eine Gradienten-PCR in einem Thermocycler (FlexCycler, Analytik Jena AG, Jena) bei jeweils 4 unterschiedlichen Annealing-Temperaturen, um das bestmöglichste Amplifikations-Ergebnis zu erlangen (vgl. Anhang, Tab. 3). Um eine Kontamination des Mastermixes mit Fremd-DNA ausschließen zu können, wurden Negativkontrollen ohne Template unter identischen Bedingungen mitgeführt. Nach Beendigung der PCR wurden die Proben in einer Thermoeinheit (Thermomixer comfort, Eppendorf AG, Hamburg) unter Zusatz von 500 µL Taq-Polymerase (Opti Taq, EURx, Danzig, Polen) bei 72 °C für 10 min inkubiert, um so ein zusätzliches Nukleotid an das 3'-Ende des Syntheseproduktes anzufügen und die PCR-Proben nachfolgend für 2 min bei 4 °C abgekühlt. Zur Sichtbarmachung des Amplifizierungsergebnisses wurde eine Agarose-Gelelektrophorese durchgeführt. Dazu wurde ein 0,2 % Agarose-haltiges 40-mL-Gel in 1-fachen TAE-Puffer (Tab. 3) angesetzt und diesem abschließend 2 µL GelRedTM (1:2 Verdünnung mit DMSO; VWR, Darmstadt) als Nukleinsäure-Färberagens zugesetzt. Die Agarose-Lösung wurde blasenfrei auf einen Probenschlitzen gegossen und nachfolgend ein Probenkamm aufgesetzt. Das Gel wurde nach dem Verfestigen von dem Probenschlitzen in eine mit 1-fachem TAE-Laufpuffer gefüllte Elektrophoresekammer gesetzt und der Kamm herausgezogen. Die PCR-Proben (je 2 µL) wurden auf einem Parafilm®-Streifen (Pechiney Plastic Packaging, Chicago, USA) in 10 µL sterilem Aqua dest. aufgenommen und abschließend mit 2 µL Probenpuffer (Tab. 3) versetzt. 2 µL des Markers (GeneRulerTM, 1 kb DNA Ladder, 0,1 µg mL⁻¹, FERMENTAS, St. Leon-Rot) wurden mit denselben Volumina der voran genannten Komponenten vereint.

Nach Beladen der Geltaschen mit 6 µL Probengemisch erfolgte die gelelektrophoretische Auftrennung bei 400 mA (120 W, 90 V) für 20 min.

<table>
<thead>
<tr>
<th>50-facher TAE-Puffer (pH 8,3 - 8,5)</th>
<th>TRIS/HCl-Probenpuffer (pH 6,8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIS</td>
<td>2 M</td>
</tr>
<tr>
<td>Essigsäure</td>
<td>1 M</td>
</tr>
<tr>
<td>Na₂H₂EDTA</td>
<td>0,05 M</td>
</tr>
<tr>
<td>Aqua bidest.</td>
<td>ad 1000 mL</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.7.3 DNA-Reinigung, Ligation und Klonierung

Mit dem Ziel einer Verknüpfung der Nukleinsäuresegmente erfolgte eine Ligation und nachfolgende Klonierung, unter Verwendung eines TOPO TA Cloning® Kits (InvitrogenTM, Karlsruhe, Tab. 4).

Tab. 4: Zusammensetzung des Ligationsansatzes.

<table>
<thead>
<tr>
<th>Ligationsansatz</th>
<th>1 µL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR-Produkt</td>
<td>1 µL</td>
</tr>
<tr>
<td>Wässrige NaCl-Lösung (200 mM)</td>
<td>1 µL</td>
</tr>
<tr>
<td>Steriles Aqua dest.</td>
<td>2 µL</td>
</tr>
<tr>
<td>TOPO Vector</td>
<td>1 µL</td>
</tr>
</tbody>
</table>

2.7.4 Colony-PCR und Plasmid-Präparation

Von den LB-Platten wurden 10 weiße Kolonien (positive Klone) mit einer sterilen Pipettenspitze gepickt, auf frischen LB-Platten ausgestrichen (nachfolgende Inkubation bei 37 °C) und die restliche an der Pipettenspitze befindliche Biomasse in ein steriles 100-µL-Eppendorf-Reaktionsgefäß überführt. Der Mastermix (Tab. 5) wurde auf 10 sterile 100-µL-Eppendorf-Reaktionsgefäße aufgeteilt.

<table>
<thead>
<tr>
<th>Mastermix</th>
<th>Quantität (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puffer (10 x Amplifier Buffer B, EURx, Danzig, Polen)</td>
<td>20</td>
</tr>
<tr>
<td>dNTP (10 mM)</td>
<td>2</td>
</tr>
<tr>
<td>Forward primer (16s-27f, 50 pmol, biomers.net GmbH, Ulm)</td>
<td>2</td>
</tr>
<tr>
<td>Reverse primer (1492r, 50 pmol, biomers.net GmbH, Ulm)</td>
<td>2</td>
</tr>
<tr>
<td>M13 Forward (-20) primer (Invitrogen™ GmbH, Karlsruhe)</td>
<td>2</td>
</tr>
<tr>
<td>DMSO</td>
<td>3</td>
</tr>
<tr>
<td>Aqua dest. (steril)</td>
<td>69</td>
</tr>
<tr>
<td>Template*</td>
<td>2</td>
</tr>
<tr>
<td>Taq-Polymerase (Opti Taq, EURx, Danzig, Polen)</td>
<td>1</td>
</tr>
</tbody>
</table>

*an einer Pipettenspitze befindliches Zellmaterial eines positiven Klons.

Die Colony-PCR erfolgte unter den in Tab. 3 des Anhangs angegebenen Bedingungen, worauf sich eine erneute gelektrophoretische Auftrennung der Proben (vgl. Kap. 2.7.2) anschloss. Nach gelektrophoretischer Auftrennung und anschließender Visualisierung des Klonierungsergebnisses unter UV-Licht, erfolgte eine Inokulation positiver Klone der LB-Plattenkulturen in mit 5 mL LB-Medium versehenen sterilen Reagenzröhren bei 30 °C und 200 rpm für 12 h. Dem LB-Medium wurden zuvor 5 µL einer wässrigen Ampicillin-Stammlösung (100 mg mL⁻¹) zugesetzt. Nach 12-stündiger Inkubation wurden die Kulturlösungen in 2-mL-Eppendorf-Reaktionsgefäße überführt und anschließend bei 13.000 x g für 5 min zentrifugiert. Der Kulturüberstand wurde verworfen und das Pellet für eine nachfolgende Plasmid-Präparation, unter Verwendung eines GeneJet™ Plasmid Miniprep Kits (Pure Extreme®, FERMENTAS, St. Leon-Rot) gemäß der Arbeitsvorschrift des Herstellers, aufbereitet (vgl. Anhang, Tab. 2). Nach der Aufbereitung wurden die Proben bis zur Sequenzierung bei -20 °C aufbewahrt.
2.7.5 16S-rDNA-Sequenzierung und phylogenetische Identifizierung

2.8 Synthese von Melaninanaloga und Pigmentcharakterisierung

2.8.1 Synthese von DOPA- und Brenzkatechinmelanin nach ARNOW

Für die Gewinnung von Referenzsubstanzen wurde nachfolgendes Schema mit leichten Modifikationen der Arbeitsvorschrift von ARNOW (1938) für eine Synthese von Melaninen angewandt (Tab. 6).

<table>
<thead>
<tr>
<th>Arbeitsschritte</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Addition von einigen Spatelspitzen 3,4-Dihydroxyphenylalanin (DOPA) bzw. Brenzkatechin zu 50 mL einer wässrigen NaOH-Lösung (0,01 N) bis zum Eintreten einer Sättigung.</td>
</tr>
<tr>
<td>2</td>
<td>Begasung der Lösungen mit Sauerstoff bis rosa gefärbte DOPA-Lösung geschwärt war bzw. gelb gefärbte Brenzkatechin-Lösung ein dunkles Ocker besaß.</td>
</tr>
<tr>
<td>3</td>
<td>Inkubation der Lösungen bei Raumtemperatur (2 d).</td>
</tr>
<tr>
<td>4</td>
<td>Ansäuern der Lösungen mit 2 mL einer wässrigen HCl-Lösung (0,5 N).</td>
</tr>
</tbody>
</table>
2.8.2 Pigmentcharakterisierung nach WHITE bzw. SHIVPRASAD & PAGE

2.9 Analyse von Kulturüberständen

2.9.1 Bestimmung der Brenzkatechinkonzentration nach BARNUM

Eine Quantifizierung der von *A. chroococcum* in das Kulturmedium ausgeschiedenen Substanzen, welche eine *ortho*-Diphenol-Grundstruktur aufweisen, erfolgte nach der

Tab. 7: Methode zur Quantifizierung von ortho-Diphenolen.

<table>
<thead>
<tr>
<th>Arbeitsschritte</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

Als Leerwert diente eine Probe, welche unter denselben Bedingungen behandelt wurde, und anstelle der Kulturprobe 1 mL Aqua dest. enthielt. Für eine Quantifizierung der gemessenen Absorptionen der Kulturproben, wurde eine Eichreihe mit einer Brenzkatechin-Stammlösung in stickstofffreiem MMA erstellt (0,1 µM bis 100 µM). Neben einem spektralphotometrischen Nachweis von Brenzkatechinen wurden zellfreie Kulturüberstände ebenso mittels HPLC-Analyse (vgl. Kap. 2.13.2.1) vermessen und auf ausgeschiedene Substanzen untersucht. Zudem erfolgte eine Flüssig-Flüssig-Extraktion (vgl. Kap. 2.13.1.3) der Kulturüberstände mit dem Ziel, eine massenspektrometrische Analyse (GC-MS, Kap. 2.13.2.4) der in dem Kulturmedium angereicherten Substanzen, durchzuführen.

2.9.2 Analyse von Siderophoren nach PAGE & HUYER

2.4.1) kultiviert wurde, steril entnommen und die zellfreien Kulturüberstände mit einer wässrigen HCl-Lösung (32 %) auf pH 1,8 angesäuert. Im Anschluss daran erfolgte eine Filtration über hydrophile Spritzenvorsatzfilter (0,22 µm Porenweite, Fisherbrand®, Schwerte). Die Proben wurden in 1-cm-Plastikküvetten überführt und ein Wellenlängen-Scan von 200 bis 600 nm durchgeführt. Für eine Bestimmung des Gesamt-Brenzkatechin-Siderophoren-Gehalts wurde die Absorptionen bei 310 nm bemessen, wobei die Menge an Azotobactin, einem spezifischen Brenzkatechin-Siderophor für die Chelation von Eisen-Ionen, bei einer Wellenlänge von 380 nm abgelesen wurde. Als Leerwert diente das entsprechende Kulturmedium ohne Zellen, welches unter denselben Bedingungen behandelt und vermessen wurde.

2.10 Gewinnung und Reinigung der Phenoloxidase

Neben der Untersuchung weiterer prokaryotischer und eukaryotischer Phenoloxidase, welche von Projekt partnern zur Verfügung gestellt oder kommerziell erworben wurden, erfolgte innerhalb dieser Arbeit eine Gewinnung der Enzyme AcCL und PcL.

2.10.1 Gewinnung und partielle Reinigung der Phenoloxidase AcCL von A. chroococcum

Nachfolgend wird die Aufbereitung stickstofffixierender Zellen des Bakterienisolats A. chroococcum, welche ausschließlich unter dem Aspekt der Phenoloxidase-Gewinnung (AcCL) und einer nachfolgenden Enzymcharakterisierung kultiviert wurden (vgl. Kap. 2.3.1), beschrieben. Inkubationsansätze mit abweichenden Kultivierungsbedingungen, in denen ein entsprechender Enzymnachweis vorgenommen werden sollte (vgl. Kap. 2.4.1), wurden in regelmäßigen Abständen beprobt (zumeist 24-h-Intervalle) und die Biomasse anschließend aufgeschlossen. Im Anschluss an die in Kap. 2.3.1 beschriebene Kultivierung wurden die Zellen stickstofffixierender Hauptkulturen mittels Zentrifugation (4°C, 11.000 x g, 20 min) geerntet. Das Zellpellet wurde zweimal mit phosphatgepufferter Kochsalzlösung (0,05 M, pH 7,3) gewaschen und die Biomasse aus 4 Kulturansätzen in einem vorgekühlten Falconröhrchen (SARSTEDT AG & Co., Nümbrecht), welches sich in einem Eisbad befand, vereint. Sofern der Zellaufschluss nicht umgehend nach der
Zellernte erfolgte, wurde die in dem Falconröhrchen befindliche Biomasse bei -20 °C eingefroren. Das Zellmaterial wurde in ca. 4 mL NaAC (0,1 M, pH 5) resuspendiert und ein mechanischer Zellaufschluss mittels French-Press® (SLM AMINCO® French® Pressure Cell Press, Model FA-078, French® Pressure Cell FA-032 40,000 psi, Rochester, NY, USA) vorgenommen. Dabei wurde die Zellsuspension in eine vorgekühlte Druckzelle überführt und insgesamt 4-mal bei 1.100 psi unter simultaner Kühlung aufgeschlossen. Nach dem Zellaufschluss wurde das Zelllysat erneut mit wenigen mL NaAC (0,1 M, pH 5) versehen und 1 g Glasperlen (Ø 0,11 mm) pro g Biomasse zugesetzt. Daraufhin wurde das Zelllysat 10-mal für 1 min gevortext (Mono-Mixer, SARSTEDT AG & Co., Nümbrecht), mit regelmäßigen Kühlungsintervallen in einem Eisbad. Dem nachgelagerten Glasperlen-Aufschluss schloss sich eine Verdünnung des Zelllysat mit NaAC (0,1 M, pH 5) in einem 1:3 Verhältnis an. Von dieser Zelllysat-Suspension wurden 200 µL in ein 1-mL-Eppendorf-Reaktionsgefäß überführt und weitere 700 µL NaAC (0,1 M, pH 5) zugefügt. AcCL-haltige zellfreie Rohextrakte wurden durch Zentrifugation (6.000 x g, 5 min) und nachfolgendem Abnehmen des Überstandes gewonnen. Die Rohextrakte wurden bis zu weiterführenden Untersuchungen bei 4 °C aufbewahrt. Nachfolgende schematische Darstellung veranschaulicht weitere Präparationsschritte zur Gewinnung und dem Nachweis des von A. chroococcum gebildeten Enzyms AcCL (Abb. 5).
Desweiteren wurden Solubilisierungsexperimente mit Detergenzien sowie chelatbildenden und chaotrophen Substanzen, unter dem Aspekt einer Abschätzung der Bindung von AcCL an partikuläre Zellbestandteile, vorgenommen. Eine chemische Enzymextraktion erfolgte stets in einem 1-mL-Maßstab in Eppendorf-Reaktionsgefäßen in Gegenwart von 5, 10, 20 und 40 mM des betreffenden Agens und mit Kombinationen verschiedener Substanzen (Tab. 8).
Um die Solubilisierung zu optimieren, wurden die Ansätze für 30 min bei 30 °C inkubiert und nachfolgend zentrifugiert (6.000 x g, 5 min). Aktivitätsmessungen mit AecCL-haltigen zellfreien Rohextrakten wurden mit dem Enzymsubstrat 2,6-DMP (vgl. Kap. 2.11.2.1) durchgeführt. Als Referenzwert für Aktivitätsmessungen diente partikuläres Zellmaterial, welches ohne Zusatz von solubilisierenden Substanzen unter äquivalenten Bedingungen behandelt wurde. Jede Versuchsreihe wurde einer 4-fachen Wiederholung unterzogen.

2.10.2 Gewinnung und Reinigung der Phenoloxidase PeL von* P. cinnabarinus

Die mit Veratrylalkohol-supplementierten Kulturen (vgl. Kap. 2.3.2) wurden i.d.R. nach siebentägiger Inkubation, mit dem Ziel einer Anreicherung und partiellen Reinigung der in das Kulturmedium extrazellulär ausgeschiedenen Phenoloxidase PeL, geerntet. Dazu wurden die Kulturansätze durch GF-6 Glasfaserfilter (0,6 mm, Schleicher und Schuell GmbH, Dassel) mittels Wasserstrahlpumpe filtriert, um die Zellen vom Kulturüberstand zu separieren. Der zellfreie Kulturüberstand wurde über Anionenaustausch- und Größenausschluss-Chromatographie (JONAS et al., 1998) entsprechend dem in Tab. 9

Tab. 8: Eingesetzte Substanzen und Ansätze für Solubilisierungsexperimente.

<table>
<thead>
<tr>
<th>Getestete Substanzen</th>
<th>Endkonzentration [mM]</th>
</tr>
</thead>
<tbody>
<tr>
<td>nicht-ionisch</td>
<td></td>
</tr>
<tr>
<td>Triton X-100</td>
<td>5, 10, 20, 40</td>
</tr>
<tr>
<td>Tween 20</td>
<td></td>
</tr>
<tr>
<td>Tween 80</td>
<td></td>
</tr>
<tr>
<td>anionisch</td>
<td></td>
</tr>
<tr>
<td>Natriumlaurylsulfat (SDS)</td>
<td>5, 10, 20, 40</td>
</tr>
<tr>
<td>N-Lauroylsarcosin (Sarkosyl)</td>
<td></td>
</tr>
<tr>
<td>Na₂H₂EDTA</td>
<td></td>
</tr>
<tr>
<td>zwitserionisch</td>
<td></td>
</tr>
<tr>
<td>3-[(3-Cholamidopropyl)di-</td>
<td>5, 10, 20, 40</td>
</tr>
<tr>
<td>methylamminio]-1-</td>
<td></td>
</tr>
<tr>
<td>propansulfonat (CHAPS)</td>
<td></td>
</tr>
<tr>
<td>Kombinationen</td>
<td></td>
</tr>
<tr>
<td>CHAPS (5mM)/Triton X-100</td>
<td>5, 10, 20, 40 (Triton X-100)</td>
</tr>
<tr>
<td>Guanidinhydrochlorid (5mM)/</td>
<td>5, 10, 20, 40 (Triton X-100)</td>
</tr>
<tr>
<td>Triton X-100</td>
<td></td>
</tr>
<tr>
<td>Guanidinhydrochlorid (5mM)/</td>
<td>5, 10, 20, 40 (Sarkosyl)</td>
</tr>
<tr>
<td>Sarkosyl</td>
<td></td>
</tr>
</tbody>
</table>

Zusammensetzung der Solubilisierungsansätze

<table>
<thead>
<tr>
<th>Zusammensetzung der Solubilisierungsansätze</th>
</tr>
</thead>
<tbody>
<tr>
<td>700 µL - x³</td>
</tr>
<tr>
<td>50, 100, 200, 400 µL Agens³</td>
</tr>
<tr>
<td>200 µL Enzymprobe von AecCL³</td>
</tr>
</tbody>
</table>

³x - Volumen an Agens (v/v), welches dem Inkubationsansatz unter Reduzierung der Puffermenge zugesetzt wurde.
³ 100 mM wässrige Stammlösung der jeweiligen getesteten Substanz.
³ AecCL in partikulärem Zellmaterial nach Zellaufschluss mittels French-Press³.
dargestellten Schema aufbereitet, um den Phenoloxidase-Induktor (Veratrylalkohol) und etwaig ausgeschiedene Sekundärmetaboliten zu beseitigen.

Tab. 9: Übersicht über das Reinigungsprotokoll zur Gewinnung der extrazellulären Phenoloxidase Pc_L aus Kulturüberständen

<table>
<thead>
<tr>
<th>Reinigungsschritte</th>
<th>Vorgehen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Waschen und Equilibrieren der DEAE-Sepharosea (Diethylaminoethyl Sephadexa, SIGMA ALDRICH, Steinheim) Überführung von je 1 mL DEAE-Sepharosea pro 80 mL Überstand in ein Becherglas; 3-maliges Waschen der DEAE-Sepharosea mit 25 mL NaAC (0,02 M, pH 5).</td>
</tr>
<tr>
<td>2</td>
<td>Binden der Phenoloxidase Vereinigung des zellfreien Kulturüberstandes mit DEAE-Sepharosea und nachfolgende Inkubation auf Magnetrührer bei Raumtemperatur (2 h).</td>
</tr>
<tr>
<td>3</td>
<td>Elution der Phenoloxidase Filtration der DEAE-Sepharosea (Phenoloxidase an Matrix gebunden) durch GF-6 Glasfaserfilter mittels Wasserstrahlpumpe.</td>
</tr>
<tr>
<td>4</td>
<td>Waschen Waschen der GF-6 Glasfaserfilter mit 20 mL NaAC (0,02 M, pH 5) mittels Wasserstrahlpumpe.</td>
</tr>
<tr>
<td>5</td>
<td>Desorption der Phenoloxidase Schwenken der GF-6 Glasfaserfilter in 20 mL Hochsalzpuffer (0,7 M NaCl in 20 mL NaAC (0,02 M, pH 5) und Ablösen der DEAE-Sepharosea. Entnehmen des Filters und Ablösen der Phenoloxidase von Matrix unter weiterem Schwenken (5 min). Erneute Filtration des Phenoloxidase-haltigen Hochsalzpuffers mittels Wasserstrahlpumpe durch GF-6 Glasfaserfilter und Auffangen des Durchlaufs.</td>
</tr>
<tr>
<td>6</td>
<td>Entsalzung 5-malige Aktivierung von Sephadex G-25 Superfine Entsalzungssäulen (Pharmacia GmbH, Karlsruhe) mit 4 mL NaAC (0,02 M, pH 5) und Auftragen von je 2,5 mL des Phenoloxidase-haltigen Durchlaufs.</td>
</tr>
<tr>
<td>7</td>
<td>Elution der Phenoloxidase Elution der an der Säulenmatrix gebundenen Phenoloxidase mit je 3,5 mL NaAC (0,02 M, pH 5) und Auffangen des Durchlaufs.</td>
</tr>
</tbody>
</table>

Das gewonnene Präparat (Pc_L), welches als ein Gemisch von Phenoloxidase-Isoenzymen des Basidiomyceten *P. cinnabarinus* anzusehen ist, wurde in 1,5-mL-Eppendorf-Reaktionsgefäße überführt und bei -20 °C gelagert.

2.11 Enzyme für Biotransformationsexperimente und vergleichende Untersuchungen zur Enzymcharakterisierung

Tab. 10: Übersicht über die Bezeichnung, Gewinnung, pH- und Temperaturoptima sowie der Bezugsquellen der eingesetzten prokaryotischen und eukaryotischen Phenol- und Polyphenoloxidase.

<table>
<thead>
<tr>
<th>Nativer Organismus</th>
<th>Enzym</th>
<th>MW (kDa)</th>
<th>Gewinnung</th>
<th>Optima</th>
<th>Bezugsquelle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>nativ</td>
<td>rekombinant</td>
<td>pH</td>
<td>Temperatur</td>
</tr>
<tr>
<td>Prokaryotische Phenoloxidase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azobacter chroococcum SBUG 1484</td>
<td>AcCL</td>
<td>Kap. 3.7.8.2</td>
<td>n.d.<sup>a</sup></td>
<td>Cysten-assoziiertes Enzym aus Wildtyp-Kultivierung (vgl. Kap. 2.10.1)</td>
<td>Kap. 3.7.1</td>
</tr>
<tr>
<td>Bacillus subtilis DSM 4393</td>
<td>CotA</td>
<td>65</td>
<td>58,3 (CotA) 101,3 (MBP)</td>
<td>Rek. Expression</td>
<td>4 (ABTS)</td>
</tr>
<tr>
<td>Streptomyces coelicolor DSM 40233</td>
<td>SLAC</td>
<td>36,8</td>
<td>61,8 (pFGSTL) 77,0 (pFMBPL)</td>
<td>Rek. Expression</td>
<td>4,5 (2,6-MP)</td>
</tr>
<tr>
<td>Eukaryotische Phenoloxidase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pycnoporus cinnabarinus SBUG-M1044</td>
<td>PcL</td>
<td>67</td>
<td>Siehe PcL35</td>
<td>Extrazelluläres Enzym aus Wildtyp-Kultivierung (vgl. Kap. 2.10.2)</td>
<td>5 (ABTS)</td>
</tr>
<tr>
<td>Trametes versicolor SBUG-M1050</td>
<td>TvL5</td>
<td>63</td>
<td>~ 55</td>
<td>Rek. Expression</td>
<td>4 (ABTS)</td>
</tr>
<tr>
<td>Trametes versicolor SBUG-M1050</td>
<td>TvL10</td>
<td>63</td>
<td>~ 55</td>
<td>Rek. Expression</td>
<td>4 (ABTS)</td>
</tr>
<tr>
<td>Myceliophthora thermophila</td>
<td>MtL</td>
<td>80</td>
<td>85</td>
<td>Rek. Expression</td>
<td>7 (ABTS)</td>
</tr>
<tr>
<td>Eukaryotische Polyphenoloxidase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agaricus bisporus</td>
<td>AbT</td>
<td>113,8</td>
<td>119,5</td>
<td>Rek. Expression</td>
<td>6,5 (Tyrosin)</td>
</tr>
</tbody>
</table>

^a Abkürzung siehe Abkürzungsverzeichnis; ^b Angaben zu den Molekulargewichten, pH- und Temperatur-Optima der Enzympräparate CotA, SLAC, PcL35, TvL5 und TvL10 beziehen sich auf die von der BRAIN AG bzw. der AG Biotechnologie & Enzymkatalyse, Universität Greifswald, mitgeteilten Informationen; ^c n.d. nicht determiniert.
Im Zuge der Bearbeitung eines von der Deutschen Bundesstiftung für Umwelt finanzierten Forschungsprojektes (AZ 13191, „Rekombinante Laccasen für die Feinchemie”), wurde eine Charakterisierung der von Projektpartnern (BRAIN AG, Zwingenberg; AG Biotechnologie & Enzymkatalyse, Institut für Biochemie, Universität Greifswald) rekombinant exprimierten prokaryotischen und eukaryotischen Phenoloxidasen vorgenommen. Die Eigenschaften der bereitgestellten Enzympräparate sind Tab. 4 des Anhangs zu entnehmen.

2.11.1 Puffer für Transformationsreaktionen und Enzymexperimente

Für die Biotransformationsexperimente mit den in Tab. 10 aufgeführten Enzymen sowie für die Enzynmächkweis- und Charakterisierungsversuche wurden verschiedene Puffer eingesetzt (Tab. 11).

Tab. 11: Übersicht über die Zusammensetzung der in Transformationsreaktionen und Enzymexperimenten verwendeten Puffersysteme.

<table>
<thead>
<tr>
<th>Puffer</th>
<th>Stammlösungen</th>
<th>Zusammensetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natrium-Acetat-Puffer (NaAC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH 5,0</td>
<td></td>
<td>0,1 M: 70,4 mL A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29,3 mL B</td>
</tr>
<tr>
<td>pH 4,5</td>
<td>A 0,2 M CH₃COONa x 3 H₂O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B 0,2 M CH₃COOH</td>
<td></td>
</tr>
<tr>
<td>pH 4,0</td>
<td></td>
<td>0,02 M: 70,4 mL A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29,3 mL B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>900 mL Aqua dest.</td>
</tr>
<tr>
<td>Natrium-Phosphat-Puffer (NaP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH 6,5</td>
<td>A 0,1 M NaH₂PO₄ x 2 H₂O</td>
<td>350 mL A</td>
</tr>
<tr>
<td></td>
<td>B 0,1 M Na₂HPO x 2 H₂O</td>
<td>200 mL B</td>
</tr>
<tr>
<td>Phosphat-Citrat-Puffer (PCP) nach McIlvaine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH 7,0</td>
<td>A 0,2 M Na₂HPO₄ x 2 H₂O</td>
<td>82,3 mL A</td>
</tr>
<tr>
<td></td>
<td>B 0,1 M C₆H₈O₇ x H₂O</td>
<td>17,7 mL B</td>
</tr>
<tr>
<td>Natrium-Malonat-Puffer (NaMP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH 4,5</td>
<td></td>
<td>65,2 mM C₃H₂Na₂O₄</td>
</tr>
</tbody>
</table>

* Für NaAC-Puffer pH 4,5 bzw. 4,0 wurde NaAC-Puffer pH 5,0 (0,1 M) mit 32 %-iger wässriger HCl-Lösung auf den entsprechenden pH-Wert titriert.

Nachfolgend aufgeführte Puffer dienten einer Aufbereitung der aus Kulturen von *A. chroococcum* gewonnenen Biomasse sowie einem alkalischen Zellaufschluss.
Phosphatgepufferte Kochsalzlösung

Die aus den Hauptkulturen zur Enzymgewinnung über Zentrifugation gewonnene Biomasse (vgl. Kap. 2.10.1) wurde 2-mal mit phosphatgepufferter Kochsalzlösung (0,05 M, pH 7,3) gewaschen, mit dem Ziel, divalente Kationen des Kulturmediums, welche an der Zelloberfläche gebunden waren, partiell zu entfernen.

<table>
<thead>
<tr>
<th>Phosphatgepufferte Kochsalzlösung</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaH₂PO₄ x 2 H₂O</td>
</tr>
<tr>
<td>NaCl</td>
</tr>
<tr>
<td>Aqua bidest.</td>
</tr>
</tbody>
</table>

Für die Herstellung der Pufferlösung wurden NaH₂PO₄ x 2H₂O und NaCl in einem 1 L-Maßkolben in 900 mL A. bidest. gelöst und der pH-Wert nachfolgend mit 25 %-iger wässriger NaOH-Lösung bei Raumtemperatur auf pH 7,24 titriert. Abschließend wurde die Pufferlösung auf ein Endvolumen von 1000 mL aufgefüllt. Bei 4 °C besaß die phosphatgepufferte Kochsalzlösung einen pH-Wert von 7,3.

TRIS/HCl-Puffer

Für einen alkalischen Zellaufschluss (vgl. Kap. 2.5.2) wurde eine definierte Menge Biomasse in TRIS/HCl-Puffer (8 mM, pH 7,8) resuspendiert.

<table>
<thead>
<tr>
<th>TRIS/HCl-Puffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris(hydroxymethyl)-aminomethan (TRIS)</td>
</tr>
<tr>
<td>Aqua bidest.</td>
</tr>
</tbody>
</table>

2.11.2 Enzym- und Proteinnachweise

2.11.2.1 Bestimmung der Enzymaktivität

Die Messungen der Enzymaktivität der untersuchten Phenoloxidase sowie der Polyphenoloxidase von *A. bisporus* erfolgten stets in 1-cm-Plastik-Küvetten mit einem
Spektralphotometer (Thermo Fisher UV1, Schwerte) in einem Gesamtvolumen von 1 mL. Dabei wurden die kolorimetrischen Farbveränderungen während der enzymatischen Oxidation der verwendeten Redoxindikatoren bzw. Enzymsubstrate genutzt. Die Reaktionen wurden durch Zusatz der entsprechenden Enzymprobe initiiert und der Anstieg der Extinktion bei der Wellenlänge, welche einer maximalen Absorption des oxidierten Produktes entspricht, gemessen. Ein Unit (1 U) enzymatische Aktivität ist als die Menge an Enzymprobe definiert, welche 1 µmol mL⁻¹ min⁻¹ Enzymsubstrat bei 25 °C katalytisch umsetzt. Alle Aktivitätsmessungen wurden in mindestens vier Ansätzen durchgeführt und eine Berechnung der enzymatischen Aktivität mit nachstehender Formel, am Beispiel einer Aktivitätsmessung mit ABTS, vorgenommen.

\[
1 \text{ U mL}^{-1} = \frac{\text{1 nmol mL}^{-1} \text{ min}^{-1}}{\frac{\Delta E_{420}}{\text{t}}} = \frac{10^3}{\varepsilon_{\text{ABTS,} 420\text{nm} d}} \frac{V F}{v}
\]

- \(U \text{ mL}^{-1}\): Units pro Enzymlösung
- \(\Delta E_{420}\): Extinktionsänderung bei 420 nm im linearen Messbereich
- \(t\): Messzeit (min)
- \(\frac{10^3}{\varepsilon_{\text{ABTS,} 420\text{nm} d}}\): Umrechnung auf µmol umgesetztes Substrat pro ml mit Hilfe des molaren Extinktionskoeffizienten \(\varepsilon\)
- \(\Delta \varepsilon_{\text{ABTS,} 420\text{nm}}\): molarer Extinktionskoeffizient 3600 L mol⁻¹ mm⁻¹
- \(d\): Länge des Lichtwegs durch die Küvette (mm)
- \(V\): Gesamtvolumen des Reaktionsansatzes (µL)
- \(F\): Verdünzungsfaktor der Ausgangslösung des Enzyms
- \(v\): Volumen der Enzymprobe (µL)

Phenoloxidase von P. cinnabarinus und M. thermophila

Für Messungen der Enzymaktivität der extrazellulären Phenoloxidase des Wildtyp-Stammes *P. cinnabarinus* (PcL) und der käuflich erworbenen *M.-thermophila*-Phenoloxidase (MtL), wurde standardmäßig das nicht-phenolische Enzymsubstrat 2,2′-Azino-di-(3-ethyl-benzothiazolin)-6-sulfonat (ABTS; \(\varepsilon_{420\text{nm}} = 3.6 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}\)) verwendet. Die Messungen wurden bei einer Wellenlänge von 420 nm vorgenommen und über einen Zeitraum von 0,5 min verfolgt.

Assay-Zusammensetzung für PcL und MtL

833 µL	NaAC (0,1 M, pH 5)
110 µL	ABTS*
57 µL	Enzymprobe von PcL bzw. MtL

* 5 mM frisch angesetzte Stammlösung in Aqua dest.
Phenoloxidasen von *B. subtilis* und *S. coelicolor*

Die von der BRAIN AG zur Verfügung gestellten rekombinant exprimierten prokaryotischen Phenoloxidasen wurden auf ihre Aktivität gegenüber dem Redoxindikatoren ABTS ($\lambda = 420 \text{ nm, } \varepsilon_{420\text{nm}} = 3,6 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$) über einen Messzeitraum von 1 min (CotA) bzw. 3 min (SLAC) getestet. Die Assay-Zusammensetzung entsprach den für die eukaryotischen Phenoloxidasen *PcL* und *MtL* vorgestellten Angaben.

Phenoloxidase-Isoenzyme *PcL*35, *TvL*5 und *TvL*10

Mit den von der AG Biotechnologie & Enzymkatalyse (Institut für Biochemie, Universität Greifswald) rekombinant exprimierten pilzlichen Phenoloxidasen wurden keine Enzymaktivitätsmessungen vorgenommen. Auf Basis persönlich mitgeteilter Aktivitäten der Enzympräparate (30 °C, ABTS) wurden die entsprechenden Enzymproben direkt in die Biotransformationsansätze überführt.

Enzymnachweise mit Präparaten von *A. chroococcum*

Phenoloxidase-Aktivität

Eine Analyse von ganzen Zellen, Kulturüberständen, Zellextrakten, Rohextrakten und aufbereiteten Zellkompartmenten (u.a. cytosolische Fraktionen, äußere Membranen; vgl. Kap. 2.10.1) auf Phenoloxidase-Aktivität erfolgte mit den Phenoloxidase-spezifischen Enzymsubstraten ABTS ($\lambda = 420 \text{ nm, } \varepsilon_{420\text{nm}} = 3,6 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$), 2,6-Dimethoxyphenol (2,6-DMP, $\lambda = 468 \text{ nm, } \varepsilon_{468\text{nm}} = 3,5 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$) und Syringaldazin (SYR, $\lambda = 525 \text{ nm, } \varepsilon_{525\text{nm}} = 6,5 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$) über einen Messzeitraum von 3 min (ABTS, 2,6-DMP) bzw. 10 min (SYR).

Assay-Zusammensetzung für die Testung auf Phenoloxidase-Aktivität

<table>
<thead>
<tr>
<th>Volumen µL</th>
<th>Substanz / Lösung</th>
</tr>
</thead>
<tbody>
<tr>
<td>700 µL</td>
<td>NaAC (0,1 M, pH 5)</td>
</tr>
<tr>
<td>100 µL</td>
<td>ABTS, 2,6-DMP<sup>a</sup>, Syr<sup>b</sup></td>
</tr>
<tr>
<td>200 µL</td>
<td>Enzymprobe von AcCL<sup>c</sup></td>
</tr>
</tbody>
</table>

^a 50 mM frisch angesetzte Stammlösung von ABTS und 2,6-DMP in Aqua dest.
^b 2 mM frisch angesetzte Stammlösung von SYR in Ethanol.
^c Aufbereitungen der einzelnen *AcCL*-Fraktionen (vgl. Kap. 2.10.1).

Abweichend zu dem beschriebenen Standard-Assay zur Testung auf Phenoloxidase-Aktivität, wurden fortführende Experimente unter dem Aspekt einer Enzymcharakterisierung (vgl. Kap. 2.11.3) überwiegend mit dem Enzymsubstrat 2,6-
Dimethoxyphenol vorgenommen, wohingegen eine Testung des Substratspektrums des identifizierten Enzyms mit über 40 verschiedenen Substanzen erfolgte.

Manganperoxidase-Aktivität

Der auf der Bildung eines Mn$^{3+}$-Malonat-Komplexes basierende Nachweis von Manganperoxidase-Aktivität nach WARIISHI et al. (1992) wurde durch Zugabe einer H$_2$O$_2$-Lösung initiiert und die Komplexbildung ($\varepsilon_{270\text{nm}} = 1,159 \times 10^3$ M$^{-1}$ cm$^{-1}$) über 5 min bei 270 nm verfolgt.

Assay-Zusammensetzung für die Testung auf Manganperoxidase-Aktivität

600 µL	NaMP (625 mM, pH 4,5)
100 µL	MnCl$_2$ (5 mM)
100 µL	H$_2$O$_2$-Lösung (4 mM)
200 µL	Enzymprobe von AcCLa

aAcCL in zellfreien Rohextrakten von *A. chroococcum* (vgl. Kap. 2.10.1).

Manganunabhängige Peroxidase

Für den Nachweis einer manganunabhängigen Peroxidase wurde der für eine Testung auf Phenoloxidase-Aktivität dargestellte Standard-Assay durch Zusatz einer H$_2$O$_2$-Lösung modifiziert und eine Extinktionsmessung (2,6-DMP, $\lambda = 468$ nm, $\varepsilon_{468\text{nm}} = 3,5 \times 10^4$ M$^{-1}$ cm$^{-1}$) unter Beibehaltung der üblichen Reaktionsparameter vorgenommen. Der gemessene Wert wird mit dem der Messung der Phenoloxidase-Aktivität korrigiert.

Assay-Zusammensetzung für die Testung auf manganunabhängige Peroxidase-Aktivität

690 µL	NaAC (0,1 M, pH 5)
100 µL	2,6-DMPa
10 µL	H$_2$O$_2$-Lösung (8,2 mM)
200 µL	Enzymprobe von AcCLb

a 50 mM frisch angesetzte Stammlösung von 2,6-DMP in Aqua dest.

bAcCL in zellfreien Rohextrakten von *A. chroococcum* (vgl. Kap. 2.10.1).

Polyphenoloxidase von *A. bisporus* (Tyrosinase)

Das kommerziell erworbene Enzympräparat (*AbT*) lag als Lyophilisat vor, welches laut Hersteller eine Gesamtaktivität von 2000 U mg$^{-1}$ (ΔE$_{\text{Tyrosin}(228\text{nm})} = 0,001$ min$^{-1}$) besaß. Für Standard-Assays wurde eine Enzymlösung (1 mg Lyophilisat mL$^{-1}$ NaP) erstellt, welche bei Bedarf bei 4 °C gelagert wurde. Die Bestimmung der Tyrosinase-Aktivität
wurde standardmäßig anhand der Umsetzung von Brenzkatechin zu Benzochinon bei einer Wellenlänge von 450 nm über einen Messzeitraum von 0,5 min vorgenommen.

<table>
<thead>
<tr>
<th>Assay-Zusammensetzung für AbT</th>
</tr>
</thead>
<tbody>
<tr>
<td>880 µL</td>
</tr>
<tr>
<td>100 µL</td>
</tr>
<tr>
<td>20 µL</td>
</tr>
</tbody>
</table>

^a 50 mM frisch angesetzte Stammlösung von Brenzkatechin in Aqua dest.
^b Enzymlösung (1 mg Lyophilisat mL⁻¹ NaPP).

Die Tyrosinase von <i>A. bisporus</i> wurde als Referenzenzym in vergleichenden Studien zum Substrat- und Inhibitorspektrum von Phenoloxidasen (<i>AcCL, PcL</i>) und Polyphenoloxidasen (vgl. Kap. 2.11.3.3, Kap. 2.11.3.4) eingesetzt.

Je nach Art des verwendeten Enzympräparats (vgl. Kap. 2.11) wurden die Enzymproben in dem für die Aktivitätsmessung vorgesehenen Puffer verdünnt.

2.11.2.2 Bestimmung des Proteingehalts

Die Bestimmung des Proteingehalts nach BRADFORD (1976) erfolgte spektralphotometrisch (Thermo Fisher UV1, Schwerte) in 1-cm-Plastik-Küvetten bei einer Wellenlänge von 595 nm nach 3-minütiger Inkubation der Ansätze (20 µL Probe in 1 mL Coomassie-Protein-Reagenz, Coomassie Plus, The better Bradford AssayTM Reagent, Thermo Scientific, Rockford, IL, USA) bei Raumtemperatur. Die Messungen erfolgten abzüglich eines Leerwerts (20 µL Aqua bidest. in 1 mL Coomassie-Protein-Reagenz), welcher unter den beschriebenen Bedingungen inkubiert und gemessen wurde. Sofern die Messwerte eine Absorption größer 0,6 aufwiesen, wurden die Proben mit Aqua bidest. verdünnt und erneut vermessen. Alle Messungen wurden in mindestens vier Ansätzen durchgeführt und eine Berechnung des Proteingehalts (µg mL⁻¹) anhand einer Proteineichreihe, welche mit Rinderserumalbumin erstellt wurde, vorgenommen.
2.11.3 Methoden zur Ermittlung aktivitätsbeeinflussender Parameter und der Enzymcharakterisierung

2.11.3.1 Ermittlung des pH-Optimums

Für die Untersuchung des optimalen pH-Bereiches wurden verschiedene Puffer (0,1 M) verwendet, welche einen Bereich von pH 1,0 bis 7,5 abdeckten. Abweichend von den für Standard-Assays beschriebenen Versuchsparametern (vgl. Kap. 2.11.2.1) wurde ein JASCO® V-550 UV-VIS-Spektralphotometer (JASCO® GmbH Deutschland, Groß-Umstadt) mit einem Temperatur-Controller (PSC-489T, JASCO® GmbH Deutschland, Groß-Umstadt) für Aktivitätsmessungen bezüglich des pH-Optimums, ermittelt anhand der Oxidation von ABTS (\(\lambda = 420 \text{ nm}, \varepsilon_{420\text{nm}} = 3,6 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1} \)), verwendet. Für die Messungen wurde das Spektralphotometer auf 30 °C temperiert.

<table>
<thead>
<tr>
<th>Assay-Zusammensetzung zur Ermittlung des pH-Optimums von AcCL</th>
<th>pH</th>
<th>Puffersystem</th>
<th>pH</th>
<th>Puffersystem</th>
</tr>
</thead>
<tbody>
<tr>
<td>850 µL Puffer(^a)</td>
<td>1,0</td>
<td>Phosphorsäure-Puffer</td>
<td>4,0</td>
<td>Natrium-Acetat-Puffer</td>
</tr>
<tr>
<td>100 µL ABTS(^b)</td>
<td>1,0</td>
<td>Äpfelsäure-Puffer</td>
<td>4,5</td>
<td>Natrium-Acetat-Puffer</td>
</tr>
<tr>
<td>50 µL Enzymprobe von AcCL(^c)</td>
<td>2,0</td>
<td>Äpfelsäure-Puffer</td>
<td>5,0</td>
<td>Natrium-Acetat-Puffer</td>
</tr>
<tr>
<td></td>
<td>2,0</td>
<td>Natrium-Acetat-Puffer</td>
<td>5,5</td>
<td>Bis-TRIS-Puffer</td>
</tr>
<tr>
<td></td>
<td>3,0</td>
<td>Phosphorsäure-Puffer</td>
<td>6,0</td>
<td>Phosphat-Citrat-Puffer</td>
</tr>
<tr>
<td></td>
<td>3,0</td>
<td>Maleinsäure-Puffer</td>
<td>6,5</td>
<td>Phosphat-Citrat-Puffer</td>
</tr>
<tr>
<td></td>
<td>3,0</td>
<td>Natrium-Acetat-Puffer</td>
<td>7,0</td>
<td>Phosphat-Citrat-Puffer</td>
</tr>
<tr>
<td></td>
<td>3,0</td>
<td>Phosphorsäure-Puffer</td>
<td>7,5</td>
<td>Phosphat-Citrat-Puffer</td>
</tr>
</tbody>
</table>

\(^a\) verwendete Puffer nebenstehend
\(^b\) 50 mM frisch angesetzte Stammlösung von ABTS in Aqua dest.
\(^c\) Rohextrakt einer 56 h-alten stickstofffixierenden Kultur

Alle Aktivitätsmessungen wurden in dreifacher Wiederholung für das entsprechende Puffersystem und dem korrespondierenden pH-Wert vorgenommen.
2.11.3.2 Ermittlung der Temperaturstabilität

Für die Untersuchung der Temperaturstabilität wurden, wie in Kap. 2.11.2.1 beschrieben, 200 µL des Rohextraktes in 700 µL NaAC (0,1 M, pH 5) aufgenommen, in 1,5-mL-Eppendorf-Reaktionsgefäße überführt und nachfolgend für 30 min in einem temperierbaren Wasserbad (25, 30, 35, 40, 45, 50, 55 °C) inkubiert. Die verbliebene Aktivität wurde sowohl über eine enzymatische Oxidation von 5 mM 2,6-DMP (v/v) als auch von 5 mM ABTS (v/v) bei 25 °C geprüft. Für jedes Temperaturintervall wurden 4 Ansätze erstellt um eine Validität der Messergebnisse zu gewährleisten.

2.11.3.3 Ermittlung des Substratspektrums

2.11.3.4 Prüfung des Einflusses von Metallionen, Enzyminhibitoren und chelatbildenden Agentien

Für die Ermittlung der aktivierenden oder inhibierenden Wirkung von Metallionen sowie spezifischen anorganischen und organischen Enzyminhibitoren und chelatbildenden Agentien auf die Aktivität des von A. chroococcum exprimierten Enzyms, wurden, unter Reduktion der Menge an NaAC (0,1 M, pH 5), ansteigende Volumina wässriger Metallionen-Lösungen in 0,01, 0,1, 1, 2 mM und Enzyminhibitoren in 0,1, 0,5, 1, 2, 4, 6 und 10 mM Endkonzentration eingesetzt (vgl. Standard-Assay, Kap. 2.11.2.1).
Die Reaktionen wurden durch Zusatz des Enzymsubstrats (2,6 DMP, 5 mM v/v) gestartet und die enzymatische Aktivität über einen Zeitraum von 3 min gemessen.

Vergleichende Untersuchungen bezüglich der Enzymaktivität in Gegenwart von Enzyminhibitoren wurden ebenso mit der pilzlichen Phenoloxidase *PcL* und der Polyphenoloxidase *AbT* vorgenommen. Für jedes der Enzyme wurden die in Kap. 2.11.2.1 beschriebenen Standard-Assays angewandt und unter Reduktion des entsprechenden Puffers ansteigende Volumina an Inhibitorsubstanz bzw. Chelatbildner zugesetzt. Im Falle von *PcL* wurden die Reaktionen durch die Zugabe von 2,6-DMP (5 mM, v/v) und für *AbT* durch den Zusatz von Brenzkatechin (5 mM, v/v) initiiert.

2.11.3.5 Prüfung der Lösungsmittelverträglichkeit

Das in zellfreien Rohextrakten des Stammes *A. chroococcum* enthaltene Enzym wurde bezüglich des Einflusses verschiedener Lösungsmittel (5, 10, 15, 20, 25, 30, 35 %, v/v), welche häufig in der organischen Synthese Einsatz finden, untersucht.

<table>
<thead>
<tr>
<th>Lösungsmittelgruppen</th>
<th>protisch</th>
<th>aprotisch polar</th>
<th>unpolar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol (EtOH)</td>
<td>Dimethylsulfoxid (DMSO)</td>
<td>n-Hexan</td>
<td></td>
</tr>
<tr>
<td>Methanol (MeOH)</td>
<td>Acetonitril (ACN)</td>
<td>Tetrahydrofuran (THF)</td>
<td></td>
</tr>
</tbody>
</table>

Zudem wurde die rekombinant exprimierte prokaryotische Phenoloxidase CotA von *B. subtilis* in Bezug auf ihre Stabilität gegenüber dem Lösungsmittel Methanol (5, 10, 15, 20, 25, 30, 40, 50 %, v/v) getestet. Für eine Prüfung der Lösungsmittelverträglichkeit
wurde die in den beschriebenen Standard-Assays angegebene Puffermenge reduziert (vgl. Kap. 2.11.2.1) und durch das Volumen des entsprechenden Lösungsmittels ersetzt. Enzymproben von *AcCL* wurden sowohl für 20 min als auch für 60 min bei 30 °C in Gegenwart des entsprechenden Lösungsmittels in einem 1,5-mL-Eppendorf-Reaktionengefäßen inkubiert und die verbliebene Aktivität nachfolgend über eine Oxidation von 2,6-DMP (5 mM, v/v) bei 25 °C bestimmt. Die Aktivität des CotA-Enzympräparats (unbehandelter Extrakt, vgl. Anhang Tab. 4) wurde direkt nach Lösungsmittelzusatz sowie nach 5, 20 und 60 min Inkubation (30 °C) in Gegenwart ansteigender Volumina Methanol im ABTS-Assay bei 25 °C gemessen. Alle Messungen wurden in vierfacher Wiederholung durchgeführt, wobei als Referenz Ansätze ohne Lösungsmittelzusatz nach entsprechender Inkubation bei 30 °C herangezogen wurden.

2.12 Transformationsansätze

2.12.1 Biotransformationsansätze mit Phenoloxidascenen als biologische Kopplungsvermittler

Tab. 12: Puffersysteme und Reaktionsparameter in Biotransformationsreaktionen.

<table>
<thead>
<tr>
<th>Biologischer Katalysator</th>
<th>Puffersystem für Transformationsreaktionen</th>
<th>pH</th>
<th>Temperatur [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MtL</td>
<td>Phosphat-Citrat-Puffer</td>
<td>7,0</td>
<td>25</td>
</tr>
<tr>
<td>PcL</td>
<td>Natrium-Acetat-Puffer</td>
<td>5,0</td>
<td>25</td>
</tr>
<tr>
<td>PcL 35</td>
<td>Natrium-Acetat-Puffer</td>
<td>4,0</td>
<td>25</td>
</tr>
<tr>
<td>Tvl 5</td>
<td>Natrium-Acetat-Puffer</td>
<td>4,0</td>
<td>25</td>
</tr>
<tr>
<td>Tvl 10</td>
<td>Natrium-Acetat-Puffer</td>
<td>4,0</td>
<td>25</td>
</tr>
<tr>
<td>CotA</td>
<td>Natrium-Acetat-Puffer</td>
<td>4,0</td>
<td>22, 25, 30, 35, 40, 50, 60, 70, 80</td>
</tr>
<tr>
<td>SLAC</td>
<td>Natrium-Acetat-Puffer</td>
<td>4,5</td>
<td>25</td>
</tr>
<tr>
<td>AcCL</td>
<td>Natrium-Acetat-Puffer</td>
<td>5,0</td>
<td>25</td>
</tr>
</tbody>
</table>

Transformationsreaktionen mit den pilzlichen Phenoloxidascenen MtL und PcL wurden i.d.R mit einer enzymatischen Aktivität von 1 U mL⁻¹ durchgeführt. Für ausgewählte Modellreaktionen wurde von dieser standardisierten Aktivität abgewichen und eine Enzym-vermittelte Synthese der anvisierten Zielverbindung mit variierenden Enzymaktivitäten (0,5, 1, 2, 4, 10 U mL⁻¹) verfolgt. Die rekombinant exprimierten Phenoloxidascenen Tvl 5, Tvl 10, PcL 35, CotA und SLAC sowie das aus A. chroococcum gewonnene Enzym AcCL wurden je nach Aktivität und Qualität des Präparats mit
unterschiedlichen Aktivitäten (200 mU mL\(^{-1}\) bis 2 U mL\(^{-1}\)) eingesetzt. Untersuchungen mit \(Ac\)CL erfolgten durch den Zusatz zellfreier Rohextrakte, wobei über eine Filtration der Proben durch Pipettenspitzen mit Polypropylen-Matrix (QUALILAB, Bender & Hobein GmbH, Gera) eine Verringerung des Proteingehaltes vor der HPLC-Analytik wässriger Transformationsansätze erreicht werden konnte. Die jeweiligen Enzymaktivitäten sind den entsprechenden Ergebnisteilen zu entnehmen.

2.12.2 Transformationsansätze mit Natriumiodat als chemischem Kopplungsvermittler

Transformationsansätze mit dem chemischen Kopplungsvermittler Natriumiodat (\(\text{NaIO}_3\)) wurden in Phosphat-Citrat-Puffer (pH 7) vorgenommen, wobei das \(\text{NaIO}_3\) in Form einer wässrigen Stammlösung (300 mM \(\text{NaIO}_3\) in Aqua bidest.) in Endkonzentrationen von 6, 24, 50, und 100 mM (v/v) eingesetzt wurde. Ein Vergleich zwischen chemisch- und biologisch-vermittelter Kopplung wurde anhand zweier Modellreaktionen vorgenommen, in denen die Edukte in einer äquimolaren Konzentration bzw. der Kopplungspartner mit einem 5-fachen Überschuss eingesetzt wurden. Die Versuche mit \(\text{NaIO}_3\) erfolgten unter den in Kap. 2.12 vorgestellten Reaktionsbedingungen.

2.13 Probenaufbereitung und Methoden der instrumentellen Analytik

2.13.1 Isolation von Reaktionsprodukten

Um Reaktionsprodukte aus Enzym-vermittelten Transformationsreaktionen in möglichst hoher Reinheit für nachfolgende strukturanalytische Untersuchungen (LC-MS, HR-MS, NMR) zu gewinnen, wurden diese mittels Festphasenextraktion aus dem Reaktionsgemisch isoliert. Weiterhin wurden das von \(A.\) chroococcum gebildete zellassoziierte Pigment sowie Substanzen, die in das umgebende Kulturmedium ausgeschieden wurden, über eine Flüssig-Flüssig-Extraktion angereichert. Beide Verfahren beruhen auf der Überführung von Produkten bzw. zellgebundenen Substanzen von einer wässrigen in eine organische Lösungsmittelphase.
2.13.1.1 Festphasenextraktion

Für eine Reinigung der in Transformationsreaktionen gebildeten Produkte wurden 60-mL-Festphasenkartuschen mit einer 10 g Sorbens-Matrix aus Silicagel (Giga Tubes, Strata® C18-U, Phenomenex, Aschaffenburg) verwendet. Die Festphasenkartuschen wurden zunächst mit 60 mL reinem Methanol aktiviert und nachfolgend mit 60 mL Aqua bidest. äquilibriert. Dazu wurden die Kartuschen auf eine Vakuumbox (J.T. Baker spe-12G, Derenter, Niederlande) gesetzt, an der eine Membranvakuumpumpe (Typ MZ 2C, Saugvermögen: 1,7 m³ h⁻¹, Vacuubrand GmbH & Co. KG, Wertheim) für die Erzeugung eines Unterdruckes angeschlossen war. Das Reaktionsgemisch wurde auf die äquilibrierte Säule übertragen und diese nachfolgend trocken laufen gelassen. Daraufhin erfolgte die Elution einzelner Fraktionen durch das Auftragen von Essigsäure/Aqua bidest.-Methanol-Gemischen. Die Reinigungsschritte für die Produktisolierung sind dem Anhang (Tab. 7) zu entnehmen.

2.13.1.2 Lyophilisation

<table>
<thead>
<tr>
<th>Tab. 13: Geräteparameter für die Gefriertrocknung.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sollwert der Haupttrocknung: 2 h bei 5 °C, danach 3-4 Tage bei 20 °C</td>
</tr>
<tr>
<td>Sollwert Gefrieren: -20 °C</td>
</tr>
<tr>
<td>Sollwert Vakuum: 1.030 mbar</td>
</tr>
<tr>
<td>Sicherheitsdruck: 2.560 mbar</td>
</tr>
</tbody>
</table>
Die getrockneten, als Pulver vorliegenden Produkte wurden in Glas-Vials (VWR, Darmstadt) überführt und nachfolgend lichtgeschützt bei Raumtemperatur bzw. 4 °C gelagert.

2.13.1.3 Flüssig-Flüssig-Extraktion

<table>
<thead>
<tr>
<th>Arbeitsschritte</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1*</td>
<td>Resuspension des Zellpellets in 50 mL einer wässrigen Trichlor-essigsäure-Lösung (TCA, 5 %, v/v) und Extraktion für 5 min im Scheidetrichter.</td>
</tr>
<tr>
<td>2</td>
<td>Überführung des Extraktionsgemisches in Zentrifugenbecher und Zentrifugation bei 6.000 x g für 10 min. Verwerfen des Überstandes und erneute Resuspension des Pellets in TCA-Lösung.</td>
</tr>
<tr>
<td>3</td>
<td>Resuspension des Zellpellets in 50 mL eines Diethylether-Ethanol-Gemisches (1:3, v/v) und 2-malige Extraktion im Scheidetrichter für je 10 min.</td>
</tr>
<tr>
<td>4</td>
<td>Resuspension des Zellpellets in Diethylether und einmalige Extraktion für 10 min.</td>
</tr>
<tr>
<td>5</td>
<td>Überführung des extrahierten Zellpellets in Falconröhrchen und Evaporation des restlichen Diethylethers unter dem Abzug.</td>
</tr>
<tr>
<td>6</td>
<td>Zugabe von 50 mL einer wässrigen Na₂CO₃-Lösung (50 mM) und Inkubation bei 100 °C für 20 min im Wasserbad.</td>
</tr>
<tr>
<td>7</td>
<td>Zentrifugation (6.000 x g, 10 min) des abgekühlten Gemisches um partikuläres Material zu sedimentieren.</td>
</tr>
<tr>
<td>8</td>
<td>Überführung des Überstandes und partikulären Materials in Aluminiumschälchen und Trocknung bei 160 °C.</td>
</tr>
</tbody>
</table>

*Arbeitsschritte 1 und 2 insgesamt dreimal durchgeführt.

Die extrahierten Pigmente wurden in Form eines Pulvers gewonnen und bis zu Folgeuntersuchungen bei Raumtemperatur gelagert.

2.13.2 Instrumentelle Analytik

Die instrumentelle Analytik diente einer qualitativen und quantitativen Bewertung der in Reaktionsgemischen gebildeten Transformationsprodukte sowie einer abschließenden Strukturaufklärung der aus Synthesereaktionen isolierten Produkte.

2.13.2.1 Analytische Hochleistungsflüssigkeitschromatographie (HPLC)

Tab. 15: Gerätedaten und -konfigurationen für die HPLC-Analytik.

<table>
<thead>
<tr>
<th>Geräteteilheit</th>
<th>Modell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrolleinheit</td>
<td>SCL-10A VP</td>
</tr>
<tr>
<td>Flüssig-Chromatograph</td>
<td>LC-10AT VP</td>
</tr>
<tr>
<td>Pumpe</td>
<td>FCV-10AL VP</td>
</tr>
<tr>
<td>Diodenarray-Detektor</td>
<td>SPD-M10A VP</td>
</tr>
<tr>
<td>Probengeber</td>
<td>Gina 50 (Gynkotek, Germering)</td>
</tr>
<tr>
<td>Degaser</td>
<td>L-7614 (MERCK, Darmstadt)</td>
</tr>
<tr>
<td>Säulen¹</td>
<td>1: LiChroCART®125-4 RP 18; endcapped 5 µm (MERCK, Darmstadt)</td>
</tr>
<tr>
<td></td>
<td>2: Supelco 20 x 4.0 mm cartridge HPLC-column, 5 µm (250 Å) pore size, octadecyl-poly(vinylalcohol) ODP 50 matrix (SIGMA ALDRICH, Steinheim)</td>
</tr>
</tbody>
</table>

Für die Analytik von wässrigen Transformationsansätzen und Kulturüberständen wurden 40 µL und für die Analyse von hochkonzentrierten Extrakten (Reinheits- und Stabilitätsprüfung, Quantifizierung, HPLC-logP_{ow}-Analytik) 3-5 µl Probe injiziert. Die Flussrate betrug stets 1 mL min⁻¹. Für die chromatographische Trennung wurde ein Fließmittelsystem bestehend aus Methanol und 0,1 %-iger Phosphorsäure (pH 3,0) verwendet, wobei unter Berücksichtigung der Elutionseigenschaften von Edukten und Produkten unterschiedliche Gradienten zum Einsatz kamen (Tab. 16).

Tab. 16: Gradienten des HPLC-Fließmittelsystems.

<table>
<thead>
<tr>
<th>Gradient²</th>
<th>Zeit [min]</th>
<th>MeOH [%]</th>
<th>0,1 % H₃PO₄ [%]</th>
<th>Analyse</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>10</td>
<td>90</td>
<td>Geringer polare Edukte und Syntheseprodukte</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>100</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>30</td>
<td>70</td>
<td>Stärker polare Edukte und Syntheseprodukte</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>100</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>10</td>
<td>90</td>
<td>HPLC-logP_{ow}-Bestimmung nach DONOVAN & PESCATORE (2002)</td>
</tr>
<tr>
<td></td>
<td>9,4</td>
<td>100</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

² Equilibriierungszeit: Gradient 1 und 2: 2 min, Gradient 3: 6 min.

Eine Bestimmung des n-Octanol-Wasser-Verteilungskoeffizienten (logP_{ow}) erfolgte nach der von DONOVAN & PESCATORE (2002) beschriebenen Methode mittels analytischer HPLC. Dafür wurden sowohl das aromatische Edukt und auch ausgewählte synthetisierte sekundäre Amine in Standardmixturen, welche aus einer hydrophilen (3,5-Dihydroxybenzoesäure oder 2-(4-Hydroxyphenyl)ethylalkohol) und hydrophoben Referenzsubstanz (Toluol, Ibuprofen oder Triphenylamin) bestanden, aufgenommen (Tab. 17).
Für Standardmixturen wurden 20 mg einer hydrophilen Referenzsubstanz zu 2 mL (bzw. 2 mg) der hydrophoben Referenz zugefügt und beide nachfolgend in 200 mL Methanol aufgenommen. In 1 mL Standardmischung wurden 0,5 mg des Eduktes bzw. des Syntheseproduktes gelöst und umgehend vermessen. Für eine Berechnung des \(\log P_{\text{ow}} \) war es notwendig, dass die Analytsubstanz zwischen der hydrophilen und hydrophoben Referenz eluierte. Unter Anwendung bekannter \(\log P_{\text{ow}} \)-Werte der Referenzsubstanzen konnte so eine Berechnung des \(n \)-Octanol-Wasser-Verteilungskoeffizienten der Syntheseprodukte mit nachstehender Formel vorgenommen werden.

\[
\log P_{\text{ow}}^{\text{Analyt}} = \frac{(-\log P_{\text{ow}}^R_1 - \log P_{\text{ow}}^R_2) \cdot Rf^{\text{Analyt}} + (\log P_{\text{ow}}^R_1 \cdot Rf^R_1) + (\log P_{\text{ow}}^R_2 \cdot Rf^R_2)}{Rf^R_1 \cdot Rf^R_2}
\]

\(\log P_{\text{ow}}^{\text{Analyt}} \) \(n \)-Octanol-Wasser-Verteilungskoeffizient des Analyten
\(\log P_{\text{ow}}^R_1 \) \(n \)-Octanol-Wasser-Verteilungskoeffizient der hydrophilen Referenz
\(\log P_{\text{ow}}^R_2 \) \(n \)-Octanol-Wasser-Verteilungskoeffizient der hydrophoben Referenz
\(Rf^{\text{Analyt}} \) Retentionszeit der Analytsubstanz
\(Rf^R_1 \) Retentionszeit der hydrophilen Referenz
\(Rf^R_2 \) Retentionszeit der hydrophoben Referenz

2.13.2.2 Flüssigchromatographie mit Massenspektrometrie-Kopplung (LC-MS)

Für LC-MS-Analysen wurden die Transformationsprodukte in Methanol aufgenommen. Die Ionisierung der Proben erfolgte mit der API-ES-Methode (Atmospheric Pressure Ionisation- Electrospray Ionisation), bei der die Probe nach Austritt aus der Kapillare bei atmosphärischem Druck zerstäubt und der entstehende Nebel durch eine Entladungsnadel ionisiert wird. Die dabei generierten Lösungsmittelonen protonieren neutrale Moleküle, was in der Bildung und nachfolgenden Detektion von Pseudomolekülen (z.B. \([M+H]^+\), \([M+Na]^+\)) resultiert, welche direkt dem Massenanalysator zugeführt werden. Die Messungen wurden an einem 1200 Series 6120 Quadrupole Massenspektrometer (Agilent Technologies, Böblingen) vorgenommen und eine chromatographische Auftrennung der Proben mit einer 2,1 x 50 mm ZORBAX SB-C18-Säule mit einer Porenröße von 1,8 µm (Agilent Technologies, Böblingen) bei einer Flussrate von 0,4 mL min⁻¹ realisiert. Zur Elution der Proben wurden verschiedene Gradienten eines Acetonitril-Ammoniumformiat-Fließmittelsystems verwendet (Tab. 18).

Tab. 18: Gradienten des LC-MS-Fließmittelsystems.

<table>
<thead>
<tr>
<th>Gradient</th>
<th>Zeit [min]</th>
<th>0,1 % CH₃NO₂ [%]</th>
<th>ACN [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

*Equilibriierungszeit bei jedem Gradienten betrug 5 min.

2.13.2.3 Hochauflösende Massenspektrometrie (HR-MS)

Im Gegensatz zu LC-MS-Messungen, welche eine Bestimmung der nominalen Masse der Verbindung ermöglichen, können mit einem hochauflösenden Massenspektrometer Elementaranalysen unter Ermittlung der Summenformel und exakten Masse des entsprechenden Analytmoleküls durchgeführt werden. Die gereinigten und lyophilisierten Syntheseprodukte wurden am Leibniz-Institut für Katalyse e.V. (Universität Rostock) mittels einer ESI-TOF-MS (Electrospray Ionisation Time-of-flight Mass Spectrometry) der Firma Agilent Technologies (Böblingen) vermessen. Die

2.13.2.4 Gaschromatographie mit Massenspektrometrie-Kopplung (GC-MS)

Für die Analyse der aufbereiteten Extrakte wurde ein Gerät der Firma Agilent (Agilent Technologies, Böblingen) mit nachfolgender Konfiguration eingesetzt (Tab. 19).

<table>
<thead>
<tr>
<th>Gerätseinheit</th>
<th>Modell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas chromatograph</td>
<td>Agilent 7890A GC-System</td>
</tr>
<tr>
<td>Massenspektrometer</td>
<td>Agilent 5975C inert XL EI/CI MSD, Triple-Axis Detector</td>
</tr>
<tr>
<td>Probengeber</td>
<td>Agilent 7693A ALS</td>
</tr>
<tr>
<td>Kapillarsäule</td>
<td>Agilent 190915-433: 30 m x 250 µm (ID) x 0,25 µm (Filmdicke)</td>
</tr>
<tr>
<td>Trägergas</td>
<td>Helium, Druck: 11,731 psi, Fluss: 1,2046 mL min⁻¹</td>
</tr>
<tr>
<td>Temperaturprogramm</td>
<td>1 min 80 °C, 80 - 300 °C: 12,9 °C min⁻¹</td>
</tr>
<tr>
<td>Injektionsvolumen</td>
<td>1 µL</td>
</tr>
</tbody>
</table>

2.13.2.5 Kernmagnetresonanz-Spektroskopie (NMR)

Für eine eindeutige und abschließende Strukturaufklärung wurden die lyophilisierten Verbindungen einer NMR-Analyse unterzogen. Diese spektroskopische Analysenmethode ermöglicht eine Untersuchung der elektronischen Umgebung einzelner Atomen, womit insbesondere Wechselwirkungen zu benachbarten Atomen analysiert und Rückschlüsse auf Bindungen und Atomanordnungen im Analytmolekül gezogen werden können. Die gereinigten Verbindungen wurden in deuteriertem

Tab. 20: Typen und Standorte der für eine Strukturanalyse genutzten NMR-Geräte.

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruker AVANCE-II 600 (600 MHz)</td>
<td>Baltic Analytics GmbH (Greifswald)</td>
</tr>
<tr>
<td>Bruker AVANCE 500 (500 MHz)</td>
<td>Institut für Chemie, AG NMR-Spektroskopie, Universität Rostock</td>
</tr>
<tr>
<td>Bruker ARX 300-III (300 MHz)</td>
<td>Institut für Chemie, AG NMR-Spektroskopie, Universität Rostock</td>
</tr>
<tr>
<td>Bruker AVANCE-II 600 (600 MHz)</td>
<td>Institut für Biochemie, AG Analytische Biochemie, Universität Greifswald</td>
</tr>
</tbody>
</table>

2.14 Analyse von Proteinen durch Polyacrylamid-Gelelektrophorese (PAGE)

Für eine Visualisierung, partielle Identifizierung und Charakterisierung von Proteinen, insbesondere dem Enzym AcCL des Stammes \(A.\) chroococcum, wurden eindimensionale gelelektrophoretische Untersuchungen an Zellextrakten, zellfreien Rohextrakten und dem partikulären Zellmaterial (u.a. äußere Membranen und Cystenwände) durchgeführt. Dabei wurden die Proben verschiedenen Aufbereitungsmethoden unterzogen, sodass die Proteine sowohl in ihrer nativen Konformation (Tertiärstruktur ohne Verlust der enzymatischen Aktivität) als auch in denaturierten Stadien analysiert werden konnten.

2.14.1 Denaturierende Polyacrylamid-Gelelektrophorese (SDS-PAGE) nach LAEMMLI

Die Elektrophorese wurde mit einem Biometra® System (Whatman, Biometra GmbH, Göttingen), an dem eine Spannungsquelle (EPS301, Amersham Pharmacia Biotech, Freiburg) angeschlossen war, durchgeführt. Für die Auftrennung der Proteine wurde ein Trenngel mit einer Acrylamidkonzentration von 10 % (Tab. 21) gegossen und dieses umgehend mit Isopropanol überschichtet, sodass das Gel unter Luftabschluss blasenfrei polymerisierte. Nach Aushärten wurde das Isopropanol abdekantiert und verbliebene Lösungsmittelreste mit Aqua bidest. abgespült. Im Anschluss erfolgte das Auftragen des Sammelgels (4 % Acrylamid, Tab. 21), auf welches ein Probenkamm (unterschiedliche Taschenzahlen- und größen verwendet) gesetzt und nach Polymerisation vorsichtig entfernt wurde. Die Proben wurden mit Probenpuffer (Tab. 21) in einem 2:1 Verhältnis in ein 1-mL-Eppendorf-Reaktionsgefäss vereinigt, für 30 sec bei 7.000 x g zentrifugiert und nachfolgend in einer Thermoeinheit für 10 min bei 95 °C erhitzt. Die Gelplatten wurden in die Elektrophoresekammer gesetzt und diese nachfolgend blasenfrei mit Elektrophorese-Puffer (pH 8,3; Tab. 21) gefüllt. Nach Beladen der Geltaschen (12 bis 25 µL der vorbereiteten Probe) erfolgte die gelektrophoretische Trennung der Proteine bei konstanter Stromstärke von 200 mA für ca. 1 h. Anschließend wurden die Gele fixiert und einer Coomassie- bzw. Silberfärbung zur Proteinvisualisierung unterzogen (vgl. Kap. 2.14.4).

Tab. 21: Zusammensetzung des Trenn- und Sammelgels sowie des Proben- und Elektrophorese-Puffers für die SDS-PAGE.

<table>
<thead>
<tr>
<th>Substanz¹²</th>
<th>Trenngel</th>
<th>Sammelgel</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIS/HCl-Puffer (1,5 M, pH 8,8, 0,4 % SDS w/v)</td>
<td>4,0 mL</td>
<td>-</td>
</tr>
<tr>
<td>TRIS/HCl-Puffer (0,5 M, pH 6,8, 0,4 % SDS w/v)</td>
<td>-</td>
<td>2,0 mL</td>
</tr>
<tr>
<td>Acrylamid (30 %)</td>
<td>5,4 mL</td>
<td>1,0 mL</td>
</tr>
<tr>
<td>Aqua bidest.</td>
<td>6,6 mL</td>
<td>5,0 mL</td>
</tr>
<tr>
<td>APS (10 %, w/v)</td>
<td>80 µL</td>
<td>50 µL</td>
</tr>
<tr>
<td>TEMED</td>
<td>8 µL</td>
<td>13 µL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SDS-Probenpuffer (10 mL)</th>
<th>Elektrophorese-Puffer (pH 8,3; 10-fach konzentriert)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIS/HCl-Puffer (0,18 M, pH 6,8)</td>
<td>TRIS 30 g</td>
</tr>
<tr>
<td>15 % Glycerol (w/v)</td>
<td>Glycerol 144 g</td>
</tr>
<tr>
<td>2-Mercaptoethanol</td>
<td>SDS 10 g</td>
</tr>
<tr>
<td>3 % SDS (w/v)</td>
<td>Aqua bidest. ad 1000 mL</td>
</tr>
<tr>
<td>0,075 % Bromphenolblau (w/v)</td>
<td>0,0075 g</td>
</tr>
</tbody>
</table>

¹ Abkürzungen siehe Abkürzungsverzeichnis; ² angegebene Mengen auf 2 Gele bezogen.

Begleitend zu der gelektrophoretischen Auftrennung der Proteine wurden diverse, in Probenpuffer befindliche Proteinmarker für eine Abschätzung des Molekulargewichtes
der Proteinbanden mitgeführt. Die eingesetzten Marker sind dem Anhang (Tab. 5) zu entnehmen.

2.14.2 Semi-denaturierende SDS-PAGE nach SOLANO et al.

2.14.3 Nicht-denaturierende Polyacrylamid-Gelelektrophorese (Native PAGE) und Bestimmung des relativen Molekulargewichts nach FERGUSON

Tab. 22: Zusammensetzung des Proben- und Elektrophorese-Puffers für die native PAGE.

<table>
<thead>
<tr>
<th>Probenpuffer für native PAGE (10 mL)</th>
<th>Elektrophorese-Puffer (pH 8,3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aqua bidest.</td>
<td>8 mL TRIS 0,05 M</td>
</tr>
<tr>
<td>20 % Glycerol (w/v)</td>
<td>2 mL Glycerol 0,38 M</td>
</tr>
<tr>
<td>0,0025 % Bromphenolblau (w/v)</td>
<td>0,25 mg</td>
</tr>
</tbody>
</table>

Für die Bestimmung des relativen Molekulargewichts des von A. chroococcum exprimierten nativen Proteins AcCL wurden gelektrophoretische Analysen auf Trenngelen unterschiedlicher Acrylamidkonzentration (Tab. 23, S. 74) nach FERGUSON (1964) durchgeführt. Nach FERGUSON existiert eine lineare Beziehung zwischen dem Logarithmus der relativen Mobilität von Proteinen und der Acrylamidkonzentration des Trenngels unter Konstanz weiterer wesentlicher gelektrophoretischer Parameter (Puffersystem, Temperatur, Bisacrylamidkonzentration). Die Proteinauftrennung wurde analog zu der nativen PAGE vorgenommen. Als Referenz dienten nicht-denaturierte Markerproteine eines Nondenatured Protein Molecular Weight Marker Kits (SIGMA-ALDRICH, Steinheim; vgl. Tab. 5 im Anhang). Die relative Mobilität (Rf) des AcCL-Proteins sowie der Referenzproteine wurde in jedem Gel in Abhängigkeit zu der Bromphenolblau-Laufstrecke (in mm angegeben) ermittelt. Zur Erstellung einer Kalibrierkurve wurde das berechnete Produkt 100 · log(Rf · 100) von jedem Protein gegen die prozentuale
Acrylamidkonzentration des Trenngels aufgetragen. Aus einem solchen FERGUSON-Plot ließ sich für jedes Proteinpräparat eine Steigung K_R ermitteln, wobei nach graphischem Auftragen dieser gegen das Molekulargewicht der Referenzproteine das relative Molekulargewicht des Proteins $AcCL$ bestimmt werden konnte.

Tab. 23: Zusammensetzung des Trenn- und Sammelgels für die native PAGE.

<table>
<thead>
<tr>
<th>Trenngele für die native PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylamid [%]</td>
</tr>
<tr>
<td>Acrylamidslsg. [mL]</td>
</tr>
<tr>
<td>Aqua bidest. [mL]</td>
</tr>
<tr>
<td>0,75 M TRIS/HCl-Puffer (pH 8,9) [mL]</td>
</tr>
<tr>
<td>APS (10 %, w/v) [mL]</td>
</tr>
<tr>
<td>TEMED [mL]</td>
</tr>
<tr>
<td>Markerprotein</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>5,5</td>
</tr>
<tr>
<td>5,0</td>
</tr>
<tr>
<td>4,5</td>
</tr>
</tbody>
</table>

Sammelgel für die native PAGE

| Substanz |
| TRIS/HCl-Puffer (0,125 M, pH 6,8) [mL] |
| Acrylamid (30 %) [mL] |
| Aqua bidest. [mL] |
| APS (10 %, w/v) [µL] |
| TEMED [µL] |
| --- | --- | --- | --- | --- | --- |
| 5,0 | 1,48 | 3,41 | 100 | 10 |

*a Zusammensetzung der Markerproteine siehe Anhang (Tab. 5).

2.14.4 Proteinvisualisierungsmethoden

Nach gelelektrophoretischer Auftrennung erfolgte eine Anfärbung der Proteine mit unterschiedlichen Färbelösungen, wobei sich die Färbung nach dem Anliegen der Untersuchung, aber auch nach der Konzentration der auf dem Gel befindlichen Proteine, richtete.

2.14.4.1 Färbung mit Coomassie

über Nacht unter Schwenken in Färbelösung inkubiert. Daraufhin erfolgte die Inkubation in einer Entfärbelösung bis eine gewünschte Intensität der Proteinbanden erreicht war. Nachfolgende Tabelle zeigt die Zusammensetzung der verwendeten Lösungen (Tab. 24).

Tab. 24: Zusammensetzung der Lösungen für die Coomassie-Färbung.

<table>
<thead>
<tr>
<th>Färbeschritt</th>
<th>Lösung</th>
<th>Substanz</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixierung</td>
<td>Fixierer</td>
<td>TCA</td>
<td>10 g ad 100 mL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aqua dest.</td>
<td></td>
</tr>
<tr>
<td>Färbung</td>
<td>Coomassie-Färbelösung</td>
<td>1 Tablette Phast Blue (Pharmacia Biotech)</td>
<td>400 mL</td>
</tr>
<tr>
<td></td>
<td>Entfärbelösung</td>
<td>Entfärbelösung</td>
<td></td>
</tr>
<tr>
<td>Entfärbung</td>
<td>Entfärbelösung</td>
<td>Methanol</td>
<td>400 mL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Essigsäure</td>
<td>100 mL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aqua dest.</td>
<td>ad 1000 mL</td>
</tr>
</tbody>
</table>

2.14.4.2 Silberfärbung

Die Silberfärbung erfolgte nach der SDS-PAGE mit Proteinproben, welche zuvor aus Gelen einer semi-denaturierenden SDS-PAGE ausgeschnitten und extrahiert wurden. Aufgrund ihrer hohen Nachweisgrenze wurde diese Färbemethode insbesondere bei Proben mit sehr geringer Proteinkonzentration angewendet und mit einem PageSilver™ Silver Staining Kit der Firma Fermentas (St. Leon-Rot) nach einem Protokoll für eine schnelle Proteinvisualisierung durchgeführt. Die Arbeitsschritte sind im Anhang (Tab. 6) dargestellt.

2.14.4.3 Aktivitätsfärbung

Die Aktivitätsfärbung fand sowohl nach semi-denaturierender als auch nach nativer PAGE Anwendung. Nach Beendigung der elektrophoretischen Auftrennung wurden die Gele umgehend aus der Elektrophoresekammer entnommen und gründlich mit Aqua dest. gespült. Es erfolgte eine kurzzeitige Fixierung (3 min) der auf dem Gel befindlichen Proteine durch den Transfer in eine Coomassie-Färbelösung (vgl. Kap. 2.14.4.1, Tab. 24), wonach die Gele erneut gründlich mit Aqua dest. gespült wurden. Danach erfolgte eine Inkubation der Gele in NaAC (0,1 M, pH 5) in Gegenwart diverser, enzymspezifischer Redoxindikatoren (5 mM ABTS, 2,6-DMP, Guajacol, para-Phenyldiamin, v/v) bei 37 °C im Brutschrank bis sich aktivgefärbte Proteinbanden zeigten (~ 15 min).
2.15 Liste der verwendeten Chemikalien

Alle verwendeten Lösungsmittel und Verbindungen besaßen die höchstmögliche Reinheit.

<table>
<thead>
<tr>
<th>Chemikalie</th>
<th>Hersteller</th>
<th>Reinheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R)-2-Aminohexan</td>
<td>SIGMA-ALDRICH</td>
<td>≥97 %</td>
</tr>
<tr>
<td>2-Amino-5-methylhexan</td>
<td>Fluka</td>
<td>≥99 %</td>
</tr>
<tr>
<td>exo-2-Aminonorbornan</td>
<td>SIGMA-ALDRICH</td>
<td>99 %</td>
</tr>
<tr>
<td>2-Amino-2-norbornancarbonsäure</td>
<td>SIGMA-ALDRICH</td>
<td>k.A.</td>
</tr>
<tr>
<td>Arbutin (Hydrochinon-β-D-glucopyranosid)</td>
<td>SIGMA-ALDRICH</td>
<td>≥98 %</td>
</tr>
<tr>
<td>2,2´-Azino-bis-(3-ethylbenzthiazolin-6-sulfonsäure)</td>
<td>SIGMA-ALDRICH</td>
<td>99 %</td>
</tr>
<tr>
<td>Diammoniumsalz (ABTS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R)-(+-)-Bornylamin</td>
<td>SIGMA-ALDRICH</td>
<td>97 %</td>
</tr>
<tr>
<td>Brenzkatechin</td>
<td>Aldrich</td>
<td>99 %</td>
</tr>
<tr>
<td>n-Butylamin</td>
<td>Fluka</td>
<td>≥99,5 %</td>
</tr>
<tr>
<td>tert-Butylamin</td>
<td>SIGMA-ALDRICH</td>
<td>98 %</td>
</tr>
<tr>
<td>4-tert-Butylbrenzkatechin</td>
<td>Fluka</td>
<td>≥99 %</td>
</tr>
<tr>
<td>tert-Butylhydrochinon</td>
<td>Fluka</td>
<td>≥98 %</td>
</tr>
<tr>
<td>(S)-(+-)-1-Cyclohexylethylamin</td>
<td>SIGMA-ALDRICH</td>
<td>98 %</td>
</tr>
<tr>
<td>Cyclooctylamin</td>
<td>SIGMA-ALDRICH</td>
<td>97 %</td>
</tr>
<tr>
<td>Dopamin HCl</td>
<td>Alfa Aesar GmbH & Co. KG</td>
<td>99 %</td>
</tr>
<tr>
<td>3,5-Dihydroxybenzoesäure</td>
<td>SIGMA-ALDRICH</td>
<td>k.A.</td>
</tr>
<tr>
<td>3,4-Dihydroxybenzoesäure</td>
<td>SIGMA-ALDRICH</td>
<td>≥97 %</td>
</tr>
<tr>
<td>1,4-Dihydroxy-2,6-dimethoxybenzen</td>
<td>SIGMA-ALDRICH</td>
<td>97 %</td>
</tr>
<tr>
<td>3,4-Dihydroxyphenylessigsäure</td>
<td>SIGMA-ALDRICH</td>
<td>98 %</td>
</tr>
<tr>
<td>3-(3,4-Dihydroxyphenyl)-L-alanin</td>
<td>Fluka</td>
<td>≥99 %</td>
</tr>
<tr>
<td>3-(3,4-Dihydroxyphenyl)propionsäure</td>
<td>Fluka</td>
<td>≥98 %</td>
</tr>
<tr>
<td>3,5-Dimethoxy-4-hydroxybenzaldehyd</td>
<td>SIGMA-ALDRICH</td>
<td>98 %</td>
</tr>
<tr>
<td>3,5-Dimethoxy-4-hydroxybenzaldehydzin</td>
<td>SIGMA-ALDRICH</td>
<td>99 %</td>
</tr>
<tr>
<td>3,5-Dimethoxy-4-hydroxybenzoesäure</td>
<td>SIGMA-ALDRICH</td>
<td>98 %</td>
</tr>
<tr>
<td>trans-3,5-Dimethoxy-4-hydroxyzimtsäure</td>
<td>SIGMA-ALDRICH</td>
<td>98 %</td>
</tr>
<tr>
<td>2,3-Dimethoxy-5-methylhydrochinon</td>
<td>Apin Chemicals Ltd.</td>
<td>k.A.</td>
</tr>
<tr>
<td>2,3-Dimethoxyphenol</td>
<td>SIGMA-ALDRICH</td>
<td>98 %</td>
</tr>
<tr>
<td>2,6-Dimethoxyphenol</td>
<td>SIGMA-ALDRICH</td>
<td>99 %</td>
</tr>
<tr>
<td>2,3-Dimethylhydrochinon</td>
<td>SIGMA-ALDRICH</td>
<td>99 %</td>
</tr>
<tr>
<td>2,3-Dimethylphenol</td>
<td>SIGMA-ALDRICH</td>
<td>99 %</td>
</tr>
<tr>
<td>2-Ethyl-1-hexylamin</td>
<td>SIGMA-ALDRICH</td>
<td>98 %</td>
</tr>
<tr>
<td>Eugenol</td>
<td>ABCR</td>
<td>99 %</td>
</tr>
<tr>
<td>Geranylam</td>
<td>SIGMA-ALDRICH</td>
<td>90 %</td>
</tr>
<tr>
<td>n-Heptylam</td>
<td>SIGMA-ALDRICH</td>
<td>99 %</td>
</tr>
<tr>
<td>n-Hexylamin</td>
<td>SIGMA-ALDRICH</td>
<td>99 %</td>
</tr>
<tr>
<td>4-Hydroxyindol</td>
<td>SIGMA-ALDRICH</td>
<td>99 %</td>
</tr>
<tr>
<td>4´-Hydroxy-3´-methoxyacetophenon</td>
<td>SIGMA-ALDRICH</td>
<td>98 %</td>
</tr>
<tr>
<td>2-Hydroxy-3-methoxybenzaldehyd</td>
<td>ACROS ORGANICS</td>
<td>99 %</td>
</tr>
<tr>
<td>4-Hydroxy-3-methoxybenzaldehyd</td>
<td>VEB Laborchemie Apolda</td>
<td>k.A.</td>
</tr>
<tr>
<td>2-Hydroxy-5-methoxybenzaldehyd</td>
<td>SIGMA-ALDRICH</td>
<td>98 %</td>
</tr>
<tr>
<td>4-Hydroxy-3-methoxybenzoesäure</td>
<td>SERVA</td>
<td>purum</td>
</tr>
<tr>
<td>Material</td>
<td>Hersteller</td>
<td>Angabe</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>4-Hydroxy-3-methoxybenzylalkohol</td>
<td>SIGMA-ALDRICH</td>
<td>98 %</td>
</tr>
<tr>
<td>4-Hydroxy-3-methoxy-α-methylbenzylalkohol</td>
<td>SIGMA-ALDRICH</td>
<td>97 %</td>
</tr>
<tr>
<td>trans-4-Hydroxy-3-methoxyzimtsäure</td>
<td>SIGMA-ALDRICH</td>
<td>99 %</td>
</tr>
<tr>
<td>(1S,2S,3S,5R)-(+)-Isopinocampheylamin</td>
<td>SIGMA-ALDRICH</td>
<td>95 %</td>
</tr>
<tr>
<td>3-IsopropylbrenzKatechin</td>
<td>ChemService Inc.</td>
<td>k.A.</td>
</tr>
<tr>
<td>para-Kresol</td>
<td>SIGMA-ALDRICH</td>
<td>≥ 98 %</td>
</tr>
<tr>
<td>3-MethylbrenzKatechin</td>
<td>SIGMA-ALDRICH</td>
<td>99 %</td>
</tr>
<tr>
<td>4-MethylbrenzKatechin</td>
<td>SIGMA-ALDRICH</td>
<td>k.A.</td>
</tr>
<tr>
<td>4-Methyl-2,6-dimethoxyphenol</td>
<td>SIGMA-ALDRICH</td>
<td>97 %</td>
</tr>
<tr>
<td>Methylhydrochinon</td>
<td>SIGMA-ALDRICH</td>
<td>99 %</td>
</tr>
<tr>
<td>2-Methoxy-3-methylhydrochinon</td>
<td>SIGMA-ALDRICH</td>
<td>k.A.</td>
</tr>
<tr>
<td>3-MethoxybrenzKatechin</td>
<td>SIGMA-ALDRICH</td>
<td>99 %</td>
</tr>
<tr>
<td>Methoxyhydrochinon</td>
<td>SIGMA-ALDRICH</td>
<td>98 %</td>
</tr>
<tr>
<td>2-Methoxyphenol</td>
<td>SIGMA-ALDRICH</td>
<td>98 %</td>
</tr>
<tr>
<td>2-Methoxy-4-methylphenol</td>
<td>SIGMA-ALDRICH</td>
<td>99 %</td>
</tr>
<tr>
<td>2-Methoxy-6-methylphenol</td>
<td>SIGMA-ALDRICH</td>
<td>k.A.</td>
</tr>
<tr>
<td>2-Methoxy-4-propylphenol</td>
<td>SAFC (SIGMA-ALDRICH)</td>
<td>≥ 99 %</td>
</tr>
<tr>
<td>2-Methyl-1,4-naphthohydrochinon</td>
<td>Apin Chemicals Ltd.</td>
<td>k.A.</td>
</tr>
<tr>
<td>5-Methylresorcin</td>
<td>SIGMA-ALDRICH</td>
<td>97 %</td>
</tr>
<tr>
<td>(−)-cis-Myrtanylamin</td>
<td>SIGMA-ALDRICH</td>
<td>98 %</td>
</tr>
<tr>
<td>Natriumiodat</td>
<td>SIGMA-ALDRICH</td>
<td>≥ 99,5 %</td>
</tr>
<tr>
<td>n-Nonylamin</td>
<td>SIGMA-ALDRICH</td>
<td>≥ 99,5 %</td>
</tr>
<tr>
<td>n-Octylamin</td>
<td>SIGMA-ALDRICH</td>
<td>≥ 99,5 %</td>
</tr>
<tr>
<td>tert-Octylamin</td>
<td>SIGMA-ALDRICH</td>
<td>95 %</td>
</tr>
<tr>
<td>n-Pentylamin</td>
<td>Fluka</td>
<td>≥ 99,5 %</td>
</tr>
<tr>
<td>5-Pentylresorcin</td>
<td>SIGMA-ALDRICH</td>
<td>95 %</td>
</tr>
<tr>
<td>Phenol</td>
<td>MERCK</td>
<td>98 %</td>
</tr>
<tr>
<td>para-Phenylendiamin</td>
<td>SIGMA-ALDRICH</td>
<td>≥ 99 %</td>
</tr>
<tr>
<td>ortho-Phosphorsäure</td>
<td>MERCK</td>
<td>99 %</td>
</tr>
<tr>
<td>n-Propylamin</td>
<td>SIGMA-ALDRICH</td>
<td>≥ 99 %</td>
</tr>
<tr>
<td>Resorcinol</td>
<td>SIGMA-ALDRICH</td>
<td>≥ 98 %</td>
</tr>
<tr>
<td>1,2,3-Trihydroxybenzen</td>
<td>SIGMA-ALDRICH</td>
<td>k.A.</td>
</tr>
<tr>
<td>Triton® X-100</td>
<td>SIGMA-ALDRICH</td>
<td>laboratory grade</td>
</tr>
<tr>
<td>Tween 20</td>
<td>SERVA</td>
<td>purum</td>
</tr>
<tr>
<td>Tween 80</td>
<td>SERVA</td>
<td>purum</td>
</tr>
<tr>
<td>DL-Tyrosin</td>
<td>Reanal</td>
<td>98 %</td>
</tr>
<tr>
<td>Vanillinazin</td>
<td>ACROS ORGANICS</td>
<td>99 %</td>
</tr>
</tbody>
</table>

a k.A. - keine Angabe.
3. **ERGEBNISSE**

3.1 **Physiologische Testungen zur taxonomischen Charakterisierung und Identifizierung des Bakterienisolats SBUG 1484**

nachfolgend vorgestellte Arbeiten zur Charakterisierung von neuen Phenoloxidasen auf
das zur Pigmentbildung befähigte Bakterienisolat SBUG 1484.

Die in physiologischen Testungen des Bakterienstammes SBUG 1484 erhaltenen
Ergebnisse sind nachfolgend im Vergleich mit bekannten *Azotobacter*-Arten
tabellarisch dargestellt (Tab. 25).

Tab. 25: Analyse physiologischer und morphologischer Merkmale des isolierten Stammes
Azotobacter spec. SBUG 1484 im Vergleich zu Daten von Typ-Stämmen der Gattung
Azotobacter nach Bergey’s Manual of Systematic Bacteriology (KENNEDY et al., 2005).

<table>
<thead>
<tr>
<th>Zucker als Substrate</th>
<th>Merkmale der Typ-Stämme der Gattung Azotobacter (Bergey’s Manual of Systematic Bacteriology)</th>
<th>Isolat SBUG 1484</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>Galaktose</td>
<td>d</td>
<td>+</td>
</tr>
<tr>
<td>Trehalose</td>
<td>d</td>
<td>-</td>
</tr>
<tr>
<td>Maltose</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Raffinose</td>
<td>+</td>
<td>d</td>
</tr>
<tr>
<td>Fucose</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dulcitol</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>Inositol</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Rhamnose</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Sorbitol</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Glycerol</td>
<td>d</td>
<td>+</td>
</tr>
<tr>
<td>Mannose</td>
<td>k.A.</td>
<td>k.A.</td>
</tr>
<tr>
<td>Saccharose</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Mannitol</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Glucose</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>n-Alkanole als Substrate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propan-1-ol</td>
<td>d</td>
<td>+</td>
</tr>
<tr>
<td>Butan-1-ol</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Weitere physiologische Testungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO₂⁻-Akumulation</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>H₂S-Bildung</td>
<td>d</td>
<td>-</td>
</tr>
<tr>
<td>Wachstum bei 32 °C</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>37 °C</td>
<td>d</td>
<td>+</td>
</tr>
<tr>
<td>Amylase</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Urease</td>
<td>k.A.</td>
<td>k.A.</td>
</tr>
<tr>
<td>Tryptophanase</td>
<td>k.A.</td>
<td>k.A.</td>
</tr>
<tr>
<td>O/F-Test</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Peroxidase</td>
<td>d</td>
<td>+</td>
</tr>
<tr>
<td>„Water-soluble pigments“ (braun-schwarz)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Morphologische Testungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beweglichkeit</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Peritriche Begeißelung</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
ERGEBNISSE

<table>
<thead>
<tr>
<th>„Diffusible Homopolysaccharides“</th>
</tr>
</thead>
</table>
| Glucose | -
| Saccharose | + - + + + - k.A. +
| Raffinose | + - + + - - k.A. +
| Pigmentbildung bei Eisenmangel | - + - - + - +

*S - Säureakkumulation bei Testung in Bromthymolblau-Bouillin: + eindeutige Säurebildung (gelb), (+) schwache Reaktion, - keine Reaktion.

*b W - Determiniertes Wachstum in stickstofffreiem Mineralsalzmedium nach WINOGRADSKI basierend auf der OD (500 nm) nach 72-stündiger Inkubation: +++ sehr gutes Wachstum, + langsames Wachstum, (+) leichter Anstieg der OD_{500nm} um 0,5, - kein Wachstum.

*c Ergebnisse variieren innerartlicher (different).

*d positiv in getesteter Eigenschaft; e negativ in getesteter Eigenschaft; f n.d. nicht bestimmt; g k.A. keine Angaben.

Der Stamm *Azotobacter spec.* SBUG 1484 zeigte sowohl in Testungen einer Säurebildung als auch ergänzenden Wachstumsversuchen unter stickstofffixierenden Bedingungen in Flüssigkultur, ein limitiertes Spektrum der Verwertung von Zuckersubstraten. Lediglich in Anwesenheit der Zucker Glucose, Saccharose und Mannitol (1 %, v/v) war ein starkes Wachstum zu verzeichnen. Dabei wurden mit Eintreten der Kulturen in die stationäre Wachstumsphase in Saccharose-supplementierten Ansätzen 69 % (OD_{500nm} 13,2) und in Mannitol-supplementierten Ansätzen 61 % (OD_{500nm} 11,5) im Vergleich zur Optischen Dichte von Ansätzen mit Glucose als Kohlenstoff- und Energiequelle (OD_{500nm} 18,9) erreicht. Somit konnte Glucose als eine, für die stickstofffreie Kultivierung von *Azotobacter spec.* SBUG 1484, geeignete C-Quelle ermittelt werden. Eine Bildung melanogener Zellen unter Assimilation von Luftstickstoff konnte zudem nur in Gegenwart dieser drei Zuckersubstrate - allerdings in unterschiedlichen Intensitäten - festgestellt werden (Abb. 6).

Abb. 6: Erscheinungsbild von 72-h-alten Kulturen des Stammes SBUG 1484 bei Inkubation ohne C- und Energiequelle (A, Zellkontrolle) sowie in Gegenwart von 1 % (v/v) Glucose (B), Saccharose (C) und Mannitol (D) in stickstofffreiem Medium nach WINOGRADSKY. Vorkultivierung auf stickstofffreiem Mineralsalzagar.

3.2 16S-rDNA-Analyse zur abschließenden Identifizierung

3.3 Mikroskopische Analysen zum Lebenszyklus von *A. chroococcum*

Mit dem Ziel, Differenzierungsprozesse von *A. chroococcum* auf zellulärer Ebene in Abhängigkeit von ausgewählten Kultivierungsparametern zu untersuchen, wurden Kulturansätze in denen eine exogene anorganische bzw. organische N-Quelle alleinig oder in Kombination mit Glucose (1 %, v/v) vorlag, in regelmäßigen Abständen beprobt und mikroskopiert (vgl. Kap. 2.4.1). Als Referenz dienten dabei Kulturen, die unter Assimilation von Luftstickstoff mit Glucose als alleinige C- und Energiequelle kultiviert wurden. Weiterhin erfolgten Untersuchungen an lebenden Zellen, welche in Gegenwart von 0,4 % Hefeextrakt (v/v) als N-Quelle bzw. als stickstofffixierende Kultur mit 1 % Glucose (v/v) als Objektträgerkultur auf Weichagar inkubiert wurden (vgl. Kap. 2.6.1).

Da in der Literatur konträre Auffassungen bezüglich der Zellmorphologie von Arten der Gattung *Azotobacter* bestehen und in eigenen Vorversuchen verschiedene Zelltypen ermittelt werden konnten, erfolgten die Untersuchungen unter dem Aspekt einer Charakterisierung von Zellstadien unter Verwendung definierter Kultivierungsbedingungen. Dieses systematische Vorgehen war erforderlich um standardisierte Bedingungen für die Bildung stets gleicher Zelltypen von *A. chroococcum* für nachfolgende Untersuchungen, insbesondere Enzymexperimente, entwickeln zu können.

3.3.1 Mikroskopische Untersuchungen von Objektträgerkulturen

Die Zellmorphologie des Stammes *A. chroococcum* war stark von dem Alter der Kulturen und der zur Assimilation verfügbaren Stickstoffquelle (Luftstickstoff oder Hefeextrakt) geprägt. Unter stickstofffixierenden Bedingungen traten Zellformen in Erscheinung, welche nach WYSS *et al.* (1961) als Cysten, die von Vertretern der Gattung *Azotobacter* unter Mangel- und Stressbedingungen gebildet werden, identifiziert werden konnten (Abb. 8a, c). Diese dormanten Überdauerungsformen besaßen eine durchschnittliche Größe von 3 bis 4 µm und lagen als Einzel- oder gelegentliche Doppelcysten (6 - 7 µm) vor (Abb. 8b). Nach Aufbringen einer Cystensuspension auf das auf einem Objektträger befindliche stickstofffreie Weichagarmedium und einer nachfolgenden Kultivierung bei 37 °C, konnte der Prozess...
der Keimung (Germination) unter Aufquellen der Cysten und Austritt der in dem dickwandigen Cystenkörper befindlichen vegetativen Zelle beobachtet werden (Abb. 8d-g).

Der Prozess der Umwandlung von Cysten in vegetative Zellen setzte bereits nach 6-stündiger Inkubation der Objektträgerkultur ein. Dabei bildete sich an einem Pol der Cyste eine zunächst leicht spitz zulaufende Aufbruchstelle (Abb. 8d), durch die der Zellkörper einseitig, unter Aufzehrung bzw. Reduktion des Cystenkörpers, herausstrat (Abb. 8e - h). Der Prozess der Keimung war nach 24 h Inkubation abgeschlossen, woraufhin ein Längenwachstum der stäbchenförmigen Bakterienzellen zu ersehen war (Abb. 8i, j). Mit Abschluss der Phase des Längenwachstums lagen die Zellen als langgestreckte Filamente (35 - 40 µm) vor, welche aus vier bis sechs gleichlangen Zellkörpern (7 - 7,5 µm, Ø ~ 2 µm) bestanden. Nach 48-stündiger Inkubation setzte eine Einschnürung eines jeden, dem Zellfilament angehörenden, Zellkörpers ein (Abb. 8k). Bei diesem Prozess erfolgte eine gleichmäßige Einschnürung, welche beidseitig in der Mitte der Zellkörper verlief, was in der Abschnürung bzw. Separation des zuvor aus 4 bis 6 Zellkörpern bestehenden Zellfilaments in paarförmige Zellkörper (13 - 17 µm) resultierte. Die nunmehr aus zwei gleichgroßen Zellkörpern mit einer durchschnittlichen Länge von je 8 µm bestehenden Stäbchen, zeigten eine Akkumulation von stark lichtbrechenden und hell leuchtenden Zelleinlagerungen mit granulärer bzw. gekörnter Struktur (Abb. 8l, m). Die paarförmigen Stäbchen zeigten mit fortschreitender Inkubation eine Kontraktion unter Ausbildung stark verkürzer abgerundeter diplokokkoider Zellkörper (4 - 5 µm; Abb. 8n), welche sich abermals voneinander abschnürten. Bei dem Prozess der Zellverkürzung konzentrierte sich das Zellmaterial an einem Pol der Zelle, wobei der ehemals gleichmäßig gefüllte Zellkörper als eine Art leere Hülle verblieb. Nach einer Inkubationszeit von 72 h lagen die Zellen der stickstofffixierenden Objektträgerkultur zu 95 % erneut in dem Cystenstadium vor, wobei sich diese dormanten Stadien, unter Ausbildung eines braun-schwarzen Pigments, zu Aggregaten aus Cystenkörpern zusammengelagert hatten (Abb. 8o).

Im Gegensatz zu dem für eine stickstofffixierende Objektträgerkultur determinierten Zelllebenszyklus, konnte in Kulturen mit einer zusätzlichen Hefeextrakt-Beigabe kein Übergang der vegetativen Zellen in das dormante Cystenstadium über einen Inkubationszeitraum von 144 h beobachtet werden. Als übereinstimmend erwiesen sich jedoch der Prozess der Keimung als auch das nachfolgend einsetzende

3.3.2 Zellfärbversuche zur Visualisierung und Identifizierung von Zellbestandteilen in stickstofffixierenden Kulturen

In Zellfärbever suchen mit **Sudanschwarz** wurde mit fortschreitendem Altern der Kulturen eine verstärkte Einlagerung von dunkelbraun-angefärbten körnigen Substanzen festgestellt. Bei mikroskopischer Untersuchung ungefärbter Zellen im Phasenkontrastmodus, traten diese Strukturen als leuchtende Einschlusskörper in Escheinung. Diese konnten ebenso bei Untersuchungen einer stickstofffixierenden Objektträgerkultur erfasst werden (vgl. Kap. 3.3.1, Abb. 8l und m). Da der Farbstoff eine selektive Anfärbung von Lipiden und Poly-β-hydroxybuttersäure-Granula bewirkt, konnten die in *A. chroococcum* angelegten, stark refraktiven Strukturen als solche identifiziert werden.

Ergänzend dazu konnten bei Färbung mit **Lugolscher Lösung** rötlich-braune körnige Strukturen in den Zellkörpern ersehen werden, was auf eine mit zunehmender Inkubationszeit gesteigerte Bildung von Glykogenspeichern hinwies.

Bei **Färbung nach GRAM** wurde der Zellwandtyp vegetativer Zellen einer stickstofffixierenden Flüssigkultur stets über eine im Hellfeldmodus erscheinende Rotfärbung aller Zellstadien als grannegativ identifiziert. Zwar konnten mit dieser Färbemethode auch Cystenkörper angefärbt werden, diese wiesen jedoch nur eine blasse rote Anfärbung auf. Auch mit einer **Kristallviolett-Färbung** der Präparate, welche einseitig ebenso der Identifizierung des Zellwandtyps und andererseits einer intensiveren Darstellung von Zellstrukturen diente, konnte stets eine Rotfärbung von
Zellen, Zellwände und Cysten festgestellt werden. Zudem erwies sich diese Färbemethode als sehr geeignet, Differenzierungsprozesse des Zellzyklus von *A. chroococcum* SBUG 1484 zu untersuchen (Abb. 9).

Nach dem Längenwachstum leiteten die Zellfilamente eine Zellteilung ein, die durch die Ausbildung von Septen, eine äquivalente Verteilung der Nucleoide auf die Tochterzellen und die Abschnürung paarweiser Zellkörper charakterisiert war (Abb. 9a). Weiterhin konnten innerhalb des Differenzierungsprozesses in das dormante Cystenstadium in Abhängigkeit von der Zellmorphologie unterschiedliche Strategien beobachtet werden (Abb. 9b). In paarweisen stäbchenförmigen Zellen konnte zum einen eine Kontraktion des Zellmaterials an je einem Pol der Teilzelle unter Zurücklassen der leeren Zellhülle und nachfolgendem Zerfall in eine Einzelzelle beobachtet werden (Abb. 9b, 1). Zum anderen konnte jedoch auch ein vollständiger Übergang und eine Konzentration des Zellmaterials in nur eine Einzelzelle eines zuvor paarigen Stäbchens beobachtet werden (Abb. 9b, 2). Die Kontraktion des Zellmaterials resultierte stets in einer Separation des Zellkörpers von der leeren Zellumhüllung unter fortschreitender Reduktion des vegetativen Zellkörpers (Abb. 9b, 3).

Ergänzende Untersuchungen bezüglich des Gram-Verhaltens stickstofffixierender Zellen einer Flüssigkultur ergaben über einen GRAM-Schnelltest (basierend auf der Hydrolyse durch KOH) - im Vergleich zu einer Färbung nach GRAM bzw. mit Kristallviolett - ein differenzierteres Ergebnis. *A. chroococcum* konnte mit diesem GRAM-Schnelltest innerhalb einer Inkubationszeit von 48 h Stunden zwar eindeutig als

3.3.3 Mikroskopische Untersuchungen zur Zellmorphologie von *A. chroococcum* bei Kultivierung mit exogenen Stickstoffquellen

Zur weiteren Charakterisierung des Lebenszyklus wurde der Einfluss anorganischer (0,3 % Ammonium- und Nitratverbindungen, v/v) und organischer (0,4 % Hefeextrakt, Pepton, Harnstoff, v/v) Stickstoffverbindungen auf die Zellmorphologie bei Kultivierung in Flüssigmedium mit bzw. ohne einen Glucose-Zusatz (1 %, v/v) untersucht (vgl. Kap. 2.4.1).

Im Gegensatz zu stickstofffixierenden Zellen konnten in Flüssigkulturen, die in Gegenwart einer zusätzlichen N-Quelle kultiviert wurden, diverse pleomorphe Zellformen determiniert werden. Die Zellen reagierten unabhängig von der zugesetzten Stickstoffquelle mit einer verzögerten bzw. verlangsamen Reduktion der Zellgröße, wobei über eine Inkubationszeit von 8 d weder eine signifikante Differenzierung in das Cystenstadium, noch eine Pigmentbildung erfolgte. Ausgewählte Beispiele für die
atypischen Morphologien, die bei Kultivierung von *A. chroococcum* mit exogenen Stickstoffquellen auftraten, sind in Abb. 10 dargestellt.

Abb. 10: Mikroskopische Aufnahmen (Phasenkontrastmodus) von Zellen einer Flüssigkultivierung in Gegenwart von organischen und anorganischen N-Quellen bei 30 °C. Vorkultivierung mit 1 % Glucose und 0,4 % Hefeextrakt (v/v). Zellen von *A. chroococcum* nach 2-stündiger Inkubation in stickstofffreiem Mineralsalzmedium mit Glucose- und Hefeextrakt-Zusatz (a) sowie nach 96-stündiger Inkubation (b). Zellen einer 72-h-alten Pepton-supplementierten Kultur bei Wachstum in Gegenwart von 1 % Glucose (v/v) als C-Quelle (c) und ohne zusätzliche Glucose unter Bildung diplokokkoider Zellformen und Tetramere aus zwei Diplokokken (siehe Pfeil, d). Zellen bei Inkubation Glucose-supplementierter Ansätze mit KNO₃ nach 48 h (e) sowie 96 h (f).

Im Gegensatz zu Kulturen, die in Anwesenheit einer organischen N-Quellen wuchsen, zeigten Zellen bei Assimilation von anorganischen Stickstoffverbindungen eine aus zwei Kurzstäbchen bestehende Zellform mit einer durchschnittlichen Länge von 7 bis 10 µm (Abb. 10e). Diese waren von einer Akkumulation hell-leuchtender Einlagerungen gekennzeichnet (Abb. 10f), wobei *Ca(NO₃)₂*-supplementierte Kultursätze die intensivste Bildung dieser fein- bis grobkörnig granulären Strukturen aufwiesen.

Aus mikroskopischen Untersuchungen ließ sich daher ableiten, dass unter optimalen Nährstoffbedingungen, die keine Assimilation von atmosphärischem Stickstoff erforderten, kein Übergang von Zellen des Stammes *A. chroococcum* SBUG 1484 in das Cystenstadium resultierte.

3.3.4 Vergleichende Untersuchungen mit *Azotobacter salinestris* und *Bacillus megaterium*

Aufgrund der in mikroskopischen Untersuchungen festgestellten Pleomorphien von *A. chroococcum*, welche maßgeblich durch die in dem Kulturmedium verfügbaren N-Quellen hervorgerufen wurden, erfolgten vergleichende Analysen bezüglich der Zellmorphologie mit Zellen des verwandten Stammes *A. salinestris* DSM 11553 und
des grampositiven, Endosporen-bildenden Bakteriums *Bacillus megaterium* SBUG 1152 bei Kultivierung auf Fest- und Flüssigmedium.

Bei Überführung einer stickstofffixierenden 10 d alten Plattenkultur von *A. salinestris* in Mineralsalzmedium, welches mit 1 % Glucose (v/v) und 0,4 % Hefeextrakt (v/v) versehen war, traten die bei *A. chroococcum* gefundenen Zellformen ebenfalls auf (Abb. 11).

3.4 Wachstum von *A. chroococcum* in Gegenwart exogener Stickstoffquellen bzw. unter Assimilation von Luftstickstoff

Wachstumsversuche mit exogenen Stickstoffquellen erfolgten in 50 mL stickstofffreiem Mineralsalzmedium mit 0,3 % (v/v) der anorganischen bzw. 0,4 % (v/v) der organischen Stickstoffverbindungen sowohl mit als auch ohne Glucose-Zusatz (1 %, v/v). In stickstofffixierenden Kulturen lag lediglich Glucose in derselben Konzentration als alleinige Kohlenstoff- und Energiequelle vor. Die Wachstumsversuche erfolgten
ergänzend zu den in Kap. 3.3.3 vorgestellten mikroskopischen Analysen von Flüssigkulturen, um mithin die Bedingungen für eine bei *A. chroococcum* ermittelte Pigmentbildung näher definieren und auch hier ein standardisiertes Vorgehen für die Gewinnung pigmentierter *A. chroococcum*-Zellen entwickeln zu können.

3.4.1 Wachstum mit anorganischen Stickstoffverbindungen

Während der Kultivierung von *A. chroococcum* in Anwesenheit von NO$_3^-$-Verbindungen (Ca(NO$_3$)$_2$, KNO$_3$, NaNO$_3$) als Stickstoffquelle und mit Glucose als C-Quelle, konnte ein rascher Anstieg der Optischen Dichten festgestellt und ein Übergang in die stationäre Wachstumsphase nach einer Inkubationszeit von 24 h ermittelt werden (Abb. 12A).

![Graph A](image1.png)

Abb. 12: Wachstum von *A. chroococcum* in Gegenwart von NO$_3^-$- und NH$_4^+$-Verbindungen. A) Kulturansätze mit 0,3 % (v/v) Ca(NO$_3$)$_2$ (), KNO$_3$ () und NaNO$_3$ () als N-Quelle und 1 % (v/v) Glucose als C-Quelle im Vergleich zu stickstofffixierenden Kulturen (). B) Wachstum von *A. chroococcum* mit 0,3 % (v/v) (NH$_4$)$_2$SO$_4$ (), NH$_4$NO$_3$ (), NH$_4$Cl () und CH$_3$COONH$_4$ () als N-Quelle und 1 % (v/v) Glucose als C-Quelle im Vergleich zu stickstofffixierenden Kulturen () und Kulturen mit 0,3 % (v/v) CH$_3$COONH$_4$ als alleinige C- und Energiequelle (). Kultivierung in stickstofffreiem Mineralsalzmedium nach WINOGRADSKY, Schüttelfrequenz 180 rpm. Hefeextrakt-Glucose-Vorkultur.

In Kulturen mit NO$_3^-$-Zusatz wurden lediglich marginale Unterschiede der OD$_{500\text{nm}}$ mit Erreichen der stationären Phase festgestellt, wobei die Optische Dichte im Mittel bei 27 ± 3 lag und einem zellulären Proteingehalt von 394 ± 45 µg mL$^{-1}$ entsprach. Das

In Untersuchungen des Wachstums von *A. chroococcum* mit Glucose und 0,3 % (v/v) einer in Form von NH₄⁺-Verbindungen zugesetzten N-Quelle zeigte sich ein, im Vergleich zu Kultivierungen mit NO₃⁻-Salzen, differenzierteres Wachstumsverhalten (Abb. 12B). Unabhängig von der vorliegenden NH₄⁺-Quelle gingen die Zellen nach Inokulation direkt in die exponentielle Wachstumsphase über. Nach einer Inkubationszeit von 7 h betrug die Optische Dichte im Mittel das 10-fache (2,2 ± 0,5) der Anfangs-OD₅₀₀nm. Kulturansätze mit (NH₄)₂SO₄-, NH₄NO₃- und NH₄Cl-Zusatz erreichten innerhalb von 24 h die stationäre Phase. Im Vergleich zu *A.-chroococcum*-Kulturen, die die exogenen Stickstoffverbindungen Ca(NO₃)₂, KNO₃ und NaNO₃ assimilierten (vgl. Abb. 12A), waren die gemessenen Optischen Dichten in Kulturansätzen mit (NH₄)₂SO₄, NH₄NO₃ und NH₄Cl in der stationären Wachstumsphase um 90 % reduziert. Somit können die getesteten NH₄⁺-Salze in der eingesetzten Konzentration als keine geeigneten N-Quellen für eine Produktion von Biomasse mit Glucose als C-Quelle angesehen werden. Ein gesteigertes Wachstum konnte jedoch in Anwesenheit von CH₃COONH₄ ermittelt werden (OD₅₀₀nm 30 ± 1,5), wobei die Optischen Dichten denen der NO₃⁻-Salze-verwertenden Kulturen entsprachen. In Kontrollansätzen, in denen CH₃COONH₄ als alleinige C- und Energiequelle vorlag, traten die Zellen nach einer 24-stündigen lag-Phase innerhalb von 48 h in die stationäre Wachstumsphase über und erreichten eine OD₅₀₀nm, die mit Kulturansätzen, in denen (NH₄)₂SO₄, NH₄NO₃ und NH₄Cl als Stickstoffquelle appliziert wurde, vergleichbar war (Abb. 12B). Unter diesen Bedingungen muss CH₃COONH₄ nicht nur als N-Quelle sondern das in der Verbindung befindliche Acetat auch als eine C-Quelle zur Verfügung stehen. Obgleich in stickstofffixierenden Kulturen eine um 24 h verlängerte exponentielle Wachstumsphase vorlag, erreichte *A. chroococcum* ein mit CH₃COONH₄- und Glucose-supplementierten Kulturen vergleichbares Wachstum.
3.4.2 Wachstum mit organischen stickstoffhaltigen Verbindungen

In Ansätzen, in denen Hefeextrakt und Nährbouillon (0,4 \%, v/v) mit 1 \% Glucose (v/v) als Wachstumssubstrate vorlagen, erreichten die Kulturen in der stationären Wachstumsphase nach einer Inkubationszeit von 48 h im Mittel Optische Dichten von 51,3 ± 2,8 und einen zellulären Proteingehalt von 0,75 ± 0,04 mg mL\(^{-1}\) (Abb. 13A).

![Graphik A: Wachstum von \textit{A. chroococcum} in Gegenwart organischer stickstoffhaltiger Verbindungen. A) Kulturansätze mit 0,4 \%(v/v) der organischen N-Quellen Hefeextrakt (\(\diamondsuit\)), Nährbouillon (\(\bullet\)), Pepton (\(\bigtriangledown\)) und Harnstoff (\(\triangleleft\)) und 1 \%(v/v) Glucose als zusätzliche C-Quelle im Vergleich zu stickstofffixierenden Kulturen (\(\square\)). B) Kulturansätze bei Kultivierung mit 0,4 \%(v/v) Hefeextrakt (\(\Phi\)), Nährbouillon (\(\bigtriangleup\)), Pepton (\(\bigtriangledown\)) und Harnstoff (\(\triangleleft\)) als alleinige N-, C- und Energiequelle (ohne Glucose). Kultivierung in stickstofffreiem Mineralsalzmedium nach WINOGRADSKY, Schüttelfrequenz 180 rpm. Hefeextrakt-Glucose-Vorkultur.](image)

Mit diesen Kombinationen aus N-, C- und Energiequellen wurde somit das in Kultivierungsversuchen mit exogenen Stickstoffquellen höchste Wachstum des Stammes \textit{A. chroococcum} ermittelt; es entsprach einer Verdopplung der
Biomasseproduktion im Vergleich zu Kulturen, die mit anorganischen N-Quellen (vgl. Abb. 12, S. 96) und unter stickstofffixierenden Bedingungen kultiviert wurden.

In Kulturansätzen, in denen Pepton und Harnstoff als N-Quellen zur Verfügung standen, erreichten die OD\textsubscript{500nm} lediglich 52 ± 13 % von jenen Kulturen, die mit Hefeextrakt- bzw. mit Nährbouillon ergänzt wurden (Abb. 13A). In Gegenwart von Glucose als zusätzlicher C-Quelle traten alle Kulturen unter Assimilation einer organischen Stickstoffverbindung direkt in das exponentielle Wachstum über. Jedoch nahmen die Optischen Dichten mit einer Inkubationszeit von 72 h, insbesondere in Kulturen mit Hefeextrakt- bzw. Nährbouillonzusatz, kontinuierlich ab, was auf eine Lyse der Zellen hindeutete. Sofern Hefeextrakt und Nährbouillon als alleinige C- und Energiequelle vorlagen, erreichte die OD\textsubscript{500nm} lediglich 76 ± 1,8 % jener Werte, die nach einer zusätzlichen Glucose-Zufuhr gemessen wurden (Abb. 13B). In Pepton-supplementierten Kulturen traten die Zellen zudem erst nach einer Inkubationszeit von 96 h in die stationäre Phase über. Auch hier konnte, im Vergleich zu Glucose-supplementierten Kulturen, eine Reduktion der Optischen Dichte um bis zu 54 % festgestellt werden. Das Wachstum mit Harnstoff als alleinige Kohlenstoff- und Energiequelle war dem der Zellkontrolle ohne jegliches Substrat gleichzusetzen (in Abb. 13 nicht dargestellt).

In allen Ansätzen in denen exogene N-Quellen anorganischer oder organischer Natur vorlagen, konnte über einen Inkubationszeitraum von 144 h keine Bildung von braun-schwarz gefärbten Kulturen festgestellt werden. Lediglich ohne Zusatz der untersuchten Stickstoffverbindungen, d.h. gleichbedeutend mit einer Assimilation von atmosphärischem Stickstoff, konnte mit Glucose als C- und Energiequelle eine Pigmentbildung der Kulturen beobachtet werden.

Da *A. chroococcum* in Kulturansätzen mit einer Kombination von 0,4 % Hefeextrakt (v/v) und 1 % Glucose (v/v) eine überaus hohe Biomasseproduktion innerhalb einer Inkubationszeit von 24 bis 48 h aufwies (vgl. Abb. 13A), wurde das stickstofffreie Mineralsalzmedium nach WINOGRADSKY mit diesen Nährstoffen in der angegebenen Konzentration für eine Zellanzucht in Flüssigkultur versetzt. In Bezug auf die Inkubationsdauer der Vorkulturen konnte jedoch festgestellt werden, dass Zellen, die länger als 24 h in dem betreffenden Medium angezogen wurden, bei nachfolgender Überführung in stickstofffreies Mineralsalzmedium (1 % Glucose, v/v) ihre Fähigkeit zur Pigment- und Cystenbildung verloren hatten. Gelegentlich konnte zudem eine
Unfähigkeit zum Wachstum unter N$_2$-fixierenden Bedingungen festgestellt werden. Aus diesem Grund erwiesen sich für eine Zellanzucht von *A. chroococcum* nur Übernachtulturen, die nicht länger als 12 - 16 h in Anwesenheit von Hefeextrakt als exogene Stickstoffquelle angezogen wurden, als geeignet für eine nachfolgende Kultivierung unter stickstofffixierenden Bedingungen.

Bei langfristiger Kultivierung des Stamms auf Nähragar konnten bei nachfolgendem Überimpfen auf stickstofffreien Mineralsalzagar ebenfalls weder eine Differenzierung der Zellen in das Cystenstadium noch die Bildung braun-schwarz pigmentierter Kolonien beobachtet werden. Daher wurden für eine Zellanzucht in Flüssigkultur ausschließlich dunkel pigmentierte Zellen, die auf stickstofffreiem Mineralsalzagar herangezogen wurden, als Inokulum verwendet.

3.5 Identifizierung des zellassozierten Pigments und Analyse von Kulturüberständen

3.5.1 Analyse des zellassozierten Pigments

Abb. 14: Isolierte zellgebundene Pigmente im Vergleich zu Referenzsubstanzen.

A. Gelblich-weißes Pigment aus dem Extraktionsüberstand.
B. Dunkelbraunes Pigment des partikulären Extraktionsrückstandes.
C. Referenzsubstanz: Brenzkatechin-Melanin.
D. Referenzsubstanz: DOPA-Melanin.

Referenzsubstanzen wurden nach ARNOW (1938) synthetisiert.

Tab. 26: Löslichkeit des extrahierten zellassozierten A. chroococcum Melanins im Vergleich zu synthetischem Brenzkatechin- und DOPA-Melanin.

<table>
<thead>
<tr>
<th>Lösungsmittel</th>
<th>A. chroococcum (A)</th>
<th>A. chroococcum (B)</th>
<th>Brenzkatechin-Melanin (C)</th>
<th>DOPA-Melanin (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aqua dest. (25 °C)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aqua dest. (80 °C)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0,5 M NaOH (25 °C)</td>
<td>-</td>
<td>+/-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>0,5 M NaOH (80 °C)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>0,8 M KOH (25 °C)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0,8 M KOH (80 °C)</td>
<td>+</td>
<td>+/-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>1 M Na₂CO₃ (25 °C)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1 M Na₂CO₃ (80 °C)</td>
<td>+</td>
<td>+/-</td>
<td>+</td>
<td>+/-</td>
</tr>
<tr>
<td>Aceton</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloroform</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ethanol</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0,1 M FeCl₃ x 6 H₂O</td>
<td>+</td>
<td>+/-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

* + löslich; +/- bedingt löslich; - unlöslich

Anhand der beschriebenen Ergebnisse konnte das von stickstofffixierenden Zellen des Stammes \(A. \ chroococcum \) gebildete Pigment als ein Melanin identifiziert werden. Auf der Grundlage der physiko-chemischen Untersuchungen konnte die Biosynthese eines zellgebundenen Brenzkatechin-Melanins bei \(A. \ chroococcum \) angenommen werden.

3.5.2 Untersuchung zellfreier Kulturüberstände

Neben einer Analyse des zellassozierten Pigments (Kap. 3.5.1) wurden ebenfalls die bräunlich-gefärbten zellfreien Überstände stickstofffixierenden Kulturen eingehender untersucht. Die Kulturansätze wurden in regelmäßigen Intervallen beprobt und spektralphotometrischen Untersuchung hinsichtlich einer extrazellulären Anreicherung von Substanzen mit ortho-Diphenol-Grundstruktur (vgl. Kap. 2.9.1) sowie der Melaninbildung unterzogen (Abb. 15).

3.5.2.1 Strukturaufklärung extrazellulär akkumulierter Substanzen

In Ergänzung zu spektralphotometrischen Untersuchungen wurde, mit dem Ziel einer Identifizierung der in das Kulturmedium ausgeschiedenen Substanzen, eine Extraktion der Überstände stickstofffixierender Kulturen (56 h und 72 h) nach PAGE & HUYER (vgl. Kap. 2.13.1.3) vorgenommen. Die in Methanol gelösten, underivatisierten sauren Extrakte (Extraktion bei pH 2) wurden mittels GC-MS- und HPLC-Analytik vermessen (Abb. 16A, B).

Abb. 16: GC-MS-Chromatogramm (A) und HPLC-Elutionsprofil (B) eines underivatisierten sauren Extraks des Kulturüberstandes von *A. chroococcum*. 56-h-alte stickstofffixierende Kultur. HPLC-Fließmittelgradient 1.

In underivatisierten Extrakten konnte ein dominierender Peak sowohl in massenspektrometrischen als auch chromatographischen Analyseverfahren detektiert werden. In Auswertung der Fragmentierungsmuster, Retentionszeiten und UV-Absorptionsmaxima im Abgleich zu verfügbaren Standardverbindungen, konnte die extrazellulär akkumulierte Substanz P₁ als Brenzkatechin identifiziert werden. Für P₂ konnte das Vorliegen der *ortho*-dihydroxylierten Verbindung 3,4-Dihydroxybenzoesäure ermittelt werden (Tab. 27).
Tab. 27: HPLC- und GC-MS-Daten der in underivatisierten sauren Extrakten einer 56-h-alten stickstofffixierenden *A. chroococcum*-Kultur detektierten Substanzen P₁ und P₂ im Vergleich zu Standardsubstanzen. Analytsubstanzen in Methanol, Standardverbindungen in Aqua dest. aufgenommen. HPLC-Fließmittelgradient 1.

<table>
<thead>
<tr>
<th>Akkumulierte Substanz</th>
<th>HPLC</th>
<th>GC-MS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R_f [min]</td>
<td>UV/VIS-Spektrum, Absorptionsmaxima λ_{max} [nm]</td>
</tr>
<tr>
<td>P₁</td>
<td>4,5</td>
<td> 203, 275</td>
</tr>
<tr>
<td>Brenzkatechin-Standard</td>
<td>4,8</td>
<td> 203, 276</td>
</tr>
<tr>
<td>P₂</td>
<td>4,1</td>
<td> 205, 218, 259, 294</td>
</tr>
<tr>
<td>3,4-Dihydroxybenzoessäure-Standard</td>
<td>4,3</td>
<td> 205, 218, 259, 294</td>
</tr>
</tbody>
</table>

Für die über HPLC-Analysen eindeutig nachgewiesene 3,4-Dihydroxybenzoessäure konnte in GC-MS-Analysen keine korrespondierende Masse detektiert werden. Aufgrund der zusätzlichen Carboxylgruppe besitzt diese Verbindung eine, im Vergleich zu Brenzkatechin, erhöhte Verdampfungstemperatur. Da keine Herabsetzung des Siedepunktes der in den Extrakten befindlichen Substanzen durch eine vorangehende...
Derivatisierung vorgenommen wurde, konnte diese Säure in massenspektrometrischen Analyseverfahren vermutlich nicht detektiert werden. Für die in HPLC-Analysen saurer Extrakte detektierte Substanz P₃ wurde eine hydrophile Substanz mit offener Ringstruktur angenommen, da deren Absorptionsmaximum und die frühe Elution mit den Charakteristiken ringoffener Dicarboxylgruppen-tragender Standardverbindungen vergleichbar war (Tab. 28).

<table>
<thead>
<tr>
<th>P₃</th>
<th>UV/VIS-Spektren, Absorptionsmaxima λₘₐₓ [nm] und chemische Bezeichnungen der Referenzverbindungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>259</td>
<td>[Diagramm]</td>
</tr>
<tr>
<td>263</td>
<td>[Diagramm]</td>
</tr>
<tr>
<td>260</td>
<td>[Diagramm]</td>
</tr>
<tr>
<td>261</td>
<td>[Diagramm]</td>
</tr>
</tbody>
</table>

Die Substanz P₃ und weitere über die angewandten Analyseverfahren detektierte Substanzen (vgl. Tab. 12, Anhang), konnten in der vorliegenden Arbeit strukturchemisch nicht näher charakterisiert werden.

Ergänzend zu einer Analyse saurer Extrakte wurden wässrige Kulturüberstände mittels HPLC-Analyse untersucht, um den zeitlichen Verlauf der als Brenzkatechin und 3,4-Dihydroxybenzoesäure identifizierten extrazellulär akkumulierten Substanzen erfassen zu können. Wie bereits durch spektralphotometrische Untersuchungen bezüglich einer Quantifizierung von ortho-Diphenolen unter Anwendung der Methode nach BARNUM ermittelt wurde, zeigte A. chroococcum mit fortschreitender Kultivierungszeit eine gesteigerte Ausscheidung von Brenzkatechin-Derivaten (vgl. Kap. 3.5.2). Nach 120-stündiger Kultivierung unter Assimilation von Luftstickstoff lag das ortho-Diphenol Brenzkatechin in einer maximalen Konzentration (0,52 mM) vor. Hingegen wurde 3,4-Dihydroxybenzoesäure nach 48 h Inkubation am stärksten ausgeschieden und erreichte in der exponentiellen Wachstumsphase eine maximale Konzentration von 40,3 µM. Mit Vorliegen der Zellen in der stationären Phase war die 3,4-Dihydroxybenzoesäure-Konzentration jedoch abrupt um 93 % gesunken.
3.5.2.2 Einfluss der Nitrogenase-relevanten Metallionen Na$_2$MoO$_4$ und FeSO$_4$

Ein optimales Wachstum von *A. chroococcum* erfolgte in stickstofffreiem Standard-Mineralsalzmedium und einer Supplementierung mit Na$_2$MoO$_4$- und FeSO$_4$-Ionen (Abb. 17A). Im Vergleich dazu erreichten Kulturen, die in Abwesenheit von Na$_2$MoO$_4$ kultiviert wurden, mit Eintritt in die stationäre Wachstumsphase 53 %, Kulturen mit Mangel an FeSO$_4$ oder beider Metallverbindungen lediglich 19 bzw. 16 % der OD$_{500nm}$ (Abb. 17A).

Zudem bewirkte ein Na₂MoO₄-Mangel eine Reduktion des Proteingehalts der Kulturen um 42 %; ein Fehlen an FeSO₄ sowie ein gänzlicher Mangel an Na₂MoO₄ und FeSO₄ führte zu einem um 83 bzw. 88 % herabgesetzten Proteingehalt (Abb. 17B).

Wie in Kap. 3.4.2 beschrieben, konnte in stickstofffixierenden *A. chroococcum*-Kulturen, die in Standardmineralsalzmedium kultiviert wurden, gelegentliche Störungen in der Melanin-Synthese festgestellt werden. Diese konnten auf eine zuvor langfristige Kultivierung des Stammes in Anwesenheit einer exogenen Stickstoffquelle bei der Zellanzucht zurückgeführt werden; eine Fremdkontamination konnte über mikroskopische Analysen und Reinheitsprüfungen auf NAg ausgeschlossen werden.

Über spektralphotometrische Messungen hinsichtlich der Ausscheidung von ortho-dihydroxylierten, Metallionen-komplexierenden Siderophoren konnte nach einer Kultivierungszeit von 96 h die höchste Gesamt-Brenzkatechin-Siderophor-Konzentration (λ = 310 nm) in Kulturen, die ohne Mangel an Na₂MoO₄- und FeSO₄-Ionen wuchsen ermittelt werden (Abb. 17D). Im Vergleich dazu betrug der Brenzkatechin-Siderophor-Gehalt bei Mangel an dem für ein Wachstum und die
Melaninbildung als essentiell identifizierten FeSO₄ 51 %, hingegen unter Na₂MoO₄-Mangelbedingungen (und normalem FeSO₄-Gehalt) lediglich 34 %. Desweiteren zeigten Kulturen bei FeSO₄-Defizit die höchste Konzentration des spezifischen ortho-dihydroxylierten Eisenchelators Azotobactin (λ = 380 nm; Abb. 17D). Im Gegensatz dazu war der Azotobactin-Gehalt in Standardkulturen um 54 % und in mit FeSO₄-supplementierten Kulturen um 84 % reduziert. Die Analyse dieses spezifischen Siderophors zeigte somit, dass eine Supplementierung der Kulturen mit Fe-Ionen für das stickstofffixierende Wachstum von A. chroococcum erforderlich war und bei Mangel eine gesteigerte Freisetzung von komplexierenden ortho-dihydroxylierten Siderophorsystemen erfolgte.

3.5.2.3 Einfluss einer Kupfersupplementierung auf stickstofffixierende Kulturen

Untersuchungen bezüglich der extrazellulären Melaninbildung (400 nm) deuten - insbesondere nach 48-stündiger Kultivierung - darauf hin, dass eine 3 und 5 µM CuSO₄- Supplementierung eine frühere Bildung bzw. Ausscheidung von Melanin in das umgebende Kulturmedium auslöste und die Zellen in Gegenwart dieser erhöhten Kupferkonzentrationen bereits melanogen erschienen (Abb. 18A). Dennoch konnte mit fortschreitender Kultivierung eine um 47 und 60 % höhere Melaninkonzentration in Standardkulturen sowie in Kulturen mit 1 µM CuSO₄-Zusatz bei Erreichen der stationären Phase festgestellt werden (Abb. 18A).

HPLC-Analysen von zellfreien Kulturüberständen zeigten zudem eine von der CuSO₄-Konzentration beeinflusste Ausscheidung der ortho-dihydroxylierten Verbindungen Brenzkatechin und 3,4-Dihydroxybenzoesäure (Abb. 18A, B). Die höchsten Brenzkatechin-Konzentrationen konnten dabei in Standardkulturen (0,52 mM Brenzkatechin nach 120 h) erfasst werden, wobei mit ansteigenden Mengen an CuSO₄-Ionen eine simultane Abnahme in der extrazellulären Ausscheidung dieser Substanz festgestellt wurde (Abb. 18B). Im Allgemeinen lag jedoch sowohl in Standardkulturen als auch in Kulturen mit zusätzlicher Kupfersupplementierung eine mit fortschreitender Kultivierung verbundene Akkumulation von Brenzkatechin vor. Im Gegensatz dazu erfolgte lediglich eine vorübergehende extrazelluläre Akkumulation von 3,4-Dihydroxybenzoesäure, welche in allen Kulturansätzen ihre maximale Konzentration nach einer Inkubationszeit von 48 h erreichte und nachfolgend abnahm (Abb. 18C). Die höchste Quantität dieser aromatischen Säure lag in Kulturen mit 3 µM CuSO₄ vor. Allerdings konnte kein direkter Zusammenhang zwischen der Ausscheidung von 3,4-
Dihydroxybenzoesäure und der in dem Kulturmedium vorliegenden Kupferionen-Konzentration erfasst werden.

3.6 Nachweis einer Phenoloxidase-Aktivität in *A. chroococcum*

In einleitenden Versuchen zum Nachweis der Expression einer Phenoloxidase-Aktivität wurden Schnelltestungen mit Zellextrakten (vgl. Kap. 2.11.2.1) stickstofffixierender und in Anwesenheit einer exogenen Stickstoffquelle kultivierter Zellen durchgeführt. 400 µL der nach unterschiedlichen Inkubationszeiten über einen mechanischen Aufschluss gewonnenen Zellextrakte wurden in mit 500 µL NaAC (0,1 M, pH 5) versehene 1,5-mL-Reaktionsgefäße überführt und mit 100 µL einer 5 mM Stammlösung der Phenoloxidase-spezifischen Substrate ABTS, 2,6-Dimethoxyphenol (2,6-DMP) und Syringaldazin versetzt. Nach Inkubation der Reaktionsansätze bei Raumtemperatur, sowie 30 und 37 °C, konnte in allen Ansätzen, in denen sich Extrakte stickstofffixierender *A.-chroococcum*-Zellen befanden, ein für die Redoxindikatoren ABTS und 2,6-DMP spezifischer kolorimetrischer Farbumschlag erfasst werden (Abb. 19A, B). Dieser wurde bereits 1 min nach Substratzusatz ersichtlich und intensivierte sich mit fortschreitender Inkubation.

![Abb. 19: Schnelltestungen von Zellextrakten einer 72-h-alten stickstofffixierenden *A.-chroococcum*-Kultur in Reaktionsansätzen mit ABTS (A) und 2,6-DMP (B) nach 10-minütiger Inkubation bei 25, 30 und 37 °C. Kultivierung in stickstofffreiem Mineralsalzmedium nach WINOGRADSKY mit 1 % (v/v) Glucose. Hefeextrakt-Glucose-Vorkultur. Schüttelfrequenz 180 rpm.](image)

In Testung von Zellextrakten, welche nach unterschiedlichen Inkubationszeiten (24 - 120 h) aus Kulturen mit einer zusätzlichen anorganischen und organischen Stickstoffquelle (vgl. Kap. 3.4.1 und 3.4.2) präpariert wurden, zeigten sich über eine Inkubationszeit von 24 h keine Aktivitäten gegenüber den getesteten Phenoloxidase-
Substraten. Da in diesen Kulturen keine Fixierung von atmosphärischem Stickstoff erforderlich war, konnte ein erster Zusammenhang zwischen der Existenz einer Phenoloxidase-Aktivität und der Kultivierung unter stickstofffixierenden Bedingungen angenommen werden (Tab. 29).

Tab. 29: Übersicht über das in Abhängigkeit von den Kultivierungsbedingungen makroskopisch und mikroskopisch erfasste Kultur- und Zellstadium, welches mit einer positiven Testung des Stammes \emph{A. chroococcum} auf Phenoloxidase-Aktivität verbunden war.

<table>
<thead>
<tr>
<th>N-Quelle</th>
<th>Assimilation von Luftstickstoff</th>
<th>Assimilation exogener N-Quellen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molekularer Stickstoff (N₂)</td>
<td>0,3 % Organische bzw. 0,4 % organische N-haltige Verbindungen (v/v)</td>
<td></td>
</tr>
<tr>
<td>C-Quelle</td>
<td>1 % Glucose (v/v)</td>
<td>1 % Glucose (v/v) bzw. 0,4 % organische N-haltige Verbindungen (v/v)</td>
</tr>
<tr>
<td>Melaninbildung</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Cystenbildung</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Phenoloxidase-Aktivität in Zellextrakten</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Aus den Untersuchungen zur Pigmentbildung von \emph{A. chroococcum} in Abhängigkeit von den Kultivierungsbedingungen, insbesondere einer Supplementierung mit exogenen stickstoffhaltigen Verbindungen, konnte eine weitere Korrelation der nachgewiesenen Enzymaktivität mit dem Auftreten von braun-schwarzen melanogenen Kulturen abgeleitet werden. Nach Analyse der Zellmorphologie bzw. der Differenzierungszyklen des Stammes in Abhängigkeit von der im Kulturmedium assimilierten N-Quelle (vgl. Kap. 3.3.1 und Kap. 3.3.3), konnte ein Übergang in das Cystenstadium ausschließlich in stickstofffixierenden Kulturen festgestellt werden. Unter Berücksichtigung dieser Tatsache konnte weiterhin ein Zusammenhang zwischen der Zellmorphologie bzw. Cystenbildung und der Expression einer Phenoloxidase-Aktivität herausgestellt werden (Tab. 29). In nachfolgenden Kapiteln wird das in stickstofffixierenden Zellen determinierte Enzym als \emph{AcCL} bezeichnet.
3.6.1 Untersuchung der Phenoloxidase-Aktivität in stickstofffixierenden Kulturen

Mit dem Ziel, eine Beziehung zwischen den Wachstumsphasen, der damit verbunden morphologischen Differenzierung vegetativer Zellen in das Cystenstadium unter Ausbildung braun-schwarz pigmentierter Kulturen und der in Zelleextrakten bestimmbaren Phenoloxidase-Aktivität (AcCL) herstellen zu können, erfolgte eine Präparation zellfreier Rohextrakte (vgl. Kap. 2.10.1) nach unterschiedlichen Inkubationszeiten (24-96 h; Abb. 20).

3.6.2 Lokalisation der Phenoloxidase

Mit dem Ziel, das Auftreten des in *A. chroococcum* identifizierten Enzyms AcCL in spezifischen Zellfraktionen nachweisen zu können, wurden Zellen einer Fraktionierung von Zellkompartmenten (u.a. cytosolische Fraktion, innere und äußere Membranen) unterzogen (vgl. Kap. 2.10.1, Abb. 5). Generell konnte keine AcCL-Aktivität in den zellfreien Kulturüberständen nachgewiesen werden (11.000 x g), hingegen konnte eine

Nach einer Inkubationszeit von 24 h (in Abb. 21 nicht dargestellt) konnte bei Analyse unaufgeschlossener gewaschenen Zellen eine geringe messbare Aktivität gegenüber 2,6-DMP festgestellt werden. Unaufgeschlossene Zellen einer 48-h-Kultur wiesen bereits eine stärkere Substratkonversion auf (Abb. 21). Mit fortschreitender Inkubationszeit und dem Übergang der Zellen in das Cystenstadium nahm die in ganzen Zellen bestimmte Aktivität jedoch wieder deutlich ab, obwohl die Aktivität nach Zellzerstörung im gleichen Zeitraum (48-72 h) zunahm. Somit schien die zelluläre Lokalisation von AcCL im Zuge des Zelldifferenzierungsprozesses mit dem Verlust der originären Zellwand- und Membranconstitution und der Entwicklung von Multilayer-Membransystemen

ERGEBNISSE

der Cysten davon betroffen zu sein. Nach einer préparativen Zentrifugation des Zelleextraktes zur gezielten Gewinnung einzelner Fraktionen, konnte zwar eine Aktivität in zellfreien Rohextrakten (6.000 x \(g\)) erfasst werden, jedoch war die Aktivität gegenüber 2,6-DMP in den partikulären Fraktionen (Zelltrümmer) stets höher. Zudem ergaben Aktivitätstestungen mit cytosolischen Fraktionen und inneren Membranen ausschließlich in der 24-h-Kultur einen positiven Enzymnachweis (in Abb. 21 nicht dargestellt), welcher in älteren Kulturen nicht generiert werden konnte. Im Allgemeinen wurde mit zunehmender Kultivierungszeit eine erhöhte PO-Aktivität in den Zelleextrakten und auch in Präparaten der äußeren Hüllmembranen erfasst (Abb. 21). Dies stand in einer engen Korrelation zu der Bildung des äußeren Cystenmantels. Da keine AcCL-Aktivitäten in den nach Ultrazentrifugation (100.000 x \(g\)) gewonnenen Überständen detektiert werden konnten und die in zellfreien Rohextrakten gemessenen Aktivitäten im Vergleich zu denen der partikulären Fraktionen beträchtlich reduziert waren, deutete dies darauf hin, dass das Enzym AcCL in einer starken Assoziation mit den Zellwänden, äußeren Membranbestandteilen und Cystenhüllen- bzw. ummantelungen steht.

Abb. 22: Relative Aktivitäten zellfreier Rohextrakte vor (100 % relative Aktivität;) und nach einer 30-minütigen Inkubation der partikulären Zellfraktion einer 56 h-alten Kultur bei 30 °C in Gegenwart ansteigender Konzentrationen an Triton X-100 (), EDTA (), CHAPS () sowie einer Kombination aus Guanidinhydrochlorid (5 mM) und Triton X-100 (5-40 mM). 2,6-DMP-Assay. Standardabweichungen aus 4-fach-Bestimmung ermittelt.

Aktivitätsmessungen mit zellfreien Rohextrakten (6.000 x g) nach Inkubation der partikulären Zellfraktionen mit diversen solubilisierenden Agentien, zeigten die größte Steigerung der 2,6-DMP-Oxidation nach Behandlung mit dem anionischen Chelatbildner Na₂H₂EDTA (Abb. 22). Gegenüber unbehandelten Präparaten konnte mit 5 mM Na₂H₂EDTA eine um 83 % erhöhte AcCL-Aktivität bei einem um 20 % gesteigerten Proteingehalt ermittelt werden. Diese Aktivitätssteigerung wurde jedoch mit ansteigenden Konzentrationen an Na₂H₂EDTA reduziert. Eine 20 %-ige Erhöhung der AcCL-Aktivität in zellfreien Rohextrakten konnte auch nach Inkubation mit dem nicht-ionischen Tensid Triton X-100 (5 mM) festgestellt werden (Abb. 22). Nach Behandlung mit zwitterionischem CHAPS sowie einer Kombination aus nichtionischer und chaotropher Reagenz (Guanidinhydrochlorid/Triton X-100) setzte mit ansteigenden Konzentrationen dieser Substanzen eine stete Verminderung der 2,6-DMP-Oxidationsraten ein (Abb. 22). Nach Inkubation der partikulären Zellfraktion mit weiteren Detergenzien (Guanidinhydrochlorid, Sarkosyl) und Kombinationen verschiedenartiger Substanzen (CHAPS/Triton X-100, Guanidinhydrochlorid/Sarkosyl) konnten lediglich marginale bis keine positiven Effekte bezüglich einer Aktivitätssteigerung erfasst werden (in Abb. 22 nicht dargestellt). Auch nach Inkubation mit SDS war selbst in der geringsten Konzentrationsstufe keine messbare AcCL-
Aktivität mehr vorhanden. Vergleichbare Ergebnisse lagen ebenso mit den Membranprotein-solubilisierenden Detergenzien Tween 20 und Tween 80 vor.

3.6.3 Beeinflussung der Phenoloxidase-Aktivität durch eine Kupfersupplementierung stickstofffixierender Kulturen

Eine Expression von Phenoloxidasen in Prokaryoten wurde vielfach in Verbindung mit einem Efflux und einer Detoxifizierung von toxischen Metallionen beschrieben (GRASS et al., 2004; KIM et al., 2001). Dabei bewirkte insbesondere eine Erhöhung der Kupferionen-Konzentration im Kulturmedium eine Induktion bzw. Aktivitätssteigerung prokaryotischer Phenoloxidase-Aktivitäten, die mitunter in einer erhöhten zellularen Pigmentierung resultierten. Dementsprechend wurde, neben dem Einfluss einer Kupfersupplementierung auf die Pigmentbildung stickstofffixierender A.-chroococccum-Kulturen (vgl. Kap. 3.5.2.3), die möglicherweise von der Kupferionen-Konzentration abhängige Aktivität bzw. Expression der zellassoziierten Phenoloxidase untersucht. In zellfreien Rohextrakten konnte eine messbare Erhöhung der Gesamtaktivitäten mit ansteigender Cu^{2+}-Ionenkonzentration verzeichnet werden (Abb. 23). Im Vergleich zu Zellen, die im Standardmedium kultiviert wurden (0,767 µM Cu^{2+}; 40 nmoL mL^{-1} min^{-1}), konnten in zellfreien Rohextrakten von Kulturen mit einer zusätzlichen Kupferquelle bis zu 5-fach höhere Aktivitäten (218 nmoL mL^{-1} min^{-1} mit 3 µM CuSO_{4}; 162 nmoL mL^{-1} min^{-1} mit 5 µM CuSO_{4}) gemessen werden.

Bezüglich einer zusätzlichen Kupfersupplementierung von *A. chroococcum* konnte somit festgestellt werden, dass Kulturen mit Kupfersupplementierung (1 bis 3 µM) gesteigerte 2,6-DMP-Oxidationsraten aufwiesen, jedoch eine weitere Erhöhung der Cu²⁺-Ionenkonzentration (5 µM) wiederum ein Aktivitätsabnahme bedingte.

3.7 Charakterisierung der prokaryotischen Phenoloxidase *AcCL* von *A. chroococcum*

3.7.1 Ermittlung des pH-Optimums

Das pH-Optimum der in zellfreien Rohextrakten enthaltenen Phenoloxidase *AcCL* wurde über eine Oxidation des Redoxindikators ABTS in verschiedenen Puffersystemen in einem pH-Bereich von 1,0 bis 7,5 bei einer Temperatur von 30 °C untersucht (Abb. 24).
Abb. 24: Relative Aktivitäten von \(\text{AcCL}\) in Abhängigkeit vom pH-Wert des Puffersystems (0,1 M) in einem Bereich von pH 1,0 - 7,5 im ABTS-Assay (30 °C). Dargestellte Werte und Standardabweichungen aus Dreifachbestimmungen bezogen.

Es konnte als pH-Optimum von \(\text{AcCL}\) ein pH-Wert von 4,5 (0,1 M Natrium-Acetat-Puffer) ermittelt werden.

Bei Testung der \(\text{AcCL}\)-Aktivität in Malonsäure-Puffer war diese im Vergleich zu Phosphorsäure-Puffer um 20 % (pH 1,0) bzw. 95 % (pH 2,0) reduziert. Zudem konnten in Natrium-Acetat-Puffer (pH 2,0) lediglich 58 % der in Phosphorsäure-Puffer ermittelten Aktivitäten erfasst werden. Bei pH 3,0 relativierte sich der aktivitätsmindernde Einfluss von Malonsäure, sodass 72 % der in einem Phosphorsäure-Puffersystem gemessenen \(\text{AcCL}\)-Aktivitäten vorlagen. In Aktivitätsmessungen bei einem pH-Wert von 5,5 erwies sich weiterhin Bis-TRIS-Puffer als ein ungeeignetes Reaktionsmilieu, da hier - im Gegensatz zu Natrium-Acetat-Puffer (pH 5,5) - die Enzymaktivität um 94 % reduziert war.
3.7.2 Untersuchungen zur Temperaturstabilität

Untersuchungen zur Temperaturstabilität wurden nach 30-minütiger Inkubation zellfreier Rohextrakte bei Temperaturen von 25 bis 55 °C durchgeführt. Die verbliebene Aktivität wurde bei gleicher Temperatur (30 °C) gegenüber ABTS bzw. 2,6-DMP gemessen.

Abb. 25: Darstellung der relativen Aktivitäten der Phenoloxidase *AcCL* nach 30-minütiger Inkubation der Enzympräparate bei Temperaturen von 25 bis 50 °C in NaAC-Puffer (0,1 M, pH 5). Restaktivitäten wurden über eine Oxidation von ABTS (-) und 2,6-DMP (●) ermittelt. Dargestellte Werte und Standardabweichungen aus Vierfachbestimmung erhalten.

3.7.3 Prüfung des Einflusses von Lösungsmitteln

Um die katalytische Leistungsfähigkeit der prokaryotischen Phenoloxidasen AcCL in Gegenwart eines Lösungsmittels gewährleisten zu können, wurde deren Lösungsmittelverträglichkeit geprüft. Die Untersuchungen erfolgten mit aufsteigenden Konzentrationen der betreffenden Lösungsmittel nach 20- und 60-minütiger Inkubation der Enzympräparate bei 30 °C. Die Aktivität wurde in Gegenwart aprotisch unpolarer Lösungsmittel wie n-Hexan und Tetrahydrofuran (THF), aprotisch polarer Lösungsmittel wie Dimethylsulfoxid (DMSO) und Acetonitril (ACN) sowie protischer Lösungsmittel wie Ethanol (EtOH) und Methanol (MeOH) untersucht (Abb. 26).

Abb. 26: Relative Aktivitäten von AcCL nach Inkubation (60 min) in Gegenwart ansteigender Konzentrationen der organischen Lösungsmittel n-Hexan (■), THF (●), DMSO (○), ACN (△), EtOH (▲) und MeOH (♦) bei 30 °C. Restaktivitäten als Mittelwerte einer Vierfachbestimmung dargestellt und in Relation zu relativen Aktivität von Positivkontrollen ohne Lösungsmittelzusatz (100 %) gesetzt. 2,6-DMP-Assay bei RT.
Generell konnte festgestellt werden, dass die nach 20-minütiger Inkubation hervorgerufene Lösungsmittel-abhängige Inhibition nach einer Inkubationszeit von 60 min relativ stark kompensiert wurde. In Abb. 26 sind daher die Ergebnisse nach einer 60-minütigen Inkubation der Enzympreparate zusammengefasst.

Unter Berücksichtigung der getesteten Lösungsmittelklassen, erwiesen sich die protischen Lösungsmittel EtOH und MeOH als diejenigen, welche die geringste Inhibition auf die Enzymaktivität von AcCL ausübten. Bis zu einer 10 %-igen Konzentration dieser Lösungsmittel konnte nach 60-minütiger Inkubation keine Inhibition ermittelt werden. Zudem lagen die über eine Oxidation von 2,6-DMP gemessenen relativen Aktivitäten mit weiterer Erhöhung der Lösungsmittelkonzentration (15 %) immerhin noch bei 77 % (EtOH) und 63 % (MeOH). In Gegenwart von DMSO (15 %, v/v), welches ein aprotisch polares Lösungsmittel darstellt, konnte sogar eine Erhöhung der relativen Aktivitäten um 10 % (20 min) bzw. 42 % (60 min) festgestellt werden, wobei diese Aktivitätserhöhung bei einer weiteren Steigerung der DMSO-Konzentration (20 %) noch bei 22 % lag (Abb. 26). ACN führte dagegen mit zunehmender Konzentration zu einer relativ schnellen Abnahme der Enzymaktivitäten, wobei die relativen Aktivitäten bereits nach 20 min 23 %, nach 60 min Inkubation nur noch 10 % der Aktivitäten ohne Lösungsmittelzusatz betrugen. In Anwesenheit der aprotisch unpolaren Lösungsmittel n-Hexan und THF (15 %, v/v) konnten relative Aktivitäten von 69 % bzw. 38 % ermittelt werden (Abb. 26). Mit einem Anstieg der THF-Konzentration um je 5 % resultierte eine durchschnittliche Abnahme der 2,6-DMP-Oxidation um 23 %. Diese konnte für n-Hexan, welches derselben Lösungsmittelgruppe angehört, nicht ermittelt werden.

Neben einer Prüfung des Einflusses von Lösungsmitteln auf die Aktivität der von A. chroococcum exprimierten Phenoloxidase AcCL wurde auch die Lösungsmittelresistenz der prokaryotischen Phenoloxidase CotA von B. subtilis untersucht. Dazu wurde der aus einer rekombinanten Expression gewonnene Extrak (vgl. Anhang, Tab. 4) mit ansteigenden Konzentrationen des Lösungsmittels Methanol inkubiert (30 °C) und die Aktivität über eine ABTS-Oxidation sowohl direkt nach Lösungsmittelzusatz als auch nach 5-, 20- und 60-minütiger Inkubation gemessen. Im Zuge einer Inkubation des Enzympreparates bei 30 °C nahm die Aktivität von CotA innerhalb von 60 min - auch ohne die Anwesenheit von MeOH - um 25 % ab (Abb. 27).
ERGEBNISSE

Abb. 27: Darstellung der relativen Aktivitäten der Phenoloxidase CotA nach Inkubation (0, 5, 20, 60 min) der Enzymproben in NaAC-Puffer (0,1 M, pH 5) ohne Lösungsmittelzusatz (●) sowie in Gegenwart von 5 (△), 10 (☆), 15 (⊗), 20 (⊗) und 25 % MEOH (✗) bei 30 °C. Restaktivitäten im ABTS-Assay bei RT ermittelt. Dargestellte Werte entsprechen den Mittelwerten von drei unabhängig voneinander durchgeführten Messungen.

Durch den Zusatz ansteigender MeOH-Konzentrationen (5 - 10 %, v/v) konnte, unter Berücksichtigung der ohne Lösungsmittelzusatz bedingten Aktivitätsabnahme, eine Reduktion der CotA-Aktivität um 8 bzw. 26 % (60 min) erfasst werden (Abb. 27). Der aktivitätsmindernde Einfluss von MeOH stieg mit fortschreitender Inkubationszeit konstant an. Bei einer 15 %-igen MeOH-Konzentration betrug die relative Aktivität von CotA nach direktem Lösungsmittelzusat noch 54 % der Ausgangsaktivität (0 % MeOH), wobei mit fortschreitender Inkubation eine Abnahme um weitere 12 % (5 min), 29 % (20 min) und 15 % (60 min) zu verzeichnen war. Mit einer weiteren Steigerung der MeOH-Konzentrationen auf 30, 40 und 50 % konnten zudem nur Restaktivitäten von 23, 17 und 11 % nach direktem Lösungsmittelzusat gemessen werden (in Abb. 27 nicht dargestellt).

3.7.4 Prüfung des Einflusses organischer Säuren

Da sich bereits in Untersuchungen bezüglich der Ermittlung des pH-Optimums eine starke Abhängigkeit der gemessenen AcCL-Aktivitäten von der in dem Puffersystem vorliegenden Säure angedeutet hatte (vgl. Kap. 3.7.1), sollte geprüft werden, inwieweit eine zusätzliche Zugabe von organischen Säuren die Aktivität beeinflusst. Die Aktivitätsmessungen wurden in NaAC-Puffer (0,02 M bzw. 0,1 M, pH 5) unter Zusatz
ansteigender Konzentrationen von Natriumacetat bzw. Natriumcitrat durchgeführt und der Einfluss dieser auf die 2,6-DMP-Oxidationsraten von AcCL geprüft (Abb. 28).

Abb. 28: Darstellung der relativen Aktivitäten von AcCL nach Zusatz ansteigender Volumina der organischen Monocarbonsäure Natriumacetat zu einem 0,02 M () und 0,1 M () NaAC-Puffersystem (pH 5) sowie der Tricarbonsäure Natriumcitrat zu einem 0,1 M NaAC-Puffersystem (). Dargestellte Werte entsprechen den Mittelwerten von vier unabhängig voneinander durchgeführten Messungen im 2,6-DMP-Assay bei RT.

Ein Zusatz von Natriumacetat zeigte - sowohl in einem 0,02 M als auch 0,1 M NaAC-Puffersystem - eine mit zunehmender Konzentration dieser organischen Säure verbundene Abnahme der 2,6-DMP-Oxidation (Abb. 28). In 0,02 M NaAC-Puffer wurde die Enzymaktivität nach Zusatz von 1, 5, 10 und 20 mM Natriumacetat nur relativ schwach beeinflusst und entsprach im Wesentlichen den Ausgangsaktivitäten. Eine Inhibition des Enzmys setzte ab einer 50 mM Natriumacetat-Konzentration ein (82 % relative Aktivität), wobei nach Zusatz von 70 und 100 mM Natriumacetat die 2,6-DMP-Oxidation um weitere 23 bzw. 32 % reduziert wurde (Abb. 28). Hingegen war in einem 0,1 M NaAC-Puffersystem die aktivitätsmindernde Wirkung von Natriumacetat, bedingt durch die erhöhte Pufferkapazität, vermindert, sodass nach Zusatz von 100 mM Natriumacetat die 2,6-DMP-Oxidation noch 71 % der relativen Aktivität vorlagen.

Nach Zusatz von 1 bis 20 mM der Tricarbonsäure Natriumcitrat (0,1 M NaAC-Puffer), konnte eine 33 bis 29 %-ige Steigerung der 2,6-DMP-Oxidation ermittelt werden (Abb. 28). Jedoch erfolgte auch hier ab einer 50 mM Konzentration eine stetige Abnahme der Enzymaktivität auf 54 % (100 mM Natriumcitrat, v/v).

Die nach Zusatz einer dem Puffersystem zugrundeliegenden oder andersartigen organischen Säure erfassten Aktivitäten ließen im Allgemeinen bis zu einer

3.7.5 Prüfung des Einflusses von Metallionen

Die Effekte von Metallionen (0,01, 0,1, 1 und 2 mM, v/v) auf die AcCL-Aktivität wurden anhand der 2,6-DMP-Oxidation. Da CuSO₄, CuCl₂, FeCl₃, NiCl₃ und (CH₃COO)₂Pb in Kontrollansätzen eine Autoxidation des phenolischen Enzymsubstrates erkennen ließen, wurde ihr Einfluss in Ansätzen mit dem nicht-phenolischen ABTS geprüft (Tab. 30).

Tab. 30: Einfluss von Metallsalzen auf die AcCL-Aktivität. Phenoloxidase-Aktivität im 2,6-DMP- bzw. ABTS-Assay nach Zusatz wässriger Stammlösungen der Metallverbindungen bei RT gemessen. Dargestellte Werte entsprechen den Mittelwerten einer Vierfachbestimmung mit einer relativen Standardabweichung unter 5 %.

<table>
<thead>
<tr>
<th>Metallverbindung</th>
<th>Konzentration [mM]</th>
<th>Relative Aktivität [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohne</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>ZnSO₄</td>
<td>0,1</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>1,0</td>
<td>61</td>
</tr>
<tr>
<td>FeSO₄</td>
<td>0,01</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>0,1</td>
<td>25</td>
</tr>
<tr>
<td>MnSO₄</td>
<td>0,1</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>1,0</td>
<td>87</td>
</tr>
<tr>
<td>MgSO₄</td>
<td>0,1</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>1,0</td>
<td>99</td>
</tr>
<tr>
<td>CuSO₄</td>
<td>0,1</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>1,0</td>
<td>130</td>
</tr>
<tr>
<td>MnCl₂</td>
<td>0,1</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>1,0</td>
<td>86</td>
</tr>
<tr>
<td>CoCl₂</td>
<td>0,1</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>1,0</td>
<td>80</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>0,1</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>1,0</td>
<td>85</td>
</tr>
<tr>
<td>CuCl₂</td>
<td>0,1</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>1,0</td>
<td>78</td>
</tr>
<tr>
<td>FeCl₃</td>
<td>0,1</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>1,0</td>
<td>79</td>
</tr>
</tbody>
</table>
Die größte Inhibition der Phenoloxidase \textit{AcCL} ergab sich nach Zusatz von FeSO$_4$, wobei mit einer 0,1 mM Konzentration die Aktivität im Vergleich zu Referenzwerten ohne Metallion-Zusatz um 75 % reduziert war. Im Gegensatz dazu konnten bei Zusatz trivalenter Eisenionen (FeCl$_3$) in derselben Konzentrationsstufe keine vergleichbaren inhibitorischen Effekte erfasst werden. Eine relativ geringe Inhibition (~ 80 % relative Aktivität) wurde durch den Zusatz von MnSO$_4$, CoCl$_2$ und CaCl$_2$ (1 mM, v/v) festgestellt. Mit Zusatz von ZnSO$_4$, H$_3$BO$_3$ und (CH$_3$COO)$_2$Pb (1 mM, v/v) betrugen die relativen Aktivitäten ca. 60 %. Mit 0,1 mM Mg$^{2+}$- und Cu$^{2+}$-Salzen (v/v) konnte eine Aktivitätserhöhung um bis zu 10 % gemessen werden. Eine Supplementierung der Ansätze mit 1 mM CuSO$_4$ (v/v) bewirkte zudem eine 30 %-ige Aktivitätssteigerung der \textit{AcCL}.

3.7.6 Vergleichende Untersuchungen bezüglich des Inhibitor- und Substratspektrums unter Einbeziehung eukaryotischer Referenzenzyme

Deshalb wurden mit der in dem stickstofffixierenden Prokaryoten \textit{A. chroococcum} nachgewiesenen Phenoloxidase \textit{AcCL} vergleichende Untersuchungen zum Einfluss von Inhibitoren und der Oxidation von Phenoloxidase- und Polyphenoloxidase-Modellsubstraten durchgeführt. Als eukaryotische Referenzenzyme wurden die...
extrazelluläre Phenoloxidase PcL des Weißfäulepilzes *Pycnoporus cinnabarinus* SBUG-M 1044 und die Polyphenoloxidase AbT (Tyrosinase) des saprobiontischen Egerlings *Agaricus bisporus* eingesetzt.

3.7.6.1 Einfluss von Inhibitoren auf AcCL von *A. chroococcum* und eukaryotische Referenzenzyme

Die Wirkung von Enzyminhibitoren und chelatbildenden Agentien (0,1, 0,5, 1, 2, 4, 6, 10 mM) wurde in Assays mit der bakteriellen Phenoloxidase $AcCL$ und der pilzlichen Phenoloxidase PcL gegenüber 2,6-DMP in NaAC-Puffer (0,1 M, pH 5) geprüft. Untersuchungen mit der Tyrosinase AbT wurden in NaP-Puffer (0,1 M, pH 6,5) mit dem Enzymsubstrat Brenzkatechin durchgeführt. Die Ergebnisse sollen anhand einer 2 mM Inhibitorkonzentration vorgestellt werden (Abb. 29).

![Diagramm](image)

Abb. 29: Relative Aktivitäten der prokaryotischen Phenoloxidase $AcCL$ (□) sowie der eukaryotischen Phenoloxidase PcL (■) und der Polyphenoloxidase AbT (■) nach Zusatz verschiedener Enzyminhibitoren und chelatbildender Agentien in einer 2 mM Endkonzentration (v/v). Die Restaktivitäten der Phenoloxidasepan $AcCL$ und PcL wurden im 2,6-DMP-Assay (0,1 M NaAC-Puffer, pH 5) bestimmt, die der Polyphenoloxidase AbT im Brenzkatechin-Assay (0,1 M NaP-Puffer, pH 6,5). Dargestellte Werte entsprechen den Mittelwerten von vier unabhängig voneinander durchgeführten Messungen bei RT.
Die Polyphenoloxidase AbT von *A. bisporus* zeigte ein zu den Phenoloxidasen eindeutig unterschiedliches Verhalten nach Zugabe von ausgewählten Enzyminhibitoren und chelatbildenden Agentien. Bezüglich der Wirkung dieser Substanzen auf die Aktivität der prokaryotischen Phenoloxidase *AcCL* des Stammes *A. chroococcum* konnte in vielen Fällen eine mit der eukaryotischen Phenoloxidase *PcL* des Weißfäulepilzes *P. cinnabarinus* vergleichbare Reaktion ermittelt werden.

Im Gegensatz zu den Phenoloxidasen *AcCL* und *PcL*, bei welchen Natriumazid (NaN₃) als der stärkste Inhibitor aller getesteter Agentien identifiziert wurde (100 % Inhibition bei 0,1 mM NaN₃), lag bei der Polyphenoloxidase AbT in Gegenwart von 2 mM NaN₃ eine relative Aktivität von 65 % vor (Abb. 29). Die Abnahme in der Oxidationsrate des AbT-Enzymsubstrats Brenzkatechin verlief jedoch kongruent zu einer schwachen Rotfärbung der bei alleinigem Zusatz von Brenzkatechin typisch gelbgefärbten Ansätze. Diese abweichende Verfärbung konnte in Kontrollansätzen alleinig auf die Anwesenheit von AbT zurückgeführt werden und war demnach keine Folge einer unkatalysierten Reaktion zwischen dem Enzymsubstrat Brenzkatechin und NaN₃ (vgl. Diskussion, Kap. 4.1.3.4). Unterschiede zwischen der Polyphenoloxidase AbT und den Phenoloxidasen *AcCL* und *PcL* zeigten sich auch nach Zusatz des Disulfidbrücken-spaltenden Inhibitors Dithiothreitol (DTE), des Kupferionen-komplexierenden Diethyldithiocarbamats (DDC) sowie der metallbindenden Agens Tropolon. Zwar bewirkten DTE, DDC und Tropolon eine relativ starke Reduktion der Phenoloxidase-Aktivitäten, sie führten jedoch zu einer 100 %-igen Inhibition der Polyphenoloxidase AbT (Abb. 29). Desweiteren trat bei der Polyphenoloxidase AbT eine vollständige Inhibition durch Kojisäure und eine 20 %-ige Inhibition mit dem Tyrosinase-Inhibitor Arbutin auf, welche bei den Phenoloxidasen *AcCL* und *PcL* keinen Aktivitätsverlust erkennen ließen. Auch Acetylaceton stellte einen starken Inhibitor der Polyphenoloxidase AbT dar (100 % Inhibition), wohingegen die 2,6-DMP-Oxidation der Phenoloxidase *AcCL* durch Acetylaceton-Zusatz sogar erhöht wurde. Zudem konnte Na₂H₂EDTA als ein Aktivator der Phenoloxidasen identifiziert werden, jedoch erwies es sich gleichwohl als ein schwacher Inhibitor der pilzlichen Polyphenoloxidase AbT.
3.7.6.2 Ermittlung des Spektrums an AcCL-Enzymsubstraten im Vergleich zu eukaryotischen Referenzenzymen

Ergänzend zu den vorgestellten Ergebnissen bezüglich der aktivitätsmindernden bzw. steigernden Wirkung von Inhibitoren auf die Aktivität der Phenoloxidase AcCL im Vergleich zu der pilzlichen Phenoloxidase PcL bzw. der Polyphenoloxidase AbT (vgl. Kap. 3.7.6.1), erfolgten Analysen des Spektrums an potentiellen AcCL-Enzymsubstraten mit gleichzeitiger Prüfung der eukaryotischen Referenzenzyme.

Die Untersuchungen wurden anhand von sieben verschiedenen Gruppen potentieller Enzymsubstrate vorgenommen (vgl. Tab. 8 im Anhang), wobei zur Gruppe 1 Modellverbindungen zählten, welche sich strukturell von Guajacol (2-Methoxyphenol) ableiteten und mono-methoxylierte (und methylierte) Derivate darstellten. Die Gruppe 2 (dimethoxylierte Monophenole) beinhaltete Verbindungen, die strukturell dem als AcCL-Enzymsubstrat fungierenden 2,6-Dimethoxyphenol (2,6-DMP) entsprachen. Die Substratgruppen 3 und 4 beinhalteten ortho- und para-dihydroxylierte Substanzen, welche als typische Polyphenoloxidase-Substrate (Gruppe 3) bzw. Phenoloxidase-Substrate (Gruppe 4) angesehen werden. Ergänzend dazu wurden Melanin-Präkursoren (Gruppe 5), meta-dihydroxylierte Alkylresorcinole (Gruppe 6) sowie weitere Phenol- und Polyphenoloxidase-Substrate (Gruppe 7) in die Untersuchungen einbezogen (Tab. 31).

Tab. 31: Vergleichende Übersicht bezüglich des enzymatischen Umsatzes von Modellverbindungen durch die Phenoloxidase (POs) AcCL und PcL sowie die Polyphenoloxidase (PPO) AbT. Darstellung der Anfangsrate der enzymatischen Oxidation als Absorptionsänderung ΔA min⁻¹ multipliziert mit dem Faktor 1000. Modellsubstrate in 5 mM Endkonzentration (v/v) eingesetzt. Assays der POs AcCL und PcL in NaAC-Puffer (0,1 M, pH 5), Assays der PPO AbT in NaP-Puffer (0,1 M, pH 6,5) bei RT. Dargestellte Werte entsprechen den Mittelwerten einer Dreifachbestimmung mit einer relativen Standardabweichung unter 10 %.

<table>
<thead>
<tr>
<th>Substratklasse</th>
<th>λ [nm]</th>
<th>A. chroococcum PO</th>
<th>P. cinnabarinus PO</th>
<th>A. bisporus PPO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monomethoxylierte Monophenole (Gruppe 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guajacol</td>
<td>436</td>
<td>10</td>
<td>28</td>
<td>2</td>
</tr>
<tr>
<td>para-Vanillin</td>
<td>436</td>
<td>0 a</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ortho-Vanillin</td>
<td>468</td>
<td>40</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>Vanillinäsure</td>
<td>436</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vanillinalkohol</td>
<td>420</td>
<td>42</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vanillinazin</td>
<td>468</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>4-Hydroxy-3-methoxy-α-methylbenzylalkohol</td>
<td>420</td>
<td>24</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Verbindung</td>
<td>Molarität</td>
<td>Extinktion</td>
<td>Äquivalente</td>
<td>Transitivität</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>2-Methoxy-6-methylphenol</td>
<td>468</td>
<td>54</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2-Methoxy-4-methylphenol</td>
<td>420</td>
<td>34</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2-Methoxy-4-propylphenol</td>
<td>420</td>
<td>84</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2-Hydroxy-6-methoxybenzaldehyd</td>
<td>420</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2-Hydroxy-5-methoxybenzaldehyd</td>
<td>420</td>
<td>36</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Eugenol</td>
<td>420</td>
<td>76</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>Ferulsäure</td>
<td>480</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Dimethoxylierte Monophenole (Gruppe 2)

<table>
<thead>
<tr>
<th>Verbindung</th>
<th>Molarität</th>
<th>Extinktion</th>
<th>Äquivalente</th>
<th>Transitivität</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,6-Dimethoxyphenol (2,6-DMP)</td>
<td>468</td>
<td>746</td>
<td>532</td>
<td>20</td>
</tr>
<tr>
<td>2,3-Dimethoxyphenol</td>
<td>468</td>
<td>5</td>
<td>0,6</td>
<td>0,2</td>
</tr>
<tr>
<td>Syringasäure</td>
<td>468</td>
<td>0,8</td>
<td>0,4</td>
<td>0,4</td>
</tr>
<tr>
<td>Syringaldehyd</td>
<td>468</td>
<td>1</td>
<td>0,4</td>
<td>0,2</td>
</tr>
<tr>
<td>4-Methyl-2,6-dimethoxyphenol</td>
<td>468</td>
<td>0,6</td>
<td>0,2</td>
<td>0</td>
</tr>
<tr>
<td>2,6-Dimethylphenol</td>
<td>468</td>
<td>0,7</td>
<td>1,8</td>
<td>0,6</td>
</tr>
<tr>
<td>Syringaldazin</td>
<td>525</td>
<td>0</td>
<td>22,4</td>
<td>0</td>
</tr>
</tbody>
</table>

ortho-dihydroxylierte Verbindungen (Gruppe 3)

<table>
<thead>
<tr>
<th>Verbindung</th>
<th>Molarität</th>
<th>Extinktion</th>
<th>Äquivalente</th>
<th>Transitivität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brenzkatechin</td>
<td>450</td>
<td>9</td>
<td>2,5</td>
<td>934</td>
</tr>
<tr>
<td>3-Methylbrenzkatechin</td>
<td>420</td>
<td>29</td>
<td>30</td>
<td>412</td>
</tr>
<tr>
<td>4-Methylbrenzkatechin</td>
<td>420</td>
<td>24</td>
<td>8</td>
<td>572</td>
</tr>
<tr>
<td>tert-Butylbrenzkatechin</td>
<td>420</td>
<td>13</td>
<td>8</td>
<td>886</td>
</tr>
<tr>
<td>3-Methoxybrenzkatechin</td>
<td>420</td>
<td>13</td>
<td>9</td>
<td>52</td>
</tr>
<tr>
<td>3-Isopropylbrenzkatechin</td>
<td>420</td>
<td>34</td>
<td>20</td>
<td>362</td>
</tr>
<tr>
<td>Dihydrokaffeesäure</td>
<td>530</td>
<td>1,5</td>
<td>0</td>
<td>74</td>
</tr>
</tbody>
</table>

para-dihydroxylierte Verbindungen (Gruppe 4)

<table>
<thead>
<tr>
<th>Verbindung</th>
<th>Molarität</th>
<th>Extinktion</th>
<th>Äquivalente</th>
<th>Transitivität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrochinon</td>
<td>285</td>
<td>0,5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2-Methylhydrochin</td>
<td>285</td>
<td>0,5</td>
<td>1,2</td>
<td>0,2</td>
</tr>
<tr>
<td>2-Methoxyhydrochin</td>
<td>285</td>
<td>0,8</td>
<td>2,4</td>
<td>1,2</td>
</tr>
<tr>
<td>tert-Butylhydrochin</td>
<td>285</td>
<td>0,4</td>
<td>1,6</td>
<td>0,8</td>
</tr>
<tr>
<td>2,3-Dimethylhydrochin</td>
<td>400</td>
<td>0,8</td>
<td>0,6</td>
<td>0</td>
</tr>
<tr>
<td>2,6-Dimethoxyhydrochin</td>
<td>400</td>
<td>2,6</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Melanin-Präkursoren und -analoga (Gruppe 5)

<table>
<thead>
<tr>
<th>Verbindung</th>
<th>Molarität</th>
<th>Extinktion</th>
<th>Äquivalente</th>
<th>Transitivität</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Hydroxyindol</td>
<td>400</td>
<td>5</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>3-(3,4-Dihydroxyphenyl)-L-alanin</td>
<td>475</td>
<td>4</td>
<td>3</td>
<td>388</td>
</tr>
<tr>
<td>(L-DOPA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyrosin</td>
<td>280</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Dopamin</td>
<td>400</td>
<td>8</td>
<td>2,3</td>
<td>448</td>
</tr>
<tr>
<td>3,4-Dihydroxybenzoesäure</td>
<td>400</td>
<td>0,6</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>3,4-Dihydroxyphenylessigsäure</td>
<td>400</td>
<td>1</td>
<td>3</td>
<td>1.072</td>
</tr>
</tbody>
</table>

Weitere Verbindungen (Gruppe 7)

<table>
<thead>
<tr>
<th>Verbindung</th>
<th>Molarität</th>
<th>Extinktion</th>
<th>Äquivalente</th>
<th>Transitivität</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABTS</td>
<td>420</td>
<td>582</td>
<td>638</td>
<td>18</td>
</tr>
<tr>
<td>Pyrogallol</td>
<td>450</td>
<td>108</td>
<td>14</td>
<td>170</td>
</tr>
<tr>
<td>para-Phenylendiamin</td>
<td>523</td>
<td>78</td>
<td>90</td>
<td>30</td>
</tr>
<tr>
<td>para-Kresol</td>
<td>300</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>

a Keine Änderung in der Absorption über verlängerten Inkubationszeitraum ermittelt, sodass die Substanz als Nicht-Enzym-Substrat unter den angewandten Bedingungen eingestuft wurde.

b dimethylierte Verbindung

L-DOPA, Dopamin, 3,4-Dihydroxybenzoe- und phenylessigsäure sind ortho-dihydroxylierte Verbindungen (Gruppe 3).

d Untersuchungen der Oxidation von Tyrosin (Gruppe 5) und para-Kresol (Gruppe 7) erfolgten nach 5-minütiger Vorinkubation der Ansätze bei 25 °C.

In Testungen methoxy-substituierter Monophenole (Substratklasse 1) konnte ein im Vergleich zu den eukaryotischen Referenzenzymen deutlich erhöhter Umsatz durch die A. chroococcum-Phenoloxidase AcCL festgestellt werden (Tab. 31). Dabei konnten insbesondere Modellverbindungen mit einem Methoxy-Substituenten in direkter Nachbarschaft zur OH-Gruppe als geeignete AcCL-Enzymsubstrate identifiziert werden. Eine Ausnahme davon stellten Verbindungen mit Carboxylgruppen, so u.a. Vanillin- und Ferulasäure, dar. Im Gegensatz zu der pilzlichen Phenoloxidase PcL, konnte mit der bakteriellen Phenoloxidase AcCL kein Umsatz des zweikernigen Polyphenols Vanillinazin festgestellt werden. In AcCL-Ansätzen mit dem zur Substratgruppe 2 zählenden 2,6-DMP konnten die für dieses Enzym höchsten Aktivitäten in Testungen der Substratgruppen 1 bis 7 erfasst werden. Zudem konnte eine Aktivität gegenüber 2,3-Dimethoxyphenol...
ERGBNISSE

(Substratgruppe 2) ermittelt werden. Alle getesteten Substanzen dieser Substratgruppe wurden ebenso von der pilzlichen Phenoloxidase PcL umgesetzt. Das bereits in Untersuchungen der Substratgruppe 1 ermittelte Unvermögen der Phenoloxidase AcCL einer Oxidation von Vanillinazin, konnte ebenfalls mit dem mehrkernigen Polyphe

nol Syringaldazin (Substratgruppe 2) festgestellt werden, obgleich sich dieses Modellsubstrat strukturell von dem von AcCL hoch präferierten einkernigen 2,6-Dimethoxyphenol ableitet. Die eukaryotische Phenoloxidase PcL zeigte hingegen eine relativ hohe Aktivität gegenüber Syringaldazin.

Para-dihydroxylierte Modellverbindungen (Substratgruppe 4), welche als Enzymsubstrate von Phenoloxidasen beschrieben sind und z.T. für eine Abgrenzung zu Polyphenoloxidase-Aktivitäten herangezogen werden, wurden durch AcCL und PcL umgesetzt. Entgegen dem entscheidenden Unterschied von Phenol- und Polyphenoloxidasen bezüglich der Aktivität gegenüber 1,2- und 1,4-dihydroxylierten Substraten, konnte in Untersuchungen mit Substanzen der Substratgruppe 4 die Feststellung getroffen werden, dass es verlängerter Messzeiten bedurfte, um - im Vergleich zu Ansätzen mit ortho-dihydroxylierten Verbindungen (Substratgruppe 3) - relativ schwache AcCL- und PcL-Aktivitäten messen zu können. Bei beiden Phenoloxidasen wurden die größten Aktivitäten gegenüber 2,6-Dimethoxyhydrochinon ermittelt.

Innerhalb der Substratgruppe 7 zeigten AcCL und PcL die höchste Aktivität gegenüber dem nicht-phenolischen Phenoloxidase-Substrat ABTS. Auch das diaminierte Phenoloxidase-Substrat para-Phenylendiamin wurde von beiden Enzymen im vergleichbaren Maße umgesetzt. Resorcinol und weitere meta-dihydroxylierte Alkylresorcinole wie Orcinol oder Olivetol (Substratgruppe 6) wurden weder von den Phenoloxidasen AcCL und PcL noch von der Polyphenoloxidase AbT oxidativ umgesetzt (in Tab. 31 nicht dargestellt).

Basierend auf den vorgestellten Ergebnissen einer Prüfung des Umsatzes potentieller Phenol- und Polyphenoloxidase-Substrate konnte für die prokaryotische Phenoloxidase AcCL folgende Substratpräferenz ermittelt werden: 2,6-Dimethoxyphenol \(\geq \) ABTS > monomethoxylierte einkernige Phenole (ohne Carboxylgruppe) \(\geq \) ortho-dihydroxylierte Substrate > dimethoxylierte einkernige Phenole > para-dihydroxylierte Substrate. Es konnten ebenso geringste Aktivitäten gegenüber para-dihydroxylierten
Modellverbindungen in Untersuchungen mit der Phenoloxidase PcL des Weißfäulepilzes \textit{P. cinnabarinus} erfasst werden (vgl. Diskussion, Kap. 4.1.3.5). In zellfreien Rohextrakten des Stammes \textit{A. chroococcum} konnten zudem weder eine Manganperoxidase- noch eine manganunabhängige Peroxidase-Aktivität gemessen werden.

3.7.7 Enzymkinetikstudien

Die Geschwindigkeit einer Enzym-katalysierten Reaktion wird mithin von der Substratkonzentration bestimmt. Diesbezüglich wurden enzymkinetische Untersuchungen mit der prokaryotischen Phenoloxidase \textit{AcCL} durchgeführt. Obgleich gereinigte Enzympräparate für eine präzise Analyse der Michealis-Menten-Konstante (K_m) und der Bestimmung maximaler Reaktionsgeschwindigkeiten (v_{max}) vorteilhafter sind, erfolgten primäre Untersuchungen mit der in zellfreien Rohextrakten von \textit{A. chroococcum} enthaltenen Phenoloxidase, um erste Aufschlüsse über die reaktionsbestimmenden Parameter in \textit{AcCL}-katalysierten Reaktionen zu erlangen. Als Modellverbindungen dienten die als Enzymsubstrat identifizierten phenolischen und nicht-phenolischen Redoxindiktoren 2,6-DMP und ABTS (vgl. Kap. 3.7.6.2), deren enzymatischer Umsatz im Bereich des linearen Anstiegs in spektralphotometrischen Messungen aufgenommen wurde. Die Enzymsubstrate wurden in aufsteigenden Konzentrationen als wässrige Stammlösungen eingesetzt.

In Untersuchungen mit dem Enzymsubstrat 2,6-DMP konnte eine Substratüberschusshemmung der Phenoloxidase von \textit{A. chroococcum} ermittelt werden, da mit ansteigenden 2,6-DMP-Konzentrationen eine Abnahme der Enzymaktivität einsetzte (Abb. 30).
Abb. 30: Darstellung der relativen Aktivitäten der in zellfreien Rohextrakten des Stammes A. chroococcum enthaltenen Phenoloxidase AcCL in Abhängigkeit von der im Assay eingesetzten Konzentration des Enzymsubstrats 2,6-DMP (■) bzw. ABTS (△). Dargestellte Werte entsprechen den Mittelwerten von vier unabhängig voneinander durchgeführten Messungen bei RT mit einer relativen Standardabweichung von unter 5 %.

Mit dem Redoxindikator ABTS konnte hingegen keine auf einem Substratüberschuss beruhende Inhibition der Phenoloxidase AcCL festgestellt werden, wobei sich eine Konstanz der Reaktionsgeschwindigkeit bzw. eine Sättigung ab einer 7 mM Konzentration dieses Enzymsubstrats einstellte (Abb. 30).

Für eine Bestimmung der enzymkinetischen Parameter K_m und v_{max} wurde sowohl eine Auftragung der Werte nach Lineweaver-Burk als auch nach Eadie-Hofstee vorgenommen. Da für den Lineweaver-Burk-Plot bereits geringe Messfehler in der Reaktionsgeschwindigkeit bei kleiner Substratkonzentration große Abweichungen in $1/[v]$ ergeben können, wurde ergänzend der Eadie-Hofstee-Plot, in welchem die Reaktionsgeschwindigkeit v auf beide Koordinatenachsen übergeht und demnach alle Abweichungen zum Koordinatensprung konvergieren, angewandt (Abb. 31A-D).
Abb. 31: Darstellung des Umsatzes der Enzymsubstrate 2,6-DMP (■) und ABTS (▲) nach Lineweaver-Burk (A: 2,6-DMP, C: ABTS) und Eadie-Hofstee (B: 2,6-DMP, D: ABTS) durch die in zellfreien Rohextrakten von A. chroococcum enthaltene Phenoloxidase AcCL. Dargestellte Werte entsprechen den Mittelwerten von vier unabhängig voneinander durchgeführten Messungen bei RT mit relativen Standardabweichungen unter 5 %.

Mit Hilfe der Lineweaver-Burk-Darstellung konnte für das Enzymsubstrat 2,6-DMP ein K_m-Wert von 0,1449 mM und ein v_{max} von 0,0078 µmoL mL⁻¹ min⁻¹ ermittelt werden. Diese Werte konnten über den Eadie-Hofstee-Plot bestätigt werden, wobei ein K_m-Wert von 0,1484 mM und eine maximale Reaktionsgeschwindigkeit v_{max} von 0,0078 µmoL mL⁻¹ min⁻¹ ermittelt wurden.

Für den Redoxindikator ABTS wurde über das Lineweaver-Burk-Diagramm ein K_m-Wert von 5,0 mM und ein v_{max} von 0,0036 µmoL mL⁻¹ min⁻¹ berechnet. Auch diese Berechnungen konnten nach Auswertung der über die Eadie-Hofstee-Darstellung gewonnenen Werte bestätigt werden, bei denen sich für das Substrat ABTS ein K_m von 4,4117 mM und ein v_{max} von 0,0035 µmoL mL⁻¹ min⁻¹ ergaben.

Aus den einleitenden Untersuchungen von K_m- und v_{max}-Werten kann somit abgeleitet werden, dass die prokaryotische Phenoloxidase AcCL eine hohe Affinität zu dem methoxysubstituierten Monophenol 2,6-Dimethoxyphenol aufweist und dieses Substrat, aufgrund der ermittelten kleinen Michaelis-Konstante, weit besser bindet. Im Vergleich dazu konnte in Untersuchungen mit dem nicht-phenolischen Redoxindikator ABTS festgestellt werden, dass erst bei sehr hohen Konzentrationen dieses Redoxindikators
eine Halbsättigung erreicht wurde, was mit einer geringeren Affinität gleichzusetzen wäre.

3.7.8 Gelektrophoretische Analysen

3.7.8.1 Untersuchungen mittels denaturierender und semi-denaturierender SDS-PAGE

ERGEBNISSE

Abb. 32: Gele von SDS-PAGE-Analysen unter vollständig denaturierenden Bedingungen (A) und nach semi-denaturierender Auftrennung (B) von Proteinproben zellfreier Rohextrakte des Stammes A. chroococcum. (A) Coomassie-Färbung der nach unterschiedlichen Inkubationszeiten (lag-Phase (6 h), frühe exponentielle Phase (24 h), Übergang von exponentieller in stationäre Phase (48 h), frühe und späte stationäre Wachstumsphase (56 bzw. 72 h)) präparierten Proteinproben. Pfeil kennzeichnet vermutete AcCL-spezifische Proteinbanden. (B) Proteinproben derselben Kulturen aus einer 48- und 72-h-Kultivierung unter stickstofffixierenden Bedingungen nach Anfärbung mit 2,6-DMP in NaAC-Puffer (0,1 M, pH 5). Referenzpfeil kennzeichnet 2,6-DMP-oxidierende Proteine.

Über eine Auftrennung der Proteinproben mittels semi-denaturierender SDS-PAGE nach SOLANO et al. (2001), welche für eine Aktivitätsfärbung monomerer Proteine mit spezifischen Redoxindikatoren geeignet ist, zeigten sich bei Inkubation der Gele in 2,6-DMP-haltigen NaAC-Puffer (0,1 M, pH 5) aktivgefärbte Banden deren...
Molekulargewicht mit denen der Coomassie-gefärbten Proteinbanden von SDS-Gelen übereinstimmten (Abb. 32B). Auf der Grundlage dieser Ergebnisse, war für das aktive Monomer der Phenoloxidase AcCL ein relatives Molekulargewicht von 45 kDa stark anzunehmen.

Abb. 33: SDS-PAGE-Analysen von Präparaten der äußeren Hüllmembranfraktion nach Auftrennung unter semi-denaturierenden Bedingungen und anschließender Aktivitätsfärbung mit den Phenoloxidase-spezifischen Substraten 2,6-DMP (A), ABTS (B), Guajacol (C) und para-Phenylendiamin (D) in NaAC-Puffer (0,1 M, pH 5) bei 37 °C. (A) Pfeile L₁ - L₃ verweisen auf aktivgefärbte Proteinbanden (0, 24, 48, 56, 72-h-Kulturen), die nach Inkubation mit allen vier Enzymsubstraten ersichtlich wurden.

Im Vergleich zu gelelektrophoretischen Untersuchungen zellfreier Rohextrakte, bei denen über eine Aktivitätsfärbung eine Proteinbande bei einem geschätzten

In Auswertung der über eine Silberfärbung angefärbten Proteinbanden konnte ermittelt werden, dass die unter semi-denaturierten Bedingungen aktivgefärbten und nachfolgend
extrahierten Proteine der Banden L₁ (95 kDa), L₂ (50 kDa) und L₃ (55 kDa) nach vollständiger Denaturierung ein Molekulargewicht von ~ 45 ± 3 kDa besaßen (Abb. 34). Somit konnte die Feststellung getroffen werden, dass die bei Färbung mit spezifischen Enzymsubstraten aktiven Phenoloxidase-Proteine nach Denaturierung ein vergleichbares Molekulargewicht aufwiesen. Die nach der Silberfärbung ermittelten minimalen Abweichungen in deren Molekulargewicht (± 3 kDa) können auf verschiedenen Glykosylierungsgraden beruhen, jedoch auch auf die Bedingungen der Probenpräparation zurückzuführen sein. Geringe Abweichungen könnten sich zudem mit der Lokalisation der Phenoloxidase AcCL in verschiedenen Kompartimenten der Membranfraktion begründen, da insbesondere bei Präparaten aus späteren Kultivierungszeitpunkten Zell- und Cystenwände enthalten sind.

Das nach vollständiger Denaturierung der Proteinbande L₁ (~ 95 kDa) ermittelte Molekulargewicht von ca. 45 kDa (vgl. Abb. 33, S. 140), wies zudem auf die Präsenz einer unter semi-denaturierenden Bedingungen vorliegenden dimeren Form der Phenoloxidase AcCL hin.

3.7.8.2 Untersuchungen mittels nativer PAGE

AcCL-haltige zellfreie Rohextrakte wurden ebenfalls über eine nicht-denaturierende PAGE aufgetrennt, wonach sich eine Aktivitätsfärbung mit den Redoxindikatoren ABTS und 2,6-DMP anschloss. Diese gelektrophoretische Methode sollte Rückschlüsse auf die biologisch relevante Konformation der Phenoloxidase ermöglichen. Über Aktivitätsfärbungen mit ABTS und 2,6-DMP konnten für die Phenoloxidase AcCL jeweils drei Proteinbanden sichtbar gemacht werden (Abb. 35).

Abb. 36: (A) Native PAGE auf einem Trenngel mit 10 %-iger Acrylamidkonzentration. Aktivitätsfärbung der AcCL-spezifischen Proteinbande (zellfreier Rohextrakt, 48-h-Kultur) mit 2,6-DMP. Vorgefärbte Markerproteine 1 bis 4. (B) FERGUSON-Plot des AcCL-Proteins (■) und der Referenzproteine 1 (▲), 2 (●), 3 (♦), 4 (×) und 5 (◆). (C) Auftragung der K_R-Werte der Referenzproteine gegen deren Molekulargewicht für eine Berechnung des relativen Molekulargewichts von AcCL.

Aus den erhaltenen Werten wurde das Produkt $100 \times \log(R_f \times 100)$ gebildet und nach Auftragung gegen die Gelkonzentration (%) eine Kalibrierkurve mit der Steigung K_R für jedes Protein erhalten (Abb. 36B). Durch das Auftragen des Logarithmus der negativen Anstiege (K_R) der durch eine lineare Regression erhaltenen Gleichungen gegen den Logarithmus der Molekulargewichte der 5 Markerproteine (Abb. 36C), konnte unter linearer Regression erneut eine Geradengleichung konstruiert werden. Über diese wurde ein relatives Molekulargewicht der nativen Phenoloxidase AcCL von 142 kDa berechnet.

Unter Berücksichtigung der Ergebnisse von denaturierenden und semi-denaturierenden SDS-PAGE-Analysen, in welchen für das active Monomer ein Molekulargewicht von

Mit dem Ziel einer Bestätigung des über die FERGUSON-Analyse ermittelten Molekulargewichts wurden Proteinproben vor Auftragen auf eine SDS-PAGE reduziert und alkyliert, die mit Coomassie angefärbten Banden ausgeschnitten und mittels MALDI-TOF-MS sequenziert. In Auswertung der Sequenzierungsergebnisse konnte, aufgrund stets zu hoher Keratingehalte der Proben, keine zusätzliche Bestätigung des Molekulargewichtes vorgenommen werden.
3.8 Versuche zur Biotransformation von ortho- und para-dihydroxylierten Verbindungen

Nachfolgende Übersicht zeigt die in Phenoloxidase-vermittelten Transformationsreaktionen eingesetzten ortho- und para-dihydroxylierten Enzymsubstrate und Amindonoren (Abb. 37).
Abb. 37: Übersicht über die Strukturen der in Transformationsreaktionen eingesetzten Enzymsubstrate (1a-i) und Kopplungspartner (primäre Amine, 2a-t).

Enzymsubstrate

<table>
<thead>
<tr>
<th>Substrat</th>
<th>Struktur</th>
</tr>
</thead>
<tbody>
<tr>
<td>ortho-dihydroxylierte Verbindungen (Brenzkatechine)</td>
<td></td>
</tr>
<tr>
<td>1a</td>
<td>3-Methylbrenzkatechin</td>
</tr>
<tr>
<td>1b</td>
<td>3-Methoxybrenzkatechin</td>
</tr>
<tr>
<td>1c</td>
<td>4-tert-Butylbrenzkatechin</td>
</tr>
<tr>
<td>1d</td>
<td>Methylhydrochinon</td>
</tr>
<tr>
<td>1e</td>
<td>Methoxyhydrochinon</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Substrat</th>
<th>Struktur</th>
</tr>
</thead>
<tbody>
<tr>
<td>para-dihydroxylierte Verbindungen (Hydrochinone)</td>
<td></td>
</tr>
<tr>
<td>1f</td>
<td>tert-Butylhydrochinon</td>
</tr>
<tr>
<td>1g</td>
<td>2-Methoxy-3-methylhydrochinon</td>
</tr>
<tr>
<td>1h</td>
<td>2,3-Dimethoxy-5-methylhydrochinon</td>
</tr>
<tr>
<td>1i</td>
<td>2-Methylnaphthohydrochinon</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Substrat</th>
<th>Struktur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mehrfachsubstituierte para-dihydroxylierte Verbindungen (Hydrochinone)</td>
<td></td>
</tr>
<tr>
<td>1j</td>
<td>2-Amino-5-methylhexan</td>
</tr>
<tr>
<td>1k</td>
<td>2-Ethyl-1-hexylamin</td>
</tr>
<tr>
<td>1l</td>
<td>Geranylamin</td>
</tr>
<tr>
<td>1m</td>
<td>n-Hexylamin</td>
</tr>
<tr>
<td>1n</td>
<td>(R)-2-Aminonorbornan</td>
</tr>
<tr>
<td>1o</td>
<td>(S)-(+)-2-Aminonorbornancarboxylsäure</td>
</tr>
<tr>
<td>1p</td>
<td>(-)-cis-Myrtanylamin</td>
</tr>
<tr>
<td>1q</td>
<td>(R)-2-Aminohexan</td>
</tr>
<tr>
<td>1r</td>
<td>Cyclooctylamin</td>
</tr>
</tbody>
</table>

Kopplungspartner

<table>
<thead>
<tr>
<th>Kopplungspartner</th>
<th>Struktur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lineare aliphatische Amine</td>
<td></td>
</tr>
<tr>
<td>2a</td>
<td>n-Propylamin</td>
</tr>
<tr>
<td>2b</td>
<td>n-Butylamin</td>
</tr>
<tr>
<td>2c</td>
<td>n-Pentyamin</td>
</tr>
<tr>
<td>2d</td>
<td>n-Hexylamin</td>
</tr>
<tr>
<td>2e</td>
<td>n-Heptylam</td>
</tr>
<tr>
<td>2f</td>
<td>n-Octylamin</td>
</tr>
<tr>
<td>2g</td>
<td>n-Nonylam</td>
</tr>
<tr>
<td>2h</td>
<td>tert-Butylamin</td>
</tr>
<tr>
<td>2i</td>
<td>tert-Octylamin</td>
</tr>
<tr>
<td>2j</td>
<td>(S)(+)-1-Cyclohexylethylamin</td>
</tr>
<tr>
<td>2k</td>
<td>Cyclooctylamin</td>
</tr>
</tbody>
</table>

Verzweigtkettige aliphatische Amine

<table>
<thead>
<tr>
<th>Kopplungspartner</th>
<th>Struktur</th>
</tr>
</thead>
<tbody>
<tr>
<td>2l</td>
<td>n-Octylamin</td>
</tr>
<tr>
<td>2m</td>
<td>(R)-(+)-1-Cyclohexylethylamin</td>
</tr>
</tbody>
</table>

Bicyclische und cyclische Amine

<table>
<thead>
<tr>
<th>Kopplungspartner</th>
<th>Struktur</th>
</tr>
</thead>
<tbody>
<tr>
<td>2n</td>
<td>(1S,2S,3S,5R)-(+)-Isopinocampheylamin</td>
</tr>
<tr>
<td>2o</td>
<td>(R)-2-Aminohexan</td>
</tr>
<tr>
<td>2p</td>
<td>(S)(+)-1-Cyclohexylethylamin</td>
</tr>
<tr>
<td>2q</td>
<td>Cyclooctylamin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kopplungspartner</th>
<th>Struktur</th>
</tr>
</thead>
<tbody>
<tr>
<td>2r</td>
<td>(S)-(+)-1-Cyclohexylethylamin</td>
</tr>
<tr>
<td>2s</td>
<td>(R)-2-Aminohexan</td>
</tr>
<tr>
<td>2t</td>
<td>Cyclooctylamin</td>
</tr>
</tbody>
</table>
3.8.1 Homomolekulare Kopplung von ortho-dihydroxylierten Verbindungen

Unter dem Aspekt, die über eine homomolekulare Kopplung der ortho-dihydroxylierten Enzymsubstrate 3-Methylbrenzkatechin (1a), 3-Methoxybrenzkatechin (1b) und 4-tert-Butylbrenzkatechin (1c) (vgl. Abb. 37) gebildeten Eigenkopplungsprodukten eindeutig von denen einer heteromolekularen Kopplung abgrenzen zu können, erfolgten Transformationsreaktionen, in welchen die betreffenden Substrate alleinig mit den Phenoloxidasesen bzw. dem chemischen Kopplungsvermittler NaIO\textsubscript{3} umgesetzt wurden. Die Untersuchungen erfolgten in 5-mL-Reaktionsansätzen, in denen das gepufferte Reaktionsmilieu den pH-Optima der Enzyme entsprach. Die Enzymsubstrate 1a-c wurden stets als methanolische Stammlösungen in einer 1 mM Endkonzentration (v/v) eingesetzt.

3.8.1.1 Homomolekulare Kopplungsreaktionen mit den pilzlichen Phenoloxidasesen \textit{PcL} und \textit{MtL}

In Untersuchungen der homomolekularen Kopplungsreaktionen der ortho-dihydroxylierten Enzymsubstrate 1a-c konnte festgestellt werden, dass die Geschwindigkeit der Substratoxidation von dem pH-Wert des Reaktionsmilieus (pH 5 bzw. pH 7) und den Erstsubstraten der Aromaten bestimmt wurde. Generell war die Abnahme der Enzymsubstrate an eine simultane Verfärbung der Reaktionsansätze gekoppelt, wobei sich aus der Entstehung von homomolekularen Kopplungsprodukten - nachfolgend als Eigenreaktionsprodukte bezeichnet - ableitete (Tab. 32).
Tab. 32: Übersicht über die Abnahme der ortho-dihydroxylierten Enzymsubstrate 3-Methylbrenzkatechin (1a), 3-Methoxybrenzkatechin (1b) und 4-tert-Butylbrenzkatechin (1c) in Reaktionen mit den pilzlichen Phenoloxidasen *Pc* L (0,02 M NaAC, pH 5) und *Mt* L (PCP, pH 7) sowie der gebildeten Produkte. Enzymsubstrat als methanolische Stammlösungen in einer 1 mM Endkonzentration (v/v) eingesetzt. Enzymaktivitäten 1 µmoL mL⁻¹.

<table>
<thead>
<tr>
<th>Substrat</th>
<th>Substrat-abnahme</th>
<th>Produkt (^{bc})</th>
<th>HPLC-R(_f) (^d) [min]</th>
<th>(\lambda_{\text{max}}) [nm]</th>
<th>Färbung des Ansatzes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>100 % [80 min]</td>
<td>(M-1,2-HQ-ERP1) 3,5</td>
<td>216, 283, 488</td>
<td>gelb → rot-braun</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(M-1,2-HQ-ERP2) 3,8</td>
<td>217, 299, 489</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-1,2-HQ-ERP3 5,4</td>
<td>267, 415</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-1,2-HQ-ERP4 6,9</td>
<td>270, 435</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-1,2-HQ-ERP5 7,6</td>
<td>265, 373, 447</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-1,2-HQ-ERP6 11,1</td>
<td>257, 262, 358</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-1,2-HQ-ERP7 11,4</td>
<td>253, 351</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1a</td>
<td>100 % [140 min]</td>
<td>M-1,2-HQ-ERP1 3,5</td>
<td>216, 283, 488</td>
<td>gelb → dunkelrot</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-1,2-HQ-ERP2 3,8</td>
<td>217, 299, 489</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-1,2-HQ-ERP3 5,4</td>
<td>267, 415</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-1,2-HQ-ERP4 6,9</td>
<td>270, 435</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1b</td>
<td>100 % [200 min]</td>
<td>(MO-1,2-HQ-ERP1) 2,6</td>
<td>270</td>
<td>orange-braun → cognac-farben</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MO-1,2-HQ-ERP2 3,0</td>
<td>372</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MO-1,2-HQ-ERP3 4,1</td>
<td>295</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MO-1,2-HQ-ERP4 5,4</td>
<td>228, 270, 346</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(MO-1,2-HQ-ERP5) 6,1</td>
<td>275</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MO-1,2-HQ-ERP6 7,4</td>
<td>227, 259, 441</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(MO-1,2-HQ-ERP7) 9,1</td>
<td>266</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1b</td>
<td>100 % [60 min]</td>
<td>MO-1,2-HQ-ERP8 2,4</td>
<td>220, 264, 327, 509</td>
<td>schwach orange → rot-braun</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MO-1,2-HQ-ERP2 3,0</td>
<td>372</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MO-1,2-HQ-ERP3 4,1</td>
<td>295</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MO-1,2-HQ-ERP9 4,7</td>
<td>239, 294, 351</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MO-1,2-HQ-ERP10 5,6</td>
<td>234, 269, 443, 487</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(MO-1,2-HQ-ERP11) 6,4</td>
<td>263</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1c</td>
<td>97 % [400 min]</td>
<td>(tertB-1,2-HQ-ERP1) 5,4</td>
<td>270</td>
<td>farblos → satt gelb</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>tertB-1,2-HQ-ERP2 6,6</td>
<td>205, 257, 395</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(tertB-1,2-HQ-ERP3) 7,8</td>
<td>276, 421</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(tertB-1,2-HQ-ERP4) 8,9</td>
<td>279</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(tertB-1,2-HQ-ERP5) 12,1</td>
<td>265, 433</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6 weitere Produkte (R(_{\text{HPLC}}) 15,7 - 16,5 min) in geringen Konzentrationen)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1c</td>
<td>93 % [400 min]</td>
<td>(tertB-1,2-HQ-ERP6) 3,5</td>
<td>283, 487</td>
<td>farblos → satt gelb</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(tertB-1,2-HQ-ERP7) 4,3</td>
<td>287</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>tertB-1,2-HQ-ERP2 6,6</td>
<td>205, 257, 395</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(tertB-1,2-HQ-ERP3) 7,8</td>
<td>276, 421</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(weitere Produkte (R(_{\text{HPLC}}) 11,7 - 16,0 min) in geringen Konzentrationen)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\text{a Weiße Felder: Reaktionsansätze mit } \text{Pc}L (\text{pH 5})\)

\(\text{b Graue Felder: Reaktionsansätze mit } \text{Mt}L (\text{pH 7})\)

\(\text{c Produkte in Klammern lagen in sehr geringer Konzentration vor.}\)

\(\text{d Fett-gedruckte Produkte als Hauptprodukte in homomolekularen Kopplungsreaktionen identifiziert.}\)

\(\text{e Analysen der Reaktionen mit 1a und 1b - HPLC-Fließmittelgradient 1, 1c - HPLC-Fließmittelgradient 2.}\)

Das Produktmuster und die identifizierten Hauptprodukte variierten stark in Abhängigkeit von dem eingesetzten Puffersystem. In Stabilitätsuntersuchungen der
Verbindungen 1a-c, d.h. ohne Enzymzusatz, konnte gelegentlich eine autokatalytische Reaktion festgestellt werden, welche zur Detektion der über die homomolekularen Kopplungsreaktionen erfassten Eigenreaktionsprodukte führte. Diese war in PCP (pH 7) zuweilen stärker ausgeprägt als in NaAc (pH 5).

In Reaktionsansätzen mit **3-Methylbrenzkatechin (1a)** ergab sich nach Starten der Reaktion eine Gelbfärbung, welche auf die Bildung des Produktes **M-1,2-HQ-ERP3** (R_{HPLC} 5,4 min) zurückgeführt werden konnte (Tab. 32). Dieses Produkt stellte sowohl in Reaktionsansätzen mit *PcL* (pH 5) als auch *MtL* (pH 7) ein Hauptprodukt dar, welches jedoch nur vorübergehend akkumulierte und unter Zunahme der Konzentration weiterer Eigenreaktionsprodukte abnahm. Nach einer Inkubationszeit von 24 h dominierten in Reaktionsansätzen mit *MtL* die Produkte **M-1,2-HQ-ERP1** (R_{HPLC} 3,5 min), **M-1,2-HQ-ERP2** (R_{HPLC} 3,8 min) und **M-1,2-HQ-ERP4** (R_{HPLC} 6,9 min). Im Gegensatz dazu erfolgte in Transformationsreaktion mit *PcL* eine Akkumulation von höhermolekularen Produkten (R_{HPLC} 11,1 - 16,7 min), welche nicht basislinien-getrennt detektiert werden konnten.

In Reaktionen des **3-Methoxybrenzkatechins (1b)** konnten - wie in Reaktionen des 3-Methylbrenzkatechins (1a) - ebenso starke Unterschiede bezüglich des Produktmusters in Abhängigkeit von dem pH-Wert der Reaktionssysteme erfasst werden (Tab. 32). Zudem wurde bei diesem methoxyierte Aromaten in Untersuchungen der homomolekularen Kopplung ortho-dihydroxylierter Enzymsubstrate das größte Spektrum an Eigenreaktionsprodukten erfasst (Abb. 38).
ERGEBNISSE

Abb. 38: Zeitlicher Verlauf der Abnahme des 3-Methoxybrenzkatechins (1b) unter Bildung von Eigenreaktionsprodukten in Ansätzen mit PcL (0,1 M NaAc, pH 5) (A) und MtL (PCP, pH 7) (B) bei RT. 1b als methanolische Stammlösung (1 mM, v/v) eingesetzt. Enzymaktivitäten 1 µmoL mL⁻¹. Schüttelfrequenz 200 rpm.

In Reaktionsansätzen mit PcL (pH 5) dominierte über einen Inkubationszeitraum von 260 min das Produkt MO-1,2-HQ-ERP2 (RᶠHPLC 4,1 min), welches auch in MtL-katalysierten Reaktionen (pH 7), jedoch in geringeren Konzentrationen, bis zu einer Reaktionszeit von 100 min detektiert werden konnte (Abb. 38). In MtL-katalysierten Reaktionen (pH 7) nahm MO-1,2-HQ-ERP2 unter Zunahme des hydrophileren Produkts MO-1,2-HQ-ERP8 (RᶠHPLC 2,4 min) ab, wobei in Reaktionsansätzen mit PcL (pH 5) die Abnahme von MO-1,2-HQ-ERP2 mit einer Konzentrationserhöhung des hydrophoberen Produkts MO-1,2-HQ-ERP6 (RᶠHPLC 7,4 min) verbunden war (Abb. 38). Generell war die Quantität von Eigenreaktionsprodukten (bezogen auf die Peakflächen) in Reaktionsansätzen mit PcL gegenüber Reaktionen mit MtL erhöht.

Innerhalb der Untersuchungen von homomolekularen Kopplungsreaktionen der ortho-dihydroxylierten Enzymsubstrate konnte in Transformationsansätzen mit 4-tert-Butylbrenzkatechin (1c) die geringste Anzahl und Quantität an Eigenreaktionsprodukten, sowohl bei pH 5 als auch pH 7, erfasst werden. Im Vergleich zu Reaktionen mit 3-Methylbrenzkatechin (1a) und 3-Methoxybrenzkatechin (1b) war...
zudem eine langsamere Umsetzung dieses Enzymsubstrates zu verzeichnen (Tab. 32). Dabei resultierte die enzymatische Oxidation des 4-tert-Butylbrenzkatechins - im Gegensatz zu Reaktionen mit 1a und 1b - in der Bildung von nur einem Hauptprodukt (tertB-1,2-HQ-ERP2, \(R_{\text{HPLC}} \) 6,6 min), welches eine Gelbfärbung der Reaktionsansätze bedingte. Das Produkt tertB-1,2-HQ-ERP2 erreichte in Reaktionsansätzen mit PcL (pH 5) und MtL (pH 7) seine maximale Konzentration nach 40 min, welche auch nach einer Reaktionszeit von 24 h nahezu unverändert war. In Stabilitätskontrollen ohne Enzymzusatz konnte keine Konversion von 1c in Produkt tertB-1,2-HQ-ERP2 oder weitere Eigenreaktionsprodukte festgestellt werden.

Die Ergebnisse bezüglich einer homomolekularen Kopplung der methyl-, methoxy- und tert-Butyl-substituierten Brenzkatechine 1a-c weisen darauf hin, dass deren Reaktivität maßgeblich von dem am Aromaten befindlichen Substituenten bestimmt wird. Mit Bezug auf die über HPLC-Analysen ermittelte Anzahl und Quantität von Eigenreaktionsprodukten, konnte das 3-Methoxybrenzkatechin (1b) als das aktivste Brenzkatechin identifiziert werden. Hingegen erwies sich die mit einer tert-Butyl-Gruppe substituierte Verbindung 1c als relativ reaktionsträge hinsichtlich der Bildung homomolekulare Eigenreaktionsprodukte. Das 3-Methylbrenzkatechin (1a) nahm bezüglich der Reaktivität dabei eine Mittelstellung ein.

3.8.1.2 Homomolekulare Kopplungsreaktionen mit den rekombinanten pilzlichen Phenoloxidase-Isoenzymen PcL35, Tvl5 und Tvl10 sowie den bakteriellen Phenoloxidasen AcCL, CotA und SLAC

Neben den Phenoloxidase PcL von P. cinnabarinus und MtL von M. thermophila, wurden weitere Phenoloxidasen pilzlicher und bakterieller Herkunft in Hinblick auf die Transformation des methylsubstituierten ortho-Diphenols 3-Methylbrenzkatechin (1a) untersucht.

Die von der AG Biotechnologie & Enzymkatalyse (Universität Greifswald) bereitgestellten Phenoloxidase-Isoenzyme (PcL35, Tvl5, Tvl10) wurden als unbehandelte Extrakte (konstitutive Expression in Pichia pastoris 1168 H) in Transformationsreaktionen mit 1a eingesetzt. Dabei war insbesondere von Interesse, ob die rekombinant exprimierten Isoenzyme PcL35 aus P. cinnabarinus SBUG-M 1044 sowie Tvl5 und Tvl10 aus Trametes versicolor SBUG-M 1050 ein im Vergleich zu den nativen Phenoloxidasen unterscheidbares Produktmuster aufweisen.

Tab. 33: Übersicht über die Abnahme des ortho-dihydroxylierten Enzymsubstrats 3-Methylbrenzkatechin (1a) in Reaktionen mit den pilzlichen Phenoloxidase-Isoenzymen PcL35, Tvl5 und Tvl10 sowie den bakteriellen Phenoloxidasen AcCL, CotA und SLAC. 1a als methanolische Stammlösung in einer 1 mM Endkonzentration (v/v) eingesetzt.

<table>
<thead>
<tr>
<th>Substrat</th>
<th>Phenoloxidase</th>
<th>Aktivität [µmol mL⁻¹]</th>
<th>pH</th>
<th>Umsatz von 1a [Reaktionszeit]</th>
<th>Färbung des Ansatzes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Methylbrenzkatechin</td>
<td>PcL35</td>
<td>1,0</td>
<td>4,0</td>
<td>100 % [200min]</td>
<td>rosa → rot-braun</td>
</tr>
<tr>
<td></td>
<td>Tvl5</td>
<td>0,05</td>
<td>4,0</td>
<td>35 % [120 min]</td>
<td>rosa → rot</td>
</tr>
<tr>
<td></td>
<td>Tvl10</td>
<td>0,015</td>
<td>4,0</td>
<td>11 % [200 min]</td>
<td>rosa → rot</td>
</tr>
<tr>
<td>1a</td>
<td>AcCL</td>
<td>0,5</td>
<td>5,0</td>
<td>51 % [400min]</td>
<td>gelb → rot-braun</td>
</tr>
<tr>
<td></td>
<td>CotA</td>
<td>0,2</td>
<td>4,0</td>
<td>87 % [400 min]</td>
<td>gelb → rot-braun</td>
</tr>
<tr>
<td></td>
<td>SLAC</td>
<td>0,2</td>
<td>4,5</td>
<td>100 % [400 min]</td>
<td>gelb → rot-braun</td>
</tr>
</tbody>
</table>
In Transformationsreaktionen mit den rekombinanten Phenoloxidase-Isoenzymen

Während der Biotransformation von 3-Methylbrenzkatechin (1a) mit der in zellfreien Rohextrakten von A. chroococcum enthaltenen bakteriellen Phenoloxidase AcCL (Gesamtaktivität 0,5 µmoL mL⁻¹; 2,6-DMP-Assay) konnte eine 51 %-ige Abnahme des Enzymsubstrates innerhalb einer Reaktionszeit von 400 min ermittelt werden (Tab. 33). Die Oxidation des Enzymsubstrats 1a verlief dabei kongruent zu der Entstehung von Eigenreaktionsprodukten, welche bereits für homomolekulare Kopplungsreaktionen mit den pilzlichen Phenoloxidasen PcL und MtL beschrieben wurden (vgl. Tab. 32, S. 149). Als Hauptprodukt konnte auch hier das gelbgefärbte Produkt M-1,2-HQ-ERP3 (R_{HPLC} 5,4 min) identifiziert werden. Darüber hinaus konnten mit fortschreitender Inkubation die Eigenkopplungsprodukte M-1,2-HQ-ERP1 (R_{HPLC} 3,5 min) und M-1,2-HQ-ERP2 (R_{HPLC} 3,8 min) in geringen Konzentrationen sowie die Produkte M-1,2-HQ-ERP5
ERGEBNISSE

(R\textsubscript{HPLC} 7,6 min), **M-1,2-HQ-ERP8** (R\textsubscript{HPLC} 9,4 min) und **M-1,2-HQ-ERP9** (R\textsubscript{HPLC} 12,6 min) in höheren Konzentrationen detektiert werden.

In Transformationsreaktionen mit den rekombinant exprimierten **bakteriellen Phenoloxidasen CotA und SLAC** konnte generell dasselbe Produktmuster erfasst werden, wobei das Enzymsubstrat **1a**, trotz geringerer Enzymaktivitäten, einer im Vergleich zu AcCL zügigeren Oxidation unterlag (Tab. 33). Mit Bezug auf die analytischen Eigenschaften der Enzympräparate, u.a. der Anwesenheit UV-aktiver Begleitsubstanzen, erwiesen sich ein Glycerol-stabilisierter Extrakt und die unbefeuelteten Lyophilisate (CotA, SLAC; vgl. Anhang, Tab. 4) als geeignete Enzymproben für nachgelagerte heteromolekulare Kopplungsreaktionen (vgl. Kap. 3.9.1.3, Kap. 3.9.1.4).

3.8.1.3 Homomolekulare Kopplungsreaktionen mit dem chemischen Kopplungsvermittler Natriumiodat

Ergänzend zu Untersuchungen einer Phenoloxidase-vermittelten Bildung homomolekularer Eigenreaktions- bzw. Kopplungsprodukte in Reaktionen des 3-Methylbrenzkatechins (**1a**), erfolgten Analysen mit dem chemischen Kopplungsvermittler Natriumiodat (NaIO\textsubscript{3}) in Puffersystemen, welche in Transformationsreaktionen mit den pilzlichen Phenoloxidasen *PcL* (pH 5) und *MtL* (pH 7) Einsatz fanden. In Hinblick auf eine Bewertung der Anzahl und Quantität der über Phenoloxidase-vermittelte Synthesen dargestellten sekundären Amine im Vergleich zu einer chemischen Katalyse, war es auch hier erforderlich, zunächst das Spektrum an homomolekularen Eigenreaktionsprodukten zu erfassen (Tab. 34).
Tab. 34: Übersicht über die Abnahme des 3-Methylbrenzkatechins (1a) und gebildeter Produkte in Reaktionen mit NaIO₃. NaIO₃ als wässrige Stammlösung in einer 24 mM Endkonzentration (v/v) eingesetzt.

<table>
<thead>
<tr>
<th>Substrat</th>
<th>Umsatz von 1a³</th>
<th>Produktᵇ,ᶜ</th>
<th>HPLC-Rᶠ [min]</th>
<th>λₘₐₓ [nm]</th>
<th>Färbung des Ansatzes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Methylbrenzkatechin</td>
<td>100 % [20 min]</td>
<td>M-1,2-HQ-ERP3</td>
<td>5,4</td>
<td>267, 415</td>
<td>gelb → rot-braun</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(M-1,2-HQ-ERP10)</td>
<td>6,7</td>
<td>268, 407</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-1,2-HQ-ERP4</td>
<td>6,9</td>
<td>270, 435</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-1,2-HQ-ERP5</td>
<td>7,6</td>
<td>265, 373, 447</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(M-1,2-HQ-ERP11)</td>
<td>8,4</td>
<td>254, 460</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-1,2-HQ-ERP12</td>
<td>9,4</td>
<td>264, 437</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-1,2-HQ-ERP13</td>
<td>10,0</td>
<td>284, 353</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(M-1,2-HQ-ERP9)</td>
<td>12,6</td>
<td>408</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 % [120 min]</td>
<td>M-1,2-HQ-ERP3</td>
<td>5,4</td>
<td>267, 415</td>
<td>schwach gelb → rot-braun</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(M-1,2-HQ-ERP10)</td>
<td>6,7</td>
<td>268, 407</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-1,2-HQ-ERP12</td>
<td>9,4</td>
<td>264, 437</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(M-1,2-HQ-ERP9)</td>
<td>12,6</td>
<td>408</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weitere Produkte in einem Pool von Rᶠ HPLC 13,0 - 16,4 min</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

³ Weißes Feld: Reaktionsansatz bei pH 5 (0,02 M NaAC)
Graues Feld: Reaktionsansatz bei pH 7 (PCP)
ᵇ Produkte in Klammern lagen in sehr geringer Konzentration vor.
ᶜ Fett-gedruckte Produkte als Hauptprodukte in homomolekularen Kopplungsreaktionen identifiziert.

In NaIO₃-katalysierten Reaktionen war die Oxidation des 3-Methylbrenzkatechins (1a) in einem Reaktionssystem mit pH 5 gegenüber einem mit pH 7 stark beschleunigt (Tab. 34). Unabhängig von dem pH-Wert der Reaktionssysteme, konnte die Bildung des bereits in Transformationsreaktionen mit Phenoloxidasen detektierten Eigenreaktionsprodukts M-1,2-HQ-ERP3 ermittelt werden. Dieses stellte in 0,02 M NaAC (pH 5) das Hauptprodukt dar und erreichte eine maximale Konzentration nach einer Reaktionszeit von 40 min. Mit fortschreitender Inkubation setzte unter Abnahme von M-1,2-HQ-ERP3 eine simultane Zunahme des in Enzymansätzen nicht detektierten Produkts M-1,2-HQ-ERP13 ein. Zudem traten weitere neue Eigenreaktionsprodukte (M-1,2-HQ-ERP10 und M-1,2-HQ-ERP11), jedoch in geringen Konzentrationen, in Reaktionen mit dem NaIO₃ bei pH 5 auf.

In Transformationsansätzen bei pH 7 (PCP) erfolgte nur eine vergleichsweise schwache Bildung des in Reaktionen bei pH 5 dominierenden Eigenreaktionsproduktes M-1,2-HQ-ERP3, wobei das Produkt M-1,2-HQ-ERP12 als Hauptprodukt identifiziert werden konnte. Auch dieses konnte in Reaktionen mit den pilzlichen und bakteriellen Phenoloxidasen nicht detektiert werden.
3.8.2 Homomolekulare Kopplung von \textit{para}-dihydroxylierten Verbindungen

In Ergänzung und zum Vergleich zu Untersuchungen der homomolekularen Kopplung von \textit{ortho}-dihydroxylierten Verbindungen (1a-c) in Reaktionen mit den pilzlichen Phenoloxidases \textit{PcL} und \textit{MtL} (vgl. Kap. 3.8.1.1), erfolgten Versuche mit den \textit{para}-dihydroxylierten Verbindungen Methylhydrochinon (1d), Methoxyhydrochinon (1e) und tert-Butylhydrochinon (1f) (Strukturen vgl. Abb. 37, S. 147). Die Reaktionsansätze wurden analog zu denen der \textit{ortho}-dihydroxylierten Verbindungen erstellt und die Produktbildung über regelmäßige HPLC-Analysen verfolgt.

In Reaktionen mit den \textit{para}-dihydroxylierten Verbindungen 1d-f konnte ebenfalls eine, unter Abnahme des jeweiligen Enzymsubstrats, einsetzende Bildung von Eigenreaktionsprodukten unter simultaner Farbveränderung der Reaktionsansätze erfasst werden. Die Verfärbungen der Reaktionsansätze wichen jedoch stark von denen der korrespondierenden Brenzkatechine ab. Zudem traten in Reaktionsansätzen mit den hydrochinoiden Enzymsubstraten 1d-f Produktpeaks in Erscheinung, deren UV/VIS-Absorptionsspektren ($\lambda_{\text{max}} \sim 250 \, \text{nm}$) mit denen ungesättigter \textit{para}-Dicarbonyle (M-1,4-Q, MO-1,4-Q, tertB-1,4-Q) korrelierten (Tab. 35). Diese 1,4-benzoquinoiden Produkte waren die primär gebildeten Produkte, aus welchen sich mit fortschreitender Reaktionszeit weitere Eigenreaktionsprodukte bildeten.

Tab. 35: Übersicht über die Abnahme der \textit{para}-dihydroxylierten Enzymsubstrate Methylhydrochinon (1d), Methoxyhydrochinon (1e) und tert-Butylhydrochinon (1f) in Reaktionen mit den Phenoloxidases \textit{PcL} (0,02 M NaAC, pH 5) und \textit{MtL} (PCP, pH 7) sowie der gebildeten Produkte. Enzymsubstrate als methanolische Stammlösungen in einer 1 mM Endkonzentration (v/v) eingesetzt. Enzymaktivitäten 1 μmoL mL$^{-1}$.

<table>
<thead>
<tr>
<th>Substrat</th>
<th>Substrat- abnahmea</th>
<th>Produktb,c</th>
<th>HPLC-R_f[min]d</th>
<th>λ_{max}[nm]</th>
<th>Färbung des Ansatzes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methylhydrochinon</td>
<td>100 % [100 min]</td>
<td>(M-1,4-HQ-ERP1)</td>
<td>3,8</td>
<td>246</td>
<td>farblos \rightarrow schwach rosa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(M-1,4-HQ-ERP2)</td>
<td>4,1</td>
<td>288</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-1,4-Q</td>
<td>6,0</td>
<td>249, 323</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(M-1,4-HQ-ERP3)</td>
<td>9,1</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-1,4-HQ-ERP4</td>
<td>11,7</td>
<td>268, 471</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(M-1,4-HQ-ERP5)</td>
<td>13,8</td>
<td>266</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 % [60 min]</td>
<td>(M-1,4-HQ-ERP1)</td>
<td>3,8</td>
<td>246</td>
<td>farblos \rightarrow rosa-rot</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(M-1,4-HQ-ERP2)</td>
<td>4,1</td>
<td>288</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-1,4-Q</td>
<td>6,0</td>
<td>249, 323</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-1,4-HQ-ERP6</td>
<td>5,2</td>
<td>273</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(M-1,4-HQ-ERP7)</td>
<td>6,2</td>
<td>251</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-1,4-HQ-ERP8</td>
<td>6,4</td>
<td>263, 369</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-1,4-HQ-ERP9</td>
<td>7,2</td>
<td>252</td>
<td></td>
</tr>
</tbody>
</table>
Entgegen der in Reaktionen mit den 1,4-dihydroxylierten Verbindungen 1d-f ermittelten Bildung korrespondierender para-Dicarboxylen, konnte in Untersuchungen der Biotransformation der in 1,2-Position dihydroxylierten Verbindungen 1a-c keine Bildung vergleichbarer 1,2-benzochinoider Produkte festgestellt werden.

Im Allgemeinen unterlagen die para-dihydroxylierten Enzymsubstrate einer, im Vergleich zu ortho-dihydroxylierten Verbindungen mit gleichartigen Substituenten, schnelleren enzymatischen Oxidation, wobei erstere innerhalb von 60 min vollständig umgesetzt waren (Tab. 35). Zudem war die Oxidation der para-dihydroxylierten Verbindungen in Reaktionssystemen bei pH 7 (MtL) gegenüber Reaktionen bei pH 5 (PcL) beschleunigt. In MtL-katalysierten Reaktionen wurde eine größere Anzahl und Menge homomolekularer Kopplungsprodukte erfasst. In diesen erfolgte neben der Bildung der 1,4-benzochinoniden Produkte M-1,4-Q, MO-1,4-Q und tertB-1,4-Q eine Generierung weiterer Hauptprodukte (Tab. 35). In Gegensatz dazu traten in Reaktionen mit der Phenoloxidase PcL, neben den para-Dicarboxylen, keine weiteren Hauptprodukte in Erscheinung (Tab. 35).
Analog zu Ergebnissen des ortho-dihydroxylierten Enzymsubstrats 3-Methoxybrenzkatechin (1b), konnten in homomolekularen Transformationsreaktionen der para-dihydroxylierten Verbindungen mit Methoxyhydrochinon (1e) in einem MtL-katalysierten Reaktionsansatz das größte Spektrum an Eigenreaktionsprodukten erfasst werden (Abb. 39).

Abb. 39: Zeitlicher Verlauf der Abnahme des Methoxyhydrochinons (1e) unter Bildung des 1,4-benzochinoiden Dicarbonyls MO-1,4-Q sowie weiterer in Transformationsreaktionen mit PcL (0,02 M NaAC, pH 5, A) und MtL (PCP, pH 7, B) detektiert Eigenreaktionsprodukte. Reaktion bei RT. 1e als methanolische Stammlösung (1 mM, v/v) eingesetzt. Enzymaktivitäten 1 µmoL mL⁻¹. Schüttelfrequenz 200 rpm.

Das Produkt MO-1,4-Q erreichte sowohl in MtL- als auch PcL-katalysierter Reaktion seine maximale Konzentration nach 20 min. Mit Abnahme von MO-1,4-Q erfolgte mit MtL eine simultane Entstehung von 4 weiteren Hauptprodukten (Abb. 39). Hingegen wurde in der PcL-katalysierten Transformationsreaktion lediglich das in geringen Konzentrationen vorliegende Eigenreaktionsprodukt MO-1,4-HQ-ERP5 gebildet.

In Stabilitätsuntersuchungen des Methoxyhydrochinons (1e) wurden viele der in homomolekularen Reaktionen erfassten Eigenreaktionsprodukte wiedergefunden.

3.8.3 Homomolekulare Kopplung von para-dihydroxylierten mehrfach-substituierten ein- und zweikernigen Aromaten

Die mehrfach substituierten ein- und zweikernigen para-dihydroxylierten Verbindungen 2-Methoxy-3-methylhydrochinon (1g), 2,3-Dimethoxy-5-methylhydrochinon (1h) und 2-Methylphthathydrochinon (1i) wurden in heteromolekularen Kopplungsreaktionen, mit dem Ziel, einer Phenoloxidase-vermittelten Synthese von Mitomycin-, Ubichinon-10- und Vitamin K-Vorstufen als Enzymsubstrate, eingesetzt. Auch hier erfolgten unter dem Aspekt einer Abgrenzung der Syntheseprodukte von homomolekularen Kopplungsprodukten zunächst Untersuchungen bezüglich der Eigenreaktionen in PcL- und MtL-katalysierten Reaktionssystemen (Tab. 36).

Tab. 36: Übersicht über die Abnahme der Enzymsubstrate 2-Methoxy-3-methylhydrochinon (1g), 2,3-Dimethoxy-5-methylhydrochinon (1h) und 2-Methylphthathydrochinon (1i) sowie der gebildeten Produkte in Reaktionen mit den Phenoloxidasen PcL (0,02 M NaAC, pH 5) und MtL (PCP, pH 7). Enzymsubstrate als methanolische Stammlösungen in einer 1 mM Endkonzentration (v/v) eingesetzt. Enzymaktivitäten 1 µmoL mL⁻¹.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Methoxy-3-methylhydrochinon 1g</td>
<td>100 % [100 min]</td>
<td>MMO-1,4-HQ-ERP1</td>
<td>4,9</td>
<td>221, 267</td>
<td>farblos → rosa-rot</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MMO-1,4-Q</td>
<td>6,0</td>
<td>283</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MMO-1,4-HQ-ERP2</td>
<td>13,5</td>
<td>272</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 % [60 min]</td>
<td>MMO-1,4-HQ-ERP4</td>
<td>5,7</td>
<td>208, 294</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MMO-1,4-Q</td>
<td>6,0</td>
<td>283, 381</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MMO-1,4-HQ-ERP3</td>
<td>8,4</td>
<td>254, 324</td>
<td></td>
</tr>
<tr>
<td>2,3-Dimethoxy-5-methylhydrochinon 1h</td>
<td>100 % [420 min]</td>
<td>DMOM-1,4-HQ-ERP1</td>
<td>7,9</td>
<td>315</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DMOM-1,4-Q</td>
<td>8,2</td>
<td>266, 408</td>
<td></td>
</tr>
<tr>
<td>2-Methylphthathydrochinon 1i</td>
<td>20 % [24 h]</td>
<td>MNH-1,4-HQ-ERP1</td>
<td>6,0</td>
<td>249</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MNH-1,4-HQ-ERP2</td>
<td>6,6</td>
<td>227, 257, 302</td>
<td>farblos → gelb-orange</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MNH-1,4-HQ-ERP3</td>
<td>8,5</td>
<td>251, 290</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MNH-1,4-HQ-ERP4</td>
<td>9,9</td>
<td>250, 290</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MNH-1,4-Q</td>
<td>10,7</td>
<td>228, 270, 306</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28 % [24 h]</td>
<td>siehe oben</td>
<td>farblos → gelb-orange</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Weiße Felder: Reaktionsansätze mit PcL (pH 5)
Graue Felder: Reaktionsansätze mit MtL (pH 7)
b Produkte in Klammern lagen in sehr geringer Konzentration vor.
c Fett-gedruckte Produkte als Hauptprodukte in homomolekularen Kopplungsreaktionen identifiziert.
d Analysen der Reaktionen mit 1g - HPLC-Fließmittelgradient 2, 1h und 1i - HPLC-Fließmittelgradient 1.

Die Verbindungen 1g-i wiesen, unabhängig von dem pH-Wert des Reaktionsmilieus, im Vergleich zu Untersuchungen mit den einfach methyl- bzw. methoxysubstituierten para-dihydroxylierten einkernigen Aromaten Methylhydrochinon (1d) und Methoxyhydrochinon (1e) (vgl. Kap. 3.8.2), eine sehr geringe Anzahl an Eigenreaktionsprodukten auf.
Als Hauptprodukte konnten in allen Reaktionen die korrespondierenden 1,4-benzochinoiden Produkte (MMO-1,4-Q, DMOM-1,4-Q und MNH-1,4-Q) identifiziert werden, deren Entstehung eine Farbänderung der Reaktionsansätze bedingte. In Stabilitätsuntersuchungen bei pH 5 und pH 7 konnte bei den Enzymsubstraten 1g und 1i eine geringfügige autokatalytische Konversion in die 1,4-Benzochinone ermittelt werden, wobei diese bei dem dimethoxylierten Substrat 1h verstärkt in Erscheinung trat. Die Oxidation der Substrate 1g-i verlief im Vergleich zu der von einfach substituierten para-dihydroxylierten Verbindungen vergleichsweise langsam, wobei insbesondere in Reaktionen mit 2-Methylnaphtalphenoxychinon (1i) nach 24-stündiger Inkubation lediglich 1/3 des Substrats umgesetzt war.

3.8.4 Untersuchungen zur Transformation von 2,6-Dimethoxyphenol durch die bakterielle Phenoloxidase AcCL von A. chroococcum

In Untersuchungen bezüglich des Substratspektrums der von A. chroococcum gebildeten Phenoloxidase AcCL konnte eine hohe Präferenz für das dimethoxylierte Phenoloxidase-Modellsubstrat 2,6-Dimethoxyphenol (2,6-DMP) ermittelt werden (vgl. Kap. 3.7.6.2). Eine hohe Aktivität gegenüber 2,6-DMP konnte zudem in Untersuchungen der Michealis-Konstante K_m bestätigt werden (vgl. Kap. 3.7.7). In Ergänzung dazu wurde die AcCL-katalysierte Transformation von 2,6-DMP mittels HPLC-Analyse untersucht. Das Substrat wurde als eine wässrige Stammlösung (1 mM, v/v) eingesetzt und die Reaktion durch Zusatz eines AcCL-haltigen zellfreien Rohextraktes (Gesamtaktivität 0,5 µmoL mL⁻¹) gestartet. Bereits zu Beginn der Enzymreaktion konnte die Bildung eines oran genen Farbstoffes beobachtet werden. In HPLC-Analysen konnte diese Farbstoffbildung mit dem Auftreten zweier Produkte mit einer Retentionszeit von R_HPLC 6,15 min (2,6-DMP-ERP1a) bzw. R_HPLC 6,48 min (2,6-DMP-ERP1b) in Verbindung gebracht werden (Abb. 40).
Abb. 40: HPLC-Elutionsprofil (220 nm) und UV/VIS-Absorptionsspektren der Produkte eines Reaktionsansatzes von 2,6-DMP (1 mM, v/v) mit der bakteriellen Phenoloxidase AcCL (0,5 µmol mL⁻¹) von A. chroococcum nach 40 min. Peaks im vorderen Chromatographiebereich stammen aus dem Reaktionsmilieu. Inkubation bei RT, Schüttelfrequenz 200 rpm. HPLC-Fließmittelgradient 1.

Da das Produkt 2,6-DMP-ERP1a ein mit 2,6-DMP-ERP1b vergleichbares Absorptionsmaximum bei 275 nm aufwies, jedoch kein für dimere Produkte typisches zweites Absorptionsmaximum in einem Wellenlängenbereich von 400 bis 500 nm besaß, wurde für dessen Struktur ein radikalisier tes 2,6-DMP-Molekül postuliert. Eine Bildung weiterer Produkte konnte über HPLC-Analysen nicht nachgewiesen werden.

3.8.5 Strukturaufklärung der homomolekularen Kopplungsprodukte

Mit dem Anliegen, einer strukturchemischen Charakterisierung der in homomolekularen Kopplungsreaktionen mit ortho- und para-dihydroxylierten Enzymsubstraten gebildeten Eigenreaktionsprodukte, erfolgte eine Präparation von 5-mL-Reaktionsansätzen mittels Festphasenextraktion, an die sich LC-MS- und GC-MS-Analysen der in einem Methanol-Essigsäure/A. bidest.-Gemisch bzw. reinem Methanol enthaltenen Analytsubstanzen anschlossen. Die Ergebnisse werden nachfolgend dargestellt.

3.8.5.1 Eigenreaktionsprodukte des 3-Methylbrenzkatechins

In homomolekularen Reaktionen des 3-Methylbrenzkatechins (1a) konnte sowohl in PcL- als auch MtL-katalysierten Reaktionen die Bildung von drei Hauptprodukten (M-1,2-HQ-ERP2, M-1,2-HQ-ERP3 und M-1,2-HQ-ERP4) verfolgt werden (Kap. 3.8.1.1, Tab. 32). Unter Oxidation von 1a erfolgte eine primäre Bildung des Produkts M-1,2-HQ-ERP3, wobei dieses Produkt im weiteren Reaktionsverlauf unter Zunahme
des Produkts M-1,2-HQ-ERP2 (pH 7) abnahm, jedoch auch eine partielle Konversion in das Produkt M-1,2-HQ-ERP4 (pH 5 und 7) festgestellt werden konnte.

Das Produkt M-1,2-HQ-ERP2 wurde bei der Festphasenextraktion mit einem Lösungsmittelgemisch aus 50 % MeOH und 50 % CH₃COOH (0,1 % in A. bidest., v/v) als ein rosa-rot gefärbtes Einzelprodukt gewonnen und eluierte vor dem Eigenreaktionsprodukt M-1,2-HQ-ERP3. In Auswertung des Massenspektrums konnte für M-1,2-HQ-ERP2 ein Pseudomolekülionenpeak [M+H]⁺ mit einer Masse m/z = 138,1 und die dazu korrespondierende Masse des Natriumaddukts [M+Na]⁺ von m/z = 160,0 ermittelt werden. Das [M+H]⁺-Ion wies damit gegenüber dem 3-Methylbenzkathechin (1a) eine Massendifferenz von 14 amu auf, gegenüber dem 3-Methyl-[1,2]-benzoquinon bestand eine Differenz von 16 amu. Dies indizierte die Anlagerung einer reaktiven Sauerstoff-Spezies, insbesondere eines OH-Anionradikals (-O⁻), aus dem wässrigen Reaktionsmilieu, an das 3-Methyl-[1,2]-benzoquinon. Das Vorhandensein einer Hydroxyl-Gruppe an dem 3-Methyl-[1,2]-benzoquinon konnte ausgeschlossen werden, da ein solches Produkt einen Molpeak [M+H]⁺ mit einer Masse m/z = 139 besessen hätte. Die über HPLC- und LC-MS-Analysen erhaltenen Daten des Produktes M-1,2-HQ-ERP2 sind in nachfolgender Tabelle zusammengefasst (Tab. 37).
Tab. 37: Übersicht über die mittels HPLC- und LC-MS-Analysen erfassten Daten der aus einer Reaktion von 3-Methylbrenzkatechin (1a) mittels Festphasenextraktion isolierten Eigenreaktionsprodukte M-1,2-HQ-ERP2, M-1,2-HQ-ERP3 und M-1,2-HQ-ERP4.

<table>
<thead>
<tr>
<th>Produkt/Farbe in Lösung</th>
<th>HPLC</th>
<th>LC-MS</th>
<th>Mögliche Strukturen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R_f</td>
<td>UV/VIS-Spektrum/Absorptionsmaxima</td>
<td>Masse</td>
</tr>
<tr>
<td></td>
<td>[min]</td>
<td>λ_max [nm]</td>
<td>[min]</td>
</tr>
<tr>
<td>M-1,2-HQ-ERP2</td>
<td>3,8</td>
<td>217, 299, 489</td>
<td>0,65</td>
</tr>
<tr>
<td>rosa-rot</td>
<td></td>
<td></td>
<td>0,32-0,60</td>
</tr>
<tr>
<td>M-1,2-HQ-ERP3</td>
<td>5,3</td>
<td>267, 415</td>
<td>2,52</td>
</tr>
<tr>
<td>gelb</td>
<td></td>
<td></td>
<td>2,47</td>
</tr>
<tr>
<td>M-1,2-HQ-ERP4</td>
<td>6,9</td>
<td>270, 435</td>
<td>10,10</td>
</tr>
<tr>
<td>rosa</td>
<td></td>
<td></td>
<td>10,02</td>
</tr>
</tbody>
</table>

^a HPLC-Fließmittelgradient 1.
^b M-1,2-HQ-ERP2/ M-1,2-HQ-ERP3: LC-MS-Fließmittelgradient 1;
M-1,2-HQ-ERP4: LC-MS-Fließmittelgradient 2.
^c Abkürzungen siehe Abkürzungsverzeichnis.

Das Produkt **M-1,2-HQ-ERP3** (Tab. 37) wurde mit einem Lösungsmittelgemisch aus 50 % MeOH und 50 % CH₃COOH (0,1 % in A. bidest., v/v) in Lösung als ein intensiv...
gelb-gefärbertes Einzelprodukt gewonnen. In der LC-MS-Analyse konnte für das Pseudomolekülion [M+H]^+ eine Masse m/z = 153,1 ermittelt werden. Das Natriumaddukt [M+Na]^+ besaß eine Masse m/z = 175,1. Mit Bezug auf das Pseudomolekülion [M+H]^+, entsprach dies gegenüber der unradikalisierten Verbindung 1a einer Massendifferenz von 28 amu; ausgehend von der benzochinoiden Form des Enzymsubstrats betrug die Massendifferenz 30 amu. Auf der Grundlage dieser Ergebnisse wurde für das Eigenreaktionsprodukt M-1,2-HQ-ERP3 die Struktur eines über electrophile Addition einer OCH₃-Gruppe substituierten 3-Methyl-[1,2]-benzochinons postuliert (Tab. 37). Da das 3-Methylbrenzkatechin (1a) stets als eine methanolische Stammlösung in Phenoloxidase-Reaktionen eingesetzt wurde, bestand die Annahme, dass eine Substitution des 3-Methyl-[1,2]-benzochinons mit einer OCH₃-Gruppe des Methanols stattgefunden hatte.

In Reaktionskinetiken bei pH 7 (Mt/L) konnte eine Abnahme des mit einer OCH₃-Gruppe substituierten Produktes M-1,2-HQ-ERP3 unter simultaner Zunahme des Eigenreaktionsproduktes M-1,2-HQ-ERP2 nachgewiesen werden. Demnach erfolgte eine bei pH 7 verstärkt ablaufende Austauschreaktion zwischen dem an Produkt M-1,2-HQ-ERP3 befindlichen OCH₃-Substituenten mit einer aus dem Reaktionsmilieu stammenden Sauerstoff-Spezies. In Untersuchungen der heteromolekularen Kopplung des 3-Methylbrenzkatechins (1a) konnte dies verifiziert werden (Kap. 3.9ff).

Ergänzend zu LC-MS-Analysen der mit einem Methanol-Essigsäure/A. bidest.-Gemisch (50:50, v/v) fraktioniert eluierten Eigenreaktionsprodukte M-1,2-HQ-ERP2 und M-1,2-HQ-ERP3, wurde ein Mt/L-katalysierter Reaktionsansatz nach einer Reaktionszeit von 20 min auf eine Festphasenkartusche übertragen und als ein Gesamtextrakt mit 100 % Methanol eluiert. Auch dieser wurde mittels LC-MS- und GC-MS-Analytik vermessen. In LC-MS-Messungen konnte, neben dem Produkt M-1,2-HQ-ERP3, ein weiteres Produkt detektiert werden, dessen Pseudomolekülion [M+H]^+ eine Masse m/z = 183,1 zugeordnet werden konnten. Dies entsprach gegenüber dem 3-Methyl-[1,2]-benzoquinolin einer Massendifferenz von 60 amu und ließ auch hier eine Addition von niedermolekularen Substituenten vermuten. Es wurde eine Dimethoxylierung durch Addition zweier Lösungsmittelmoleküle angenommen (Tab. 37). Aufgrund der Vermessung eines Gesamtextraktes konnte für das Produkt jedoch keine eindeutige Zuordnung zu den im Kap. 3.8.1.1 aufgeführten Eigenreaktionsprodukten des 3-Methylbrenzkatechins (1a) getroffen werden. In Hinblick auf die Reaktionskinetik und
die über HPLC-Analysen nach einer Reaktionszeit von 20 min detektierten Produkte, wird jedoch an dieser Stelle davon ausgegangen, dass es sich um das **Eigenreaktionsprodukt M-1,2-HQ-ERP4** (vgl. Tab. 32, S. 149) handeln könnte.

In GC-MS-Analysen desselben derivatisierten Gesamtextraktes einer M/L-katalysierten homomolekularen Kopplung von 3-Methylbrenzkatechin (1a) konnten die über LC-MS-Messungen detektierten und in ihrer Struktur postulierten Produkte M-1,2-HQ-ERP2, M-1,2-HQ-ERP3 und M-1,2-HQ-ERP4 nicht eindeutig nachgewiesen werden. Im Vergleich zu Massenspektren von Standardverbindungen der Massenspektren-Bibliothek wurden für die Produktpeaks jedoch hohe Übereinstimmungen mit Strukturen, die sich von ringoffenen Dicarbonsäure-Derivaten ableiteten, ermittelt. Die Ergebnisse der GC-MS-Analysen führten zu der Annahme, dass die Analytmoleküle von einer relativ hohen Instabilität geprägt waren und durch die bei einem gaschromatographischen Analyseverfahren vorherrschenden thermischen Bedingungen zerfallen. Vermutlich führte dies zu einer Detektion ringoffener Strukturen, welche Carboxyl-, Methyl- und Methoxy-Gruppen aufwiesen (vgl. Anhang, Tab. 11).

Generell konnten in Analysen der homomolekularen Eigenreaktionsprodukte des 3-Methylbrenzkatechins (1a) keine Anhaltspunkte für die primäre Bildung eines unsubstituierten 3-Methyl-[1,2]-benzochinons gefunden werden. Hingegen konnte in HPLC-Analysen der wässrigen Transformationsansätze stets eine primäre Bildung des gelb gefärbten monomethoxyierten Eigenreaktionsproduktes M-1,2-HQ-ERP3 (vgl. Tab. 37, S. 165) festgestellt werden. Dies deutete darauf hin, dass das über eine Phenoloxidase-vermittelte Radikalsierung gebildete 3-Methyl-[1,2]-benzochinon einer unmittelbaren Reaktion mit Lösungsmittelmolekülen unterlag und somit zu keinem Zeitpunkt detektiert werden konnte.

3.8.5.2 Eigenreaktionsprodukte des 3-Methoxybrenzkatechins

In Reaktionsansätzen des 3-Methoxybrenzkatechins (1b) konnten in Abhängigkeit von dem pH-Wert des Reaktionssystems erhebliche Unterschiede in dem Produktmuster gefunden und die größte Anzahl an Eigenreaktionsprodukten in Untersuchungen von ortho-dihydroxylierten Verbindungen erfasst werden (vgl. Tab. 32, S. 149). Sowohl in
Reaktionen bei pH 5 als auch pH 7 erfolgte, ähnlich wie in Reaktionen des 3-Methylbrenzkatechins (1a), eine primäre Bildung des Produkts MO-1,2-HQ-ERP2.

Mit dem Ziel einer Strukturaufklärung des Eigenreaktionsproduktes MO-1,2-HQ-ERP2, wurde ein Reaktionsansatz mit PcL (pH 5) nach 20 min mittels Festphasenextraktion aufbereitet und als methanolischer Gesamtextrakt vermessen.

In LC-MS-Analysen erschien, analog zur HPLC-Analyse, ein dominierender Peak dessen Pseudomolekülion [M+H]+ eine Masse m/z = 169,1 besaß. Im Vergleich zu der molaren Masse des 3-Methoxybrenzkatechins (1b, 140 g mol⁻¹) war die Masse des Pseudomoleküls [M+H]+ um 28 amu erhöht, gegenüber dem aktivierten 3-Methoxy-[1,2]-benzochinon bestand eine Differenz von 30 amu. Mit Bezug auf die Identifizierung des in Reaktionen mit 3-Methylbrenzkatechin (1a) primär gebildeten monomethoxylierten Eigenreaktionsprodukts M-1,2-HQ-ERP3 (vgl. Kap. 3.8.5.1), wurde für das Produkt MO-1,2-HQ-ERP2 ebenfalls die Struktur eines über elektrophile Addition eines Lösungsmittelmoleküls (-OCH₃) generierten monomethoxylierten 3-Methoxy-[1,2]-benzochinons postuliert (Tab. 38).

Tab. 38: Übersicht über die mittels HPLC- und LC-MS-Analysen erfassten strukturanalytischen Daten des Eigenreaktionsprodukts MO-1,2-HQ-ERP2 aus einer homomolekularen Kopplungsreaktion des 3-Methoxybrenzkatechins (1b) mit PcL (pH 5). LC-MS-Analyse eines methanolischen Gesamtextrakts.

<table>
<thead>
<tr>
<th>Produkt/Farbe in Lösung</th>
<th>HPLC</th>
<th>LC-MS</th>
<th>Mögliche Strukturen</th>
</tr>
</thead>
<tbody>
<tr>
<td>MO-1,2-HQ-ERP2 orange-braun</td>
<td>3,0</td>
<td>10,08 (M-D)c</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UV/Vis-Spektrum/</td>
<td>10,02 (UV-D)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Absorptionsmaxima</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>λ_{max} [nm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R_{f} [min]a</td>
<td>m/z = 169,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[M+H]+</td>
<td></td>
</tr>
</tbody>
</table>

a HPLC-Fließmittelgradient 1; b LC-MS-Fließmittelgradient 2; c Abkürzungen siehe Abkürzungsverzeichnis.

In Anlehnung an die über HPLC-Analysen (vgl. Abb. 38, S. 151) erfasste anfängliche Bildung des in seiner Struktur als ein methoxysubstituiertes Benzochinon postulierten Eigenreaktionsproduktes MO-1,2-HQ-ERP2, konnte, im Vergleich zu Reaktionen des
3-Methylbrenzkatechins (1a), auch hier keine Entstehung des unsubstituierten 3-Methoxy-[1,2]-benzochinons festgestellt werden. Dies erhärte erneut die bereits für das 3-Methylbrenzkatechin getroffene Annahme, dass das über eine enzymatische Radikalsierung gebildete 3-Methoxy-[1,2]-benzochinon direkt einer nicht-enzymatischen Reaktion mit einem Lösungsmittelmolekül (Methanol) unterlag und somit nicht detektiert werden konnte. In GC-MS-Analysen des methanolischen Gesamtextraktes konnten Produktpeaks detektiert werden, deren Massenspektren mit den von der Massenspektren-Bibliothek für Eigenreaktionsprodukte des 3-Methylbrenzkatechins vorgeschlagenen Strukturen übereinstimmten (vgl. Anhang, Tab. 11).

3.8.5.3 Eigenreaktionsprodukte des 4-tert-Butylbrenzkatechins

In homomolekularen Kopplungsreaktion des 4-tert-Butylbrenzkatechins (1c) wurde, im Gegensatz zu Phenoloxidase-vermittelten Reaktionen des 3-Methyl- bzw. 3-Methoxybrenzkatechins, lediglich ein Haupeigenreaktionsprodukt (tertB-1,2-HQ-ERP2) detektiert (vgl. Tab. 32, S. 149). Das Produkt tertB-1,2-HQ-ERP2 akkumulierte über eine Reaktionszeit von 24 h und bewirkte eine intensive Gelbfärbung der Reaktionsansätze. In LC-MS-Analysen eines mittels Festphasenextraktion gewonnenen methanolischen Gesamtextrakts einer Reaktion bei pH 5 (60 min), konnte diesem Produkt ein Pseudomolekülionenpeak [M+H]+ mit einer Masse m/z = 195,1 zugeordnet werden. Gegenüber der Ausgangsverbindung 1c entsprach dies einer Massendifferenz von 28 amu, ausgehend von einem 4-tert-Butyl-[1,2]-benzochinon-Molekül einer Massenerhöhung um 30 amu. Mit Bezug auf Ergebnisse einer strukturchemischen Charakterisierung der in Phenoloxidase-Reaktionen mit den Enzymsubstraten 3-Methyl- und 3-Methoxybrenzkatechin gebildeten Eigenreaktionsprodukte M-1,2-HQ-ERP3 und MO-1,2-HQ-ERP2 (vgl. Kap. 3.8.5.1, Kap. 3.8.5.2), deutete die detektierte Masse somit erneut auf die Addition einer aus dem Reaktionsmilieu stammenden OCH₃-Gruppe an das aktivierte Benzochinon hin (Tab. 39).
Tab. 39: Übersicht über die mittels HPLC- und LC-MS-Analysen erfassten strukturanalytischen Daten des Eigenreaktionsprodukts tertB-1,2-HQ-ERP2 aus einer homomolekularen Kopplungsreaktion des 4-tert-Butylbrenzkatechins (1c) mit PcL (pH 5). LC-MS-Analyse eines methanolischen Gesamtextrakts.

<table>
<thead>
<tr>
<th>Produkt/Farbe in Lösung</th>
<th>HPLC</th>
<th>LC-MS</th>
<th>Mögliche Strukturen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rf</td>
<td>UV/VIS-Spektrum/</td>
<td>Masse</td>
</tr>
<tr>
<td></td>
<td>[min]</td>
<td>Absorptionsmaxima</td>
<td>m/z = 195,1</td>
</tr>
<tr>
<td>tertB-1,2-HQ-ERP2</td>
<td>6,6</td>
<td>λ_{max} [nm]</td>
<td>[M+H]^+</td>
</tr>
<tr>
<td>gelb</td>
<td></td>
<td>205, 257, 395</td>
<td>11,32 (M-D)(^a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11,21 (UV-D)</td>
</tr>
</tbody>
</table>

\(^a\) HPLC-Fließmittelgradient 2; \(^b\) LC-MS-Fließmittelgradient 2; \(^c\) Abkürzungen siehe Abkürzungsverzeichnis.

Das in seiner Struktur als methoxysubstituiertes 4-tert-Butyl-[1,2]-benzochinon postulierte Haupteigenreaktionsprodukt tertB-1,2-HQ-ERP2 unterlag in Reaktionen mit den Phenoloxidaseden PcL und MtL keiner Konzentrationsabnahme unter signifikanter Bildung weiterer homomolekularer Kopplungsprodukte. Daher wurde von einer ausgeprägten Reaktionsträgheit bzw. Stabilität des in Lösung befindlichen Eigenreaktionsproduktes tertB-1,2-HQ-ERP2 ausgegangen.

Zusammenfassend lässt sich aus den Ergebnissen einer Strukturanalytik der in homomolekularen Kopplungsreaktionen mit den ortho-dihydroxylierten Enzmysubstraten 3-Methylbrenzkatechin (1a), 3-Methoxybrenzkatechin (1b) und 4-tert-Butylbrenzkatechin (1c) primär gebildeten Eigenreaktionsprodukte ableiten, dass die aktivierten 1,2-Dicarbonyle einer simultanen nicht-enzymatischen Reaktion mit Molekülen des Lösungsmittels Methanol unterlagen. In GC-MS-Analysen der in einem methanolischen Gesamtextextrakt angereicherten Eigenreaktionsprodukte konnten keines der über LC-MS-Messung detektierten Produkte erfasst werden. Diesbezüglich indizierten die bei gaschromatographischen Analyseverfahren detektierten ringoffenen Dicarbonsäuren eine thermische Instabilität der underivatisierten Reaktionsprodukte.
3.8.5.4 Eigenreaktionsprodukte des Methylhydrochinons

In homomolekularen Kopplungsreaktionen des Methylhydrochinons (1d) konnte das, in Reaktionen mit den Phenoloxidassen PcL (pH 5) und MtL (pH 7) primär gebildete Hauptprodukt M-1,4-Q, anhand eines Methyl-[1,4]-benzochinon-Standards als das zur Ausgangsverbindung 1d korrespondierende Benzochinon identifiziert werden (vgl. Tab. 35, S. 157). M-1,4-Q stellte in PcL-katalysierten Reaktionen (pH 5) das Haupeigenreaktionsprodukt dar, wohingegen in Transformationsansätzen mit der Phenoloxidase MtL (pH 7) eine Anreicherung weiterer, leicht hydrophiler bzw. hydrophoberer, Eigenreaktionsprodukte (M-1,4-HQ-ERP6, M-1,4-HQ-ERP8, M-1,4-HQ-ERP9) festgestellt wurde. Unter dem Aspekt, einer strukturenchemischen Charakterisierung dieser Eigenreaktionsprodukte, wurde ein MtL-katalysierter Reaktionsansatz nach 120-minütiger Inkubation über eine Festphasenextraktion aufbereitet und der methanolische Gesamtextrakt mittels GC-MS-Analytik vermessen. Die Massenspektren von signifikant hohen Peaks und die korrespondierenden Strukturvorschläge, abgeleitet von Referenzverbindungen der Massenspektren-Bibliothek, sind nachfolgend dargestellt (Tab. 40).

Tab. 40: GC-MS-Daten der bei Analyse eines methanolischen Gesamtextraktes (underivatisiert) in einer Reaktion von Methylhydrochinon (1d) mit MtL (pH 7) detektierten Eigenreaktionsprodukte im Vergleich zu Massenspektren und Strukturvorschlägen der Massenspektren-Bibliothek.

<table>
<thead>
<tr>
<th>RFGC-MS [min]</th>
<th>Massenspektrum der Analytmoleküle (A) und von Referenzverbindungen der Massenspektren-Bibliothek (B)</th>
<th>Fragmentierungsmuster</th>
</tr>
</thead>
<tbody>
<tr>
<td>6,718</td>
<td></td>
<td>M 152 (C₈H₈O₃)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>139 (M -CH), 124 (M -CO), 96 (M -2CO), 84 (M -C₄H₄O)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>69 (M -C₅H₇O), 56 (M -C₅H₄O₂)</td>
</tr>
</tbody>
</table>

A

![Massenspektrum](image)

B
In Auswertung der über eine GC-MS-Analyse detektierten Peaks konnten 3 Produkte erfasst werden. Die Fragmentien des Massenspektrums des Produkts bei RGC-MS = 6,718 min zeigten dabei hohe Übereinstimmung mit einem Referenzspektrum der Massenspektren-Bibliothek und führten zu der Annahme eines monomethoxylierten Methyl-[1,4]-benzochinons. Das Produkt mit einem Molekülionen-Peak m/z = 184 (RGC-MS 7,480 min) zeigte eine relativ hohe Übereinstimmung mit dem Massenspektrum der Referenzverbindung 2,3,4-Trimethoxyphenol der Massenspektren-Bibliothek. Für den dritten Produktpeak mit einer Molekülionenmasse von m/z = 154 (RGC-MS 7,595 min) wurde, in Abgleich zu dem Massenspektrum eines Referenzeintrages, die Struktur eines 3,5-Dimethoxyphenols postuliert.

Auf der Basis dieser Strukturvorschläge konnte daher ebenfalls eine Substitution des nicht-aktivierten Aromaten mit OCH3-Gruppen angenommen werden, wobei solche Additionsreaktionen gleichwohl Austauschreaktionen an den CH3- und OH-Gruppen bedingen würden.
3.9 Heteromolekulare Kopplung von ortho-dihydroxylierten Verbindungen

Die ortho-dihydroxylierten Enzymsubstrate 3-Methylbrenzkatechin (1a), 3-Methoxybrenzkatechin (1b) und 4-tert-Butylbrenzkatechin (1c) wurden in Phenoloxidase-vermittelten Kopplungsreaktionen, unter dem Aspekt einer Synthese sekundärer Amine, mit diversen Amindonoren umgesetzt. Die Arbeiten konzentrierten sich dabei insbesondere auf C-N-Kopplungsreaktionen des 3-Methylbrenzkatechins (1a) mit den aliphatischen linearen Aminen 2a-g, den verzweigtkettigen Alkylaminen 2h-l sowie den bicyclischen Aminen 2n-r und dem cyclischen Amin 2s (vgl. Abb. 37, S. 147). In Ergänzung dazu wurden Kopplungsreaktionen mit den ortho-dihydroxylierten Verbindungen 1b und c mit dem aliphatischen Aminopartner 2d (n-Hexyamin) vorgenommen, um prinzipielle Reaktionsmechanismen, die durch die am Aromaten befindlichen Substituenten dirigiert werden, aufzuklären. Weiterhin wurde in Modellreaktionen des 3-Methylbrenzkatechins mit den aliphatischen Aminen 2d (n-Hexyamin) und 2g (n-Nonylamin) die Effizienz einer Biokatalyse im Vergleich zu einem NaIO₃-katalysierten Reaktionssystem geprüft.

3.9.1 Heteromolekulare Kopplungsreaktionen von 3-Methylbrenzkatechin mit linearen aliphatischen Aminen

Die heteromolekularen Kopplungsreaktionen des 3-Methylbrenzkatechins (1a) mit den aliphatischen Aminen 2a-g wurden sowohl mit den pilzlichen Phenoloxidasen PcL und MtL als auch den rekombinant exprimierten Phenoloxidase-Isoenzymen PcL35, TvL5 und TvL10 vorgenommen. Zudem wurden die bakterielle Phenoloxidase AcCL des Stammes A. chroococcum sowie die rekombinant exprimierten bakteriellen Phenoloxidasen CotA (B. subtilis) und SLAC (S. coelicolor) in die Untersuchungen einbezogen.

3.9.1.1 Kopplungsreaktionen mit den pilzlichen Phenoloxidasen PcL und MtL

In heteromolekularen Kopplungsreaktionen des 3-Methylbrenzkatechins (1a) mit den aliphatischen Amindonoren 2a-g konnte sowohl in Reaktionen mit PcL (0,02 M NaAC, pH 5) als auch MtL (PCP, pH 7), unabhängig von dem eingesetzten Aminopartner, stets
die Entstehung eines Hauptproduktes, im Nachfolgenden als 3a-g bezeichnet, sowie zwei weiterer heteromolekularer Kopplungsprodukte festgestellt werden. Die erhaltenen Ergebnisse werden diesbezüglich nachfolgend ausführlich am Beispiel von Biotransformationsansätzen mit dem Amindonor 2g (n-Nonylamin) näher erläutert. Das in Reaktionen mit den Phenoloxidasen PcL und MtL erfasste Produktmuster ist in Abb. 42 dargestellt.

Abb. 42: HPLC-Chromatogramme (220 nm) einer heteromolekularen Kopplungsreaktion von 3-Methylbrenzkatechin (1a, 1 mM, v/v) mit n-Nonylamin (2g, 5 mM, v/v) katalysiert durch die Phenoloxidasen MtL (A) und PcL (B) nach einer Reaktionszeit von 60 min. Inkubation bei RT, Schüttelfrequenz 200 rpm. HPLC-Fließmittelgradient 1.

In heteromolekularen Kopplungsreaktionen des 3-Methylbrenzkatechins mit n-Nonylamin stellte das Produkt 3g stets das Hauptprodukt dar, wohingegen die heteromolekularen Kopplungsprodukte M-1,2-HQ-KKP2 (λ_{max} 275, 288 nm) und M-1,2-HQ-KKP3 (λ_{max} 241, 272, 451 nm) zunächst in geringen Konzentrationen vorlagen und erst mit fortschreitender Inkubationszeit, unter Abnahme des Hauptprodukts, akkumulierten. Unabhängig von dem eingesetzten Enzympräparat (1 µmoL mL⁻¹ PcL bzw. MtL) bzw. dem Reaktionsmilieu (pH 5 bzw. pH 7), führte die enzymatische Oxidation des Enzymsubstrats anfänglich zu einer unter Gelbfärbung der
Reaktionsansätze einsetzenden Bildung des Eigenreaktionsproduktes M-1,2-HQ-ERP3 (vgl. Tab. 32, S. 149, vgl. Kap. 3.8.5.1). Weitere Eigenreaktionsprodukte entsprachen im Wesentlichen dem über Versuche zur homomolekularen Kopplung der Verbindung 1a, ermittelten Produktspektrum und konnten maßgeblich auf den pH-Wert des Reaktionsmilieus zurückgeführt werden. In Reaktionskinetiken konnte die Konzentrationsabnahme des gelb-gefärbten Eigenreaktionsproduktes M-1,2-HQ-ERP3 in eine direkte Beziehung zur Generierung des heteromolekularen Hauptproduktes 3g gesetzt werden. Insbesondere in MtL-katalysierten Ansätzen (pH 7) war die Abnahme von M-1,2-HQ-ERP3 zudem mit einer gesteigerten Bildung des Eigenreaktionsproduktes M-1,2-HQ-ERP2 sowie weiterer homomolekularer Produkte (vgl. Tab. 32, S. 149) verbunden. Mit einer über HPLC-Analysen erfassten ansteigenden Quantität des Produktes 3g konnte eine Farbintensivierung der Reaktionsansätze nach dunkelrot beobachtet werden.

In Strukturanalysen konnte das gereinigte Produkt 3g als ein monoaminiertes heteromolekares Kopplungsprodukt identifiziert werden, wobei das n-Nonylamin über eine C-N-Verknüpfung an die C-5-Position des 3-Methyl-[1,2]-benzochinons gekoppelt war (vgl. Kap. 3.9.2). Strukturanalytische Untersuchungen des heteromolekularen Produkts M-1,2-HQ-KKP3 deuten auf ein diaminiertes Produkt hin.

In Analysen zur Bildung des monoaminierten heteromolekularen Kopplungsproduktes 3g wurden unterschiedliche Ausgangskonzentrationen der als methanolische Stammlösungen eingesetzten Edukte getestet. Neben äquimolaren Konzentrationen (1:1 mM), wurde ebenso die Kinetik einer Phenoloxidase-vermittelten Synthese der Zielverbindung 3g unter Einsatz eines Überschusses des aliphatischen Aminidonors 2g (1:2 mM bis 1:10 mM) in Reaktionsansätzen mit MtL und PcL chromatographisch verfolgt (Abb. 43A, B).
Abb. 43: Konzentration des 3-Methylbrenzkatechins (1a) und des Kopplungsprodukts 3g in heteromolekularen Transformationsreaktionen mit n-Nonylamin (2g) katalysiert durch MtL (A) und PcL (B) in Abhängigkeit von den Eduktkonzentrationen. Enzymaktivitäten 1 µmol mL⁻¹. Edukte als methanolische Stammlösung eingesetzt, Reaktion bei RT. Schüttelfrequenz 200 rpm.

Durch Variation der Eduktkonzentrationen konnte festgestellt werden, dass sich eine Konzentrationserhöhung des Kopplungspartners 2g begünstigend auf die Geschwindigkeit des Substratumsatzes auswirkte (Abb. 43A, B). Ein weiterer positiver Aspekt lag in einer daraus resultierenden, beschleunigten Bildung des monoaminierten Kopplungsprodukts 3g. Zudem konnten, gegenüber äquimolaren Reaktionsansätzen, mit einer Erhöhung der Konzentration des Amindonors 2g (5 mM, v/v) die über eine HPLC-Analyse erfassten Produktausbeuten um 76 % (MtL) bzw. 70 % (PcL) gesteigert werden. Diese Steigerung war mit einer Minimierung der Konzentration von Eigenreaktionsprodukten (außer M-1,2-HQ-ERP3) verbunden. Sowohl in Reaktionen bei pH 7 (MtL) als auch pH 5 (PcL) erreichte das monoaminierte Produkt 3g seine maximale Konzentration nach 120 min (Abb. 43A, B). Diese war in Reaktionsansätzen mit MtL gegenüber PcL jedoch um 37 - 45 % (1 mM 2g) bzw. 26 % (5 mM 2g) vermindert und begründete sich in einer bei pH 7 frühzeitiger einsetzenden und zudem gesteigerten Bildung der höhermolekularen Kopplungsprodukte M-1,2-HQ-KKP2 und M-1,2-HQ-KKP3, unter Abnahme des monoaminierten Produkts 3g. Weiterhin war die Anzahl und Quantität der Eigenreaktionsprodukte bei diesem pH-Wert gegenüber pH 5 erhöht.
Die heteromolekularen Kopplungsprodukte 3a-g einer Reaktion des ortho-dihydroxylierten Enzymsubstrats 3-Methylbrenzkatechin (1a) mit den aliphatischen Aminonoren 2a-g besaßen - ungeachtet der Kettenlängen der Aminopartner - identische UV/VIS-Absorptionsspektren (Abb. 44).

Eine Zusammenfassung der Ergebnisse durchgeführter heteromolekularer Biotransformationsreaktionen mit den pilzlichen Phenoloxidases PcL und MtL ist Tab. 41 zu entnehmen.
Tab. 41: Übersicht über die in heteromolekularen Kopplungsreaktionen des 3-Methylbrenzkatechins (1a) mit den linearen aliphatischen Aminopartnern 2a-g in PcL- und MtL-katalysierten Reaktionen in Abhängigkeit von der Eduktkonzentration mittels HPLC-Analytik erfassten Substratumsätze sowie Konzentrationen und Ausbeuten der Produkte 3a-g.

<table>
<thead>
<tr>
<th>Amindonor</th>
<th>Eduktkonzentration 1a</th>
<th>Phenoxidase<sup>a</sup></th>
<th>Umsatz 1a [%]</th>
<th>Konzentration 3a-g [µg mL<sup>-1</sup>]</th>
<th>Ausbeute 3a-g [%]<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60 min</td>
<td>120 min</td>
<td>60 min</td>
<td>120 min</td>
<td>120 min</td>
</tr>
<tr>
<td>Amindonoren 2a-g [mM]<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2a</td>
<td>1:1 PcL</td>
<td>72</td>
<td>96</td>
<td>33</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>1:1 MtL</td>
<td>94</td>
<td>100</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>2b</td>
<td>1:1 PcL</td>
<td>74</td>
<td>100</td>
<td>26</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>1:5 MtL</td>
<td>98</td>
<td>100</td>
<td>67</td>
<td>114</td>
</tr>
<tr>
<td>2c</td>
<td>1:5 PcL</td>
<td>71</td>
<td>100</td>
<td>132</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>1:1 PcL</td>
<td>89</td>
<td>98</td>
<td>33</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>1:1 MtL</td>
<td>86</td>
<td>100</td>
<td>23</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>1:5 MtL</td>
<td>98</td>
<td>100</td>
<td>88</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>1:10 MtL</td>
<td>100</td>
<td>100</td>
<td>141</td>
<td>n.d.<sup>d</sup></td>
</tr>
<tr>
<td>2d</td>
<td>1:1 PcL</td>
<td>80</td>
<td>99</td>
<td>30</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>1:5 MtL</td>
<td>94</td>
<td>100</td>
<td>79</td>
<td>76</td>
</tr>
<tr>
<td>2e</td>
<td>1:5 PcL</td>
<td>75</td>
<td>95</td>
<td>114</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>1:5 MtL</td>
<td>94</td>
<td>100</td>
<td>105</td>
<td>93</td>
</tr>
<tr>
<td>2f</td>
<td>1:5 PcL</td>
<td>88</td>
<td>99</td>
<td>37</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>1:5 MtL</td>
<td>92</td>
<td>100</td>
<td>120</td>
<td>169</td>
</tr>
<tr>
<td>2g</td>
<td>1:1 PcL</td>
<td>77</td>
<td>100</td>
<td>24</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>1:5 MtL</td>
<td>90</td>
<td>100</td>
<td>94</td>
<td>119</td>
</tr>
</tbody>
</table>

^a Edukte als methanolische Stlsg. eingesetzt.
^b Enzymaktivität: 1 µmol mL⁻¹ (ABTS-Assay, RT)
^c Berechnete Ausbeuten [%] bemessen an einem 100 %-igen Umsatz der Edukte in die Zielverbindungen 3a-g in einem 5-mL-Reaktionsmaßstab nach 120 min Reaktionszeit im wässrigen Ansatz. Quantifizierung der Produkte erfolgte mit Hilfe der gereinigten Produkte in Methanol.
^d n.d. - nicht determiniert (berechnete Ausbeute auf 60 min bezogen).

Bei äquimolarer Eduktkonzentration konnten in PcL-katalysierten Reaktionen (pH 5) die monoaminierten Zielverbindungen 3a-g mit Ausbeuten zwischen 13 bis 20 % gewonnen werden. In Reaktionsansätzen mit MtL (pH 7) lagen diese zwischen 8 und 11 %. Mit Bezug auf eine Erhöhung der Amindonor-Konzentrationen (5 mM), konnten die über eine HPLC-Analyse erfassten Ausbeuten auf bis zu 64 % gesteigert werden. Um eine Steuerbarkeit der Reaktionen zu gewährleisten wurde ein 1:5 mM Konzentrationsverhältnis zwischen dem Enzymsubstrat 1a und den aliphatischen Aminen 2a-g für nachfolgende Untersuchungen gewählt, um so vergleichende Aussagen bezüglich der Produktausbeuten unter Variation weiterer Reaktionsparameter (u.a. Katalysatoren, Aktivitäten, Reaktionstemperatur) tätigen zu können (vgl. Kap. 3.9.1.3, Kap. 3.9.1.6).
3.9.1.2 Kopplungsreaktionen mit den rekombinant exprimierten pilzlichen Phenoloxidase-Isoenzymen PcL35, TvL5 und TvL10

Mit den rekombinanten Phenoloxidase-Isoenzymen konnte in Modellreaktionen des 3-Methylbrenzkatechins mit den Aminopartnern *n*-Hexylamin (2d), *n*-Heptylamin (2e) und *n*-Nonylamin (2g) eine, bereits für Reaktionen mit PcL und MtL beschriebene, Bildung der heteromolekularen Kopplungsprodukte erfasst werden. Die Entstehung der Kopplungsprodukte wurde dabei maßgeblich von der Aktivität des eingesetzten Enzympräparats bestimmt. Dies zeigte sich insbesondere in Reaktionen mit dem Phenoloxidase-Isoenzym TvL5, in denen erst ab einer Aktivität von 0,15 µmoL mL⁻¹ eine Bildung des monoaminierten Kopplungsprodukts erfolgte (Tab. 42). Auch in Biotransformationsreaktionen mit TvL10 (0,5 µmoL mL⁻¹) konnte die Bildung eines entsprechenden monoaminierten Kopplungsprodukts festgestellt werden. Im Vergleich zu den Phenoloxidase-Isoenzymen TvL5 und TvL10, erfolgte in Reaktionsansätzen mit PcL35 zwar eine zügigere Oxidation des Enzymsubstrates 1a, jedoch konnte diese mit Einsatz ansteigender Aktivitäten nur geringfügig gesteigert werden (Tab. 42).

<table>
<thead>
<tr>
<th>Amindonor</th>
<th>Eduktkonzentration 1a : Amindonoren [mM]²</th>
<th>Phenoloxidase</th>
<th>Enzymaktivität [µmoL mL⁻¹]</th>
<th>40 min</th>
<th>120 min</th>
<th>120 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>2d</td>
<td>1:5</td>
<td>PcL35</td>
<td>1</td>
<td>20</td>
<td>72</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>1:5</td>
<td>PcL35</td>
<td>1,5</td>
<td>37</td>
<td>76</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1:5</td>
<td>PcL35</td>
<td>2</td>
<td>44</td>
<td>82</td>
<td>1</td>
</tr>
</tbody>
</table>

Tab. 42: Übersicht über die in heteromolekularen Kopplungsreaktionen des 3-Methylbrenzkatechins (1a) mit den linearen aliphatischen Aminopartnern 2d, 2e und 2g in Abhängigkeit von der Aktivität der rekombinannten Phenoloxidase-Isoenzyme PcL35, TvL5 und TvL10 erfassten Substratumsätze und Ausbeuten heteromolekularer Kopplungsprodukte.

Im Allgemeinen konnte mit den Phenoloxidase-Isoenzymen eine schnellere Bildung höhermolekularer Kopplungsprodukte nachgewiesen werden. Diese war mit einer simultanen Abnahme der monoaminierten Produkte verbunden und führte primär zu der Entstehung der in Reaktionen mit PcL und MtL als M-1,2-HQ-KKP2 und M-1,2-HQ-KKP3 (vgl. Kap. 3.9.1.1) bezeichneten Produkte. Dies konnte jedoch auf die bei pH 4,0 (pH-Optima der eingesetzten Enzyme) veränderten physiko-chemischen Eigenschaften der Reaktanden- bzw. Synthese продукции zurückgeführt werden und begründete sich weniger in den Enzympräparaten selbst.

3.9.1.3 Kopplungsreaktionen mit der rekombinant exprimierten bakteriellen Phenoloxidase CotA

Die katalytische Leistungsfähigkeit der rekombinant exprimierten Sporenhüllen-assoziierten Phenoloxidase CotA des Stammes *B. subtilis* DSM 4393 wurde in einer Modellreaktion des 3-Methylbrenzkatechins ([1a](#)) mit dem aliphatischen Amin-donor *n*-Hexyamin ([2d](#)) untersucht. Das Enzym wurde in Form eines Lyophilisats (1 mg mL⁻¹ NaAC, pH 4,0) (vgl. Anhang, Tab. 4) mit einer Aktivität von 0,2 µmoL mL⁻¹ eingesetzt. Den Reaktionsansätzen wurde CuSO₄ in einer 10 µM Endkonzentration (v/v) zugesetzt. Da für die bakterielle Phenoloxidase CotA zudem sehr hohe Temperaturstabilitäten beschrieben sind (KOSCHORRECK *et al.*, 2008), wurden die CotA-katalysierten Transformationsansätze in einem Temperaturbereich von 22 bis 80 °C inkubiert. Mit Einsatz eines nicht vorgereinigten Lyophilisats konnten in der HPLC-Analyse viele UV-aktive Substanzen detektiert werden, welche jedoch sehr früh eluierten und sich somit gut von den eigentlichen Transformationsprodukten abgrenzen ließen. Zudem setzte mit ansteigender Reaktionstemperatur eine Präzipitation von Begleitstoffen ein, welche sich positiv auf die Chromatographie der Reaktionsansätze auswirkte.

In Temperaturbereichen von 22 bis 35 °C konnte eine stetige Erhöhung der Produktsynthese ([3d](#)) ermittelt werden, welche durch das Mitführen von Negativkontrollen, alleinig auf eine CotA-vermittelte Transformation zurückgeführt werden konnte (Abb. 45).
Abb. 45: Konzentration des heteromolekularen Kopplungsprodukts 3d in einer Reaktion von 3-Methylbrenzkatechin (1a, 1 mM, v/v) mit dem aliphatischen Aminodonor n-Hexylamin (2d, 5 mM, v/v) katalysiert durch die bakterielle Phenoloxidase CotA in Abhängigkeit von der Reaktionstemperatur. Enzymaktivität 0,2 µmOL mL⁻¹, CuSO₄-Supplementierung (10 µm mL⁻¹, v/v). Edukte als methanolische Stammlösung eingesetzt. AK - Autokatalytische Bildung von 3d.

In einem Temperaturintervall von 10 °C (25 - 35 °C) konnte die Ausbeute des monoaminierten Produkts 3d - wie erwartet - um 42 % (2,8 µg ml⁻¹) gesteigert werden (Abb. 45). Ab einer Temperatur von 40 °C wurde die Bildung des sekundären Amins jedoch erheblich reduziert, sodass nach einer Reaktionszeit von 120 min lediglich 44,7 % der bei 35 °C ermittelten Produktmenge vorlagen. Mit einer weiteren Temperaturerhöhung sank die Ausbeute stetig weiter, was auf eine Inhibition des Enyzms hindeutete. Weiterhin konnte in Negativkontrollen ab einer Temperatur von 45 °C eine einsetzende autokatalytische Bildung des heteromolekularen Kopplungsproduktes 3d festgestellt werden, welche ab einer Reaktionstemperatur von 70 °C im Wesentlichen der in Enzym-katalysierten Reaktionsansätzen erhaltenen - bei 70 °C verringerten - Produktmenge entsprach und sich von dieser nicht weiter abgrenzen ließ. Mit Bezug auf die angewendeten Reaktionsparameter und gemessen an der Menge des anvisierten Kopplungsprodukts 3d, fanden sich für die untersuchte CotA-vermittelte Modellreaktion optimale Reaktionsbedingungen bei 35 °C, wobei ein maximaler Umsatz nach 80 min erfasst werden konnten.
3.9.1.4 Kopplungsreaktionen mit der rekombinant exprimierten bakteriellen Phenoloxidase SLAC

Die rekombinant exprimierte bakterielle Phenoloxidase SLAC des Stammes *S. coelicolor* wurde, ebenso wie die Phenoloxidase CotA (vgl. Kap. 3.9.1.3), in einer Modellreaktion von 3-Methylbenzatkatechin (1a) mit *n*-Hexylamin (2d) auf ihre Eignung in heteromolekularen Biotransformationsreaktionen geprüft. Die Reaktionen wurden mit einem Glycerol-stabilisierten SLAC-Extrakt (Aktivität 1 µmoL mL⁻¹) durchgeführt.

Neben den in Versuchen zur homomolekularen Kopplung erfassten Eigenreaktionsprodukten, konnte auch hier eine Bildung der Zielverbindung 3d nachgewiesen werden. Eine Auffälligkeit ergab sich dabei in der Bildung eines heteromolekularen Kopplungsproduktes (M-1,2-HQ-KKPGly), welches in Reaktionsansätzen mit den Phenoloxidasen PcL, MtL, PcL35, TvL5 und TvL10 nicht in Erscheinung trat (Abb. 46A).

Abb. 46: HPLC-Elutionsprofil (220 nm) des wässrigen Überstandes einer heteromolekularen Kopplungsreaktion von 3-Methylbenzatkatechin (1a, 1 mM, v/v) mit *n*-Hexylamin (2d, 5 mM, v/v) katalysiert durch ein Glycerol-stabilisiertes SLAC-Präparat nach 60 min (A). UV/VIS-Absorptionsspektren des Produkts M-1,2-HQ-KKPGly und des heteromolekularen Kopplungsprodukts 3d (B). Enzymaktivität 1 µmoL mL⁻¹. Inkubation bei RT, Schüttelfrequenz 200 rpm. HPLC-Fließmittelgradient 1.

C-O-Kopplungsreaktion angenommen (Abb. 48). Eine elektrophile Addition niedermolekularer Moleküle aus dem wässrigen Reaktionsmilieu an das aktivierten 3-Methyl-[1,2]-benzochinon, konnte bereits inn Strukturanalysen der in homomolekulare Kopplungsreaktionen gebildeten Eigenreaktionsprodukte nachgewiesen werden (vgl. Kap. 3.8.5.1). Dabei wurde für das Eigenreaktionsprodukt \textbf{M-1,2-HQ-ERP2} ein mit einer radikalisierten O-Spezies substituiertes 3-Methyl-[1,2]-benzochinon postuliert. Dieses besaß ebenfalls ein, mit den monoaminierten Kopplungsprodukten 3a-g, identisches UV/VIS-Absorptionsspektrum und war durch eine sehr zeitige Elution in der HPLC-Analyse gekennzeichnet (vgl. Tab. 32, S. 149).

Das Glycerol-Addukt \textbf{M-1,2-HQ-KKPGly} stand bei Verwendung eines mit Glycerol stabilisierten Enzympräparats in Konkurrenz zu der Bildung des Syntheseprodukts 3d.

In SLAC-vermittelten Kopplungsreaktionen wurden ebenfalls die Ausbeuten der Zielverbindung 3d in Reaktionsansätzen mit einem Überschuss des aliphatischen Kopplungspartners 2d sowie dem Zusatz einer exogenen Kupferquelle (0,5 mM CuSO\textsubscript{4}, v/v) geprüft. Gegenüber einer äquimolaren Eduktkonzentration konnten die Produktmengen in Reaktionsansätzen mit einer 5 mM Konzentration von 2d auf das 2,5- (120 min) bis 1,3-fache (400 min) gesteigert werden (Abb. 48A, S. 185). Zudem war dies mit einer 46 %-igen Reduktion des Produkts \textbf{M-1,2-HQ-KKPGly} verbunden. Folglich konnte mit einer Konkonzrationserhöhung des Amindonors 2d die Nebenreaktion des aktivierten Enzymsubstrat-Moleküls mit dem im Enzympräparat enthaltenen Glycerol unterdrückt werden.
Abb. 48: Konzentrationsverlauf des heteromolekularen Kopplungsprodukts 3d (A) und des Glycerol-Addukts M-1,2-HQ-KKPGly (B) in SLAC-katalysierten Reaktionen (1µmol mL⁻¹) von 3-Methylbrenzkatechin (1a) und n-Hexylamin (2d) in Abhängigkeit von den Eduktkonzentrationen sowie einer CuSO₄-Supplementierung. Edukte als methanolische Stammlösung eingesetzt. Inkubation bei RT, Schüttelfrequenz 200 rpm.

Bei Supplementierung der Transformationsansätze (5 mM 2d) mit 0,5 mM CuSO₄ (v/v) konnte - im Vergleich zu nicht-supplementierten Ansätzen - jedoch lediglich eine Reduktion der Produktmengen erfasst werden, welche auf eine Inhibition der Phenoloxidase SLAC schließen ließ. Gegenüber einer äquimolaren Eduktkonzentration war die Produktmenge in CuSO₄-supplementierten Ansätzen (5 mM 2d) anfänglich noch höher. Nach einer Reaktionszeit von 60 min betrug diese, im Vergleich zu nicht-supplementierten Ansätzen, jedoch nur 58 %, nach weiteren 340 min 75 % (400 min) der Produktmengen an 3d. Dennoch war in Reaktionen mit Kupferzusatz die geringste Nebenreaktion in das Produkt M-1,2-HQ-KKPGly zu verzeichnen (Abb. 48B).

3.9.1.5 Kopplungsreaktionen mit der bakteriellen Phenoloxidase AcCL von A. chroococcum

Auch die in zellfreien Rohextrakten des Stammes A. chroococcum enthaltende Phenoloxidase AcCL wurde in der Modellreaktion von 3-Methylbrenzkatechin (1a) mit n-Hexylamin (2d) auf ihre Anwendbarkeit in heteromolekularen Transformationsreaktionen untersucht. Bereits in vergleichenden Untersuchungen des

In AcCL-katalysierten Reaktionen des Enzymsubstrats 1a mit dem Amindonor 2d (5 mM, v/v) konnte eine bereits mit anderen eu- und prokaryotischen Phenoloxidasen übereinstimmende Bildung der heteromolekularen Kopplungsprodukte 3d, M-1,2-HQ-KKP2 und M-1,2-HQ-KKP3 festgestellt werden. Neben einer mit fortschreitender Inkubationszeit einsetzenden Bildung der höhermolekularen Kopplungsprodukte M-1,2-HQ-KKP2 und M-1,2-HQ-KKP3, stellte auch hier das Produkt 3d ein Hauptprodukt der AcCL-vermittelten Transformationsreaktion dar. Nach einer Reaktionszeit von 120 min waren 33 % des Substrats 1a umgesetzt (Abb. 50). Das Produkt 3d lag zum gleichen Zeitpunkt mit einer Konzentration von 1,6 µg mL⁻¹ vor.

Im weiteren Verlauf der Reaktion erfolgte eine sukzessive Zunahme von 3d, welches nach einer Inkubationszeit von 400 min mit einer Konzentration von 3,7 µg mL⁻¹ vorlag (Abb. 50). Auf der Grundlage der vorgestellten Ergebnisse konnte die Phenoloxidase AcCL des Stammes A. chroococcum als ein geeignetes Enzym für die Durchführung heteromolekularer Transformationsreaktionen identifiziert werden.
3.9.1.6 Vergleich von Biotransformationsreaktionen mit NaIO₃-katalysierten Reaktionen

3.9.1.6.1 Produktgewinnung in biologisch- und chemisch-katalysierten Reaktionssystemen

In MtL-katalysierten Modellreaktionen wurde bei äquimolarer Eduktkonzentration in Aktivitätsbereichen von 0,5 bis 1 U mL⁻¹ die größte Quantität der Zielverbindung 3d generiert, wobei eine Steigerung der enzymatischen Aktivitäten nicht zu einer Zunahme der Produktmenge führte (Abb. 50A).

Abb. 50: Konzentration des heteromolekularen Kopplungsprodukts 3d in Reaktionen des 3-Methylbrenzkatechins (1a, 1 mM, v/v) mit äquimolarer Konzentration (A) und 5-fachem Überschuss des Amindonors n-Hexylamin (2d) (B) in MtL-katalysierten Reaktionen. Konzentrationsverlauf der in NaIO₃-katalysierten (6-100 mM NaIO₃) Reaktionssystemen gebildeten Mengen des Kopplungsprodukts 3d sowie des dazu regioisomeren Produkts 3d* bei äquimolarer Eduktkonzentration (C) und mit 2d im 5 mM Überschuss (D). Reaktionen in PCP (pH 7) bei RT. Edukte als methanolische Stammlösung eingesetzt. Schüttelfrequenz 200 rpm.
Insbesondere in Reaktionsansätzen, in denen 10 U mL\(^{-1}\) der Phenoloxidase \(MtL\) vorlagen, wurde die Bildung von 3\(d\) um 35 bis 55 % reduziert. In Reaktionen, in welchen der aliphatische Aminidonor 2\(d\) mit einem Überschuss eingesetzt wurde, konnten bei einer Enzymaktivität von 0,5 U mL\(^{-1}\) im Vergleich zu äquimolaren Reaktionsansätzen die Konzentration des heteromolekularen Kopplungsprodukts 3\(d\) um das 5-fache gesteigert werden (Abb. 50B). Jedoch wurde auch hier eine mit ansteigenden Enzymaktivitäten verbundene Abnahme der Zielverbindung festgestellt, wobei diese bei 10 U mL\(^{-1}\) ebenfalls um 49 % reduziert war (Abb. 50B). Dabei war die Quantität an 3\(d\) gegenüber äquimolaren Reaktionsansätzen dennoch zwischen 51 % (0,5 U mL\(^{-1}\)) und 80 % (10 U mL\(^{-1}\)) erhöht.

In NaIO\(_3\)-katalysierten Reaktionen konnte keine mit der Konzentration des chemischen Katalysators verbundene Abnahme der Zielverbindung 3\(d\) ermittelt werden. So wurden mit ansteigenden Katalysatorkonzentrationen bei 1:1 mM Konzentrationsverhältnis der Edukte die Ausbeuten um bis zu 50 % gesteigert (120 min) (Abb. 50C). Auch hier konnte generell eine, mit Konzentrationserhöhung des \(n\)-Hexylamins verbundene, Steigerung der Quantitäten des heteromolekularen Kopplungsprodukts 3\(d\) ermittelt werden (Abb. 50D). Im Vergleich zu Reaktionsansätzen, in denen der chemische Kopplungsvermittler in einer 6 mM Endkonzentration eingesetzt wurde, konnten die Produktausbeuten mit Vervierfachung der Katalysatormenge (24 mM) um 81 % erhöht werden. Mit der höchsten getesteten NaIO\(_3\)-Konzentration (100 mM) war die Produktmenge gegenüber der niedrigsten Katalysatormenge nach einer Reaktionszeit von 400 min um 76 % erhöht.

Im Vergleich zu einer chemischen Synthese konnten über \(MtL\)-vermittelte Biokatalysen bei 5 mM Konzentration des Aminopartners 2\(d\) 85 % der Zielverbindung 3\(d\) generiert werden. Bezogen auf die Katalysatormengen entsprach dies in einem 5-mL-Reaktionsmaßstab, in denen die jeweils höchsten Ausbeuten von 3\(d\) erfasst wurden, 0,6 mg Protein (0,5 U mL\(^{-1}\) \(MtL\)) bzw. 98,9 mg NaIO\(_3\) (100 mM, v/v).

Ungeachtet der Bildung eines unterschiedlichen Spektrums an homomolekularen Kopplungsprodukten in \(MtL\)- und NaIO\(_3\)-katalysierten Reaktionen des 3-Methylbrenzkatechins (vgl. Kap. 3.8.1.1, vgl. Kap. 3.8.1.3), konnte auf der Ebene der heteromolekularen Kopplungsprodukte weitere Unterschiede festgestellt werden. In \(MtL\)-vermittelten Reaktionen erfolgte neben der Bildung des Hauptproduktes 3\(d\) die
bereits in Kap. 3.9.1.1 beschriebene Bildung der höhermolekularen Kopplungsprodukte M-1,2-HQ-KKP2 und M-1,2-HQ-KKP3.

In Reaktionen mit NaIO₃ konnte neben diesen ein weiteres heteromolekulares Kopplungsprodukt (3d*) detektiert werden, welches zeitnah hinter dem Hauptprodukt 3d eluierte (R_f HPLC 11,9 min) und ein mit diesem Produkt identisches UV/VIS-Absorptionsspektrum besaß. Bei Produkt 3d* handelte es sich vermutlich um ein regioisomeres heteromolekulares Kopplungsprodukt, bei welchem der Aminosubstituent an einer zu 3d abweichenden Position gebunden war. In NaIO₃-katalysierten Reaktionen mit äquimolaler Eduktkonzentration trat dieses Produkt ab einer Katalysatorkonzentration von 50 mM in Erscheinung (Abb. 50C) und erreichte mit 100 mM NaIO₃ 44 % der für die heteromolekulare Zielverbindung 3d erfassten Quantität. Auch mit Überschuss des Kopplungspartners 2d erfolgte eine mit ansteigenden Katalysators Mengen verbundene Steigerung des regioisomeren Produkts 3d* (Abb. 50D).

Die Bildung derartiger regioisomerer Produkte konnte in Mt/L-katalysierten Reaktionen nicht festgestellt werden.

Eine Gegenüberstellung der in Biokatalysen und chemischen Synthesereaktionen ermittelten Konzentrationen des sekundären Amins 3d ist nachfolgender Abbildung zu entnehmen (Abb. 51).
Abb. 51: Konzentration der heteromolekularen Kopplungsprodukte 3d und 3d* in Reaktionen des 3-Methylbrenzkatechins (1a) mit äquimolarer Konzentration sowie 5-fachem Überschuss des Aminodonors n-Hexylamin (2d) in Abhängigkeit von der Phenoloxidase-Aktivität (MtL 0,5-10 U) und der Konzentration des chemischen Kopplungsvermittlers NaIO₃ (6-100 mM). Reaktion in PCP (pH 7) bei RT. Darstellung der in dem jeweiligen Reaktionssystem erfassten Maximalkonzentrationen. Edukte als methanolische Stammlösungen eingesetzt, Schüttelfrequenz 200 rpm.

3.9.1.6.2 Nebenreaktionsprodukte in biologisch- und chemisch-katalysierten Reaktionssystemen

In Hinblick auf die mittels HPLC-Analytik erfassten Ausbeuten des Syntheseprodukts 3d, waren die in homomolekularen Kopplungsreaktionen gebildeten Eigenreaktionsprodukte nummehr als Nebenreaktionsprodukte zu betrachten, da diese maßgeblich die Quantität des über heteromolekulare Transformationsreaktionen dargestellten Produkts bestimmten. In homomolekularen Kopplungsreaktionen des ortho-dihydroxylierten Substrats 1a konnte für den chemischen Katalysator NaIO₃ ein
von Phenoloxidase-Reaktionen abweichendes Spektrum an Eigenreaktionsprodukten

determiniert werden (vgl. Kap. 3.8.1.3).

In der vorliegenden Modellreaktion setzte in MtL-katalysierten Ansätzen eine mit
ansteigenden Enzymaktivitäten verbundene Konzentrationserhöhung des
Nebenreaktionsproduktes M-1,2-HQ-ERP2 ein (Abb. 52).

Abb. 52: Konzentrationsverlauf des in MtL-katalysierten Reaktionen detektierten
Nebenreaktionsprodukts M-1,2-HQ-ERP2 bei äquimolarer Konzentration (1:1 mM, v/v) der
Edukte (A) sowie mit dem aliphatischen Aminondonor 2d im 5-fachen Überschuss (B) in
Abhängigkeit von der Enzymaktivität. Reaktionen bei RT, Schüttelfrequenz 200 rpm.

Unabhängig von den eingesetzten Eduktkonzentrationen wurde das
Nebenreaktionsprodukt M-1,2-HQ-ERP2 in gleichen Mengen gebildet (Abb. 52A, B).
In äquimolaren Reaktionsansätzen mit 0,5 U mL⁻¹ MtL erreichte M-1,2-HQ-ERP2, im
Vergleich zu einer Enzymaktivität von 10 U mL⁻¹, lediglich eine Konzentration von
13 %. In Auswertung der Peakflächen konnte so eine mit Steigerung der Enzymaktivität
um 1 U mL⁻¹ verbundene Erhöhung des Nebenreaktionsproduktes M-1,2-HQ-ERP2
von ca. 20 % erfasst werden. Dies deutete darauf hin, dass ein Einsatz hoher
Enzymaktivitäten die in homo- und heteromolekularen Transformationsreaktionen
nachgewiesene Verdrängungsreaktion an dem methoxy-aktivierten Präkursoren M-1,2-
HQ-ERP3 stark beschleunigte. Die Reaktion wurde demzufolge in Richtung des mit
einem O-Radikal substituierten Eigenreaktionsprodukts M-1,2-HQ-ERP2 verlagert.
ERGEBNISSE

193

(vgl. Kap. 3.8.5.1). Daraus resultierte eine, mit ansteigenden MrL-Aktivitäten verbundene, Reduktion der Quantitäten des Syntheseprodukts 3d (vgl. Abb. 50, S. 188).

In NaIO₃-katalysierten Reaktionen war die Bildung des Nebenreaktionsproduktes M-1,2-HQ-ERP2 vergleichsweise gering. Als Hauptnebenreaktionsprodukt konnte das über strukturchemische Analysen als ein dimethoxyliertes 3-Methyl-[1,2]-benzochinon postulierte Produkt M-1,2-HQ-ERP4 (vgl. Kap. 3.8.5.1) erfasst werden. Das Produkt M-1,2-HQ-ERP4 trat auch in Phenoloxidase-katalysierten Reaktionen auf, wobei prinzipiell eine mit ansteigenden Enzymberechneten verbundene Abnahme dieses Nebenreaktionsprodukts nachgewiesen wurde (Abb. 53A, B).

Abb. 53: Konzentration des Nebenreaktionsprodukts M-1,2-HQ-ERP4 bei äquimolarem Konzentrations 1:1 mM, v/v) der Edukte (A) sowie mit dem aliphatischen Amindonor 2d im 5-fachen Überschuss (B) in MrL-katalysierten Reaktionssystemen (pH 7, PCP) in Abhängigkeit von der Enzymaktivität. In NaIO₃-katalysierten Transformationsreaktionen (pH 7, PCP) wurde die Konzentration von M-1,2-HQ-ERP4 ebenso in Abhängigkeit von der NaIO₃-Konzentration bei äquimolaren Eduktkonzentrationen (C) und mit 5-fachem Überschuss des Kopplungspartners 2d (D) geprüft. Reaktionen bei RT, Schüttelfrequenz 200 rpm.
Hingegen erfolgte in Transformationsreaktionen mit dem chemischen Kopplungsvermittler NaIO_3 eine mit Erhöhung der Katalysatormengen einsetzende simultane Konzentrationssteigerung von Produkt M-1,2-HQ-ERP4 (Abb. 53C, D).

Zwar wurde die Quantität dieses Nebenreaktionsproduktes in beiden Katalysatorsystemen mit einem Überschuss des Aminopartners $2d$ gegenüber einer äquimolaren Eduktkonzentration erhöht, jedoch waren die Mengen an M-1,2-HQ-ERP4 in NaIO$_3$-katalysierten Systemen stets zwischen 40 und 10 % höher. Eine im zeitlichen Verlauf einsetzende Abnahme des dimethoxylierten Nebenreaktionsproduktes M-1,2-HQ-ERP4 war in beiden Reaktionssystemen mit einer Bildung der höhermolekularen Produkte M-1,2-HQ-KKP2 und M-1,2-HQ-KKP3 verbunden. In ML-Reaktionen war ebenso eine Konversion in das stark hydrophile Eigenreaktionsprodukt M-1,2-HQ-ERP1 (vgl. Tab. 32, S. 149) festzustellen.

3.9.2 Isolation und Strukturaufklärung der heteromolekularen Kopplungsprodukte aus Reaktionen des 3-Methylbrenzkatechins mit linearen aliphatischen Aminen

Für eine Anreicherung der Syntheseprodukte wurden pro Aminopartner sechs 40-mL-Reaktionsansätze erstellt, bei Raumtemperatur lichtdicht verschlossen auf einem Schüttler inkubiert und nach einer Reaktionszeit von 100 min auf Festphasenkartuschen übertragen. Das 3-Methylbrenzkatechin ($1a$) wurde mit einer 1mM Konzentration (v/v), die Kopplungspartner $2a$–g mit einem Überschuss (5 mM, v/v), als methanolische Stammlösungen eingesetzt. Das Reinigungsschema ist Tab. 7 des Anhangs zu entnehmen.

Mit den als Feststoff vorliegenden Produkten wurden, in Hinblick auf die sich anschließenden strukturchemischen Analysen, Stabilitätsuntersuchungen durchgeführt. Die dimeren Syntheseprodukte $3a$–g waren als Feststoff sowohl bei 4 °C als auch bei Raumtemperatur über 12 Monate stabil. In HPLC-Analysen der in diversen organischen Lösungsmitteln gelösten Analytsubstanzen, konnte eine Stabilität in MeOH und ACN über einen Zeitraum von 24 h nachgewiesen werden. In DMSO und THF konnte bereits nach 1 h ein Verlust der typischen Rotfärbung beobachtet werden, welcher mit der Detektion von Zerfallsprodukten einherging.
Die Strukturaufklärung der heteromolekularen Kopplungsprodukte 3b-g erfolgte über massenspektrometrische Analyseverfahren, an die sich für eine eindeutige Identifizierung eine NMR-Spektroskopie der in deuteriertem Methanol gelösten Analysesubstanzen anschloss.

In massenspektrometrischen Analysen konnten die Produkte 3b-g als Dimer identifiziert werden. Die molaren Massen der Produkte setzten sich dabei aus der Masse des ortho-dihydroxylierten Substrats 3-Methylbrenzkatechin (1a), abzüglich zweier Protonen für die im Zuge einer enzymatischen Radikalisierung gebildeten benzochinoiden Form, sowie zwei weiteren abgespaltenen Protonen für die Ausbildung einer C-N-Bindung zusammen. In LC-MS- und HR-MS-Analysen wurden sowohl die Pseudomoleküllionen [M+H]$^+$ als auch [M+Na]$^+$ der jeweiligen Dimere detektiert. Weiterhin konnte das Vorliegen monoamminerter Synthese-produkte über Elementaranalysen mittels HR-MS-Messungen bestätigt werden (Tab. 43).

Tab. 43: Zusammenfassende Übersicht über die aus HPLC-, LC-MS- und HR-MS-Analysen erhaltenen Strukturdaten der heteromolekularen Kopplungsprodukte 3b-g aus Reaktionen des 3-Methylbrenzkatechins (1a) mit den linearen aliphatischen Aminopartnern 2b-g. Lösungsmittel MeOH.

<table>
<thead>
<tr>
<th>Produkt</th>
<th>HPLC</th>
<th>LC-MS</th>
<th>HR-MS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R$_f$[min]</td>
<td>λ_{max}[nm]</td>
<td>R$_f$[min] theoretisch</td>
</tr>
<tr>
<td>3b</td>
<td>8,8</td>
<td>220, 298, 490</td>
<td>4,2</td>
</tr>
<tr>
<td>3c</td>
<td>10,2</td>
<td>220, 298, 490</td>
<td>4,9</td>
</tr>
<tr>
<td>3d</td>
<td>11,6</td>
<td>220, 298, 490</td>
<td>5,6</td>
</tr>
<tr>
<td>3e</td>
<td>12,7</td>
<td>220, 298, 490</td>
<td>6,2</td>
</tr>
<tr>
<td>3f</td>
<td>13,6</td>
<td>220, 298, 490</td>
<td>6,7</td>
</tr>
<tr>
<td>3g</td>
<td>14,3</td>
<td>220, 298, 490</td>
<td>7,3</td>
</tr>
</tbody>
</table>

* HPLC-Fließmittelgradient 1; * LC-MS-Fließmittelgradient 2.

Die Rohdaten der HR-MS-Analysen sind in Anhang C zusammengefasst.

Neben den Dimeren 3b-g wurde auch das als ein ockerfarbener Feststoff gewonnene heteromolekulare Kopplungsprodukt M-1,2-HQ-KKP3 einer Reaktion von 1a mit n-Hexylamin (2d) mittels LC-MS-Analytik untersucht. Aufgrund seiner Retentionszeit und dem UV/VIS-Absorptionsspektrum wurde für M-1,2-HQ-KKP3 die Struktur eines Trimers (Kopplung von zwei n-Hexylamin-Substituenten) angenommen. Ein solches Produkt hätte ein molare Masse von 320 g mol$^{-1}$ besessen, welche sich aus einer
Abspaltung von zwei Protonen der an dem Aromaten befindlichen Hydroxylgruppen und eine durch die Kopplung von zwei n-Hexylamin-Partnern vorliegenden Abspaltung von 4 weiteren Protonen ergeben hätte. Über eine LC-MS-Messung konnte für M-1,2-HQ-KKP3 ein Produktpeak (R_{LC-MS} 8,1 min) mit einer Pseudomolekülionen-Masse [M+H]^+ von m/z = 326,1 detektiert werden (Abb. 54).

Abb. 54: (A) Übersicht über die mittels LC-MS-Analytik erfassten Retentionszeiten des heteromolekularen Kopplungsprodukts M-1,2-HQ-KKP3 isoliert aus einer Reaktion von 3-Methylbrenzkatechin (1a) mit n-Hexylamin (2d) in der Massendetektion (oben) und UV-Detektion (unten) sowie dessen Massenspektrums (B). (C) UV/VIS-Absorptionsspektrum, Absorptionsmaxima und HPLC-Retentionszeit von M-1,2-HQ-KKP3. Analyt in Methanol gelöst. LC-MS-Fließmittelgradient 1, HPLC-Fließmittelgradient 1.

Ausgehend von der für M-1,2-HQ-KKP3 postulierten trimeren Struktur und unter Annahme einer bei LC-MS-Analysen vorliegenden Massenerhöhung um 1 amu ([M+H]^+), besaß der detektierte Produktpeak eine um 5 amu erhöhte Masse. Diese hätte auch nicht mit der Annahme eines, bei Substanzen mit hoher Molmasse, gelegentlichen Auftretens doppelt geladener Pseudomolekülionen (u.a. [M+H]^{2+}) begründet werden können.

Für eine eindeutige Strukturaufklärung der dimeren Syntheseprodukte 3b-g und des heteromolekularen Kopplungsprodukts M-1,2-HQ-KKP3 wurden NMR-Analysen
sowohl in eindimensionalen als auch zweidimensionalen Korrelationsexperimenten durchgeführt.

Allerdings konnte auch über NMR-Messungen die Struktur des Produkts M-1,2-HQ-KKP3 innerhalb der vorliegenden Arbeit nicht abschließend aufgeklärt werden.

Die über NMR-Analysen erfolgreich vorgenommene struktchemische Charakterisierung der Produkte 3b-g soll exemplarisch am Beispiel des dimeren Produkts 3c näher erläutert werden (Tab. 44).

Tab. 44: 13C-, 1H- und 1H,1H-COSY-NMR-Daten des aus einer heteromolekularen Kopplungsreaktion des 3-Methylbrenzkatechins (1a) mit dem linearen aliphatischen Aminopartner n-Pentylamin (2c) isolierten Syntheseprodukts 3c. Lösungsmittel d_4-MeOH.

<table>
<thead>
<tr>
<th>Struktur & chemische Bezeichnung Produkt 3c</th>
<th>Pos.</th>
<th>13C-NMR (HSQC)</th>
<th>1H-NMR a</th>
<th>1H,1H-Korrelationen (HMBC)b</th>
<th>1H,1H-COSY b</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Methyl-5-(pentylamino)-[1,2]-benzochinon</td>
<td>4</td>
<td>133.5</td>
<td>6.74, br, 1H</td>
<td>C-2 (185.7), C-6 (94.6), C-1" (15.6)</td>
<td>H-3'/H-4' (1.40)</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>94.6</td>
<td>5.53, d, 1H, (2.5)</td>
<td>C-1 (175.4), C-2 (185.7), C-4 (133.5)</td>
<td>H-4 (6.74)</td>
</tr>
<tr>
<td></td>
<td>1'</td>
<td>45.1</td>
<td>3.33, t, 2H, (7.2)</td>
<td>C-5 (160.7), C-2' (29.0), C-3' (30.3)</td>
<td>H-2' (1.71)</td>
</tr>
<tr>
<td></td>
<td>2'</td>
<td>29.0</td>
<td>1.71, m, 2H</td>
<td>C-1' (45.1), C-3' (30.3), C-4' (23.5)</td>
<td>H-1' (3.33), H-3'/H-4' (1.40)</td>
</tr>
<tr>
<td></td>
<td>3'</td>
<td>30.3</td>
<td>1.40, m, 4H</td>
<td>C-1' (45.1), C-3' (30.3), C-4' (23.5), C-5' (14.4)</td>
<td>H-2' (1.70), H-5' (0.96)</td>
</tr>
<tr>
<td></td>
<td>4'</td>
<td>23.5</td>
<td>0.96, t, 3H, (7.0)</td>
<td>C-3' (30.3), C-4', (23.5)</td>
<td>H-3'/H-4' (1.40)</td>
</tr>
<tr>
<td></td>
<td>5'</td>
<td>14.4</td>
<td>1.98, d, 3H, (1.3)</td>
<td>C-4 (133.5), C-2 (185.7), C-3 (142.7)</td>
<td>H-4 (6.74)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Struktur & chemische Bezeichnung Produkt 3c</th>
<th>Pos.</th>
<th>13C-NMR (HSQC)</th>
<th>1H-NMR a</th>
<th>1H,1H-Korrelationen (HMBC)b</th>
<th>1H,1H-COSY b</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Methyl-5-(pentylamino)-[1,2]-benzochinon</td>
<td>1''</td>
<td>15.6</td>
<td>1.98, d, 3H, (1.3)</td>
<td>C-4 (133.5), C-2 (185.7), C-3 (142.7)</td>
<td>H-4 (6.74)</td>
</tr>
</tbody>
</table>

a Chemische Verschiebung δ [ppm] korrespondiert zu TMS-Signal (Kalibrierung erfolgte anhand der Lösungsmittelsignale: δ MeOH-d_4 = 3.31 (1H), 49.0 (13C)). Multiplizität, Protonenzahl, Kopplungskonstante J [Hz] in Klammern.

b Signalzuordnung, Chemische Verschiebung δ [ppm] in Klammern.

Die Signale bei 5,53 ppm und 6,74 ppm des 1H-NMR-Spektrums von 3c konnten den am 3-Methyl-[1,2]-benzochinon befindlichen Protonen H-6 und H-4 zugeordnet werden. Für das Proton H-4 wurde ein breites Signal erfasst, welches sich infolge einer long-range Kopplung zu dem meta-ständigen Proton H-6 und den Methylprotonen am C-1"" ergab. Diese long-range Kopplungen werden zusätzlich durch die Kopplungskonstanten $^4J_{4,6} = 2.5$ (H-6) und $^4J_{4,1''} = 1.3$ (H-1"') belegt. An dieser Stelle sei angemerkt, dass in den 1H-NMR-Spektren weiterer dimerer Verbindungen das Signal von H-4 als das Dublett eines Quartets (dq) mit den dazu korrespondierenden Kopplungskonstanten auftrat. Im HMBC-Spektrum von Verbindung 3c konnten weiterhin Kopplungen zwischen dem H-1"'-Protonen mit dem C-4 und des H-4-Protons mit dem C-1" nachgewiesen werden. Es wurden ebenso eindeutige Korrelationen zwischen dem Proton H-6 und C-4 und dem H-4 mit dem C-6 Kohlenstoffatom erfasst.
Eine Anbindung des n-Pentylamins (2c) an die C-5-Position des radikalisierten Aromaten konnte dabei eindeutig durch die Kopplungen der H-1’-Protonen der Alkylseitenkette mit dem C-5-Atom des Dicarboxyls und durch die Kopplung des H-4 mit dem C-1’ nachgewiesen werden. Alle weiteren Signale im aliphatischen Bereich konnten dem n-Pentylamin zugeordnet werden. Das Vorliegen einer Chinon-, Hydrochinon- oder Chinonimin-Struktur konnte in Auswertung des 13C- und HMBC-Spektrums näher bestimmt werden. Da Chinone charakteristische tieffeldverschobene Resonanzsignale im Bereich von 180 ppm bis 190 ppm aufweisen, konnte 3c gemäß den 13C-NMR-Signalen bei 175,1 ppm für das C-1-Atom und bei 185,7 ppm für das C-2-Atom als eine 1,2-chinoide Struktur identifiziert werden. In Ergänzung dazu erhärten die in dem HMBC-Spektrum ermittelte Kopplung der H-1’’-Protonen mit dem C-2-Atom, die Korrelationen des H-6-Protons mit dem C-1- und C-2-Atom und die des H-4-Protons mit dem C-2-Atom das Vorliegen einer 1,2-chinoiden Verbindung. Die über NMR-Korrelationsexperimente ermittelten Strukturdaten der dimeren Syntheseprodukte 3b sowie 3d-f sind Tab. 45 zu entnehmen.

Tab. 45: 1H- und 13C-NMR-Daten der aus heteromolekularen Kopplungsreaktionen des 3-Methylbrenzkatechins (1a) mit den linearen aliphatischen Aminopartnern 2b-g isolierten Syntheseprodukte. Lösungsmittel d_4-MeOH.

<table>
<thead>
<tr>
<th>Struktur & chemische Bezeichnung Produktion 3b [Kopplung von 1a mit n-Butylamin (2b)]</th>
<th>1H-NMR</th>
<th>1H,13C-Korrelationen (HMBC)b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.99 (t, $^3J_{3',4'}= 7.4$ Hz, 3H, H-4’)</td>
<td>21.0 C-3’, 31.0 C-2’</td>
</tr>
<tr>
<td></td>
<td>1.45 (m, 2H, H-3’)</td>
<td>13.8 C-4’, 31.0 C-2’, 44.2 C-1’</td>
</tr>
<tr>
<td></td>
<td>1.69 (m, 2H, H-2’)</td>
<td>13.8 C-4’, 21.0 C-3’, 44.2 C-1’</td>
</tr>
<tr>
<td></td>
<td>1.98 (d, $^3J_{4,1''}= 1.5$ Hz, 3H, H-5”)</td>
<td>133.4 C-4, 142.4 C-3, 185.6 C-2</td>
</tr>
<tr>
<td></td>
<td>3.34 (t, $^3J_{1',2'}= 7.2$ Hz, 2H, H-1’)</td>
<td>21.0 C-3’, 31.0 C-2’, 160.4 C-5</td>
</tr>
<tr>
<td>3-Methyl-5-(butylamino)-[1,2]-benzochinon</td>
<td>5.53 (d, $^4J_{4,6} = 2.7$ Hz, 1H, H-6)</td>
<td>133.4 C-4, (175.6 C-1)c, 185.6 C-2</td>
</tr>
<tr>
<td></td>
<td>6.74 (dq, $^4J_{4,6} = 2.7$ Hz, $^4J_{4,1''} = 1.5$ Hz, 1H, H-4)</td>
<td>15.1 C-1’, (94.4 C-6), 185.6 C-2</td>
</tr>
<tr>
<td>Struktur & chemische Bezeichnung Produktion 3d [Kopplung von 1a mit n-Hexylamin (2d)]</td>
<td>1H-NMR</td>
<td>1H,13C-Korrelationen (HMBC)b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.93 (t, $^3J_{3',4'}= 7.0$ Hz, 3H, H-6’)</td>
<td>23.6 C-5’, 32.6 C-4’</td>
</tr>
<tr>
<td></td>
<td>1.39-1.33 (m, 4H, H-3’, H-4’, H-5’)</td>
<td>(14.3 C-6’), 23.6 C-5’, 32.6 C-4’</td>
</tr>
<tr>
<td></td>
<td>1.43 (m, 2H, H-3’)</td>
<td>(32.6 C-4’)</td>
</tr>
<tr>
<td></td>
<td>1.70 (m, 2H, H-2”)</td>
<td>27.8 C-3’, 32.6 C-4’, 45.1 C-1’</td>
</tr>
<tr>
<td></td>
<td>1.98 (d, $^3J_{4,1''}= 1.5$ Hz, 3H, H-5”)</td>
<td>133.7 C-4, 142.7 C-3, 185.8 C-2</td>
</tr>
<tr>
<td></td>
<td>3.33 (t, $^3J_{1',2'}= 7.2$ Hz, 2H, H-1’)</td>
<td>27.8 C-3’, 29.3 C-2’, 160.5 C-5</td>
</tr>
<tr>
<td></td>
<td>5.53 (d, $^4J_{4,6} = 2.7$ Hz, 1H, H-6)</td>
<td>133.7 C-4, 185.8 C-2</td>
</tr>
<tr>
<td>3-Methyl-5-(hexylamino)-[1,2]-benzochinon</td>
<td>6.74 (dq, $^4J_{4,6} = 2.7$ Hz, $^4J_{4,1''} = 1.5$ Hz, 1H, H-4)</td>
<td>15.4 C-1’’, 185.8 C-2</td>
</tr>
</tbody>
</table>
Die Rohdaten der NMR-Analysen der Produkte 3b-g sind in Anhang D zusammengefasst.
3.9.3 Ermittlung der \(n \)-Octanol/Wasserverteilungskoeffizienten der heteromolekularen Kopplungsprodukte

Eine \(\log P_{ow} \)-Bestimmung mittels HPLC-Analytik bedingte eine Elution der Syntheseprodukte 3a-g zwischen den in der Standardmischung enthaltenen hydrophilen und hydrophoben Referenzsubstanzen. Da ein mit ansteigender Zahl der C-Atome in der Alkylseitenkette verbundener Anstieg der Produkthydrophobizität und demnach eine Retentionszeitverschiebung festzustellen war (vgl. Abb. 44, S. 177), erforderte dies den Einsatz von drei verschiedenen hydrophoben Referenzverbindungen (Toluol: 3a-c; Ibuprofen: 3d und 3e; Triphenylamin: 3f und 3g). Um die \(\log P_{ow} \)-Werte der über eine biologische Transformationsreaktion gewonnenen Produkte bewerten zu können, wurde auch das Enzymsubstrat 3-Methylbrenzkatechin (1a) einer chromatographischen \(\log P_{ow} \)-Bestimmung unterzogen (Tab. 46).

Tab. 46: Übersicht über die mittels HPLC-Analytik erfassten experimentellen \(\log P_{ow} \)-Werte des Enzymsubstrats 3-Methylbrenzkatechin (1a) und der Syntheseprodukte 3a-g im Abgleich zu den mit einem Softwaretool des Programms ACD/ChemSketch berechneten theoretischen \(\log P_{ow} \)-Werten und Standardabweichungen. Lösungsmittel MeOH.

<table>
<thead>
<tr>
<th>Aminopartner</th>
<th>Verbindung</th>
<th>Hydrophile Referenzsubstanz</th>
<th>Theoretischer (\log P_{ow})</th>
<th>(\log P_{ow})-Differenz (-CH(_2))(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3,5-DiOH-benzoësäure</td>
<td>ACD/ChemSketch</td>
<td>HPLC Theoretisch</td>
</tr>
<tr>
<td>n-Propylamin (2a)</td>
<td>3a</td>
<td>-0,007</td>
<td>1,34 (\pm) 0,21</td>
<td>-</td>
</tr>
<tr>
<td>n-Butylamin (2b)</td>
<td>3b</td>
<td>-3,31</td>
<td>0,81 (\pm) 0,61</td>
<td>0,97</td>
</tr>
<tr>
<td>n-Pentylamin (2c)</td>
<td>3c</td>
<td>-2,15</td>
<td>1,34 (\pm) 0,61</td>
<td>1,16</td>
</tr>
<tr>
<td>n-Hexylamin (2d)</td>
<td>3d</td>
<td>-0,58</td>
<td>0,41</td>
<td>1,88 (\pm) 0,61</td>
</tr>
<tr>
<td>n-Heptylamin (2e)</td>
<td>3e</td>
<td>1,77</td>
<td>0,73</td>
<td>2,41 (\pm) 0,61</td>
</tr>
<tr>
<td>n-Octylamin (2f)</td>
<td>3f</td>
<td>n.d.</td>
<td>1,03</td>
<td>2,41 (\pm) 0,61</td>
</tr>
<tr>
<td>n-Nonylamin (2g)</td>
<td>3g</td>
<td>n.d.</td>
<td>1,03</td>
<td>3,64</td>
</tr>
</tbody>
</table>

\(^a\)Differenz der HPLC-\(\log P_{ow} \)-Werte von einem Produkt zu dem mit dem nächstfolgenden größeren Aminsubstituenten (Bsp. Produkt 3a zu 3b) berechnet anhand der ermittelten HPLC-\(\log P_{ow} \)-Werte mit der hydrophilen Referenzsubstanz 2-(4-Hydroxyphenyl)-ethylalkohol (2-(4-OHphenyl)-ethylalkohol).

Aus den berechneten \(\log P_{ow} \)-Werten der Syntheseprodukte 3a-g konnte abgeleitet werden, dass mit Verwendung von Standardmischungen in denen 2-(4-Hydroxyphenyl)ethylalkohol als hydrophile Referenzsubstanz eingesetzt wurde - im
Vergleich zu den Werten des chemischen Rechenprogrammes ACD/ChemSketch - fundiertere Ergebnisse erhalten wurden (Tab. 46). Dies begründete sich vermutlich darin, dass die Analytsubstanzen ebenso alkalische Eigenschaften aufweisen und der Einsatz einer hydrophilen Referenzverbindung mit einer Säuregruppierung (3,5-Dihydroxybenzosäure) somit ungeeignet war. Im Vergleich zu dem Enzymsubstrat 1a besassen die Produkte mit einem C_3- bzw. C_4-Alkylaminsubstituenten kleinere HPLC-logP_{ow}-Werte. Diese, im Vergleich zu dem 3-Methylbrenzkatechin (1a), erhöhte Hydrophilie beruhte vermutlich auf dem Einfluss des benzochinoiden Molekülteils der Kopplungsprodukte, welcher die der Alkylseitenketten überwog. Somit besassen die Synthese-Produkte 3a und 3b eine höhere Wasserlöslichkeit als das Enzymsubstrat 1a. Eine Aminierungsreaktion mit längerketttigen aliphatischen Aminen (2d-g) führte hingegen zur Gewinnung von Produkten mit einer erhöhten Hydrophobizität, wobei deren logP_{ow}-Werte von 1,29 (3d) bis 3,64 (3g) reichten. Somit überlagerte der hydrophobe Einfluss der Alkylketten den hydrophilen Effekt des 1,2-Benzochinons. Generell führte die schrittweise Addition einer Methylen-Gruppe im Mittel zu einer Erhöhung des HPLC-logP_{ow}’s um 0,83 ± 0,21.

3.9.4 Heteromolekulare Kopplungsreaktionen von 3-Methylbrenzkatechin mit verzweigketttigen aliphatischen Aminen

In Ergänzung zu heteromolekularen Kopplungsreaktionen des 3-Methylbrenzkatechins (1a) mit den linearen aliphatischen Aminopartnern 2a-g, deren Ergebnisse in den Kap. 3.9.1ff vorgestellt sind, wurde ebenso die Phenoloxidase-vermittelte Synthese von Hybridmolekülen mit den verzweigketttigen Aminendonoren tert-Butylamin (2h), tert-Octylamin (1,1,3,3-Tetramethylbutylamin, 2i) sowie mit den n-Hexylamin-Derivaten (R)-2-Aminohexan (2j), 2-Amino-5-methylhexan (2k) und 2-Ethyl-1-hexylamin (2l) in MtlL-katalysierten Reaktionssystemen untersucht (Tab. 47; Strukturen der Aminopartner Abb. 37, S. 147).
Tab. 47: Übersicht über die in heteromolekularen Kopplungsreaktionen des 3-Methylbrenzkatechins (1a) mit den verzweigt-kettigen aliphatischen Aminopartnern 2h-l in MtL-katalysierten Transformationsansätzen (PCP, pH 7) mittels HPLC-Analytik detektierten Produkte. Enzymaktivität 1 μmol L⁻¹.

<table>
<thead>
<tr>
<th>Substrat</th>
<th>Amindonor</th>
<th>Produktabc</th>
<th>HPLC-Rf [min]</th>
<th>λmax [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>2h</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2i</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1a</td>
<td>2j</td>
<td>M-1,2-HQ-KKP5 [3j]</td>
<td>10,7</td>
<td>220, 298, 491</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(M-1,2-HQ-KKP6)</td>
<td>11,7</td>
<td>305</td>
</tr>
<tr>
<td>1a</td>
<td>2k</td>
<td>(M-1,2-HQ-KKP7)</td>
<td>11,0</td>
<td>221, 287, 563</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-1,2-HQ-KKP8 [3k]</td>
<td>11,3</td>
<td>220, 298, 492</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(M-1,2-HQ-KKP9)</td>
<td>12,4</td>
<td>307</td>
</tr>
<tr>
<td>1a</td>
<td>2l</td>
<td>M-1,2-HQ-KKP10 [3l]</td>
<td>11,4</td>
<td>219, 299, 486</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(M-1,2-HQ-KKP11)</td>
<td>13,2</td>
<td>307</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(M-1,2-HQ-KKP12)</td>
<td>14,8</td>
<td>277</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(M-1,2-HQ-KKP13)</td>
<td>15,1</td>
<td>238, 273, 448</td>
</tr>
</tbody>
</table>

a Produkte in Klammern lagen in sehr geringer Konzentration vor.
b Fett-gedruckte Produkte als Hauptprodukte in heteromolekularen Kopplungsreaktionen identifiziert.
c HPLC-Fließmittelgradient 1.

In Reaktionen des 3-Methylbrenzkatechins (1a) mit den tertiär verzweigten Aminopartnern 2h und 2i konnte keine Bildung heteromolekularer Produkte nachgewiesen werden. In Transformationsansätzen, in denen die Kopplungspartner bis zu einer 10 mM Endkonzentration direkt, d.h. ohne methanolische Stammlösung, eingesetzt wurden, konnte ebenfalls keine erfolgreiche Kopplung des tert-Butylamins bzw. tert-Octylamins mit dem aktivierten Enzymsubstrat-Molekül ermittelt werden.

In Transformationsreaktionen mit den verzweigt-kettigen Hexylamin-Derivaten 2j-l war hingegen eine Bildung heteromolekularer Kopplungsprodukte nachzuweisen (Tab. 47). In diesen Reaktionen entstand, ähnlich wie in Reaktionen mit linearen aliphatischen Aminen 2a-g, jeweils ein Hauptprodukt (3j-l) unter Rotfärbung der Reaktionsansätze. Weitere heteromolekulare Produkte traten lediglich in äußerst geringen Konzentrationen auf. Die Besonderheiten der Transformationsreaktionen des 3-Methylbrenzkatechins mit den Aminopartnern 2j-l sollen anhand der Reaktion mit dem Amindonor (R)-2-Aminohexan (2j) näher erläutert werden (Abb. 55).
Nach Enzymzusatz konnte mit Abnahme des Substrats 1a die Bildung des Eigenreaktionsproduktes M-1,2-HQ-ERP3, unter Gelbfärbung des Transformationsansatzes, beobachtet werden. Analog zu Reaktionen mit den aliphatischen Aminodonoren 2a-g (vgl. Kap. 3.9.1.1) erfolgte unter Abnahme des methoxysubstituierten Eigenreaktionsprodukts M-1,2-HQ-ERP3 eine simultane Zunahme des heteromolekularen Kopplungsprodukts 3j. Zudem konnte, ähnlich wie in homomolekularen Kopplungsreaktionen des 3-Methylbrenzkatechins, eine partielle Konversion von M-1,2-HQ-ERP3 in das mit einem Sauerstoffradikal substituierte Eigenreaktionsprodukt M-1,2-HQ-ERP2 sowie in das Eigenreaktionsprodukt M-1,2-HQ-ERP4, für dessen Struktur ein dimethoxyliertes 3-Methyl-[1,2]-benzoquinon postuliert wurde, nachgewiesen werden. Sowohl die Quantität des Eigenreaktionsprodukts M-1,2-HQ-ERP2 als auch die des Produkts M-1,2-HQ-ERP4 bestimmten maßgeblich die über HPLC-Analysen detektierten Ausbeuten des heteromolekularen Kopplungsproduktes 3j.

Mit dem Ziel, die über eine Flüssigchromatographie erfassbaren Ausbeuten des Haupttransformationsproduktes 3j zu optimieren, wurde der Einfluss unterschiedlicher Eduktkonzentrationen sowie der eines direkten Zusatzes des Aminodonors 2j und auch der Enzymaktivität geprüft (Abb. 56A, B).
In Reaktionen, in welchen der Kopplungspartner 2j als eine methanolische Stammlösung eingesetzt wurde, konnte mit einer 5 mM Konzentration von 2j gegenüber einer äquimolaren Konzentration der Edukte die Ausbeute um 33 % gesteigert werden (Abb. 56A). Dies war jedoch auch mit einer 13 %-igen Konzentrationserhöhung des Eigenreaktionsprodukts M-1,2-HQ-ERP2 verbunden (Abb. 56B). Wenn der Amindonor 2j direkt eingesetzt wurde (5 mM, v/v), konnte die Bildung von M-1,2-HQ-ERP2 gegenüber einer methanolischen Stammlösung von 2j zwar um 56 % gesenkt werden, jedoch wurde auch die Ausbeute von 3j vermindert. Eine Verdopplung der Enzymaktivität bewirkte keine Erhöhung der Produktausbeuten, jedoch eine signifikante Steigerung der Konzentration von M-1,2-HQ-ERP2. Ein mit Erhöhung der Enzymmengen verbundener Anstieg dieses Eigen- bzw. Nebenreaktionsproduktes konnte bereits in vergleichenden Untersuchungen einer biologischen und chemischen Katalyse festgestellt werden (vgl. Kap. 3.9.1.6). In der hier vorgestellten Modellreaktion des 3-Methylbrenzkatechins (1a) mit dem
Hexylamin-Derivat 2j konnte mit einem direkten Zusatz dieses Amindonors in einer 10 % mM Endkonzentration (v/v) die höchste Ausbeute des Hauptproduktes 3j, unter minimalster Bildung des Eigenreaktionsproduktes M-1,2-HQ-ERP2, erzielt werden.

Eine Zusammenfassung der Ergebnisse weiterer durchgeführter heteromolekularer Biotransformationsreaktionen mit den verzweigtkettigen aliphatischen Aminopartnern 2j-l ist Tab. 48 zu entnehmen.

Tab. 48: Übersicht über die in einer heteromolekularen Kopplungsreaktion des 3-Methyl-brenzkatechins (1a) mit den verzweigtkettigen aliphatischen Aminopartnern 2j-l mittels HPLC-Analytik erfassten Produktkonzentrationen und -ausbeuten in MtL-katalysierten Reaktionsansätzen (pH 7, PCP).

<table>
<thead>
<tr>
<th>Amindonor</th>
<th>Eduktkonzentration 1a : Amindonoren [mM]a</th>
<th>Enzymaktivität [µmol mL-1]b</th>
<th>Umsatz 1a [%]</th>
<th>Konzentration 3j-l [µg mL-1]</th>
<th>Ausbeute [%]c</th>
</tr>
</thead>
<tbody>
<tr>
<td>2j</td>
<td></td>
<td></td>
<td>60 min</td>
<td>60 min</td>
<td>120 min</td>
</tr>
<tr>
<td>1:1</td>
<td>1</td>
<td>84</td>
<td>28</td>
<td>34</td>
<td>15</td>
</tr>
<tr>
<td>1:5</td>
<td>1</td>
<td>98</td>
<td>50</td>
<td>51</td>
<td>23</td>
</tr>
<tr>
<td>1:5d</td>
<td>2</td>
<td>84</td>
<td>43</td>
<td>42</td>
<td>19</td>
</tr>
<tr>
<td>1:10d</td>
<td>1</td>
<td>93</td>
<td>61</td>
<td>63</td>
<td>29</td>
</tr>
<tr>
<td>2k</td>
<td></td>
<td></td>
<td>60 min</td>
<td>60 min</td>
<td>120 min</td>
</tr>
<tr>
<td>1:1</td>
<td>1</td>
<td>87</td>
<td>83</td>
<td>86</td>
<td>37</td>
</tr>
<tr>
<td>1:5</td>
<td>1</td>
<td>100</td>
<td>76</td>
<td>73</td>
<td>31</td>
</tr>
<tr>
<td>1:5d</td>
<td>1</td>
<td>97</td>
<td>90</td>
<td>110</td>
<td>47</td>
</tr>
<tr>
<td>1:10d</td>
<td>1</td>
<td>98</td>
<td>189</td>
<td>191</td>
<td>81</td>
</tr>
<tr>
<td>1:40d</td>
<td>1</td>
<td>76</td>
<td>96</td>
<td>95</td>
<td>40</td>
</tr>
<tr>
<td>1:40d</td>
<td>2</td>
<td>74</td>
<td>93</td>
<td>94</td>
<td>40</td>
</tr>
<tr>
<td>2l</td>
<td></td>
<td></td>
<td>60 min</td>
<td>60 min</td>
<td>120 min</td>
</tr>
<tr>
<td>1:1</td>
<td>1</td>
<td>86</td>
<td>30</td>
<td>31</td>
<td>12</td>
</tr>
<tr>
<td>1:5</td>
<td>1</td>
<td>100</td>
<td>93</td>
<td>77</td>
<td>31</td>
</tr>
<tr>
<td>1:5d</td>
<td>1</td>
<td>100</td>
<td>112</td>
<td>105</td>
<td>42</td>
</tr>
<tr>
<td>1:10d</td>
<td>1</td>
<td>100</td>
<td>92</td>
<td>88</td>
<td>35</td>
</tr>
<tr>
<td>1:40d</td>
<td>1</td>
<td>100</td>
<td>123</td>
<td>71</td>
<td>28</td>
</tr>
<tr>
<td>1:40d</td>
<td>2</td>
<td>100</td>
<td>96</td>
<td>75</td>
<td>30</td>
</tr>
</tbody>
</table>

a Edukte als methanolische Stlsg. eingesetzt.

b Enzymaktivitäten ermittelt aus ABTS-Assay (RT).

c Berechnete Ausbeuten [%] bemessen an einem 100 %-igen Umsatz der Edukte in die Syntheseprodukte in einem 5-mL-Reaktionsmaßstab nach einer Reaktionszeit von 2h im wässrigen Ansatz. Quantifizierung der Produkte erfolgte mit Hilfe der gereinigten Produkte in Methanol.

d Aminopartner 2j-l in den angegebenen Endkonzentrationen direkt eingesetzt.

In heteromolekularen Kopplungsreaktionen, in denen 2-Amino-5-methylhexan (2k) eingesetzt wurde, konnten die höchsten Ausbeuten des heteromolekularen Produkts 3k über ein direktes Einsetzen dieses Amindonors (5 bis 10 mM) erzielt werden (Tab. 48).
Eine weitere Konzentrationssteigerung von 2k auf 40 mM war jedoch mit einer reduzierten Bildung des heteromolekularen Kopplungsprodukts 3k und einer zudem
verlangsamten Oxidation des Enzymsubstrats 1a verbunden. Diesbezüglich wurde eine Inhibition des Enyzms vermutet. Die Ausbeute des heteromolekularen Produktes 3l war ebenfalls in Reaktionen mit einem direkten Zusatz des Aminopartners 2-Ethyl-1-hexylamin (2l) optimal, wobei auch hier keine Steigerung der Produktausbeuten mit einer Konzentrationserhöhung auf 40 mM erreicht werden konnte.

3.9.5 Isolation und Strukturaufklärung der heteromolekularen Kopplungsprodukte aus Reaktionen des 3-Methylbrenzkatechins mit verzweigtkettigen aliphatischen Aminen

Für eine Anreicherung des Syntheseprodukts 3j wurden zwei, für Produkt 3k vier und für Produkt 3l sechs 40-mL-Reaktionsansätze erstellt, in denen das 3-Methylbrenzkatechin (1a) mit einer 1 mM Konzentration als methanolische Stammlösung und die Aminopartner in einer 5 mM Endkonzentration direkt zugesetzt wurden. Die Ansätze wurden bei Raumtemperatur lichtdicht verschlossen auf einem Schüttler inkubiert und nach einer Reaktionszeit von 100 min mittels Festphasenextraktion aufbereitet. Die Reinigungsschritte, Eluentengemische und -volumina für eine Abtrennung von Nebenreaktionsprodukten und die Gewinnung der Produkte 3j-l sind Tab. 7 des Anhangs zu entnehmen.

Für die Produkte konnte eine - analog zu den Syntheseprodukten 3a-g (vgl. Kap. 3.9.2) - hohe Stabilität bei Raumtemperatur sowie bei 4 °C ermittelt werden. Die in Methanol gelösten Verbindungen waren innerhalb eines Analysezeitraums von 14 d stabil. Die nach Lyophilisation gewonnenen Feststoffe (1,6 mg 3j, 3,4 mg 3k, 14,4 mg 3l) wurden strukturchemischen Analysen zugeführt.

Für die Produkte 3j-l konnten in LC-MS-Analysen Quasimolekülionenpeaks [M+H]⁺ mit den Massen m/z = 222,1 (3j), m/z = 236,1 (3k) und m/z = 250,1 (3l) detektiert werden. Abzüglich der Masse des im Positivmodus angelagerten Protons sowie der für eine C-N-Kopplung der Aminopartner an ein 3-Methyl-[1,2]-benzochinon-Molekül erfolgenden Abspaltung von insgesamt zwei Protonen, deuten die erhaltenen Messergebnisse auf dimere Strukturen hin. Untersuchungen mittels hochauflösender Massenspektrometrie konnten - mit Bezug auf die berechneten Massen dimerer Syntheseprodukte - diese Annahme bestätigen (Tab. 49).
Tab. 49: Übersicht über die aus HPLC-, LC-MS- und HR-MS-Analysen erhaltenen Strukturdaten der heteromolekularen Kopplungsprodukte aus Reaktionen des 3-Methylbrenzkatechins (1a) mit den verzweigtkettigen aliphatischen Aminopartnern 2j-l. Lösungsmittel MeOH.

<table>
<thead>
<tr>
<th>Produkt</th>
<th>R_f [min]</th>
<th>λ_{max} [nm]</th>
<th>R_f [min] theoretisch</th>
<th>gemessen [M+H]^+ [m/z] theoretisch</th>
<th>gemessen [M+H]^+ [m/z] Fehler [ppm]</th>
<th>Summenformel</th>
</tr>
</thead>
<tbody>
<tr>
<td>3j</td>
<td>10,7</td>
<td>220, 298, 491</td>
<td>5,3 221</td>
<td>222,1</td>
<td>222,14886 222,14854 -1,42</td>
<td>C_{13}H_{19}NO_2</td>
</tr>
<tr>
<td>3k</td>
<td>11,3</td>
<td>220, 298, 492</td>
<td>5,8 235</td>
<td>236,1</td>
<td>236,16451 236,16449 -0,08</td>
<td>C_{14}H_{21}NO_2</td>
</tr>
<tr>
<td>3l</td>
<td>11,4</td>
<td>219, 299, 486</td>
<td>6,4 249</td>
<td>250,1</td>
<td>250,18016 250,18086 2,81</td>
<td>C_{15}H_{23}NO_2</td>
</tr>
</tbody>
</table>

* HPLC-Fließmittel gradient 1; b LC-MS-Fließmittel gradient 2.

Für eine eindeutige Strukturaufklärung wurden verschiedene NMR-Messungen mit den in deuteriertem Methanol gelösten Analytsubstanzen durchgeführt (Tab. 50).

Tab. 50: 1H- und 13C-NMR-Daten der aus heteromolekularen Kopplungsreaktionen des 3-Methylbrenzkatechins (1a) mit den Aminopartnern (R)-2-Aminohexan (2j), 2-Amino-5-methylhexan (2k) und 2-Ethyl-1-hexylamin (2l) isolierten Syntheseprodukte. Lösungsmittel d4-MeOH.

Struktur & chemische Bezeichnung Produkt 3j
[Kopplung von 1a mit (R)-2-Aminohexan (2j)]

<table>
<thead>
<tr>
<th>1H-NMR^a</th>
<th>1H,13C-Korrelationen (HMBC)^b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.93 (t, J_{4',5'} = 7.0 Hz, 3H, H-5')</td>
<td>23.4 C-4', 29.2 C-3'</td>
</tr>
<tr>
<td>1.28 (d, J_{4',6'} = 6.5 Hz, 3H, H-6')</td>
<td>36.6 C-2', 51.2 C-1'</td>
</tr>
<tr>
<td>1.37 (m, 4H, H-3', H-4')</td>
<td>29.2 C-3'</td>
</tr>
<tr>
<td>1.63 (m, 2H, H-2')</td>
<td>(29.2 C-3')^c</td>
</tr>
<tr>
<td>1.98 (d, J_{4,5'} = 1.5 Hz, 3H, H-1')</td>
<td>133.3 C-4, 142.7 C-3, 185.7 C-2</td>
</tr>
<tr>
<td>3.72 (m, 1H, H-1')</td>
<td>19.9 C-6', 36.6 C-2', 160.0 C-5</td>
</tr>
<tr>
<td>5.56 (d, J_{4,6} = 2.7 Hz, 1H, H-6)</td>
<td>133.3 C-4, (175.6 C-1), 185.7 C-2</td>
</tr>
<tr>
<td>6.74 (dq, J_{4,6} = 2.7 Hz, J_{4,1''} = 1.5 Hz, 1H, H-4)</td>
<td>185.7 C-2</td>
</tr>
</tbody>
</table>

Struktur & chemische Bezeichnung Produkt 3k
[Kopplung von 1a mit 2-Amino-5-methylhexan (2k)]

<table>
<thead>
<tr>
<th>1H-NMR</th>
<th>1H,13C-Korrelationen (HMBC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.92 (2 d, J_{4',5'} = J_{4',7'} = 6.6 Hz, 6H, H-5',H-7')</td>
<td>22.6 C-5'/C-7', 28.9 C-3', 36.1 C-4'</td>
</tr>
<tr>
<td>1.25 (m, 1H, H-4')</td>
<td>22.6 C-5'/C-7', (28.9 C-3'), (34.8 C-2')</td>
</tr>
<tr>
<td>1.28 (d, J_{4,6} = 6.5 Hz, 3H, H-6')</td>
<td>34.8 C-2', 51.3 C-1'</td>
</tr>
<tr>
<td>1.57 (m, 2H, H-3')</td>
<td>22.6 C-3'/C-7', 36.1 C-4'</td>
</tr>
<tr>
<td>1.63 (m, 2H, H-2')</td>
<td>(20.0 C-6'), (28.9 C-3'), 36.1 C-4', 51.3 C-1'</td>
</tr>
<tr>
<td>1.98 (d, J_{4,5'} = 1.5 Hz, 3H, H-1')</td>
<td>133.5 C-4, 142.7 C-3, 185.5 C-2</td>
</tr>
<tr>
<td>3.69 (m, 1H, H-1')</td>
<td>20.0 C-6', 34.8 C-2', 159.7 C-5</td>
</tr>
<tr>
<td>5.56 (d, J_{4,6} = 2.7 Hz, 1H, H-6)</td>
<td>133.5 C-4, (175.2 C-1), 185.5 C-2</td>
</tr>
<tr>
<td>6.74 (dq, J_{4,6} = 2.7 Hz, J_{4,1''} = 1.5 Hz, 1H, H-4)</td>
<td>15.2 C-1'', 94.3 C-6, 185.5 C-2</td>
</tr>
<tr>
<td>Struktur & chemische Bezeichnung Produkt 3l</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>[Kopplung von 1a mit 2-Ethyl-1-hexylamin (2l)]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1H-NMR</th>
<th>1H,13C-Korrelationen (HMBC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.93 (t, 3J5,6 = 7.0 Hz, 3H, H-6’)</td>
<td>23.8 C-5’, 29.6 C-4’</td>
</tr>
<tr>
<td>0.95 (t, 3J7,8 = 7.5 Hz, 3H, H-8’)</td>
<td>25.0 C-7’, 39.9 C-2’</td>
</tr>
<tr>
<td>1.33-1.40 (m, 6H, H-3’, H-4’, H-5’)</td>
<td>14.2 C-6’, 23.8 C-5’, 29.6 C-4’, 29.6 C-4’</td>
</tr>
<tr>
<td>1.44 (m, 2H, H-7’)</td>
<td>10.8 C-8’, 31.8 C-3’, 39.9 C-2’, 48.3 C-1’</td>
</tr>
<tr>
<td>1.71 (m, 1H, H-2’)</td>
<td>(10.8 C-8’), (25.0 C-7’), 29.6 C-4’, 31.8 C-3’, 48.3 C-1’</td>
</tr>
<tr>
<td>1.98 (d, 4J4,1” = 1.5 Hz, 3H, H-1”)</td>
<td>133.2 C-4, 142.5 C-3, 185.4 C-2</td>
</tr>
<tr>
<td>3.25 (d, 3J1’2’ = 6.7 Hz, 2H, H-1’)</td>
<td>25.0 C-7’, 31.8 C-3’, 39.9 C-2’, (133.2 C-4), 160.6 C-5</td>
</tr>
<tr>
<td>5.55 (d, 4J4,6 = 2.7 Hz, 1H, H-6)</td>
<td>133.2 C-4, (175.2 C-1), 185.4 C-2</td>
</tr>
<tr>
<td>6.78 (dq, 4J4,6 = 2.7 Hz, 4J4,1” = 1.5 Hz, 1H, H-4)</td>
<td>15.2 C-1”’, 94.6 C-6, 185.4 C-2</td>
</tr>
</tbody>
</table>

* Chemische Verschiebung δ [ppm] korrespondiert zu TMS-Signal (Kalibrierung erfolgte anhand der Lösungsmittelsignale: δMeOH-d4 = 3.31 (1H), 49.0 (13C)). Multiplizität, Kopplungskonstante J [Hz], Protonenzahl, Signalzuordnung.

* Chemische Verschiebung δ [ppm], Signalzuordnung.

* Kopplungen mit geringer Intensität.

In Auswertung der 1H-Spektren konnten die Signale bei 5,56 und 6,74 ppm den H-6 und H-4 Protonen des 3-Methyl-[1,2]-benzochinons zugeordnet werden (Tab. 50). Zudem war eine Kopplung des H-4 mit dem H-6 und den Methylprotonen des C-1’’ durch die Kopplungskonstanten 4J4,6 = 2,7 (H-6) und 4J4,1’’ = 1,5 (H-1’’) offensichtlich. Ähnlich wie in 1H-Spektren der Verbindungen 3a-g (vgl. Kap. 3.9.2), traten bei den Produkten 3j-l die Signale des Protons H-4 als ein Dublett eines Quartetts (dq) auf. In den HMBC-Spektren konnte eine Kopplung der Aminopartner 2j-l an das C-5-Atom des aktivierten Enzysubstratmoleküls eindeutig durch eine Kopplung der H-1’-Protonen der Alkylseitenkette mit dem betreffenden Kohlenstoffatom C-5 nachgewiesen werden. Die Signale im aliphatischen Bereich konnten denen der Amidonoren zugeordnet werden. Die für die Analytmoleküle in 1H,13-C-Korrelation erfassten tieffeldverschobenen Resonanzsignale von 175 ppm und 185 ppm im aromatischen Bereich konnten dem C-1 bzw. C-2 des 3-Methyl-[1,2]-benzochinons zugeordnet werden und kennzeichneten somit eine 1,2-benzochoinoide Struktur.

Die Rohdaten aus HR-MS- und NMR-Analysen der Produkte 3j-l sind dem Anhang C und D zu entnehmen.
3.9.6 Heteromolekulare Kopplungsreaktionen von 3-Methylbrenzkatechin mit alicyclischen Aminen

Neben der Phenoloxidase-vermittelten Darstellung sekundärer Amine aus dem Enzymsubstrat 3-Methylbrenzkatechin (1a) und linearen Aminopartnern bzw. verzweigtkettigen aliphatischen Hexylamin-Derivaten, wurden ebenfalls heteromolekulare Kopplungsreaktionen mit den bicyclischen Aminen exo-2-Aminonorbornan (2n), (R)-(−)-Bornylamin (2o), 2-Amino-2-norbornencarboxylsäure (2p), (-)-cis-Myrtanylamin (2q) und (1S,2S,3S,5R)-(−)-Isopinocampheylamin (2r) sowie dem cyclischen Amin (S)-(−)-1-Cyclohexylethylamin (2s) in MtL-katalysierten Reaktionssystemen (pH 7) durchgeführt (Tab. 51; Strukturen der Aminopartner Abb. 37, S. 147).

Tab. 51: Übersicht über die in heteromolekularen Kopplungsreaktionen des ortho-dihydroxylierten Enzymsubstrats 3-Methylbrenzkatechin (1a) mit den bicyclischen Aminopartnern 2n-r sowie dem cyclischen Aminopartner 2s in MtL-katalysierten Transformationsansätzen mittels HPLC-Analytik detektierten Produkte.

<table>
<thead>
<tr>
<th>Substrat</th>
<th>Amidonor</th>
<th>Produkt(^a,b)</th>
<th>HPLC-R(_f) [min](^c)</th>
<th>(\lambda_{max}) [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td></td>
<td>M-1,2-HQ-KKP14 [3n]</td>
<td>10,0</td>
<td>221, 304, 494</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(M-1,2-HQ-KKP15)</td>
<td>10,7</td>
<td>309, 502</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(M-1,2-HQ-KKP16)</td>
<td>11,4</td>
<td>313, 524</td>
</tr>
<tr>
<td>2n</td>
<td></td>
<td>(M-1,2-HQ-KKP17)</td>
<td>11,6</td>
<td>294, 493</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-1,2-HQ-KKP18 [3o]</td>
<td>12,1</td>
<td>222, 305, 498</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-1,2-HQ-KKP19</td>
<td>13,3</td>
<td>221, 295, 569</td>
</tr>
<tr>
<td>2o</td>
<td></td>
<td>M-1,2-HQ-KKP20 [3p]</td>
<td>9,3</td>
<td>217, 302, 482</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-1,2-HQ-KKP21 [3q]</td>
<td>12,9</td>
<td>221, 299, 493</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(M-1,2-HQ-KKP22)</td>
<td>13,7</td>
<td>308, 525</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(M-1,2-HQ-KKP23)</td>
<td>14,6</td>
<td>271, 388</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(M-1,2-HQ-KKP24)</td>
<td>14,8</td>
<td>267, 292, 509</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(M-1,2-HQ-KKP25)</td>
<td>15,7</td>
<td>241, 270, 451</td>
</tr>
<tr>
<td>2q</td>
<td></td>
<td>M-1,2-HQ-KKP26 [3r1]</td>
<td>11,2</td>
<td>221, 299, 493</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-1,2-HQ-KKP27 [3r2]</td>
<td>12,3</td>
<td>221, 302, 493</td>
</tr>
<tr>
<td>2r</td>
<td></td>
<td>M-1,2-HQ-KKP28 [3s]</td>
<td>11,2</td>
<td>221, 299, 493</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(M-1,2-HQ-KKP29)</td>
<td>12,4</td>
<td>309, 524</td>
</tr>
</tbody>
</table>

\(^a\) Produkte in Klammern lagen in sehr geringer Konzentration vor.
\(^b\) Fett-gedruckte Produkte als Hauptprodukte in heteromolekularen Kopplungsreaktionen identifiziert.
\(^c\) HPLC-Fließmittelgradient 1.

In Transformationsreaktionen des 3-Methylbrenzkatechins (1a) mit den bicyclischen Aminen 2n-r und dem cyclischen Aminopartner 2s konnte - analog zu Reaktionen mit den linearen Kopplungspartnern 2a-g (vgl. Kap. 3.9.1) sowie den verzweigtkettigen Aminen 2j-l (vgl. Kap. 3.9.4) - stets die Bildung eines Hauptprodukts, im
Nachfolgenden als $3n$-s bezeichnet, nachgewiesen werden (Tab. 51). Neben diesen konnten weitere heteromolekulare Produkte, jedoch in äußerst geringen Quantitäten, detektiert werden. Eine Ausnahme stellten dabei Reaktionen mit dem Kopplungspartner (1S,2S,3S,5R)-(−)-Isopinocampheylamin (2r) dar, in welchen die Bildung von zwei Hauptprodukten ($3r_1$ und $3r_2$) mit nahezu identischem UV/VIS-Absorptionsspektrum ermittelt wurde und vermutlich auf ein nicht gänzlich enantiomeren-reines Amin-Präparat zurückzuführen war. Bezogen auf die Peakflächen der Kopplungsprodukte, lag das Produkt $3r_1$ gegenüber $3r_2$ jedoch stets in höheren Konzentrationen vor.

Die Reaktionskinetiken bei Einsatz der bicyclischen Kopplungspartner $2n$-r bzw. des cyclischen Aminpartners $2s$ verliefen analog zu denen heteromolekularer Reaktion des 3-Methylbrenzkatechins (1a) mit linearen und verzweigkettigen Kopplungspartnern. Daher soll auf diese nicht näher eingegangen und auf die in Kap. 3.9.1.1 und Kap. 3.9.4 beschriebenen Ergebnisse verwiesen werden.

Eine Zusammenfassung der durchgeführten Reaktionen und der erfassten Ausbeuten der heteromolekularen Kopplungsprodukte $3n$-s gibt nachfolgende Tab. 52.

Tab. 52: Übersicht über die in einer heteromolekularen Kopplungsreaktion des 3-Methylbrenzkatechins (1a) mit den bicyclischen Aminodonoren $2n$-r sowie dem cyclischen Aminopartner $2s$ mittels HPLC-Analytik erfassten Produktkonzentrationen und -ausbeuten in MtL-katalysierten Reaktionsansätzen (pH 7, PCP). Enzymaktivität 1 μmol mL$^{-1}$.

<table>
<thead>
<tr>
<th>Amindonor</th>
<th>Eduktkonzentration 1a : Aminodonoren [mM]a</th>
<th>Umsatz 1a [%]</th>
<th>Konzentration 3n-s [μg mL$^{-1}$]</th>
<th>Ausbeute [%]b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60 min</td>
<td>60 min</td>
<td>120 min</td>
<td>120 min</td>
</tr>
<tr>
<td>$2n$</td>
<td>1:5</td>
<td>98</td>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>1:1</td>
<td>100</td>
<td>50</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>1:5</td>
<td>100</td>
<td>119</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>1:5c</td>
<td>100</td>
<td>120</td>
<td>122</td>
</tr>
<tr>
<td>$2o$</td>
<td>1:5</td>
<td>96</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>1:40e</td>
<td>100</td>
<td>50</td>
<td>61</td>
</tr>
<tr>
<td>$2p$</td>
<td>1:5</td>
<td>97</td>
<td>76</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>1:5c</td>
<td>100</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>$2q$</td>
<td>1:5</td>
<td>100</td>
<td>66</td>
<td>64</td>
</tr>
<tr>
<td>$2r_1$</td>
<td>1:5</td>
<td>100</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>$2s$</td>
<td>1:5</td>
<td>100</td>
<td>66</td>
<td>64</td>
</tr>
</tbody>
</table>

a Edukte als methanolische Stlsg. eingesetzt.
b Berechnete Ausbeuten [%] bemessen an einem 100 %-igen Umsatz der Edukte in die Syntheseprodukte in einem 5-mL-Reaktionsmaßstab nach einer Reaktionszeit von 60 bzw. 120 min im wässrigen Ansatz. Quantifizierung der Produkte erfolgte mit Hilfe der gereinigten Produkte in Methanol.
c Aminopartner $2o$ und $2p$ in der angegebenen Endkonzentration direkt eingesetzt.
d n.d. nicht determiniert.

In Reaktionen des 3-Methylbrenzkatechins (1a) mit den bicyclischen bzw. cyclischen Kopplungspartnern $2n$-s konnten Produktausbeuten zwischen 18 bis 45 % erreicht werden.
3.9.7 Isolation und Strukturaufklärung der heteromolekularen Kopplungsprodukte aus Reaktionen des 3-Methylbrenzkatexhins mit alicyclischen Aminen

Mit dem Ziel, einer Anreicherung der Syntheseprodukte aus Reaktionen des 3-Methylbrenzkatexhins (1a) mit bicyclischen Aminen (2n-r) bzw. dem cyclischen Amin 2s, wurden pro Aminopartner jeweils sechs 50-mL-Reaktionsansätze in PCP (pH 7) erstellt, in denen das 3-Methylbrenzkatexhin in einer 1 mM und die Kopplungspartner jeweils in einer 5 mM Endkonzentration (v/v) als methanolische Stammlösungen eingesetzt wurden. Aufgrund geringer Stoffmengen des Aminopartners 2-Amino-2-norbornancarboxylsäure (2p), konnte für eine Produktanreicherung lediglich ein 50-mL-Reaktionsansatz erstellt werden. Die Ansätze wurden bei Raumtemperatur lichtdicht verschlossen auf einem Schüttler inkubiert und nach einer Reaktionszeit von 60 min mittels Festphasenextraktion aufbereitet. Die Reinigungsschritte, Eluentengemische und -volumina für eine Abtrennung von Nebenreaktionsprodukten und die Produktgewinnung sind Tab. 7 des Anhangs zu entnehmen.

Für nachfolgende Analysen konnten 24,4 mg (3n), 15,5 mg (3o), 0,41 mg (3p), 16,3 mg (3q), 23,1 mg (3r1) und 12,3 mg (3s) angereichert werden. Mit Ausnahme des Produkts 3p zeigten alle weiteren Syntheseprodukte als Feststoff eine hohe Stabilität bei Raumtemperatur sowie bei 4 °C. Die in Methanol gelösten Verbindungen waren innerhalb eines Analysezeitraums von 7 d stabil. Das Produkt 3p war in Methanol instabil, wobei eine begrenzte Stabilität in A. dest. über einen Zeitraum von 30 min bestand. Aufgrund der geringen Stoffmengen und der Instabilität, wurden mit Produkt 3p keine weiteren strukturenchemischen Analysen durchgeführt.

In LC-MS-Analysen konnte für das Syntheseprodukt 3n ein Quasimolekülionenpeak [M+H]⁺ mit einer Masse m/z = 232,1 ermittelt werden. Für die Molpeaks [M+H]⁺ der Produkte 3o, 3q sowie 3r1 konnte eine Masse m/z = 274,1 nachgewiesen werden. Auch hier deuten die erhaltenen Massen auf dimere Strukturen hin; über eine hochauflösende Massenspektrometrie konnten diese bestätigt werden (Tab. 53).
Tab. 53: Übersicht über die aus HPLC-, LC-MS- und HR-MS-Analysen erhaltenen Strukturdaten der heteromolekularen Kopplungsprodukte aus Reaktionen des 3-Methylbrenzkatechins (1a) mit den bicyclischen Aminopartnern 2n-r und dem cyclischen Amindonor 2s. Lösungsmittel MeOH.

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Rf [min]</th>
<th>λmax [nm]</th>
<th>Rf [min] theoretisch</th>
<th>gemessen [M+H]+ [m/z] theoretisch</th>
<th>gemessen [M+H]+ [m/z]</th>
<th>Fehler [ppm]</th>
<th>Summenformel</th>
</tr>
</thead>
<tbody>
<tr>
<td>3n</td>
<td>10,0</td>
<td>221, 304, 494</td>
<td>5,0</td>
<td>231</td>
<td>232,1</td>
<td>1,38</td>
<td>C14H17NO2</td>
</tr>
<tr>
<td>3o</td>
<td>12,1</td>
<td>222, 305, 498</td>
<td>6,2</td>
<td>273</td>
<td>274,1</td>
<td>-0,45</td>
<td>C15H18NO2</td>
</tr>
<tr>
<td>3q</td>
<td>12,9</td>
<td>221, 299, 493</td>
<td>6,5</td>
<td>273</td>
<td>274,1</td>
<td>1,17</td>
<td>C15H18NO2</td>
</tr>
<tr>
<td>3r1</td>
<td>11,2</td>
<td>221, 299, 493</td>
<td>6,4</td>
<td>273</td>
<td>274,1</td>
<td>-1,13</td>
<td>C15H18NO2</td>
</tr>
<tr>
<td>3s</td>
<td>11,2</td>
<td>221, 299, 493</td>
<td>n.d.</td>
<td>247</td>
<td>n.d.</td>
<td>n.d.</td>
<td>C13H16NO2</td>
</tr>
</tbody>
</table>

unter dem Aspekt einer eindeutigen Strukturaufklärung erfolgten 1H- und 13C-NMR-Korrelationsexperimente der in deuteriertem Methanol gelösten Verbindungen (Tab. 54).

Tab. 54: 1H- und 13C-NMR-Daten der aus heteromolekularen Kopplungsreaktionen des 3-Methylbrenzkatechins (1a) mit den Aminopartnern exo-2-Aminonorbornan (2n), (R)-(+-)Bornylamin (2o), (-)cis-Myrtanylamin (2q), (1'S,2'S,3'S,5'R)-(+-)Isopinocampheylamin (2r) und (S)-(+-)1-Cyclohexylethylamin (2s) isolierten Syntheseprodukte. Lösungsmittel d4-MeOH.

<table>
<thead>
<tr>
<th>Struktur & chemische Bezeichnung Produkt 3n</th>
<th>1H-NMR a</th>
<th>1H,13C-Korrelationen (HMBC)b</th>
<th>13C-NMR (HSQC)c</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Kopplung von 1a mit exo-2-Aminonorbornan (2n)]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-Methyl-5-(bicyclo[2.2.1]hept-2-ylamino)-[1,2]-benzochinon</td>
<td>1.97 (d, 3J4,1'' = 1.5 Hz, 3H, H-1'')</td>
<td>185.8 C-2, 142.6 C-3, 133.7 C-4, (159,4 C-5)</td>
<td>15.7 C-1''</td>
</tr>
<tr>
<td></td>
<td>1.38-1.19 (m, 3H, H-5'b, H-6'b, H-7'b)</td>
<td>-</td>
<td>29.3 C-5'', 27.3 C-6', 36.7 C-7''</td>
</tr>
<tr>
<td></td>
<td>1.68-1.49 (m, 4H, H-3'b, H-5'a, H-6'a, H-7'a)</td>
<td>-</td>
<td>40.5 C-3''</td>
</tr>
<tr>
<td></td>
<td>1.88 (ddd, 3J3'a,3'b = 12.8 Hz, 3J2',3'a = 8.0 Hz, 3J3',4' = 2.0 Hz, 1H, H-3'a)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2.38 (m, 2H, H-1', H-4')</td>
<td></td>
<td>43.3 C-1'', 37.2 C-4''</td>
</tr>
<tr>
<td></td>
<td>3.48 (dd, 3J2',3'a = 8.0 Hz, 3J2',3'b = 3.0 Hz, 1H, H-2'')</td>
<td>(159.4 C-5), (37.2 C-4''), (36.7 C-7'')</td>
<td>58.7 C-2'</td>
</tr>
<tr>
<td></td>
<td>5.48 (d, 4J4,6 = 2.7 Hz, 1H, H-6)</td>
<td>175.6 C-1, 185.8 C-2, (142.6 C-3), 133.7 C-4</td>
<td>95.7 C-6</td>
</tr>
<tr>
<td></td>
<td>6.75 (dq, 3J4,6 = 2.7 Hz, 4J4,1'' = 1.5 Hz, 1H, H-4)</td>
<td>15.7 C-1'', 185.8 C-2, 95.7 C-6</td>
<td>133.7 C-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>142.6 C-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>159.4 C-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>175.6 C-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>185.8 C-2</td>
</tr>
</tbody>
</table>
ERGEBNISSE

<table>
<thead>
<tr>
<th>Struktur & chemische Bezeichnung Produkt 3o</th>
<th>(^1)H-NMR</th>
<th>(^1)H,(^1)C-Korrelationen (HMBC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kopplung von 1a mit (R)-(+)‐Bornylamin (2o)</td>
<td>0.94 (s, 3H, H-10') 0.95 (s, 3H, H-8' oder H-9') 1.03 (s, 3H, H-8' oder H-9') 1.16 (dd, (^2)J({2,3'b}) = 13.4 Hz, (^1)J({2,3'b}) = 4.4 Hz, 1H, H-3'b) 1.37 (ddd, (^2)J({2,3'b}) = 12.3 Hz, (^1)J({2,3'b}) = 9.5 Hz, (^2)J(_{2,3'b}) = 2.2 Hz, 1H, H-3'b)</td>
<td>28.8 C-5', 49.9 C-7', 52.2 C-4', 60.5 C-2' 18.8 C-8' oder C-9', 46.3 C-1', 49.9 C-7' 19.9 C-8' oder C-9', 46.3 C-1', 49.9 C-7', 52.2 C-4' 28.8 C-5', (46.3 C-1'), 49.9 C-7', 60.5 C-2'</td>
</tr>
<tr>
<td>3-Methyl-5-(4,7,7-trimethyl-bicyclo[2.2.1]hept-2-ylamino)‐[1,2]-benzochinon</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Struktur & chemische Bezeichnung Produkt 3q</th>
<th>(^1)H-NMR</th>
<th>(^1)H,(^1)C-Korrelationen (HMBC)</th>
<th>(^1)C-NMR (HSQC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kopplung von 1a mit (-)-cis‐Myrtanylamin (2q)</td>
<td>0.97 (d, (^2)J({7'a,7'b}) = 9.8 Hz, 1H, H-7'b) 1.10 (s, 3H) (H-8') 1.24 (s, 3H, H-9') 1.56 (m, 1H, H-5'b) 1.97 (d, (^2)J({4,1''}) = 1.2 Hz, 3H, H-1'') 2.04-1.88 (m, 4H, H-1', H-3', H-4') 2.11-1.96 (m, 1H, H-5'a)</td>
<td>34.2 C-7' 23.7 C-8' 28.4 C-9' 20.9 C-5' 15.5 C-1'' 27.0 C-4' 20.9 C-5' 15.5 C-1''</td>
<td>-</td>
</tr>
<tr>
<td>3-Methyl-5-[(6,6-dimethyl-bicyclo[3.1.1]hept-2-ylmethyl)-amino]‐[1,2]-benzochinon</td>
<td>2.50-2.37 (m, 2H, H-6', H-7'a) 3.33 (m, 2H, H-10') 5.51 (d, (^2)J(_{4,6}) = 2.5 Hz, 1H, H-6) 6.75 (br, 1H, H-4)</td>
<td>45.1 C-1', 27.0 C-4', 41.7 C-6' 160.7 C-5, 45.1 C-1', 20.9 C-5', 41.7 C-6' 175.7 C-1', 185.8 C-2, 133.6 C-4 185.8 C-2, 94.7 C-6</td>
<td>39.8 C-2' 42.7 C-3' 45.1 C-1'</td>
</tr>
</tbody>
</table>
Struktur & chemische Bezeichnung

Produkt 3r₁

| Kopplung von 1a mit (1S,2S,3S,5R)-(+)-Isopino-campheylamin (2r) |
|---|---|---|
| **3H-NMR** | **1H, 13C-Korrelationen (HMBC)** | **13C-NMR (HSQC)** |
| 1.07 (d, j₂J₉a,₇b = 10.0 Hz, 1H, H-7'b) | 48.9 C-1', 42.8 C-5', 35.2 C-7' | |
| 1.09 (s, 3H, H-9') | 48.9 C-1', 42.8 C-5', 39.7 C-6' | 23.9 C-9' |
| 1.17 (d, j₂J₁₀,₁₀' = 7.0 Hz, 3H, H-10') | 48.9 C-1', 45.8 C-2', 54.3 C-3' | 21.5 C-10' |
| 1.29 (s, 3H, H-8') | 48.9 C-1', 42.8 C-5', 39.7 C-6' | 28.4 C-8' |
| 1.73 (ddd, j₂J₉a,k₉b = 13.9 Hz, j₂J₁₇a₉b = 6.2 Hz, j₂J₁₇b₉a = 6.2 Hz, j₂J₁₇a₂́ = 1.2 Hz, 1H, H-4'b) | 54.3 C-3', 42.8 C-5', 39.7 C-6', 35.2 C-7' | 37.2 C-4' |
| 1.91 (d't', j₂J₁₇a₂́ = 6.2 Hz, j₂J₁₇b₂́ = 6.2 Hz, j₂J₁₇a₁́ = 1.2 Hz, 1H, H-1') | 54.3 C-3', 42.8 C-5', 28.4 C-8', 21.5 C-10' | 48.9 C-1' |
| 1.99 (d, j₂J₉₉₁ = 1.7 Hz, 3H, H-1'') | 185.8 C-2, 142.6 C-3, 133.8 C-4, 160.1 C-5 | 15.6 C-1'' |
| 2.03 (m, 1H, H-5') | 48.9 C-1', 45.8 C-2', 37.2 C-4', 42.8 C-5' | |
| 2.18 (ddq, j₂J₁₀,₁₀' = 7.0 Hz, j₂J₂₇a₂́ = 6.5 Hz, j₂J₁₇a₂́ = 1.8 Hz, 1H, H-2') | 48.9 C-1', 54.3 C-3', 39.7 C-6', 35.2 C-7', 21.5 C-10' | 45.8 C-2' |
| 2.50 (dd't', j₂J₉₉₁ = 10.0 Hz, j₂J₁₇a₁́ = 6.2 Hz, j₂J₁₇b₁́ = 6.2 Hz, 1H, H-10') | 48.9 C-1', 45.8 C-2', 37.2 C-4', 42.8 C-5' | 35.2 C-7' |
| 2.69 (ddddd, j₂J₉₉₉₉ = 10.0 Hz, j₂J₉₉₉₉ = 3.4 Hz, j₂J₉₉₉₉ = 2.2 Hz, 1H, H-4'a) | 35.2 C-7' | 37.2 C-4' |
| 3.95 (d't', j₂J₂₇a₂́ = 10.0 Hz, j₂J₂₇a₂́ = 6.5 Hz, j₂J₂₇a₂́ = 6.5 Hz, 1H, H-3') | 160.1 C-5, 45.8 C-2', 37.2 C-4', 21.5 C-10' | 54.3 C-3' |
| 5.60 (d, j₂J₉₉₉₉ = 2.8 Hz, 1H, H-6) | 175.8 C-1, 185.8 C-2, 133.8 C-4 | 95.0 C-6 |
| 6.80 (dq, j₂J₉₉₉₉ = 2.8 Hz, j₂J₉₉₉₉ = 1.7 Hz, 1H, H-4) | 185.8 C-2 | 133.8 C-4 |
| | | 39.7 C-6' |
| | | 142.6 C-3 |
| | | 160.1 C-5 |
| | | 175.8 C-1 |
| | | 185.8 C-2 |

3-Methyl-5-(2,6,6-trimethyl-bicyclo[3.1.1]hept-3-ylamino)-[1,2]-benzochinon

![Structural diagram of 3-Methyl-5-(2,6,6-trimethyl-bicyclo[3.1.1]hept-3-ylamino)-[1,2]-benzochinon]
In Auswertung der NMR-Spektren konnte - analog zu den monoaminierten heteromolekularen Kopplungsprodukten des 3-Methylbrenzkatechins (1a) mit linearen (2a-g) und verzweigtkettigen aliphatischen Aminsubstituenten (2j-l) (vgl. Kap. 3.9.2, vgl. Kap. 3.9.5) - eine Aminkopplung an der C-5-Position des 3-Methyl-[1,2]-benzochinons nachgewiesen werden.

3.9.8 Heteromolekulare Kopplungsreaktionen von 3-Methoxybrenzkatechin und 4-tert-Butylbrenzkatechin mit dem aliphatischen Amin n-Hexylamin

Im Vergleich zu Transformationsreaktionen des methylsubstituierten ortho-Diphenols 3-Methylbrenzkatechin (1a) mit den linearen aliphatischen Aminen 2a-g, wurden heteromolekulare Kopplungsreaktionen mit den methoxy- und tert-butyl-substituierten ortho-dihydroxylierten Enzymsubstraten 3-Methoxybrenzkatechin (1b) und 4-tert-Butylbrenzkatechin (1c) durchgeführt. In den Reaktionen wurde n-Hexylamin (2d) in einer 5 mM Endkonzentration eingesetzt und die Bildung heteromolekularer Kopplungsprodukte mit den Phenoloxidasen PcL (pH 5) und MtL (pH 7) untersucht (Tab. 55).
Tab. 55: Übersicht über die in heteromolekularen Kopplungsreaktionen der ortho-dihydroxylierten Enzymsubstrate 3-Methoxybrenzkatechin (1b) und 4-tert-Butylbrenzkatechin (1c) mit dem aliphatischen Aminopartner n-Hexylamin (2d) in PcL- und MtL-katalysierten Transformationsansätzen mittels HPLC-Analytik detektierten Produkte.

<table>
<thead>
<tr>
<th>Substrat</th>
<th>Substrat-abnahme</th>
<th>Produktbc</th>
<th>HPLC-R$_{f}^{df}$</th>
<th>$\lambda_{\text{max}}^{[\text{nm}]}$</th>
<th>Färbung des Ansatzes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Methoxybrenzkatechin</td>
<td>100 % [120 min]</td>
<td>MO-1,2-HQ-KKP1[4d]</td>
<td>10,6</td>
<td>224, 328, 511</td>
<td>orange \rightarrow dunkelrot \rightarrow braun</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MO-1,2-HQ-KKP2</td>
<td>10,9</td>
<td>228, 270, 434, 508</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 % [60 min]</td>
<td>MO-1,2-HQ-KKP1 [4d] (MO-1,2-HQ-KKP3)</td>
<td>10,6</td>
<td>224, 328, 511</td>
<td>orange \rightarrow weinrot \rightarrow braun</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MO-1,2-HQ-KKP4</td>
<td>13,2</td>
<td>259, 314</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MO-1,2-HQ-KKP5</td>
<td>13,5</td>
<td>338, 495</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 % [120 min]</td>
<td>tertB-1,2-HQ-KKP1</td>
<td>11,7</td>
<td>266</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tertB-1,2-HQ-KKP2</td>
<td>12,7</td>
<td>291, 510</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>tertB-1,2-HQ-KKP3</td>
<td>13,1</td>
<td>261, 280, 410</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 % [200 min]</td>
<td>tertB-1,2-HQ-KKP1 (tertB-1,2-HQ-KKP2)</td>
<td>11,7</td>
<td>266</td>
<td>farblos \rightarrow trüb gelb</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tertB-1,2-HQ-KKP4</td>
<td>12,7</td>
<td>201, 234, 275, 282</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>tertB-1,2-HQ-KKP5</td>
<td>15,3</td>
<td>202, 235, 274, 281</td>
<td></td>
</tr>
</tbody>
</table>

a Weiße Felder: Reaktionsansätze mit PcL (pH 5)
b Graue Felder: Reaktionsansätze mit MtL (pH 7)
c Produkte in Klammern lagen in sehr geringer Konzentration vor.
d Fett-gedruckte Produkte als Hauptprodukte in heteromolekularen Kopplungsreaktionen identifiziert.
e Analysen der Reaktionen mit 1b - HPLC-Fließmittelgradient 1, 1c - HPLC-Fließmittelgradient 2.

In heteromolekularen Kopplungsreaktionen mit 3-Methoxybrenzkatechin (1b) konnte sowohl bei pH 5 als auch pH 7 die Bildung des heteromolekularen Hauptprodukts MO-1,2-HQ-KKP1, nachfolgend als 4d bezeichnet, ermittelt werden (Tab. 55). Mit Oxidation des Enzymsubstrats erfolgte in PcL- und MtL-katalysierten Reaktionssystemen zunächst die Bildung des als ein methoxysubstituiertes 3-Methoxy-[1,2]-benzochinon postulierten Eigenreaktionsprodukts MO-1,2-HQ-ERP2 (vgl. Kap. 3.8.5.2). Unter Konzentrationsabnahme von MO-1,2-HQ-ERP2 setzte die Bildung von Produkt 4d sowie weiterer heteromolekularer und auch homomolekularer Kopplungsprodukte ein (Abb. 57A, B).
Abb. 57: Verlauf des in Transformationsreaktionen von 3-Methoxybrenzkatechin (1b, 1 mM, v/v) mit dem Aminopartner n-Hexylamin (2d, 5 mM, v/v) in PcL- (A) und MtL-katalysierten (B) Reaktionsansätzen gebildeten heteromolekularen Kopplungsprodukts 4d sowie der in den jeweiligen Reaktionssystemen erfassten Peakflächen des Eigenreaktionsprodukts MO-1,2-HQ-ERP2 und weiterer heteromolekularer Kopplungsprodukte. Enzymaktivitäten 1 μmol L⁻¹, Reaktionen bei RT, Schüttelfrequenz 200 rpm.

Das als ein Prädursor für eine nachfolgende Kopplung des aliphatischen Amindonors 2d fungierende Eigenreaktionsprodukt MO-1,2-HQ-ERP2 unterlag in MtL-katalysierten Reaktionen einer zügigeren Abnahme (Abb. 57B), wohingegen dieses in einer Reaktion bei pH 5 erst nach einer Reaktionszeit von 240 min nicht mehr detektiert werden konnte (Abb. 57A). Bezüglich des Spektrums heteromolekularer Produkte konnten in Abhängigkeit des eingesetzten Enzyms bzw. des zugrundeliegenden pH-Werts erhebliche Unterschiede in deren Anzahl als auch Quantität ermittelt werden. So entstand in PcL-katalysierten Reaktionen neben dem Hauptprodukt 4d lediglich ein weiteres heteromolekulares Kopplungsprodukt (MO-1,2-HQ-KKP2), in Reaktionsansätzen mit MtL (pH 7) hingegen zwei weitere höhermolekulare Produkte (MO-1,2-HQ-KKP4 und MO-1,2-HQ-KKP4-KKP5). Im Allgemeinen erfolgte in MtL-katalysierten Ansätzen jedoch eine um bis zu 23 % erhöhte Bildung von Produkt 4d.

In unkatalysierten heteromolekularen Reaktionsansätzen konnte eine relativ starke autokatalytische Bildung von 4d festgestellt werden, wobei diese nach einer Reaktionszeit von 400 min 43 % (pH 5) bzw. 29 % (pH 7) der Produktbildung in
Enzym-katalysierten Reaktionsansätzen entsprach. Abzüglich der in unkatalysierten Reaktionen erfassten Quantitäten, konnten in Phenoloxidase-vermittelt Transformationsreaktionen somit Ausbeuten des heteromolekularen Kopplungsprodukts 4d von 10,7 % (pH 7) und 6,2 % (pH 5) erreicht werden.

In Transformationsreaktionen mit 4-tert-Butylbrenzkatechin (1c) konnte eine unter Abnahme des Enzymsubstrats primär einsetzende Bildung des in homomolekularen Reaktionen als Hauptprodukt identifizierten Produkts tertB-1,2-HQ-ERP2 ermittelt werden. Auch für dieses Eigenreaktionsprodukt wurde in strukturen Analysen die Struktur eines methoxy-aktivierten tert-Butyl-[1,2]-benzochinons postuliert (vgl. Kap. 3.8.5.3). In Reaktionskinetiken einer heteromolekularen Kopplung der Verbindung 1c konnte das Eigenreaktionsprodukt tertB-1,2-HQ-ERP2 ebenfalls als eine Vorstufe für die nicht-enzymatische Kopplung des aliphatischen Amindonor n-Hexylamin (2d) unter Bildung heteromolekularer Kopplungsprodukte identifiziert werden. Dabei erfolgte in PcL-katalysierten Reaktionen - analysiert anhand der Peakflächen der gebildeten Transformationsprodukte - eine kontinuierliche Akkumulation des Eigenreaktionsproduktes tertB-1,2-HQ-ERP2 (Abb. 58A).

Abb. 58: Verlauf des in Transformationsreaktionen von 4-tert-Butylbrenzkatechin (1c, 1mM, v/v) mit dem Aminopartner n-Hexylamin (2d, 5 mM, v/v) in PcL- (A) und M/L-katalysierten (B) Reaktionsansätzen gebildeten Eigenreaktionsprodukts tertB-1,2-HQ-ERP2 sowie weiterer heteromolekularer Kopplungsprodukte. Enzymaktivitäten 1 μmoL mL⁻¹, Reaktionen bei RT, Schüttelfrequenz 200 rpm.
Im Gegensatz dazu unterlag das Eigenreaktionsprodukt tertB-1,2-HQ-ERP2 in einem MtL-katalysierten Reaktionssystem (pH7) einer zügigeren Transformation in die heteromolekularen Kopplungsprodukte (Abb. 58B).

In Abhängigkeit von dem pH des Reaktionsmilieus konnten unterschiedliche Hautprodukte erfasst werden. Dabei betrug die Quantität der heteromolekularen Produkte, bezogen auf deren Peakflächen, in Reaktionsansätzen mit der Phenoloxidase PcL lediglich 11 % der in MtL-katalysierten Reaktionen erfassten Produktkonzentrationen (Abb. 58A). In beiden Reaktionssystemen stellte das Produkt tertB-1,2-HQ-KKP1 ein Hauptprodukt dar, wobei das Produkt tertB-1,2-HQ-KKP3 ausschließlich in PcL-katalysierten Reaktionen als ein weiteres Hauptprodukt auftrat. Im Gegensatz dazu wurden mit der Phenoloxidase MtL (pH 7) alleinig die höhermolekularen Haupttransformationsprodukte tertB-1,2-HQ-KKP4 und tertB-1,2-HQ-KKP5 gebildet.

3.9.9 Isolation und Strukturaufklärung der heteromolekularen Kopplungsprodukte aus Reaktionen des 3-Methoxy- und 4-tert-Butylbrenzkatechins

Mit dem Ziel, einer Anreicherung des in Reaktionen von 3-Methoxybrenzkatechin (1b) mit n-Hexylamin (2d) gebildeten Hauptprodukts 4d wurde ein 250-mL-Reaktionsansatz (PCP, pH 7) erstellt, in dem die Edukte als methanolische Stammlösungen in einem 1:5 mM Konzentrationsverhältnis eingesetzt wurden. Die Reaktion wurde durch Zusatz der Phenoloxidase MtL gestartet und das Reaktionsgemisch nach 400-minütiger Inkubation auf einem Magnetrührer mittels Festphasenextraktion aufbereitet. Die Reinigungsschritte, Eluentengemische und -volumina für eine Abtrennung von Nebenreaktionsprodukten und die Produktgewinnung sind Tab. 7 des Anhangs zu entnehmen.

Das Produkt 4d war als Feststoff sowohl bei Raumtemperatur als auch bei 4 °C stabil. In Methanol war es jedoch sehr instabil, sodass in der HPLC-Analyse bereits nach 10-20 min Zerfallsprodukte detektiert werden konnten.

In Vorversuchen einer Isolation der in Reaktionsansätzen mit 4-tert-Butylbrenzkatechin (1c) und n-Hexylamin (2d) gebildeten Transformationsprodukte mittels Festphasenextraktion, konnte eine auf der Festphasenkartusche ablaufende Reaktion, unter Ausbildung andersfarbiger Produktbanden, erfasst werden. Diese wurde durch das

In LC-MS-Analysen des in Methanol gelösten Produkts 4d konnte ein Pseudomolekülionen-Peak [M+H]+ mit einer Masse m/z = 238,1 (Rf,LC-MS 10,9 min) detektiert werden. Über Elementaranalysen mittels hochauflösender Messung wurden für 4d ein Pseudomolekül [M+H]+ mit einem Molpeak von m/z = 238,14346 (Fehler: -1,32 ppm) und das korrespondierende Natrium-Addukt [M+Na]+ (m/z = 260,12549, Fehler: -0,85 ppm) erfasst. Die gefundenen Massen entsprachen demnach denen eines monoaminierten Kopplungsprodukts (Dimer), dessen molare Masse sich aus der des aktivierten 3-Methoxy-[1,2]-benzochinons und eines über eine C-N-Bindung gekoppelten n-Hexylamin-Substituenten zusammensetzte (C₁₃H₁₉NO₃). Die Daten der massenspektrometrischen Analysen sind in Anhang C zusammengefasst.

Zur abschließenden Strukturaufklärung erfolgten verschiedene NMR-Messungen der in deuteriertem Methanol gelösten Analytsubstanz (Tab. 56).

Tab. 56: ¹H- und ¹³C-NMR-Daten des aus einer heteromolekularen Kopplungsreaktion des 3-Methoxybrenzkatechins (1b) mit dem Aminopartner n-Hexylamin (2d) isolierten Syntheseprodukts 4d. Lösungsmittel d₄-MeOH.

<table>
<thead>
<tr>
<th>Struktur & chemische Bezeichnung</th>
<th>¹H-NMR a</th>
<th>¹³C-NMR (HSQC) b</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Methoxy-5-(hexylamino)-[1,2]-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>benzochinon</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.93 (t, J₅',₆' = 7.0 Hz, 3H, H-6')</td>
<td>14.4 C-6'</td>
</tr>
<tr>
<td></td>
<td>1.46-1.29 (m, 6H, H-3', H-4', H-5')</td>
<td>27.8 C-3', 32.7 C-4', 23.7 C-5'</td>
</tr>
<tr>
<td></td>
<td>1.71 (m, 2H, H-2')</td>
<td>29.6 C-2'</td>
</tr>
<tr>
<td></td>
<td>3.37 (t, J₁',₂' = 7.0 Hz, 2H, H-1')</td>
<td>45.7 C-1'</td>
</tr>
<tr>
<td></td>
<td>3.80 (s, 3H, H-1'')</td>
<td>56.7 C-1''</td>
</tr>
<tr>
<td></td>
<td>6.00 (d, J₄',₆' = 2.2 Hz, 1H), (H-4,6)</td>
<td>105.6, 92.5 C-4,6</td>
</tr>
</tbody>
</table>

a Chemische Verschiebung δ [ppm] korrespondiert zu TMS-Signal (Kalibrierung erfolgte anhand der Lösungsmittelssignale: δMeOH-d₄ = 3.31 (¹H), 49.0 (¹³C)). Multiplizität, Kopplungskonstante J [Hz], Protonenzahl, Signalzuordnung.

b Chemische Verschiebung δ [ppm], Signalzuordnung.

Aufgrund der relativ hohen Instabilität des Produkts 4d konnten die gemessenen Langzeitspektren für eine Strukturaufklärung nicht verwendet werden. Die in Tab. 56 dargestellten Daten stammen aus einer schnellen ¹H- und ¹³C-NMR-Analyse, wobei
Ergebnisse

Diese zu einem hohen Signal-Rauschverhältnis bei der 13C-NMR führte und somit nicht alle quartären C-Atome sichtbar wurden. Dennoch konnten die Signale bei 5,50 ppm und 6,00 ppm des 1H-NMR-Spektrums dem H-6 bzw. H-4 des Ringsystems zugeordnet werden. Da keine Signale für das H-5 erfasst wurden, war eine Kopplung des n-Hexylamins an dem C-5-Atom (in meta-Stellung zur OCH$_3$-Gruppe) sehr wahrscheinlich.

Wie bereits zuvor beschrieben, war eine fraktionierte Isolation der in Transformationsreaktionen von 4-tert-Butylbrenzkatechin (1c) mit n-Hexylamin (2d) gebildeten heteromolekularen Produkte mittels Festphasenextraktion nicht möglich. Aus diesem Grund wurde ein methanolischer Gesamtextrakt eines M/L-katalysierten Transformationsansatzes nach einer Reaktionszeit von 100 min erstellt und mittels LC-MS vermessen. Dabei konnten fünf Produktpeaks detektiert werden, deren Molpeaks $[M+H]^+$ Massen von m/z = 250,1, 246,0, 348,1 und 411,0 (2 Produkte) besaßen. Ein dimeres Produkt, in dem das benzochoinoide Molekül mit einem n-Hexylamin-Molekül substituiert gewesen wäre, hätte einen Molpeak m/z = 264,1 besessen, eine trimere Struktur mit zwei n-Hexylamin-Substituenten eine Masse m/z = 363,1. Die Massen für ein solches dimeres bzw. trimeres Hybridmolekül wurden jedoch nicht detektiert. Für einen Produktpeak ($R_{\text{LC-MS}}$ 14,0 min, $[M+H]^+$ m/z = 250,1) konnte die Struktur eines monoaminierten Monocarbonyls (MW = 249 g mol$^{-1}$) postuliert werden, in welcher ein Sauerstoffatom im Zuge der Aminkopplung eliminiert wurde (Abb. 59).

![Mögliche Struktur für das mittels LC-MS-Analyse detektierte Produkt (R$_{\text{LC-MS}}$ 14,0 min, [M+H]$^+$ m/z = 250,1), isoliert aus einem M/L-katalysierten Reaktionsansatz des 4-tert-Butylbrenzkatechins (1c) mit n-Hexylamin (2d). Produkt in einem methanolischen Gesamtextrakt analysiert. LC-MS-Fließmittelgradient 2.](image)

Die Strukturvorschläge für weitere detektierte Molpeaks sind Tab. 13 des Anhangs zu entnehmen.
3.10 Heteromolekulare Kopplung von para-dihydroxylierten Verbindungen

3.10.1 Heteromolekulare Kopplungsreaktionen von monosubstituierten einkernigen para-dihydroxylierten Verbindungen

Im Vergleich zu Phenoloxidase-vermittelten Transformationsreaktionen von methyl-, methoxy- und tert-butyl-substituierten ortho-Diphenolen (1a–c) wurden nachfolgend die para-dihydroxylierten Verbindungen Methylhydrochinon (1d), Methoxyhydrochinon (1e) und tert-Butylhydrochinon (1f) in heteromolekularen Kopplungsreaktionen mit dem Ziel, einer Synthese sekundärer Amine mit para-Dicarbonyl-Grundkörpern, umgesetzt. C-N-Kopplungsreaktionen der para-dihydroxylierten Enzymsubstrate 1d-f wurden mit dem linearen aliphatischen Amindonor n-Hexylamin (2d) durchgeführt und die Reaktionskinetiken unter katalytischer Wirkung der pilzlichen Phenoloxidasen PcL (pH 5) und MtL (pH 7) untersucht. In allen Transformationsreaktionen wurden die Edukte als methanolische Stammlösungen eingesetzt, wobei ein 1:5 mM Konzentrationsverhältnis zwischen den Enzymsubstraten und dem Aminopartner 2d gewählt wurde (Tab. 57).
ERGEBNISSE

Tab. 57: Übersicht über die in heteromolekularen Kopplungsreaktionen der para-dihydroxylierten Verbindungen Methylhydrochinon (1d), Methoxyhydrochinon (1e) und tert-Butylhydrochinon (1f) mit dem Aminopartner n-Hexylamin (2d) in PcL- und MtL-katalysierten Transformationsansätzen mittels HPLC-Analytik detektierten Produkte.

<table>
<thead>
<tr>
<th>Substrat</th>
<th>Substrat- abnahme (^{a})</th>
<th>Produkt (^{bc})</th>
<th>HPLC-(R_{f})[min] (^{d})</th>
<th>(\lambda_{\text{max}})[nm]</th>
<th>Färbung des Ansatzes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methylhydrochinon</td>
<td>100 % [60 min]</td>
<td>M-1,4-HQ-KKP1</td>
<td>12,4</td>
<td>221, 245, 378</td>
<td>farblos (\rightarrow) hell rosa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-1,4-HQ-KKP2a [5d1]</td>
<td>12,9</td>
<td>215, 277, 493</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-1,4-HQ-KKP2b [5d2]</td>
<td>13,2</td>
<td>219, 274, 493</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-1,4-HQ-KKP3</td>
<td>14,4</td>
<td>253, 354</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-1,4-HQ-KKP4</td>
<td>15,3</td>
<td>230, 266, 323, 462</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pool (mind. 3 Produkte)</td>
<td>15,5 - 15,8</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 % [40 min]</td>
<td>M-1,4-HQ-KKP2a</td>
<td>12,9</td>
<td>215, 277, 493</td>
<td>farblos (\rightarrow) rosa-rot</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M-1,4-HQ-KKP2b</td>
<td>13,2</td>
<td>219, 274, 493</td>
<td></td>
</tr>
<tr>
<td>Methoxyhydrochinon</td>
<td>100 % [40 min]</td>
<td>MO-1,4-HQ-KKP1</td>
<td>9,0</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MO-1,4-HQ-KKP2</td>
<td>11,7</td>
<td>255, 301, 483</td>
<td>farblos (\rightarrow) rot-orange</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MO-1,4-HQ-KKP3 [6d]</td>
<td>12,3</td>
<td>212, 302, 489</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MO-1,4-HQ-KKP4</td>
<td>13,9</td>
<td>230, 270, 476</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(MO-1,4-HQ-KKP5)</td>
<td>15,1</td>
<td>341, 497</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 % [20 min]</td>
<td>MO-1,4-HQ-KKP3 [6d]</td>
<td>12,3</td>
<td>212, 302, 489</td>
<td>farblos (\rightarrow) rot-organe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MO-1,4-HQ-KKP4</td>
<td>13,9</td>
<td>230, 270, 476</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(MO-1,4-HQ-KKP5)</td>
<td>15,1</td>
<td>341, 497</td>
<td></td>
</tr>
<tr>
<td>tert-Butylhydrochinon</td>
<td>100 % [40 min]</td>
<td>tertB-1,4-HQ-KKP1 [7d]</td>
<td>13,8</td>
<td>217, 277, 496</td>
<td>farblos (\rightarrow) rosa-rot</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tertB-1,4-HQ-KKP2</td>
<td>14,2</td>
<td>277, 497</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 % [40 min]</td>
<td>tertB-1,4-HQ-KKP1 [7d]</td>
<td>13,8</td>
<td>217, 277, 496</td>
<td>farblos (\rightarrow) rosa-rot</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tertB-1,4-HQ-KKP2</td>
<td>14,2</td>
<td>277, 497</td>
<td></td>
</tr>
</tbody>
</table>

\(^{a} \) Weiße Felder: Reaktionsansätze mit PcL (pH 5)
\(^{b} \) Graue Felder: Reaktionsansätze mit MtL (pH 7)
\(^{c} \) Produkte in Klammern lagen in sehr geringer Konzentration vor.
\(^{d} \) Fett-gedruckte Produkte als Hauptprodukte in heteromolekularen Kopplungsreaktionen identifiziert.
\(^{d} \) Analysen der Reaktionen mit 1d und 1e - HPLC-Fließmittelgradient 1, 1f - HPLC-Fließmittelgradient 2.

In heteromolekularen Kopplungsreaktionen der para-dihydroxylierten Verbindungen 1d-f konnte, im Vergleich zu Reaktionen der gleichartig substituierten ortho-dihydroxylierten Enzymsubstrate 1a-c, eine zügigere Substratoxidation ermittelt werden. Bezüglich des Spektrums an heteromolekularen Kopplungsprodukten wurden auch hier erhebliche Unterschiede in Abhängigkeit von dem pH-Wert des Reaktionssystems bzw. der eingesetzten Phenoloxidase erfasst. Eine autokatalytische Bildung der anvisierten Zielverbindungen, im Nachfolgenden als 5d1/2, 6d und 7d bezeichnet (Tab. 57), sowie weiterer höhermolekularer Produkte war gegenüber Reaktionen mit den ortho-dihydroxylierten Enzysubstraten erhöht. Auf die Besonderheiten der durchgeführten Synthesereaktionen soll in den Kap. 3.10.1.1 ff näher eingegangen werden.
3.10.1.1 **Heteromolekulare Kopplungsreaktionen von Methylhydrochinon**

Wie in Tab. 57 dargestellt, entstanden in Transformationsreaktionen des Methylhydrochinons (1d) mit *n*-Hexylamin (2d) mindestens acht heteromolekulare Kopplungsprodukte, wobei das Produktspektrum in Reaktionen mit der Phenoloxidase *Pc*L (pH 5, Abb. 60) größer war als in *Mt*L-katalysierten Reaktionen (pH 7).

![HPLC-Elutionsprofil](image)

Abb. 60: HPLC-Elutionsprofil (220 nm) des wässrigen Überstandes einer heteromolekularen Kopplungsreaktion von Methylhydrochinon (1d, 1 mM, v/v) mit *n*-Hexylamin (2d, 5 mM, v/v) katalysiert durch *Pc*L nach 2 h. Enzymaktivität 1 μmol mL⁻¹. Inkubation bei RT, Schüttelfrequenz 200 rpm. HPLC-Fließmittelgradient I.

So traten in Reaktionen mit der Phenoloxidase *Pc*L (pH 5), neben den ebenso in *Mt*L-katalysierten Reaktionsansätzen detektierten Hauptprodukten 5d₁ und 5d₂, die Produkte M-1,4-HQ-KKP1, M-1,4-HQ-KKP3 und M-1,4-HQ-KKP4 sowie ein Pool aus mindestens drei nicht basislinien-getrennten höhermolekularen Produkten (RfHPLC 15,5-15,8 min) auf (Abb. 60). Mit Bezug auf die Laufzeiten und UV/VIS-Absorptionsspektren der Produkte 5d₁ und 5d₂ wurde das Vorliegen regioisomerer chinoider Hybridmoleküle angenommen, an welchen der Aminopartner 2d an jeweils unterschiedlichen C-Atomen des Ringsystems gekoppelt hatte. Die Konzentration dieser regioisomeren Kopplungsprodukte betrug in Reaktionsansätzen mit der Phenoloxidase *Pc*L nach einer Reaktionszeit von 6 h 39 % (5d₁) bzw. 45 % (5d₂) der in *Mt*L-katalysierten Reaktionen ermittelten Quantitäten. In unkatalysierten Reaktionsansätzen bei pH 7 (PCP) konnten nach 24-stündiger Inkubation 31 bzw. 58 % der in *Mt*L-katalysierten Reaktionssystemen erfassten Mengen der Produkte 5d₁ und 5d₂ detektiert
werden. Zum gleichen Zeitpunkt war in unkatalysierten Reaktionsansätzen bei pH 5 (0,02 M NaAC) keine Bildung heteromolekularer Kopplungsprodukte detektierbar.

Im Vergleich zu heteromolekularen Kopplungsreaktionen mit dem methylsubstituierten ortho-dihydroxylierten Enzymsubstrat 3-Methylbrenzkatechin (1a) konnte in Reaktionen des para-dihydroxylierten Strukturanalogen Methylhydrochinon (1d) ein größeres Spektrum an Kopplungsprodukten und zudem eine Bildung regioisomerer Hybridmoleküle nachgewiesen werden. Weiterhin lag in Reaktionen der para-dihydroxylierten Verbindung 1d eine ausgeprägte Autokatalyse vor, welche in Reaktionen des ortho-Diphenols 1a nicht bzw. nur geringfügig vorhanden war.

3.10.1.2 Heteromolekulare Kopplungsreaktionen von Methoxyhydrochinon

In Reaktionen des Methoxyhydrochinons (1e) mit dem linearen aliphatischen Amin-donor 2d konnte sowohl in Reaktionen mit PcL (pH 5) als auch mit MtL (pH 7) die Bildung des heteromolekularen Kopplungsproduktes 6d ermittelt werden (vgl. Tab. 57, S. 223). Dieses trat in MtL-katalysierten Reaktionen als Hauptprodukt in Erscheinung (Abb. 61).

Die Anzahl und Quantität weiterer heteromolekularer Produkte war im PcL-katalysierten Reaktionsansatz erhöht, wobei in diesem die Produkte MO-1,4-HQ-KKP2 und MO-1,4-HQ-KKP4 ebenso als Hauptprodukte identifiziert werden konnten.
Die Bildung des heteromolekularen Kopplungsprodukts 6d war in MtL-katalysierten Reaktionsansätzen (pH 7) im Vergleich zu Reaktionen mit der Phenoloxidase PcL (pH 5) zu gleichen Inkubationszeiten um 66 % bis 27 % erhöht. In beiden Reaktionssystemen konnte jedoch auch ohne Anwesenheit der biologischen Katalysatoren eine verstärkt autokatalytische Bildung des Produkts 6d festgestellt werden, wobei dieses nach einer Reaktionszeit von 400 min 57 % der in PcL-katalysierten Reaktionen (pH 5) und 67 % der in Anwesenheit der Phenoloxidase MtL (pH 7) gebildeten Produktmengen erreichte (Abb. 63).

Eine ausgeprägte Autokatalyse konnte bereits für das ortho-dihydroxylierte strukturnaloge Enzymsubstrat 3-Methoxybrenzkatechin (1b) ermittelt werden (vgl. Kap. 3.9.8), womit sich abermals ableiten ließ, dass der OCH₃-Substituent der para- bzw. ortho-dihydroxylierten Verbindungen maßgeblich deren Reaktivität erhöhte. Abzüglich der in unkatalysierten Reaktionen erfassten Quantitäten konnte das Produkt 6d in Enzym-katalysierten Transformationsreaktionen mit Ausbeuten von 9,9 % (pH 5) bzw. 10,6 % (pH 7) gewonnen werden.

3.10.1.3 Heteromolekulare Kopplungsreaktionen von tert-Butylhydrochinon

In Reaktionen des tert-Butylhydrochinons (1f) mit n-Hexylamin (2d) bei pH 5 (PcL) und pH 7 (MtL) konnten keine Unterschiede bezüglich des Spektrums an heteromolekularen Kopplungsprodukten ermittelt werden (vgl. Tab. 57, S. 223). In
beiden Phenoloxidase-katalysierten Reaktionssystemen stellte das Produkt 7d ein Hauptprodukt dar, wohingegen ein weiteres heteromolekulares Kopplungsprodukt (\textit{tertB-1,4-HQ-KKP2}) - ermittelt anhand der über HPLC-Analysen detektierten Peakflächen - in vergleichsweise geringen Konzentrationen gebildet wurde (Abb. 63).

Im Gegensatz zu Kopplungsversuchen mit den \textit{para}-dihydroxylierten Enzymsubstraten Methylhydrochinon (1d) und Methoxyhydrochinon (1e), unterlag das nach Starten der Reaktionen primär gebildete aktivierte Enzymsubstratmolekül (\textit{tertB-1,4-Q}) einer vergleichsweise langsamen nicht-enzymatischen Reaktion mit dem Aminopartner 2d, welche zur Bildung der anvisierten Zielverbindung 7d führte (Abb. 65).
Das Produkt 7d wurde in der PcL-katalysierten Reaktion zwar schneller gebildet, jedoch war dessen Quantität im weiteren Verlauf der Reaktion mit der Phenoloxidase MtL zwischen 31 % (180 min) und 63 % (360 min) erhöht. In unkatalysierten Reaktionen des tert-Butylhydrochinons (1f) mit n-Hexylamin (2d) lag lediglich eine sehr schwache Autokatalyse vor, bei welcher das heteromolekulare Kopplungsprodukt 7d mit 0,5 % (pH 5) bzw. 5 % (pH 7) der in Enzym-katalysierten Reaktionsansätzen detektierten Mengen vorlag. Abzüglich der in unkatalysierten Reaktionsansätzen erfassten Mengen von Produkt 7d konnte dieses nach einer Reaktionszeit von 6 h mit Ausbeuten von 4,7 % (PcL) und 7,2 % (MtL) gewonnen werden.

Im Vergleich zu Kopplungsreaktionen der strukturnanologen ortho-dihydroxylierten Verbindung 4-tert-Butylbrenzkatechin (1c), in welchen bis zu 5 verschiedene heteromolekulare Hauptprodukte detektiert wurden (vgl. Kap. 3.9.8), konnte in Kopplungsversuchen mit dem para-dihydroxylierten Enzymsubstrat 1f lediglich die Bildung eines Hauptprodukts (7d) nachgewiesen werden. Dies kennzeichnete eine ausgeprägte Reaktionsträgheit der para-dihydroxylierten tert-butyl-substituierten Verbindung 1f, welche sich auch auf Ebene homo- und heteromolekularer Kopplungsprodukte im Vergleich zu den methyl- bzw. methoxysubstituierten para-dihydroxylierten Enzymsubstraten 1d und 1e zeigte.

3.10.1.4 Isolation und Strukturaufklärung der heteromolekularen Kopplungsprodukte

Für die Gewinnung der Produkte 5d₁₂, 6d und 7d wurde jeweils ein 250-mL-Reaktionsansatz in PCP (pH 7) erstellt, in dem die para-dihydroxylierten Enzymsubstrate Methylhydrochinon (1d), Methoxyhydrochinon (1e) und tert-Butylhydrochinon (1f) mit dem aliphatischen Aminopartner n-Hexylamin (2d) in einem 1:5 mM Konzentrationsverhältnis als methanolische Stammlösungen eingesetzt wurden. Die Inkubation erfolgte in lichtdicht verschlossenen Reaktionsgefäßen bei einer Schüttelfrequenz von 200 rpm für 15 h bei Raumtemperatur. Die Reinigungsschritte, Eluentengemische und -volumina für eine Abtrennung von Nebenreaktionsprodukten und die Produktgewinnung mittels Festphasenextraktion sind Tab. 7 des Anhangs zu entnehmen.

Unter den angegebenen Bedingungen konnten 8,7 mg (5d₁₂), 13,8 mg (6d) und 4,4 mg (7d) gewonnen werden. Die Feststoffe der Produkte waren bei Raumtemperatur und bei
4 °C über einen Analysezeitraum von 3 Monaten stabil. Zudem wurden in Stabilitätsuntersuchungen der in Methanol gelösten Produkte über eine Inkubationszeit von 24 h keine Zerfallsprodukte mittels HPLC detektiert.
Für eine strukturenmische Charakterisierung der heteromolekularen Kopplungsprodukte 5d_{1/2}, 6d und 7d wurden mit den gereinigten Feststoffen GC-MS-, HR-MS- und NMR-Analysen durchgeführt.

3.10.1.4.1 Kopplungsprodukte des Methylhydrochinons

Durch HPLC-Analysen konnte ermittelt werden, dass die Produkte 5d₁ (λ_{max} 215, 277, 493 nm) und 5d₂ (λ_{max} 219, 274, 493 nm) nicht basislinien-getrennt eluierten und nahezu identische UV/VIS-Absorptionsspektren besaßen. Dies führte zu der Annahme des Vorliegens regioisomerer Verbindungen. Das theoretische Molekulargewicht eines monoaminierten Produkts (Dimer) bestehend aus einem Molekül des Methylbenzochinons, an welchem ein n-Hexylamin-Substituent gekoppelt war, betrug 221 g mol⁻¹
In GC-MS-Analysen eines methanolischen underivatisierten Extrakts konnte ein Produktpeak (R_{GC-MS} 10,126 min) detektiert werden, dessen Massenspektrum einen Molpeak m/z = 221 aufwies. Die Masse des Molpeaks stimmte mit der theoretischen Masse eines Dimers überein (Abb. 66).

Die Massendifferenz des Molpeaks zu dem Basispeak (m/z = 150) kennzeichnete die Abspaltung eines größeren Alkan- (C₅H₁₁⁺) bzw. Alkylrests (C₄H₇O⁺). Das Fragmention m/z = 122 entsprach der Masse eines CH₃-substituierten kreuzkonjugierten para-Dicarboyls (Methyl-[1,4]-benzochinon).
Über HR-MS-Analysen des Produktgemisches 5d\(\frac{1}{2}\) konnte ein Pseudomolekülionen-Peak [M+H]\(^{+}\) mit einer Masse m/z = 222,14918 (Fehler: 1,46 ppm) detektiert werden. Somit besaßen die Analytmoleküle die Summenformeln C\(_{13}\)H\(_{19}\)NO\(_{2}\), welche das Vorliegen monoaminierter Strukturen bestätigte.

Für eine Vervollständigung der Strukturdaten erfolgten NMR-Korrelationsexperimente des in deuteriertem Metanol gelösten Analytgemisches. Eine Auswertung der NMR-Spektren deutete auf zwei verschiedene Verbindungen hin, wobei eine abschließende Signalzuordnung nicht möglich war. Die postulierten Strukturen der heteromolekularen Kopplungsprodukte 5d\(\frac{1}{2}\) sind in Kap. 4.2.2.2 der Diskussion dargestellt, die Rohdaten der HR-MS-Analyse sind dem Anhang C zu entnehmen.

3.10.1.4.2 Kopplungsprodukt des Methoxyhydrochinons

Über eine GC-MS-Analyse konnte für das underivatisierte heteromolekulare Kopplungsprodukt 6d, welches aus einem Reaktionsgemisch des Methoxyhydrochinons (1e) mit n-Hexylamin (2d) isoliert wurde, ein Peak (R\(_{\text{GC-MS}}\) = 11,475 min) mit einer Masse m/z = 237 detektiert werden (Abb. 67). Diese stimmte mit dem theoretischen Molekulargewicht eines dimeren Moleküls (237 g mol\(^{-1}\)) überein.

In Auswertung des Massenspektrums konnte das Fragmention m/z = 138 dem aktivierten Enzymsubstratmolekül (Methoxy-[1,4]-benzochinon) zugeordnet werden. Die Massendifferenz von 99 amu zwischen dem Fragmention m/z = 138 und dem Molpeak des Analyten (m/z = 237) entsprach der Masse eines n-Hexylamin-Substituenten, welcher unter Abspaltung von zwei Protonen an das para-benzochinoide Molekül gekoppelt war.

![Abbildung 66: GC-MS-Massenspektrum des heteromolekularen Kopplungsprodukts 6d (underivatisiert).](image-url)
Für das Produkt 6d konnte in hochaufgelösten Messungen ein Quasimolekülion [M+H]+ mit einer Masse m/z = 238,14419 (Fehler: 1,77 ppm) sowie das dazu korrespondierende Natriumaddukt [M+Na]+ (260,12613 m/z, Fehler: 1,58 ppm) detektiert werden. Über die HR-MS-Analyse konnte für Produkt 6d somit die Summenformel einer stickstoffhaltigen methoxy-substituierten benzochinoiden Verbindung (C_{13}H_{19}NO_{3}) ermittelt werden.

Eine Kopplung des Aminopartners an das aktivierte Enzymsubstratmolekül konnte in Auswertung der NMR-Analysen bestätigt werden (Tab. 58).

Tab. 58: 1H- und 13C-NMR-Daten des aus einer heteromolekularen Kopplungsreaktion von Methoxyhydrochinon (1e) mit n-Hexylamin (2d) isolierten Syntheseprodukts 6d. Lösungsmittel d_{4}-MeOH.

<table>
<thead>
<tr>
<th>Struktur & chemische Bezeichnung</th>
<th>1H-NMRa</th>
<th>1H,13C-Korrelationen (HMBC)b</th>
<th>13C-NMR (HSQC)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Hexylamino-5-methoxy-[1,4]-benzochinon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.91 (t, J_{5',6'} = 6.8 Hz, 3H, H-6')</td>
<td>32.7 C-4', 23.7 C-5'</td>
<td>14.4 C-6'</td>
<td></td>
</tr>
<tr>
<td>1.43-1.29 (m, 6H, H-3',4',5')</td>
<td>43.7 C-1', 29.1 C-2', 23.7 C-5', 14.4 C-6'</td>
<td>29.1 C-2'</td>
<td></td>
</tr>
<tr>
<td>1.64 (m, 2H, H-2')</td>
<td>43.7 C-1', 43.7 C-1', 32.7 C-4'</td>
<td>29.1 C-2'</td>
<td></td>
</tr>
<tr>
<td>3.19 (t, J_{1',2'} = 7.2 Hz, 2H, H-1')</td>
<td>150.6 C-2, 27.9 C-3'</td>
<td>43.7 C-1'</td>
<td></td>
</tr>
<tr>
<td>3.84 (s, 3H, H-1'')</td>
<td>164.2 C-5, 104.3 C-6</td>
<td>57.3 C-1''</td>
<td></td>
</tr>
<tr>
<td>5.38 (s, 1H, H-3)</td>
<td>184.0 C-1, 150.6 C-2, 164.2 C-5</td>
<td>95.4 C-3</td>
<td></td>
</tr>
<tr>
<td>5.85 (s, 1H, H-6)</td>
<td>150.6 C-2, 180.9 C-4, 164.2 C-5</td>
<td>104.3 C-6</td>
<td></td>
</tr>
</tbody>
</table>

a Chemische Verschiebung δ [ppm] korrespondiert zu TMS-Signal (Kalibrierung erfolgte anhand der Lösungsmittelsignale: δMeOH-d_{4} = 3.31 (1H), 49.0 (13C)). Multiplizität, Kopplungskonstante J [Hz], Protonenzahl, Signalzuordnung.
b Chemische Verschiebung δ [ppm], Signalzuordnung.

Im 1H-NMR-Spektrum von Produkt 6d konnten die Signale bei 5,38 ppm und 5,85 ppm dem H-3 bzw. H-6 des Ringsystems zugeordnet werden. Demzufolge hatte eine Kopplung des n-Hexylamins (2d) an dem C-2-Atom (in para-Position zur OCH_{3}-Gruppe) stattgefunden. Im HMBC-Spektrum konnte diese Kopplungsposition durch die Korrelation des H-1´-Atoms des aliphatischen Aminopartners mit dem C-2-Atom des Ringsystems bestätigt werden. In dem 13C-NMR-Spektrum konnten zwei - für eine chinoide Struktur charakteristische - tieffeldverschobene Resonanzsignale bei 184,0 ppm (C-1) und 180,9 (C-4) detektiert werden. Somit wurde die Struktur eines 1,4-
benzochinoiden Kopplungsproduktes nachgewiesen. Die Rohdaten der HR-MS- und NMR-Analysen sind Anhang C und D zu entnehmen.

3.10.1.4.3 Kopplungsprodukt des tert-Butylhydrochinons

Für ein monoaminiertes Hybridmolekül einer Reaktion von tert-Butylhydrochinon (1f) mit n-Hexylamin (2d) wurde ein theoretisches Molekulargewicht von 263 g mol⁻¹ berechnet. In GC-MS-Analysen des underivatisierten Kopplungsprodukts 7d wurde ein Produktpeak (R_{GC-MS} 11,201 min) detektiert, dessen Moleküllüpponenpeak m/z = 263 mit der theoretischen Masse eines dimeren Produkts übereinstimmte (Abb. 68).

![Abbildung 67: GC-MS-Massenpektrum des heteromolekularen Kopplungsprodukts 7d (underivatisiert).](image)

Im Gegensatz zu GC-MS-Analysen der Produkte 5d₁/₂ (vgl. Kap. 3.10.1.4.1) und 6d (vgl. Kap. 3.10.1.4.2), welche aus Reaktionen des Methylhydrochinons (1d) bzw. Methoxyhydrochinons (1e) mit n-Hexylamin (2d) isoliert wurden, trat in dem Massenspektrum des Produkts 7d kein für ein tert-butyl-substituiertes para-Benzochinon charakteristisches Fragmention (theoretisch m/z = 164) auf. Das Fragmention mit der Masse m/z = 150 könnte jedoch auf ein Benzochinon-Molekül mit einer Isopropyl-Gruppe hindeuten. Die Massendifferenz von 29 amu zwischen dem Fragmention m/z = 150 und dem Fragmention m/z = 121 kennzeichnete weiterhin die Abspaltung eines CH₃⁺- (15 amu) und CH₂⁺-Fragments (14 amu). Diese Fragmentionen wiesen somit auf eine Fragmentierung der an dem aktivierten Substratmolekül befindlichen tert-Butyl-Gruppe hin, sodass für das tert-Butyl-[1,4]-benzochinon keine korrespondierende Masse im Massenspektrum des Produkts 7d auftrat.

Über HR-MS-Analysen konnte für das Pseudomolekül [M+H]⁺ des in Methanol gelösten Produkts 7d eine Masse m/z = 264,19624 (Fehler: 1,63 ppm) bestimmt werden. Für das Natriumaddukt [M+Na]⁺ wurde eine Masse m/z = 286,178 (Fehler: 0,88 ppm)
ermittelt. Die Elementaranalyse ergab für das Analytmolekül die Summenformel C$_{16}$H$_{25}$NO$_2$ und bestätigte somit eine erfolgreiche Aminierung des tert-Butylhydrochinons (1f) mit einem n-Hexylamin-Molekül. Eine abschließende Strukturaufklärung des Syntheseprodukts 7d konnte in Auswertung der NMR-Analysen erreicht werden (Tab. 59).

Tab. 59: 1H- und 13C-NMR-Daten des aus einer heteromolekularen Kopplungsreaktion von tert-Butylhydrochinon (1f) mit n-Hexylamin (2d) isolierten Syntheseprodukts 7d. Lösungsmittel d_4-MeOH.

<table>
<thead>
<tr>
<th>Struktur & chemische Bezeichnung</th>
<th>1H-NMRa</th>
<th>1H,1C-Korrelationen (HMBC)b</th>
<th>13C-NMR (HSQC)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produkt 7d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemische Verschiebung δ [ppm] korrespondiert zu TMS-Signal (Kalibrierung erfolgte anhand der Lösungsmittelsignale: δMeOH-d_4 = 3.31 (1H), 49.0 (13C)). Multiplizität, Kopplungskonstante J [Hz], Protonenzahl, Signalzuordnung.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Hexylamino-6-tert-butyl-[1,4]-benzochochinon</td>
<td>0.92 (t, 3$J_{1,2'} = 7.0$ Hz, 3H, H-6')</td>
<td>32.7 C-4', 23.7 C-5'</td>
<td>14.4 C-6'</td>
</tr>
<tr>
<td></td>
<td>1.27 (s, 9H, CMe$_3$)</td>
<td>153.2 C-6</td>
<td>35.8 CMe$_3$, 29.5 CMe$_3$</td>
</tr>
<tr>
<td></td>
<td>1.42-1.29 (m, 6H, H-3', H-4', H-5')</td>
<td>29.0 C-2', 27.9 C-3'</td>
<td>27.9 C-3', 32.7 C-4', 23.7 C-5'</td>
</tr>
<tr>
<td></td>
<td>1.63 (m, 2H, H-2')</td>
<td>43.7 C-1', 27.9 C-3'</td>
<td>29.0 C-2'</td>
</tr>
<tr>
<td></td>
<td>3.15 (t, 3$J_{1,2'} = 7.3$ Hz, 2H, H-1')</td>
<td>150.5 C-2, 27.9 C-3'</td>
<td>43.7 C-1'</td>
</tr>
<tr>
<td></td>
<td>5.40 (d, 4$J_{3,5} = 2.5$ Hz, 1H, H-3)</td>
<td>187.7 C-1, 136.1 C-5</td>
<td>96.5 C-3</td>
</tr>
<tr>
<td></td>
<td>6.43 (d, 4$J_{3,5} = 2.5$ Hz, 1H, H-5)</td>
<td>187.7 C-1, 96.5 C-3, 29.5 CMe$_3$, 35.8 CMe$_3$</td>
<td>136.1 C-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150.5 C-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>153.2 C-6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>184.2 C-4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>187.7 C-1</td>
<td></td>
</tr>
</tbody>
</table>

a Chemische Verschiebung δ [ppm] korrespondiert zu TMS-Signal (Kalibrierung erfolgte anhand der Lösungsmittelsignale: δMeOH-d_4 = 3.31 (1H), 49.0 (13C)). Multiplizität, Kopplungskonstante J [Hz], Protonenzahl, Signalzuordnung.

b Chemische Verschiebung δ [ppm], Signalzuordnung.

Im 1H-NMR-Spektrum von Produkt 7d konnten die Signale bei 5.40 ppm und 6.43 ppm dem H-3 bzw. H-5 des Ringsystems zugeordnet werden. Da keine Signale für das H-2 auftraten, konnte eine Kopplung des n-Hexylamins (2d) an dem C-2-Atom (in meta-Position zur C(CH$_3$)$_3$-Gruppe) angenommen werden. Im HMBC-Spektrum konnte diese Kopplungsposition durch die Korrelation des H-1'-Atoms des aliphatischen Aminopartners mit dem C-2-Atom des Ringsystems bestätigt werden. Anhand des 13C-NMR-Spektrums konnten die Struktur eines 1,4-benzochoinoiden Kopplungsproduktes durch die zwei - für eine chinoide Struktur charakteristische - tieffeldverschobene Resonanzsignale bei 187.7 ppm (C-1) und 184.2 (C-4) belegt werden.
Die Rohdaten der HR-MS- und NMR-Analysen sind den Anhängen C und D zu entnehmen.

3.10.2 Heteromolekulare Kopplungsreaktionen von mehrfachsubstituierten ein- und zweikernigen *para*-dihydroxylierten Verbindungen

Heteromolekulare Biotransformationsreaktionen mit den mehrfachsubstituierten ein- und zweikernigen *para*-dihydroxylierten Enzymsubstraten 2-Methoxy-3-methylhydrochinon (1g), 2,3-Dimethoxy-5-methylhydrochinon (1h) und 2-Methyl-naphthohydrochinon (1i) erfolgten mit dem Ziel einer Synthese von wirkstoffanologen Hybridmolekülen, da deren benzochoinoide Molekülstrukturen eine Homologie zu den Grundkörpern pharmazeutisch relevanter Mitomycin-, Ubichinon-10- und Vitamin K-Derivate aufwiesen. Mit Bezug auf die chemischen Strukturen der Naturstoffe entfiel für Phenoloxidase-vermittelte Kopplungsreaktionen die Wahl auf die aliphatischen Aminopartner *n*-Octylamin (2f) und Geranlyamin (2m) sowie den cyclischen Amindonor Cyclooctylamin (2t) (Strukturen der Enzymsubstrate und Kopplungspartner Abb. 37, S. 147).

3.10.2.1 Heteromolekulare Kopplungsreaktionen von 2-Methoxy-3-methylhydrochinon

Biotransformationsreaktionen mit dem Enzymsubstrat 2-Methoxy-3-methylhydrochinon (1g) erfolgten unter dem Aspekt einer Phenoloxidase-vermittelten Synthese heteromolekularer Hybridmoleküle mit Mitomycin-analoger Struktur. In den Reaktionen wurden das lineare *n*-Octylamin (2f), das verzweigtkettige Geranlyamin (2m) sowie das alicyclische Cyclooctylamin (2t) als Aminopartner eingesetzt (Tab. 60).
Tab. 60: Übersicht über die in heteromolekularen Kopplungsreaktionen des 2-Methoxy-3-methylhydrochinons (1g) mit den Aminopartnern n-Octylamin (2f), Geranylamin (2m) und Cyclooctylamin (2t) in PcL- und MtL-katalysierten Transformationsansätzen mittels HPLC-Analytik detektierten Produkte.

<table>
<thead>
<tr>
<th>Substrat</th>
<th>Aminodonor</th>
<th>Produkt(^{a,b})</th>
<th>HPLC-R(_f) [min](^d)</th>
<th>(\lambda_{\text{max}}) [nm]</th>
<th>Färbung des Ansatzes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2f</td>
<td>MMO-1,4-HQ-KKP1a [8f1]</td>
<td>14,5</td>
<td>300, 498</td>
<td>farblos → rosa-rot</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MMO-1,4-HQ-KKP2</td>
<td>15,7</td>
<td>282, 347</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MMO-1,4-HQ-KKP3(^c)</td>
<td>16,5</td>
<td>231, 266, 318, 485</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MMO-1,4-HQ-KKP4 [9f]</td>
<td>17,0</td>
<td>217, 346, 508</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MMO-1,4-HQ-KKP5</td>
<td>17,5</td>
<td>223, 347, 489</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2m</td>
<td>MMO-1,4-HQ-KKP6</td>
<td>13,6</td>
<td>342</td>
<td>farblos → rosa-lila</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MMO-1,4-HQ-KKP7a [10m1]</td>
<td>14,1</td>
<td>289, 488</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MMO-1,4-HQ-KKP7b [10m2]</td>
<td>14,5</td>
<td>212, 308, 488</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MMO-1,4-HQ-KKP8</td>
<td>15,5</td>
<td>251, 256, 280</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MMO-1,4-HQ-KKP9 [11m]</td>
<td>16,7</td>
<td>217, 347, 508</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2t</td>
<td>MMO-1,4-HQ-KKP10a [12t1]</td>
<td>13,2</td>
<td>299, 485</td>
<td>farblos → rosa-lila</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(MMO-1,4-HQ-KKP10b [12t2])</td>
<td>13,7</td>
<td>212, 309, 485</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(MMO-1,4-HQ-KKP11)</td>
<td>16,0</td>
<td>264</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(MMO-1,4-HQ-KKP12)</td>
<td>16,2</td>
<td>262, 350</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MMO-1,4-HQ-KKP13 [13t]</td>
<td>16,5</td>
<td>216, 348, 508</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2t</td>
<td>MMO-1,4-HQ-KKP10a [12t1]</td>
<td>13,2</td>
<td>299, 485</td>
<td>farblos → rosa-lila</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(MMO-1,4-HQ-KKP10b [12t2])</td>
<td>13,7</td>
<td>212, 309, 485</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(MMO-1,4-HQ-KKP14)</td>
<td>14,6</td>
<td>279</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(MMO-1,4-HQ-KKP11)</td>
<td>16,0</td>
<td>264</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MMO-1,4-HQ-KKP12</td>
<td>16,2</td>
<td>262, 350</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MMO-1,4-HQ-KKP13 [13t]</td>
<td>16,5</td>
<td>216, 348, 508</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Weiße Felder: Reaktionsansätze mit PcL (pH 5)
\(^b\) Graue Felder: Reaktionsansätze mit MtL (pH 7)
\(^c\) Produkte in Klamern lagen in sehr geringer Konzentration vor.
\(^d\) Fett-gedruckte Produkte als Hauptprodukte in heteromolekularen Kopplungsreaktionen identifiziert.
\(^e\) HPLC-Fließmittelgradient 2.

In Abhängigkeit von dem pH-Wert des Reaktionsmilieus bzw. der eingesetzten Phenoloxidase konnte ein unterschiedliches Produktmuster erfasst werden. Generell erfolgte mit jedem der in den Reaktionen eingesetzten Aminopartner die Bildung von bis zu drei Hauptprodukten. Sowohl in PcL- als auch MtL-katalysierten Reaktionsansätzen entstanden die höhermolekularen Kopplungsprodukte MMO-1,4-KKP4 (9f), MMO-1,4-KKP9 (11m) und MMO-1,4-KKP13 (13t), welche unabhängig von dem eingesetzten Aminopartner nahezu identische UV/VIS-Absorptionsspektren aufwiesen und das Vorliegen gleichartiger Strukturen annehmen ließen (Tab. 60). In PcL-katalysierten Reaktionen akkumulierten die Produkte 9f (Aminopartner n-Octylamin, 2f) und 13t (Aminopartner Cyclooctylamin, 2t) mit fortschreitender
Reaktionszeit und überstiegen in ihrer Quantität stets die in Reaktionsansätzen mit der Phenol oxidase \(Mt\) erfassten Produktmengen. Auf weitere Besonderheiten, welche in Enzym-katalysierten heteromolekularen Transformationsreaktionen mit dem 2-Methoxy-3-methylhydrochinon (\(1g\)) festgestellt wurden, soll am Beispiel von Reaktionen mit dem Aminopartner \(n\)-Octylanin (\(2f\)) näher eingegangen werden. Das mit den Phenol oxidases \(Pc\) (pH 5) und \(Mt\) (pH 7) erfasste Produktmuster ist nachfolgend dargestellt (Abb. 68A, B).

Abb. 68: HPLC-Elutionsprofile (220 nm) der wässrigen Überstande heteromolekularer Kopplungsansätze von 2-Methoxy-3-methylhydrochinon (\(1g\), 1 mM, v/v) mit dem Aminodonor \(n\)-Octylanin (\(2f\), 5 mM, v/v) katalysiert durch \(Pc\) (A) und \(Mt\) (B) nach 2h Reaktion. Enzymaktivitäten 1 \(\mu\)moL mL\(^{-1}\). Inkubation bei RT, Schüttelfrequenz 200 rpm. HPLC-Fließmittelgradient 2.

In heteromolekularen Kopplungsreaktionen des 2-Methoxy-3-methyl hydrochinons (\(1g\)) mit \(n\)-Octylanin (\(2f\)) konnte, unabhängig von dem eingesetzten Enzympräparat (1 \(\mu\)moL mL\(^{-1}\) \(Pc\) bzw. \(Mt\)) und dem Reaktionsmilieu (pH 5 bzw. pH 7), eine primäre Bildung des bereits in homomolekularen Reaktionen detektierten Produkts MMO-1,4-Q nachgewiesen werden (vgl. Kap. 3.8.3). Für das Produkt MMO-1,4-Q wurde aufgrund der für benzochinoide Moleküle typischen UV/VIS-Absorptionsmaxima die Struktur eines 2-Methoxy-3-methylben zochinons postuliert. In
der PcL-katalysierten Reaktion akkumulierte MMO-1,4-Q über eine Inkubationszeit von 60 min. Danach war eine Konzentrationsabnahme zu verzeichnen, welche mit der Bildung des heteromolekularen Kopplungsproduktes 9f einherging (Abb. 68A).

Im Gegensatz dazu resultierte eine Abnahme des 2-Methoxy-3-methylbenzochinons (MMO-1,4-Q) in MtL-katalysierten Reaktionen zunächst in der Akkumulation des homomolekularen Kopplungsproduktes MMO-1,4-HQ-ERP4 (Abb. 68B). In Auswertung der Reaktionskinetiken konnte unter Abnahme der Quantität des Eigenreaktionsprodukts MMO-1,4-HQ-ERP4 eine simultane Entstehung der heteromolekularen Produkte MMO-1,4-HQ-KKP1a (8f1) und MMO-1,4-HQ-KKP1b (8f2) nachgewiesen werden (Abb. 68B). Dabei war die Konzentration des heteromolekularen Kopplungsprodukts 8f2 gegenüber der des Produkts 8f1 stets erhöht.

Obgleich in PcL-katalysierter Reaktion das höhermolekulare Kopplungsprodukt 9f als Haupttransformationsprodukt identifiziert werden konnte, erfolgte auch hier die Bildung des Produkts 8f1, jedoch in geringen Mengen. Das in Transformationsreaktionen mit der Phenoloxidase MtL gebildete Haupttransformationsprodukt 8f2 konnte zu keinem Zeitpunkt in PcL-katalysierten Reaktionsansätzen detektiert werden. Bezüglich der Retentionszeiten und UV/VIS-Absorptionsmaxima wurde für die Produkte 8f1 und 8f2 das Vorliegen regioisomerer benzochinonidischer Hybridmoleküle angenommen, in denen der Aminopartner in unterschiedlichen Positionen zum Methyl- bzw. Methoxy-Substituenten des Ringsystems gekoppelt hatte.

Im Gegensatz zu Untersuchungen der heteromolekularen Kopplung des Methylhydrochinons (1d), in welchen sowohl mit PcL (pH 5) als auch mit MtL (pH 7) stets die simultane Bildung regioisomerer Dimere (5d1 und 5d2) nachgewiesen werden konnte (vgl. Kap. 3.9.8), deuten die Reaktionen des mit einer Methyl- und Methoxy-Gruppe substituierten Enzymsubstrats 2-Methoxy-3-methylhydrochinon (1g) auf eine pH-abhängige Bildung von Regioisomeren hin. Im Allgemeinen erfolgte in MtL-katalysierten Reaktionen eine mit fortschreitender Inkubationszeit einsetzende Abnahme der Quantitäten der Kopplungsprodukte 8f1 und 8f2 unter Zunahme des höhermolekularen Produkts 9f.

Die Bildung der heteromolekularen Kopplungsprodukte in Reaktionen des 2-Methoxy-3-methylhydrochinons (1g) mit n-Octylamin (2f) wurde weiterhin mit unterschiedlichen Ausgangskonzentrationen der als methanolische Stammlösungen eingesetzten Edukte geprüft. Desweiteren wurden die Produktkonzentrationen bei einer Vergrößerung des Reaktionsmaßstabes von einem 5-mL- auf einen 20-mL-Reaktionsansatz untersucht. Da
bei einer Anreicherung und Produktisolation lediglich die Verbindungen $8f_2$ und $9f$ in ausreichender Menge und Reinheit gewonnen werden konnten, sind die in nachfolgender Tab. 61 zusammengefassten Ergebnisse auf diese Produkte beschränkt.

Tab. 61: Übersicht über die in einer heteromolekularen Kopplungsreaktion des 2-Methoxy-3-methylhydrochinons ($1g$) mit n-Octylamin ($2f$) mittels HPLC-Analytik erfassten Ausbeuten der Produkte $8f_2$ und $9f$ in M/L-katalysierten Reaktionsansätzen (pH 7, PCP). Enzymaktivität 1 μmoL mL$^{-1}$.

<table>
<thead>
<tr>
<th>Eduktkonzentration $1g$: Aminodonor $2f$ [mM]a</th>
<th>Reaktionsvolumen [mL]</th>
<th>Konzentration $8f_2/9f$ [µg mL$^{-1}$]</th>
<th>Ausbeute [%]b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>60 min</td>
<td>6h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$8f_2$</td>
<td>$9f$</td>
</tr>
<tr>
<td>1:5</td>
<td>5</td>
<td>32</td>
<td>187</td>
</tr>
<tr>
<td>1:1</td>
<td>20</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>1:2</td>
<td>20</td>
<td>51</td>
<td>18</td>
</tr>
<tr>
<td>2:2</td>
<td>20</td>
<td>23</td>
<td>n.d.c</td>
</tr>
<tr>
<td>2:5</td>
<td>20</td>
<td>71</td>
<td>324</td>
</tr>
</tbody>
</table>

a Edukte als methanolische Stlsg. eingesetzt.

b Berechnete Ausbeuten [%] bemessen an einem 100 %-igen Umsatz der Edukte in die Syntheseprodukte $8f_2$ bzw. $9f$ in den entsprechenden Reaktionsmaßstäben nach einer Reaktionszeit von 6 h im wässrigen Ansatz. Quantifizierung der Produkte erfolgte mit Hilfe der gereinigten Produkte in Methanol.

c n.d. nicht determiniert.

Unabhängig von dem Reaktionsmaßstab dominierte bei äquimolaler Eduktkonzentration das Produkt $8f_2$, wohingegen ein Überschuss des n-Octylamins ($2f$) in einer gesteigerten Bildung des höherrnolekularen Produkts $9f$ resultierte. Das Produkt $8f_2$ wurde in einem 20-mL-Reaktionsmaßstab mit 1:1 mM bzw. 1:2 mM Konzentrationsverhältnis der Ausgangsverbindungen mit Ausbeuten von 20,7 bzw. 32,9 % gebildet, wohingegen das Produkt $9f$ nur in geringen Mengen entstand. Eine optimale Bildung des Produkts $9f$ erfolgte mit einem Überschuss des n-Octylamins ($2f$, 5 mM) und resultierte in einer über HPLC-Analytik erfassten Ausbeute von 78,8 % (20-mL-Reaktionsmaßstab).

In Reaktionen des 2-Methoxy-3-methylhydrochinons ($1g$) mit den Aminopartnern Geranylamin ($2m$) und Cyclooctylamin ($2t$) konnten prinzipiell dieselben, für die Beispielreaktion mit n-Octylamin ($2f$) beschriebenen, Reaktionsmechanismen in M/L-bzw. PcL-katalysierten Reaktionsansätzen erfasst werden.
3.10.2.2 Heteromolekulare Kopplungsreaktionen von 2,3-Dimethoxy-5-methylhydrochinon

Heteromolekulare Kopplungsreaktionen mit dem monomethyl-substituierten, dimethoxylierten Enzymsubstrat 2,3-Dimethoxy-5-methylhydrochinon (1h) erfolgten mit dem Ziel einer Darstellung von Hybridmolekülen mit Ubichinon-10-ähnlicher Struktur. In MtL-vermittelten Transformationsreaktionen wurde eine Kopplung mit dem verzweigtkettigen Amin donor Geranylamin (2m, 5 mM) untersucht. Die Edukte wurden als methanolische Stammlösungen eingesetzt. Über HPLC-Analysen konnte die Bildung von zwei heteromolekularen Kopplungsprodukten, DMOM-1,4-HQ-KKP1 (R_{HPLC} 12,6 min) und DMOM-1,4-HQ-KKP2 (R_{HPLC} 12,9 min), nachgewiesen werden (Abb. 69).

Abb. 69: HPLC-Chromatogramm (220 nm) einer MtL-katalysierten (1 μmol mL⁻¹) heteromolekularen Kopplungsreaktion von 2,3-Dimethoxy-5-methylhydrochinon (1h, 1 mM, v/v) mit Geranylamin (2m, 5 mM, v/v) nach 40 min. UV/VIS-Absorptionsspektren der heteromolekularen Produkte DMOM-1,4-HQ-KKP1 und DMOM-1,4-HQ-KKP2 dargestellt. Inkubation bei RT, Schüttelfrequenz 200 rpm. HPLC-Fließmittelgradient 1.

Die Bildung der heteromolekularen Produkte DMOM-1,4-HQ-KKP1 und DMOM-1,4-HQ-KKP2 bewirkte keine Verfärbung des nach Oxidation des Enzymsubstrats 1h und Bildung des benzochinoiden Eigenreaktionsprodukts DMOM-1,4-Q gelbgefärbten Reaktionsansatzes. Über einen Analysezeitraum von 48 h war außerdem nur eine sehr schwache Zunahme der heteromolekularen Kopplungsprodukte zu verzeichnen. In unkatalysierter Reaktion (pH 7, PCP) erfolgte eine starke Autooxidation des Enzymsubstrats 1h unter Bildung des aktivierten Substratmoleküls DMOM-1,4-Q sowie der heteromolekularen Kopplungsprodukte DMOM-1,4-HQ-KKP1 und
DMOM-1,4-HQ-KKP2. Nach einer Reaktionszeit von 6 h lagen nur noch 9 % von 1h vor. Zum gleichen Zeitpunkt war die Quantität der heteromolekularen Kopplungsprodukte DMOM-1,4-HQ-KKP1 bzw. DMOM-1,4-HQ-KKP2 in unkatalysierten und Enzym-katalysierten Reaktionsansätzen identisch. Da die heteromolekularen Kopplungsprodukte in einer Reaktion des 2,3-Dimethoxy-5-methylhydrochinons (1h) mit Geranylamin (2m) in äußerst geringen Mengen gebildet wurden, wurde innerhalb der vorliegenden Arbeit von einer zeitaufwändigen Produktanreicherung/-isolation und strukturchemischen Charakterisierung vorerst abgesehen.

3.10.2.3 Heteromolekulare Kopplungsreaktionen von 2-Methylnaphthohydrochinon

Mit dem Ziel einer Phenoloxidase-vermittelten Darstellung eines Vitamin K-Derivats wurde die heteromolekulare Kopplung des Enzymsubstrats 2-Methylnaphthohydrochinon (1i) mit dem verzweigtkettigen Aminopartner Geranylamin (2m) untersucht. Die Transformationsversuche wurden in MtL- und PcL-katalysierten Reaktionssystemen (pH 7 bzw. pH 5) mit einem 1:5 mM Konzentrationsverhältnis der als methanolische Stammlösungen eingesetzten Edukte durchgeführt. In beiden Reaktionssystemen erfolgte unter enzymatischer Oxidation des Enzymsubstrats 1i die Bildung des in seiner Struktur als 2-Methylnaphthobenzochinon postulierten Produkts MNH-1,4-Q, welches eine gelb-orange Färbung der Reaktionsansätze bewirkte. Mit Abnahme von MNH-1,4-Q konnte eine verstärkte Bildung des heteromolekularen Kopplungsprodukts MNH-1,4-HQ-KKP1 (RfHPLC 16,5 min), unter simultaner Orange-Färbung der Reaktionsansätze, ermittelt werden (Abb. 70).
Mit fortschreitender Inkubationszeit war in den Reaktionsgemischen die Ausbildung einer zweiten Phase zu verzeichnen, in welcher das orange gefärbte Produkt MNH-1,4-HQ-KKP1 konzentriert vorlag (Abb. 70). Dieser Umstand erschwerte die HPLC-Analytik der wässrigen Transformationsansätze und machte eine Darstellung von Reaktionskinetiken, insbesondere eine Erfassung zeitabhängiger Quantitäten des Produkts MNH-1,4-HQ-KKP1, unmöglich.

Aufgrund einer für dimere Hybridmoleküle typischen orange-roten Färbung und der ausgeprägten Lipophilie, konnte mit Vorliegen des heteromolekularen Kopplungsprodukts MNH-1,4-HQ-KKP1 von einer erfolgreichen Aminierung des 2-Methylnaphthobenzochinons ausgegangen werden.

In späteren Versuchen einer Produktisolation mittels Festphasenextraktion wurde eine starke Absorption von Produkt MNH-1,4-HQ-KKP1 an der Säulenmatrix der Festphasenkartuschen festgestellt. Eine Elution der Produktbande mit reinem Methanol konnte nicht realisiert werden. Weitere Versuche einer Produktisolation, mit dem Ziel einer strukturchemischen Charakterisierung, wurden innerhalb der vorliegenden Arbeit zunächst nicht vorgenommen. Ein Strukturvorschlag für das Produkt MNH-1,4-HQ-KKP1 ist in Kap. 4.2.2.2 der Diskussion gegeben.
Für eine Anreicherung der Mitomycin-analogen Produkte aus heteromolekularen Kopplungsreaktionen des 2-Methoxy-3-methylhydrochinons (1g) mit den Aminopartnern n-Octylamin (2f), Geranylamin (2m) und Cyclooctylamin (2t) wurden 40-mL-Reaktionsansätze (2f bzw. 2m: 4 x 40 mL, 2t: 7 x 40 mL) in PCP (pH 7) erstellt, in welchen die Edukte als methanolische Stammlösungen in einem äquimolaren Konzentrationsverhältnis (2:2 mM) eingesetzt wurden. Die Ansätze wurden für 15 h bei Raumtemperatur lichtdicht verschlossen auf einem Schüttler inkubiert und die Produkte nachfolgend mittels Festphasenextraktion aus den Reaktionsgemischen isoliert. Da in der Flüssigchromatographie für die heteromolekularen Produkte 8f2, 10m2, 12t2 sowie für die Produkte 9f, 11m und 13t aufgrund ihrer Laufzeiten und UV/VIS-Absorptionsspektren annähernd gleiche physiko-chemische Eigenschaften nachgewiesen werden konnten (vgl. Kap. 3.10.2.1, Tab. 60), wurde für deren Isolation dasselbe Reinigungsschema verwendet (vgl. Anhang, Tab. 7).

Für strukturechemische Analysen konnten 16,3 mg (8f2), 1,4 mg (9f), 20,7 mg (10m2), 2,6 mg (11m), 22,4 mg (12t2) und 3,1 mg (13t) gewonnen werden. Die Feststoffe der Produkte waren bei Raumtemperatur und bei 4 °C über einen Analysenzeitraum von 3 Monaten stabil. In HPLC-Analysen der in Methanol gelösten Produkte wurden über eine Inkubationszeit von 24 h keine Zerfallsprodukte detektiert. Aufgrund der geringen Stoffmenge des Produkts 9f wurde dieses keinen weiteren Analysen zugeführt. Das Produkt 13t wurde ebenfalls nicht mittels NMR analysiert, es erfolgten jedoch HR-MS-Messungen.

Die aus einer Reaktion des 2-Methoxy-3-methylhydrochinons (1g) mit dem Aminopartner Cyclooctylamin (2t) isolierten Syntheseprodukte 12t2 und 13t wurden mittels hochauflösender Massenspektrometrie analysiert. Für den Quasimolekülionenpeak [M+H]+ des Produkts 12t2 konnte eine Masse m/z = 278,17553 (Fehler: 1,65 ppm) und für den Molekülionenpeak des Natriumaddukts [M+Na]⁺ die Masse m/z = 300,15701 (Fehler: 1,33 ppm) ermittelt werden. Die experimentellen Massen und auch die über Elementaranalysen für Produkt 12t2 ermittelte Summenformel (C15H23NO3) bestätigten somit die Struktur eines monoaminierten 2-Methoxy-3-methylbenzochinons (theoretische Masse: 277 g moL⁻¹).
In HR-MS-Analysen des höhermolekularen Syntheseprodukts 13t konnte ein Molpeak \([\text{M+H}]^+\) mit einer Masse m/z = 373,28542 (Fehler: 1,25 ppm) sowie das Natriumaddukt \([\text{M+Na}]^+\) mit einer Masse m/z = 395,26671 (Fehler: -0,48 ppm) detektiert werden. Die erhaltenen Massen stimmten jedoch nicht mit denen eines diaminierten Moleküls (Trimer) überein. Ein diaminiertes Produkt, bei welchem an das 2-Methoxy-3-methylbenzochinon unter Abspaltung von insgesamt 6 Protonen zwei Cyclocyctylamin-Partner gekoppelt sind, besitzt ein theoretisches Molekulargewicht von 402 g mol\(^{-1}\). Zwar bestätigte die für Produkt 13t ermittelte Summenformel \((\text{C}_{23}\text{H}_{36}\text{N}_{2}\text{O}_{2})\) das Vorliegen einer durch die Anwesenheit von zwei Stickstoffatomen diaminierten Verbindung, jedoch konnten lediglich zwei Sauerstoffatome in dem Analytmolekül nachgewiesen werden. Die Summenformel von 13t deutete somit auf den Verlust eines der drei Sauerstoffatome des 2-Methoxy-3-methylbenzochinons hin, welches entweder den Dicarbonylgruppen oder dem OCH\(_3\)-Substituenten angehörte. Zwar wurden mit dem Produkt 13t keine NMR-Analysen durchgeführt, jedoch konnten die nach HR-MS-Messungen bestehenden Vermutungen über NMR-Analysen des höhermolekularen Produkts 11m (Kopplungsprodukt von 2-Methoxy-3-methylhydrochinon mit Geranyllamin) bestätigt werden. Mit dem Ziel einer abschließenden Strukturaufklärung erfolgten NMR-Messungen auch mit weiteren isolierten Syntheseprodukte (Tab. 62).

Tab. 62: \(^1\text{H}-\) und \(^{13}\text{C}-\)NMR-Daten der aus einer heteromolekularen Kopplungsreaktion von 2-Methoxy-3-methylhydrochinon (1g) mit den Aminopartnern \(n\)-Octylamin (2f), Geranyllamin (2m) und Cyclocyctylamin (2t) isolierten Syntheseprodukte 8f\(_2\), 10m\(_2\), 12t\(_2\) sowie 11m. Lösungsmittel \(d_4\)-MeOH.

<table>
<thead>
<tr>
<th>Struktur & chemische Bezeichnung Produkt 8f(_2) [Kopplung von 1g mit n-Octylamin (2f)]</th>
<th>(^1\text{H}-\text{NMR}^a)</th>
<th>(^{13}\text{C}-\text{NMR}^a) Korrelationen (HMBC)(^b)</th>
<th>(^{13}\text{C}-\text{NMR}^a) (HSQC)(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Methoxy-3-methyl-5-(octylamino)-[1,4]-benzochinon</td>
<td>0.90 t, J=6.8 Hz, J=7.2 Hz, 3H, H-8'</td>
<td>23.4 C-7', 32.7 C-6'</td>
<td>14.3 C-8'</td>
</tr>
<tr>
<td>1.33 m, 10H, H-7', H-6', H-5', H-4', H-3'</td>
<td>14.3 C-8', 23.4 C-7', 28.0, 30.1 (C-5', C-4', C-3')(^3), 32.7 C-6', 43.3 C-1'</td>
<td>23.4 C-7', 28.0, 30.1 (C-5', C-4', C-3'), 32.7 C-6'</td>
<td></td>
</tr>
<tr>
<td>1.62 m, J=6.9 Hz, J=7.3 Hz, 2H, H-2'</td>
<td>28.0, 30.1 (C-5', C-4', C-3'), 43.3 C-1'</td>
<td>28.8 C-2'</td>
<td></td>
</tr>
<tr>
<td>1.86 s, 3H, H-2''</td>
<td>(61.8 C-1''), 124.3 C-3, 159.8 C-2, (182.8 C-1), 185.0 C-4</td>
<td>8.1 C-2''</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Lösungsmittel \(d_4\)-MeOH.
Ergebnisse

<table>
<thead>
<tr>
<th>Struktur & chemische Bezeichnung</th>
<th>Produkt 10m₂</th>
<th>(^1^H)-NMR</th>
<th>(^1^H,^{13^C})-Korrelationen (HMBC)</th>
<th>(^{13^C})-NMR (HSQC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Kopplung von 1g mit Geranylamin (2m)]</td>
<td>1.61, s, 3H, H-9'</td>
<td>25.47 C-8', 124.45 C-6', 132.32 C-7'</td>
<td>159.8 C-2</td>
<td>182.8 C-1</td>
</tr>
<tr>
<td></td>
<td>1.67, s, 3H, H-8'</td>
<td>17.54 C-9', 124.45 C-6', 132.32 C-7'</td>
<td>185.0 C-4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.74, s, 3H, H-10'</td>
<td>40.15 C-4', 41.16 C-1', 119.76 C-2', 140.83 C-3'</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.87, s, 3H, H-2''</td>
<td>61.55 C-1'', 124.20 C-3, 159.62 C-2, 184.89 C-4</td>
<td>7.99 C-2''</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.06, m, J = 7.3 Hz, 2H, H-4'</td>
<td>(16.10 C-10'), 26.93 C-5', (41.16 C-1''), 119.76 C-2'', (124.45 C-6'), 140.83 C-3''</td>
<td>40.15 C-4'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.13, m, J = 7.3 Hz, J = 6.8 Hz, 2H, H-5'</td>
<td>40.15 C-4', 124.45 C-6', 132.32 C-7', (140.83 C-3''),</td>
<td>26.93 C-5'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.77, d, J = 6.5 Hz, 2H, H-1'</td>
<td>(16.10 C-10''), (26.93 C-5''), (40.15 C-4''), (95.68 C-6''), 119.76 C-2'', 140.83 C-3'', 149.1 C-5, ((184.89 C-4''))</td>
<td>41.16 C-1'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.05, s, 3H, H-1''</td>
<td>159.62 C-2</td>
<td>61.55 C-1''</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.09, t, J = 7.0 Hz, J = 6.8 Hz, 1H, H-6'</td>
<td>17.54 C-9', 25.47 C-8', 26.93 C-5', (40.15 C-4''),</td>
<td>124.45 C-6'</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.21, t, J = 6.6 Hz, J = 6.8 Hz, 1H, H-2'</td>
<td>16.10 C-10'', 40.15 C-4', 41.16 C-1''</td>
<td>119.76 C-2''</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.23, s, 1H, H-6</td>
<td>(149.1 C-5), 159.62 C-2, (181.84 C-1), 184.89 C-4</td>
<td>95.68 C-6</td>
<td></td>
</tr>
<tr>
<td>5’-[(2E)-3,7-dimethylocta-2,6-dienylamin]-2-methoxy-3-methyl-[1,4]-benzochinon</td>
<td>40.15 C-4, 140.83 C-3'</td>
<td>184.89 C-4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Structural diagram](image-url)
<table>
<thead>
<tr>
<th>Struktur & chemische Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produkt 11m</td>
</tr>
<tr>
<td>[Kopplung von 1g mit Geranylamin (2m)]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>¹H-NMR</th>
<th>¹H,¹³C-Korrelationen (HMBC)</th>
<th>¹³C-NMR (HSQC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.61, s, 3H, H-9’</td>
<td>26.01 C-8’, (40.30 C-4’), 124.79 C-6’, 132.66 C-7’</td>
<td>17.62 C-9’</td>
<td></td>
</tr>
<tr>
<td>1.62, s, 3H, H-9’</td>
<td>26.01 C-8’, (40.30 C-4’), 124.79 C-6’, 132.66 C-7’</td>
<td>17.62 C-9’</td>
<td></td>
</tr>
<tr>
<td>1.67, s, 3H, H-8’</td>
<td>17.63 C-9’, (40.30 C-4’), 124.79 C-6’, 132.32 C-7’</td>
<td>26.01 C-8’</td>
<td></td>
</tr>
<tr>
<td>1.68, s, 3H, H-8’</td>
<td>17.63 C-9’, (40.30 C-4’), 124.79 C-6’, 132.32 C-7’</td>
<td>26.01 C-8’</td>
<td></td>
</tr>
<tr>
<td>1.71, s, 3H, H-10’</td>
<td>40.30 C-4’, (109.98 C-3’), 122.38 C-2’, 141.05 C-3’</td>
<td>16.17 C-10’</td>
<td></td>
</tr>
<tr>
<td>1.74, s, 3H, H-10’</td>
<td>40.30 C-4’, 119.71 C-2’, 141.42 C-3’</td>
<td>16.17 C-10’</td>
<td></td>
</tr>
<tr>
<td>2.07, s, 3H, H-1’</td>
<td>103.20 C-3, 150.2 C-2, 180.02 C-4</td>
<td>10.02 C-1’</td>
<td></td>
</tr>
<tr>
<td>2.08, m, 2H, H-4’</td>
<td>(119.71 C-2’), (124.79 C-6’), (141.42 C-3’), 40.30 C-4’</td>
<td>40.30 C-4’</td>
<td></td>
</tr>
<tr>
<td>2.09, m, J = 7.6 Hz, 2H, H-4’</td>
<td>(16.17 C-10’), 27.01 C-3’, (122.38 C-2’), (141.05 C-3’), 26.01 C-8’</td>
<td>40.30 C-4’</td>
<td></td>
</tr>
<tr>
<td>2.14, m, J = 7.1 Hz, J = 7.3 Hz, 4H, H-5’/H-5’</td>
<td>40.30 C-4’/C-4’’, 124.79 C-6’/C-6’’, 132.66 C-7’/C-7’’ (141.05 C-3’’), (141.42 C-3’’), 27.01 C-5’/C-5’’</td>
<td>27.01 C-5’/C-5’’</td>
<td></td>
</tr>
<tr>
<td>3.82, d, J = 6.6 Hz, 2H, H-1’</td>
<td>(27.01 C-5’), (40.30 C-4’’), 119.71 C-2’, 141.42 C-3’, 153.1 C-5, 41.24 C-1’</td>
<td>41.24 C-1’</td>
<td></td>
</tr>
<tr>
<td>4.21, d, J = 6.4 Hz, 2H, H-1’</td>
<td>(27.01 C-5’), (40.30 C-4’’), 122.38 C-2’’, 141.05 C-3’’, 150.20 C-2</td>
<td>43.51 C-1’</td>
<td></td>
</tr>
<tr>
<td>5.09, m, 2H, H-6’/H-6’’</td>
<td>17.62 C-9’/C-9’’, 26.01 C-8’/C-8’’ (27.01 C-5’/C-5’’), (40.30 C-4’/C-4’’), 124.79 C-6’/C-6’’</td>
<td>124.79 C-6’/C-6’’</td>
<td></td>
</tr>
<tr>
<td>5.22, s, 1H, H-6</td>
<td>(103.20 C-3’), 150.2 C-2, 180.02 C-4</td>
<td>92.37 C-6</td>
<td></td>
</tr>
<tr>
<td>5.23, t, 1H, H-2’</td>
<td>16.17 C-10’, 40.30 C-4’</td>
<td>119.71 C-2’</td>
<td></td>
</tr>
<tr>
<td>5.30, t, J = 6.4 Hz, 1H, H-2’</td>
<td>16.17 C-10’, 40.30 C-4’’ (43.51 C-1’’)</td>
<td>122.38 C-2’’</td>
<td></td>
</tr>
</tbody>
</table>

2,5-bis[(2E)-3,7-dimethylocta-2,6-dienyl]amino]-3-methyl-[1,4]-benzoquinon
In Auswertung der NMR-Spektren der Produkte 8f₂, 10m₂ und 12t₂ konnten die Strukturen von dimeren Kopplungsprodukten, bei welchen die Aminopartner n-Octylamin (2f), Geranylamin (2m) und Cyclooctylamin (2t) in para-Position zur Methylgruppe (C-1´´) des Ringsystems gekoppelt hatten, bestätigt werden. Einen Beweis für die Besetzung der C-5-Position des aktivierten Aromaten ergab sich weiterhin durch die Kopplungen der H-1´-Protonen der Aminopartner mit dem C-5-Atom des Ringsystems und durch die Kopplung des H-6 mit dem C-1´. Das Vorliegen 1,4-benzochinoider Strukturen wurde anhand der 13C- und HMBC-Spektren bestätigt, da bei den Produkten 8f₂, 10m₂ und 12t₂ charakteristische tieffeldverschobene Resonanzsignale im Bereich von 180 ppm (8f₂: C-1 182,8, C-4 185,0; 10m₂: C-1 181,8, C-4 184,8; 12t₂: C-1 182,8, C-4 185,3) aufraten. Darüber hinaus erhärteten die in dem HMBC-Spektrum ermittelten Kopplungen der H-1´´-Protonen mit dem C-1-Atom, die Korrelationen des H-2´´-Protons mit dem C-4- und C-1-Atom und die des H-6-Protons mit dem C-4-Atom das Vorliegen 1,4-benzochinoider Verbindungen.

Aus den HR-MS-Daten der Verbindung 13t wurde eine Diaminierung des Enzymsubstrats unter Eliminierung eines Sauerstoffatoms des Ringsystems angenommen. In Auswertung der NMR-Daten des Produkts 11m konnte eine
4. DISKUSSION

4.1 Untersuchungen des stickstofffixierenden Prokaryoten \textit{Azotobacter chroococcum}

4.1.1 Untersuchungen zur Physiologie und Morphologie sowie zur Stickstofffixierung, Melanin- und Cystenbildung

In mikroskopischen Untersuchungen von *A. chroococcum* konnte in Abhängigkeit von der verfügbaren Stickstoffquelle, den Kultivierungsbedingungen sowie dem Zellalter eine hohe Variabilität in der Zellmorphologie ermittelt werden. Die Analysen von Zellstadien unter Verwendung definierter Kultivierungsbedingungen und ein systematisches Vorgehen für die Gewinnung gleichartiger Zelltypen waren für nachgelagerte Enzymexperimente - insbesondere dem Nachweis einer Phenoloxidase-

4.1.1.1 Assimilation von exogenen Stickstoffquellen

kurzzeitiger Lagerung als Schrägagar-Kultur (4 °C) bei erneutem Überimpfen auf stickstofffreies Kulturmedium nicht mehr zum Wachstum befähigt.

4.1.1.2 Assimilation von Luftstickstoff

4.1.2 Untersuchungen zur Phenoloxidase von *Azotobacter chroococcum*

4.1.2.1 Nachweis einer Phenoloxidase-Aktivität

Die Phenoloxidase AcCL war ausschließlich bei einem stickstofffixierendem Wachstum erfassbar und trat bei experimentell induzierter externer N-Limitation mit gleichzeitigem C-Überschuss auf (vgl. Kap. 3.6, HERTER *et al.*, 2011c, d; HERTER *et al.*, 2012). Diese Art der Limitation, welche eine Fixierung von atmosphärischem Stickstoff für eine ausreichende Versorgung der Kulturen mit einer N-Quelle erforderte, induzierte in *A. chroococcum* einen morphologischen Differenzierungsprozess der

Auch bei Pilzen, so z.B. dem Weißfäulepilz *Phanerochaete chrysosporium*, kann eine Phenoloxidase-Expression durch Stickstofflimitation getriggert werden (KEYSER et al., 1978), wobei sich im Allgemeinen eine erhöhte Konzentration der...
Kohlenstoffquelle gegenüber der N-Quelle begünstigend auf die Phenoloxidase-Bildung von Pilzen auswirken kann (KUNAMNENI et al., 2008a, b). Jedoch können u.a. auch hohe Stickstoffkonzentrationen eine frühzeitige und erhöhte Phenoloxidase-Bildung, so z.B. bei den basidiomycetalen Pilzen *Panaeolus sphinctrinus*, *Panaeolus papilionaceus* und *Coprinus friesii* sowie dem Weißfäulepilz *Lentinula edodes*, induzieren (BUSWELL et al., 1995; HEINZKILL et al., 1998). Im Gegensatz zu dem Nachweis von Phenoloxidasen in Bakterien, welcher in den eigenen Untersuchungen eine starke Verknüpfung von Nährstofflimitation und Differenzierungsprozessen (Melanin- und Cystenbildung) erkennen ließ und auch bei weiteren Bakterien mit diesen verbunden ist, ist die Phenoloxidase-Expression bei Pilzen im Allgemeinen nicht nur auf Mangelsituationen oder morphologische Veränderungen beschränkt.

4.1.2.2 Phenoloxidase-Aktivität und Melaninbildung

Melaninbildung davon ausgegangen, dass diese in *A. chroococcum* in einem engen Zusammenhang mit der Expression der Phenoloxidase AcCL stehen könnte (Abb. 72). Auch die in Kulturüberständen stickstofffixierender *A.chroococcum*-Zellen nachgewiesene 3,4-Dihydroxybenzosäure kann an der Pigmentbildung beteiligt sein. Eine Pigmentbildung aus extrazellulär akkumulierten Ringspaltungsprodukten, welche aus *ortho*-dihydroxylierten aromatischen Säuren gebildet wurden, erfolgt u.a. bei *Serratia marcescens* und *Cryptococcus neoformans* (CHASKES & TYNDALL, 1975; TRIAS et al., 1988).

In Kultivierungsversuchen unter Limitation der für eine optimale bzw. ungestörte N₂-Fixierung essentiellen Metallionen Na₂MoO₄ und FeSO₄ konnte eine deutliche Beeinflussung der Melaninbildung bei *A. chroococcum* festgestellt werden (vgl. Kap. 3.5.2.2). In FeSO₄-supplementierten Kulturen, die unter Mangel an Na₂MoO₄ wuchsen, konnte - im Vergleich zu Standardkulturen - ebenfalls die Bildung des braun-schwarz gefärbten Brenzkatechin-Melanins ermittelt werden. Kulturen die jedoch unter FeSO₄-Mangel oder unter einem Mangel beider Metalle (Na₂MoO₄ und FeSO₄) kultiviert wurden, zeigten eine gestörte Melanogenese, welche sich in der Bildung eines rötlichen Pigments äußerte (HERTER et al., 2012). Dieses für *A. chroococcum* untypische Pigment wurde innerhalb der vorliegenden Arbeit nicht näher charakterisiert. Auch bei Pilzen, so z.B. *Gaeumannomyces graminis* und *Hortaea acidophila*, wurde bei gezielter Störung der Melaninsynthese durch Zusatz eines spezifischen Hemmstoffes (Tricyclazol) anstelle des schwarzen Melanins ein rötlich-braunes Pigment produziert (CAESAR-TONTHAT et al., 1995).

Phenoloxidase-Produktion in Verbindung mit einer intensivierten Melaninbildung und wurde auch hier als ein Schutzmechanismus gegen cytotoxische Konzentrationen dieses Metalls gewertet (CAESAR-TONTHAT et al., 1995; GALHAUP & HALTRICH, 2001).

4.1.2.3 Phenoloxidase-Aktivität und Cysten sowie Lokalisation der Phenoloxidase

Ein Nachweis der A.-chroococcum-Phenoloxidase AcCL erfolgte ausschließlich unter Bedingungen einer Nährstofflimitation (Stickstofffixierung) sowie nach Einsetzen des in Kap. 4.1.1.2 dargestellten morphologischen Differenzierungsprozesses von vegetativen Zellen in Cysten. Dies legte die Vermutung nahe, dass das Enzym AcCL im normalen Metabolismus von A. chroococcum, welcher keine N2-Fixierung bedingt, physiologisch irrelevant ist (HERTER et al., 2011c). Neben der bei stickstofffixierenden Zellen postulierten Beteiligung der AcCL an der Melaninbildung (vgl. Kap. 4.1.2.2) kann daher ebenfalls eine Schutzfunktion bei der Cystenbildung bzw. in den ruhenden Cysten angenommen werden. Zwar liegt bei der Stickstofffixierung generell eine hohe intrazelluläre Respirationrate, welche einem stark energieverbrauchenden Prozess entspricht, zum Schutz der O2-empfindlichen Nitrogenase vor (POOLE & HILL, 1997). Jedoch könnte neben der intensiven Atmung auch die Expression einer O2-verbrauchenden Phenoloxidase bei der Differenzierung von Zellen in Cysten zellschädigende Einflüsse abschwächen. Ähnlich wie bei A. chroococcum ermittelt, steht die Phenoloxidase-Expression auch bei anderen Bakterien, so z.B. Streptomyces griseus, Stenotrophomonas maltophilia und verschiedenen Bacillus-Arten (HULLO et al., 2001; ENDO et al., 2002; MARTINS et al., 2002; KOSCHORRECK et al., 2008; GALAI et al., 2009), in einem engen Zusammenhang mit der morphologischen Differenzierung vegetativer Zellen in Ruhephasen, insbesondere Sporen.

Eine Funktion der AcCL bei der morphologischen Differenzierung begründet sich nicht zuletzt darin, dass in Untersuchungen der zellulären Lokalisation der Phenoloxidase stets eine starke Assoziation mit unlöslichen Membran-haltigen Zellfraktionen festzustellen war (vgl. Kap. 3.6.2, HERTER et al., 2011d). In Solubilisierungsexperimenten mit der partikulären Zelltrümmer, welche Zell- und Cystenwände enthielten, konnte eine gesteigerte Freisetzung von AcCL mit dem
Phenoloxidasen SLAC von *Streptomyces coelicolor* sowie SiIA von *Streptomyces ipomoea* stellen ausschließlich extrazelluläre Enzyme dar (MACHCZYNSKI et al., 2004; MOLINA-GUIJARRO et al., 2009).

4.1.3 Enzymcharakterisierung

Obwohl in Kap. 4.1.2.1 gezeigt werden konnte, dass Phenoloxidasen in Bakterien und Pilzen unter vergleichbaren Bedingungen exprimiert werden, existieren dennoch erhebliche Unterschiede bezüglich der Enzymeigenschaften, welche sich nicht zuletzt in präferierten Enzymsubstraten, Reaktionsparametern und damit auf das Spektrum potentieller Einsatzmöglichkeiten in Transformationsreaktionen auswirken. Insbesondere in Untersuchungen prokaryotischer Phenoloxidasen konnten Enzymeigenschaften ermittelt werden, welche nicht nur denen einer Phenoloxidase zuzuordnen waren und mit Merkmalen von Tyrosinasen überlappten (SANCHEZ-AMAT et al., 2001). Unter dem Aspekt einer Charakterisierung der Phenoloxidase
AcCL von *A. chroococcum*, welche mithin einer Zuordnung zu den Multikupfer-Oxidasen dienen sollte, wurden verschiedene Enzymeigenschaften geprüft.

4.1.3.1 pH-Optimum und Temperaturstabilität

In Untersuchungen der Temperaturstabilität von AcCL wurde ermittelt, dass das Enzym bei 30-minütiger Inkubation bis zu einer Temperatur von 35 °C stabil war und bei einer Temperatur von 50 °C noch bis zu 70 % der Ausgangsaktivität besaß (vgl. Kap. 3.7.2, HERTER et al., 2011d). Der Temperaturbereich in dem AcCL keine Aktivitätsverluste zeigte, wurde ebenfalls als eine optimale Temperatur für die prokaryotische Phenoloxidase von Pseudomonas putida (30 °C) beschrieben (MCMAHON et al., 2007); auch die Phenoloxidase von Streptomyces griseus bevorzugt einen ähnlichen Temperaturbereich (40 °C) (ENDO et al., 2003). Für bakterielle Phenoloxidase konnte im Allgemeinen eine ausgeprägte thermische Stabilität nachgewiesen werden - diese ist bei den Phenoloxidase SLAC von Streptomyces coelicolor sowie CotA von Bacillus licheniformis und Bacillus pumilus bis zu einer Temperatur von 70 °C gegeben (DUBE et al., 2008; KOSCHORRECK et al., 2008; REISS et al., 2011). Eine Temperaturstabilität zwischen 40 bis 60 °C konnte auch für die pilzlichen Phenoloxidase von Marasmius querophilus (FARNET et al., 2002) und Pleurotus ostreatus (PALMIERI et al., 1993) ermittelt werden. Die relativ hohen Temperaturstabilitäten der Phenoloxidase ergeben sich offenbar aus einem beträchtlichen Glykosylierungsgrad dieser Proteine, welcher durch kovalent verknüpfte Kohlenhydrate bedingt ist und in Abhängigkeit von der Art des Mikroorganismus oder dem Expressionswirt zwischen 10 und 50 % des Gesamtgewichts des Enzymmoleküls ausmacht (KUNAMNENI et al., 2008a, b). Somit können die Temperaturoptima und -stabilitäten von Phenoloxidase in Abhängigkeit von dem Glykosylierung stark von einem Mikroorganismus zum anderen bzw. innerhalb verschiedener Expressionswirte variieren.

4.1.3.3 Beeinflussung der Enzymaktivität durch Metallionen

Eine Prüfung diverser Schwermetallionen auf die Aktivität von AcCL, zeigte eine starke Inhibition durch Fe^{2+}-Ionen (0,1 mM FeSO_{4}, v/v), wobei diese in Gegenwart von Fe^{3+}-Ionen (FeCl_{3}) nicht vorlag. Eine Steigerung der AcCL-abhängigen 2,6-DMP-Oxidation konnte u.a. durch den Zusatz von Mg^{2+}- und Cu^{2+}-Ionen ermittelt werden (vgl. Kap. 3.7.5). Insbesondere Kupfer wurde vielfach als ein Aktivator der pilzlichen Phenoloxidase-Aktivität und auch der Phenoloxidase-Expression beschrieben (PALMIERI et al., 2000; LEONOWICZ et al., 2001; BALDRIAN & GABRIEL, 2002). Auch bei einer zusätzlichen CuSO_{4}-Supplementierung stickstofffixierender A.-chroococcum-Kulturen konnte, vergleichbar mit Phenoloxidase-exprimierenden Pilzen und Bakterien, eine verstärkte Bildung der Phenoloxidase AcCL ermittelt werden (HERTER et al., 2012) und wurde bereits im Kap. 4.1.2.2 näher betrachtet. Eine Aktivierung inaktiv-exprimierter bakterieller Phenoloxidasen sowie Phenoloxidase-ähnlicher Enzymaktivitäten, so z.B. bei Stenotrophomonas maltophilia und Thermus thermophilus, konnte jedoch erst durch eine entsprechende Kupfersupplementierung der Kulturmedien erreicht werden (GALAI et al., 2009; MIYAZAKI, 2005). Desweiteren bewirken Cu^{2+}-Ionen auch bei prokaryotischen Phenoloxidasen, welche von dem jeweiligen Organismus als aktive Enzyme konstitutiv exprimiert werden, eine Erhöhung der Enzymaktivität und der damit verbundenen Substratoxidation (ENDO et al., 2002). In Bezug auf eine Definition und Klassifizierung von bakteriellen Phenoloxidasen sowie Enzymen mit Phenoloxidase-ähnlichen Motiven und Aktivitäten nahmen

4.1.3.4 Beeinflussung der Enzymaktivität durch Inhibitoren

spektralphotometrisch messbare Reduzierung der Absorptionsveränderung in der Brenzkatechin-Oxidation konnte dagegen nicht erfasst werden. Dies war jedoch mit einer zunehmenden Rotfärbung der, durch die Bildung des \textit{ortho}-Benzochinons eigentlich gelb- gefärbten, Ansätze verbunden (vgl. Kap. 3.7.6.1). Da in Inhibitorstudien mit \textit{AbT}, im Gegensatz zu Untersuchungen der Enzyme \textit{AcCL} und \textit{PcL}, stets Brenzkatechin als Enzymsubstrat eingesetzt wurde, kann die in diesem Test bestimmmbare Aktivität jedoch nicht mit dem Ausbleiben einer Inhibition gleichgesetzt werden. Es ist vielmehr anzunehmen, dass nach \textit{AbT}-vermittelter Aktivierung des Brenzkatechins unter Bildung des korrespondierenden gelb- gefärbten \textit{ortho}- Benzochinon eine Aminierungsreaktion mit dem NaN\textsubscript{3} stattfand, welche eine Rotfärbung der Ansätze bedingte (Abb. 73).

Über eine elektrochemische Oxidation des Brenzkatechins kann ebenfalls eine Reaktion mit Azid-Ionen initiiert werden, die in der Bildung des in Abb. 73 dargestellten Produkts 4 resultiert (NEMATOLLAHI \textit{et al.}, 2006). Diese Produktstruktur kann auch für das in Inhibitionsversuchen mit der Tyrosinase \textit{AbT} entstandene rot- gefärbte Produkt angenommen werden. Die Reaktion verläuft dabei über eine Michael-Addition des Azids an das \textit{ortho}-Benzochinon (2) unter Entstehung intermediärer Azido-[1,2]-
benzendiole (3, 3a, 3b), welche über eine intramolekulare Oxidation-Reduktions-Reaktion und Ausbildung eines Imino-Intermediats (3d) in das Produkt 4 (4-Amino-[1,2]-benzochinon) transformiert werden (Abb. 73; NEMATOLLAHI et al., 2006). Da das Produkt 4 ein mit dem aktivierten ortho-Benzochinon vergleichbares UV/VIS-Absorptionsmaximum (λ_{max} 450 nm) besitzt, ist davon auszugehen, dass in spektralphotometrischen Untersuchungen einer NaN₃-Inhibtion der Polyphenoloxidase AbT, ein linearer Anstieg der Absorptionsänderung auch auf dessen Bildung zurückgeführt werden muss. Aufgrund der gemeinsamen Eigenschaft von Phenoloxidasen und Polyphenoloxidasen, eine Radikalisierung ortho-dihydroxylierter Verbindungen zu katalysieren (XU, 1996), ist dieses Ergebnis jedoch nicht auf die hierin untersuchte Polyphenoloxidase AbT zu beschränken, sondern kann wahrscheinlich auch auf die Phenoloxidasen AcCL und PcL übertragen werden.

4.1.3.5 Substratspektrum der Phenoloxidase

Mit dem Ziel, das von A. chroococcum gebildete Enzym AcCL hinsichtlich seines Substratspektrums zu charakterisieren und damit möglicherweise eine weitere Zuordnung zu der Enzymklasse der Phenoloxidasen vornehmen zu können, erfolgten Untersuchungen bezüglich einer AcCL-vermittelten Oxidation mit über 40 verschiedenen potentiellen Substraten. Der enzymatische Umsatz durch die pilzliche Phenoloxidase PcL und die Polyphenoloxidase (Tyrosinase) AbT wurde zum Vergleich ebenfalls geprüft (vgl. Kap. 3.7.6.2).

Die höchsten Aktivitäten der AcCL konnten mit 2,6-DMP und ABTS gemessen werden - Substrate bei denen mit der Phenoloxidase PcL ebenfalls höchste Umsatzraten erzielt

Verbindungen mit einem Carboxy-Substituenten in para-Position zur OH-Gruppe des 2,6-DMP-Moleküls wurden ebenso als Nicht-Enzymsubstrate von AcCL identifiziert. Hingegen stellten strukturenanaloge Verbindungen des 2,6-DMPs, welche in para-Stellung eine Methyl-, Methylen- oder Hydroxy-Gruppe tragen, AcCL-Substrate dar.

Zu Beginn der Untersuchungen bestand die Annahme, dass die Phenoloxidase-Aktivität von A. chroococcum möglicherweise an der Vernetzung von meta-dihydroxylierten Alkylresorcinolen beteiligt sein könnte, welche im Zuge des morphologischen Überganges in Cysten synthetisiert und in die Cystenwandungen integriert werden (vgl. Kap. 4.1.1.2). In Testungen des Substratspektrums der AcCL (und auch der Phenoloxidase PcL) konnte jedoch keine Aktivität gegenüber meta-dihydroxylierten Verbindungen (Resorcinol, Orcinol und Olivetol) ermittelt werden, wobei diese aufgrund ihres erhöhten Redoxpotentials (+ 0,8 bis + 1,10 V) generell als Nicht-Enzymsubstrate von Phenoloxidassen angesehen werden (FAURE et al., 1995; MAI et al., 2001). Auch bezüglich der Oxidation von ortho-dihydroxylierten Substraten
grenzten sich die Enzyme AcCL und PcL eindeutig von der Aktivität einer Polyphenoloxidase (AbT) ab, für welche überaus hohe Aktivitäten gegenüber den eingesetzten Brenzkatechin-Derivaten ermittelt wurden (vgl. Kap. 3.7.6.2). Beide Enzyme (AcCL und PcL) waren jedoch prinzipiell auch zu einer Aktivierung der ortho-dihydroxylierten Verbindungen befähigt, wobei die AcCL relativ hohe Aktivitäten im Vergleich zu anderen getesteten Modell-Substraten zeigte. Somit wurde für die AcCL ein weiteres Merkmal, das zwar für Phenoloxidasen bekannt ist, aber noch stärker bei Polyphenoloxidase (Tyrosinasen, Catechol-Oxidasen) in Erscheinung tritt (XU, 1996; THURSTON, 1994), nachgewiesen.

Da in Aktivitäts-Assays - im Gegensatz zur Polyphenoloxidase AbT - mit AcCL keine Oxidation der Substrate Tyrosin oder para-Kresol messbar war, rechtfertigte dies erneut eine Zuordnung in die Gruppe der Phenoloxidase (HERTER et al., 2011c, d) und eine Abgrenzung der AcCL zu den Polyphenoloxidase (Tyrosinase- und Kresolase-Aktivität).

Phenoloxidase des in einer engen Assoziation mit der pflanzlichen Wurzelrhizosphäre lebenden Bodenbakteriums *Azospirillum lipoferum* wird als physiologische Funktion eine Nutzung bzw. Detoxifizierung phenolischer Pflanzenbestandteile zugeschrieben (FAURE et al., 1994).

4.1.3.6 Gelektrophoretische Untersuchungen

Über Aktivitätsfärbungen nativer Gele mit den Phenoloxidase-Substraten ABTS und 2,6-DMP erschienen bis zu drei aufeinanderfolgende aktivgefärbte *AcCL*-spezifische Proteinbanden deren Molekulargewicht anhand eines mitgeführten Proteinmarkers (denaturierte Proteine) auf ca. 130 kDa geschätzt wurde (vgl. Kap. 3.7.8.2, HERTER et al., 2011c). In ergänzenden Untersuchungen bezüglich einer Bestimmung des relativen Molekulargewichts der Phenoloxidase *AcCL* nach FERGUSON (1964), konnte die Annahme eines unter nativen Bedingungen vorliegenden aktiven Homotrimers erhärtet werden (vgl. Kap. 3.7.8.2, HERTER et al., 2011d). Für das Monomer der Phenoloxidase *AcCL* wurde ein Molekulargewicht von 45 kDa ermittelt (HERTER et al., 2011c, d).

erhaltenen Ergebnisse in Bezug auf die voran genannten Proteine zu diskutieren und es ist nur ein begrenzter Vergleich möglich.

Nach semi-denaturierender PAGE von Proben der äußeren Zellumhüllung stickstofffixierender Zellen von *A. chroococcum* konnten bis zu drei aktivgefärbte Proteinbanden sichtbar gemacht werden. Bei einer nachfolgenden SDS-PAGE konnte für die extrahierten Proteine ein annähernd gleiches Molekulargewicht (45 ± 3 kDa), welches dem *AcCL*-Monomer zugeordnet wurde, ermittelt werden (vgl. Abb. 34, S. 141). Die Phenoloxidase *AcCL* von *A. chroococcum* liegt, ähnlich wie die von *Azospirillum lipoferum* gebildete Phenoloxidase, als ein multimerer Enzymkomplex in PAGE-Analysen vor. Unter semi-denaturierenden Bedingungen konnten auch bei der Phenoloxidase von *Azospirillum lipoferum* drei aktive Proteinbanden mit Molekulargewichten von 48,9 kDa, 97,8 kDa und 179,3 kDa nachgewiesen werden (DIAMANTIDIS et al., 2000). SDS-PAGE-Analysen der aus dem Gel extrahierten aktiven Proteine führten jedoch zu der Erkenntnis, dass die *Azospirillum-lipoferum*-Phenoloxidase aus einer kleinen katalytischen Polypeptid-Untereinheit (16,3 kDa) und ein bis zwei größeren regulatorischen Ketten mit einem Molekulargewicht von jeweils 81,5 kDa besteht (DIAMANTIDIS et al., 2000). Das aktive Monomer der Phenoloxidase von *Streptomyces psammoticus* besitzt dagegen ein Molekulargewicht von 43 kDa (NILADEVI et al., 2008) - eine mit dem Monomer der Phenoloxidase *AcCL* vergleichbare Größe. Für das Monomer der Phenoloxidase von *Sinorhizobium meliloti* konnten ROSCONI et al. (2005) ein Molekulargewicht von 45 kDa bestimmen, wobei dieses Enzym, ähnlich wie die *AcCL* von *A. chroococcum*, auch als ein aktives Homodimer in PAGE-Analysen auftreten kann. Andererseits liegt die Phenoloxidase EpoA von *Streptomyces griseus* selbst nach SDS-PAGE als ein Homotrimer vor, wobei das EpoA-Monomer ebenso ein relativ kleines Molekulargewicht von 38 kDa besitzt (ENDO et al., 2002). Die bislang kleinste prokaryotische Phenoloxidase stellt SLAC von *Streptomyces coelicolor* dar, wobei das Molekulargewicht des rekombinant exprimierten Monomers 32 kDa beträgt (MACHCZYNSKI et al., 2004). Unter den prokaryotischen Phenoloxidasen ist die von *Bacillus subtilis* exprimierte CotA-Phenoloxidase (65 kDa-Monomer) das am besten Enzym, bei welchem zudem eine hohe Sequenzhomologie zu eukaryotischen Phenoloxidasen festgestellt werden konnte (HULLO et al., 2001; MARTINS et al., 2002). In PAGE-Analysen weiterer bakterieller Proteine - die aufgrund ihrer Aktivität und Aminosäuresequenz als Phenoloxidase-ähnliche Enzyme gelten, wie z.B. das für eine Mn(II)-Oxidation exprimierte Protein von
DISKUSSION

Aus den bisherigen Analysen der Molekulargewichte und der aktiven Konformation bakterieller Phenoloxidasen lässt sich ableiten, dass diese mit einem Molekulargewicht von bis zu 50 kDa - im Vergleich zu pilzlichen Phenoloxidasen - eine Gruppe relativ kleiner Enzyme darstellt. Die Molekulargewichte der zumeist als Monomere sezernierten pilzlichen Phenoloxidasen liegen zwischen 60 bis 70 kDa (KUNAMNENI et al., 2008a, b), wobei rekombinant exprimierte Isoenzyme, so zum Beispiel von Aspergillus niger oder Aspergillus oryzae, auch als 100 kDa-Monomere vorliegen können (SIGOILLOT et al., 2003). Darüber hinaus werden die extrazellulären Phenoloxidasen der Pilze häufig konstitutiv als multiple Isoenzyme exprimiert. Die Isoenzyme stellen entweder Proteine mit unterschiedlichen Glycosylierungsgraden und Expressionsprodukten eines Gens dar oder deren Expression wird durch verschiedene Gene kodiert (DONG et al., 2005; LORENZO et al., 2006). Andererseits kann eine Expression pilzlicher Isoenzyme auch durch bestimmte Kultivierungsbedingungen induziert werden (SODEN & DOBSON, 2001).

4.2 Phenoloxidase-vermittelte Transformationsreaktionen

4.2.1 Homomolekulare Transformationsreaktionen von ortho- und para-dihydroxylierten Verbindungen

Homomolekulare Transformationsansätze wurden zunächst auf das Vorkommen von Eigenreaktionsprodukten der innerhalb dieser Arbeit eingesetzten Enzymsubstrate geprüft. Die Eigenreaktionsprodukte sind Verbindungen, welche durch eine Reaktion von Enzymsubstratmolekülen miteinander oder eines Enzymsubstratmoleküls mit anderen Substanzen, welche nicht dem eigentlichen Kopplungspartner (Amin) entsprechen, jedoch auch im Reaktionsmilieu vorkommen (Lösungsmittel), gebildet

verzweigten Substituen, so z.B. dem 2,6-Di-tert-butylphenol, was sich in einer vermindernten Oxidationsrate durch die untersuchten Phenoloxidassen niederschlug.

Die Bildung der mono-methoxylierten Produkte MO-1,2-HQ-ERP2 und tertB-1,2-HQ-ERP2, welche in Reaktionen des 3-Methoxy- und 4-tert-Butylbrenzkatechins (1b und 1c) nachgewiesen wurden (vgl. Kap. 3.8.5.2, Kap. 3.8.5.3), könnte analog zu dem in Abb. 74A dargestellten Mechanismus erfolgen. HORNER & GÖWECKE (1961) beschrieben darüber hinaus einen säurekatalysierten Reaktionsmechanismus von ortho-Benzochinonen (u.a. 4-Methylbenzochinon und 3-Methoxybenzochinon), in dem Methanol an einer der elektronenreichen Carbonylgruppen angelagert wird. Diese 1,2-Anlagerung führt, im Gegensatz zu dem in Abb. 74 dargestellten Reaktionsmechanismen, zur Bildung von Halbketalen, welche über eine Allyumlagerung zu methoxylierten para-Benzochinonen reagieren. Neben einer

In nachgelagerten Versuchen einer heteromolekularen Kopplung der Brenzkatechine 1a-c mit diversen Aminopartnern, nahmen die mono-methoxylierten benzochinoiden Eigenreaktionsprodukte M-1,2-HQ-ERP3, MO-1,2-HQ-ERP2 und tertB-1,2-HQ-ERP2 eine zentrale Rolle ein, welche in Kap. 4.2.2.1 nähere Betrachtung finden soll.

In Abwesenheit von anderen Nucleophilen erfolgt in einem wässrigen Reaktionssystem eine simultan mit Entstehung von ortho-Benzochinonen ablaufende nucleophile Addition von Hydroxid-Ionen (NEMATOLLAHI & GOLABI, 1996). Die ortho-Benzochinone reagieren in wässrigen Reaktionssystemen bei saurem pH-Wert nur sukzessive zu Hydroxy-Addukten (FIESER & PETERS, 1931). Demgegenüber sind Additionsreaktionen im Alkalischen stark beschleunigt (PAPOUCHADO et al., 1972), was auch innerhalb der eigenen Untersuchungen des 3-Methylbrenzkatechins (1a) nachgewiesen werden konnte. In MtL-katalysierten Reaktionsansätzen (PCP, pH 7) erfolgte - im Gegensatz zu Reaktionen mit der Phenoloxidase PcL (NaAC, pH 5) - eine signifikante Bildung des Eigenreaktionsproduktes M-1,2-HQ-ERP2. Das in LC-MS-Analysen des Eigenreaktionsproduktes M-1,2-HQ-ERP2 detektierte Pseudomolekülion [M+H]^+ mit einer Masse m/z = 138,1 deutete jedoch darauf hin, dass sich keine OH-Gruppe an dem ortho-Benzochinon befinden kann. Aufgrund der Masse des Pseudomoleküls von M-1,2-HQ-ERP2 wurde daher eine Substitution des 3-Methyl-[1,2]-benzochinons mit einem Sauerstoffradikal (-O') postuliert (Abb. 75).
Abb. 75: Postulierter Reaktionsmechanismus für die Bildung des mit einem O--Radikal substituierten Eigenreaktionsprodukts M-1,2-HQ-ERP2 in MtL-katalysierten Reaktionen (pH 7, PCP) des 3-Methylbrenzkatechins (1a) abgewandelt nach einem von SCHUCHMANN et al. (1998) beschriebenen Mechanismus für die Bildung des Hydroxy-Anions des 1,4-Benzochinons: I: Phenoloxidase-vermittelte Radikalisierung des 3-Methylbrenzkatechins (1a). II: Addition eines Hydroxylradikals an das 3-Methyl-[1,2]-benzochinon (M-1,2-Q). III: Hydroxy-Adduktradikal 2 unterliegt zügiger, durch das wässrige Reaktionssystem unterstützter, Keto-Enol-Tautomerisierung unter Bildung des 1,5-Dihydroxyphenoxyl-Radikals 3a. Danach kann eine Bildung des Eigenreaktionsproduktes M-1,2-HQ-ERP2 über die Reaktionswege IVa oder IVb erfolgen. IVa: Produkt 3a dissoziiert in das korrespondierende Semichinon-Anionradikal 3b (weitere Reaktion über Reaktionsschritt VII, s.u.). IVb: Das 1,5-Dihydroxyphenoxyl-Radikals 3a wird durch 3-Methyl-[1,2]-benzochinon oxidiert. Es erfolgt die Bildung des Semichinon-Anionradikals 4a und des neutralen hydroxylierten 3-Methyl-[1,2]-benzochinons 5a. V: Semichinon-Anionradikal 4a wird bei neutralem pH des Reaktionsmilieus (pH 7) deprotoniert. Es erfolgt die Bildung des Produkts 4b. VI: Hydroxyliertes 3-Methyl-[1,2]-benzochinon 5a wird bei neutralem pH (pH 7) ebenfalls sukzessive deprotoniert. Es erfolgt die Bildung des korrespondierenden Anions (Produkt M-1,2-HQ-ERP2, 5b). VII: Semichinon-Anionradikal 3b wird durch 3-Methyl-[1,2]-benzochinon oxidiert, es erfolgt die Bildung des Semichinon-Anionradikals 4b und des Anions eines hydroxylierten 3-Methyl-[1,2]-benzochinons (Produkt M-1,2-HQ-ERP2, 5b).

Eine Begründung für die Bildung der anionischen Form des hydroxylierten 3-Methyl-[1,2]-benzochinons könnte sich in dem pH-Wert des Reaktionssystems (pH 7) finden. SCHUCHMANN et al. (1998) beschrieben eine physikalisch-chemisch katalysierte Hydroxylierungsreaktion des 1,4-Benzochinons, bei welcher eine nucleophile Addition

Im Vergleich zu den von Pilzen exprimierten Enzymen, wurden für die bislang identifizierten bakteriellen Phenoloxidasen zumeist niedrigere Redoxpotentiale bei dem für die Substratbindung verantwortlichen Typ-I-Kupfers (< +0,5 V) beschrieben (ALCADE, 2007; SANTHANAM et al., 2011). Da bereits in vorangegangenen Abschnitten der Diskussion auf das Redoxpotential als ein limitierender Faktor in der

Weitere Unterschiede, die in vergleichenden Untersuchungen bezüglich der PclL- und MtlL-katalysierten Reaktionen von para- und ortho-dihydroxylierten Verbindungen festgestellt werden konnten, sind nachfolgend zusammengefasst (Tab. 63).

<table>
<thead>
<tr>
<th>Brenzkatechin-Derivate</th>
<th>Hydrochinon-Derivate</th>
</tr>
</thead>
<tbody>
<tr>
<td>R: -CH₃ (1a), -OCH₃ (1b), -C(CH₃)₃ (1c)</td>
<td>R: -CH₃ (1d), -OCH₃ (1e), -C(CH₃)₃ (1f)</td>
</tr>
</tbody>
</table>

Stabilität in Puffer (unkatalysiert) in Abhängigkeit von:
- **Substituenten:** C(CH₃)₃ (1c) > CH₃ (1a) > OCH₃ (1b)
 C(CH₃)₃ (1f) > CH₃ (1d) > OCH₃ (1e)
- **pH-Wert:** pH 5 > pH 7
 pH 5 > pH 7
- **Hydroxylierungsposition:** geringere Stabilität
 höhere Stabilität

Substratsumsatz in Phenoloxidase-Reaktionen in Abhängigkeit von:
- **Substituenten:** OCH₃ (1b) ≥ CH₃ (1a) > C(CH₃)₃ (1c)
 OCH₃ (1e) > CH₃ (1d) ≥ C(CH₃)₃ (1f)
- **pH-Wert:** pH 5 > bzw. = pH 7 (CH₃, 1a bzw. (CH₃)₃, 1c)
 pH 7 > pH 5 (OCH₃, 1b)
- **Hydroxylierungsposition:** langsamerer Umsatz
 schnellerer Umsatz

Produktbildung in Phenoloxidase-Reaktionen in Abhängigkeit von:
- **Substituenten:** OCH₃ (1b) > CH₃ (1a) > C(CH₃)₃ (1c)
 OCH₃ (1e) > CH₃ (1d) > C(CH₃)₃ (1f)
- **pH-Wert:** pH 7 > pH 5
 pH 7 > pH 5
- **Hydroxylierungsposition:** größere Produktanzahl
 kleinere Produktanzahl
- **Primär gebildete Produkte:** Mono-methoxylierte ortho-Benzochinone
 para-Benzochinone
- **Anzahl der Hauptprodukte:** viele Hauptprodukte
 wenige Hauptprodukte

Stabilität der Eigenreaktionsprodukte
- **Methanol (RT):** geringere Stabilität
 höhere Stabilität
- **Lyophilisation:** Detektion von Zerfallsprodukten (HPLC)
 = instabil
 n.d.
 Detektion von ringoffenen Dicarbonsäuren
 = instabil
- **GC-MS-Analyse**
 - Methanolische Exakte, Analyt(gemisch) unmittelbar nach Extraktion vermessen
 - Methanolische Exakte oder MeOH-/A. bidest. -Gemische, Analyt(gemisch) unmittelbar nach Extraktion vermessen
- **LC-MS-Analyse**
 - Methanolische Exakte, Analyt(gemisch) unmittelbar nach Extraktion vermessen
 - Methanolische Exakte oder MeOH-/A. bidest. -Gemische, Analyt(gemisch) unmittelbar nach Extraktion vermessen

Die Eigenreaktionsprodukte der Brenzkatechine 1a-c unterschieden sich in Bezug auf ihre Stabilitäten erheblich von denen der Hydrochinone 1d-f (Tab. 63). Die in Methanol bzw. in einem Methanol-Essigsäure/A. bidest.-Gemisch angereicherten Eigenreaktionsprodukte der Brenzkatechin-Derivate waren von einer hohen Instabilität gekennzeichnet, was sich in einer relativ zügigen Farbveränderung der Extrakte und der Detektion von Zerfallsprodukten in HPLC-Analysen bemerkbar machte. Zudem wurden in GC-MS-Analysen der ortho-benzochinoiden Eigenreaktionsprodukte ausschließlich Produktpeaks detektiert, deren Massen sowie Fragmentierungsmuster auf ringoffene Dicarbonsäuren hindeuteten und somit eine thermische Instabilität indizierten. In vergleichenden Untersuchungen hinsichtlich geeigneter Analyseverfahren (u.a. HPLC-

4.2.2 Heteromolekulare Transformationsreaktionen von ortho- und para-dihydroxylierten Verbindungen

4.2.2.1 Aufklärung der Reaktionsmechanismen für Phenoloxidase-vermittelte Aminierungsreaktionen in wässrig-organischen Lösungsmittelsystemen

Verdrängungsreaktion mit dem im Reaktionssystem enthaltenen Amindonoren. Somit bestand eine konkurrierende Reaktion der primären Amine mit dem im Reaktionssystem befindlichen Wasser bzw. Hydroxid-Ionen um die Besetzung des mit einer OCH₃-Gruppe -vermutlich am C-5-Atom - substituierten 3-Methyl-[1,2]-benzochinons. In MtL-katalysierten Reaktionen (pH 7,0) stellte das Produkt **M-1,2-HQ-ERP2** ein „echtes“ Nebenreaktionsprodukt dar, dessen Entstehung die Ausbeute an sekundärem Amin maßgeblich dirigiert bzw. reduzierte. Hingegen erfolgte die Bildung von **M-1,2-HQ-ERP2** in PcL-katalysierten Reaktionen (pH 5,0) nur in vergleichsweise geringen Mengen. Daher kann geschlüssfolgt werden, dass die Affinität des methoxylierten Eigenreaktionsproduktes **M-1,2-HQ-ERP3** eine nucleophile Verdrängungsreaktion mit OH-Ionen einzugehen, bei schwach saurem pH-Wert unterdrückt wird und daher ein Austausch der OCH₃-Gruppe mit der NH₂-Gruppe - zugunsten einer Produktbildung und erhöhten Ausbeute - überwiegt (HERTER et al., 2011a).

Abb. 77: Postulierter Reaktionsmechanismus für die Synthese monoamminierter Kopplungsprodukte (sekundäre Amine) in Phenoloxidase-katalysierten Transformationsreaktionen der para-dihydroxylierten Verbindungen Methylhydrochinon (1d), Methoxyhydrochinon (1e) und tert-Butylhydrochinon (1f) mit dem primären Amin n-Hexylamin (2d) in einem wässrig-organischen Reaktionsmilieu.

Demnach stellen methoxylierte Eigenreaktionsprodukte in Reaktionen der Hydrochinon-Derivate keine Präkursoren für eine Aminkopplung dar. Eine Reaktion mit anderen Nucleophilen des Reaktionsmilieus (z.B. MeOH) war daher als eine Sekundärreaktion anzusehen, welche zur Bildung von Nebenreaktionsprodukten führte.

4.2.2.2 Einfluss der Stellung der Hydroxylgruppen und der Alkylsubstituenten auf die Aminierungsposition

der Aminopartner an den alkylsubstituierten Benzochinonen nachgewiesen werden. Diese zeigten sich zudem auch auf Ebene der Hydroxylierungsposition der Phenoloxidase-Substrate in 1,2- bzw. 1,4-Stellung (Tab. 64).

Tab. 64: Übersicht über die Kopplungspositionen der Aminopartner in Abhängigkeit von den Alkylsubstituenten der ortho-dihydroxylierten Phenoloxidase-Substrate 3-Methylbrenzkatechin (1a), 3-Methoxybrenzkatechin (1b), 4-tert-Butylbrenzkatechin (1c) sowie der para-dihydroxylierten Substrate Methylhydrochinon (1d), Methoxyhydrochinon (1e) und tert-Butylhydrochinon (1f).

<table>
<thead>
<tr>
<th>CH₃-Substituent</th>
<th>Brezkatechin-Derivate</th>
<th>Hydrochinon-Derivate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position des Amins zum Erstsubstituenten</td>
<td>meta</td>
<td>meta⁺</td>
</tr>
<tr>
<td>Syntheseprodukte</td>
<td>3a-l, 3n-s</td>
<td>5d₁₂</td>
</tr>
<tr>
<td>OCH₃-Substituent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position des Amins zum Erstsubstituenten</td>
<td>meta</td>
<td>para</td>
</tr>
<tr>
<td>Syntheseprodukte</td>
<td>4d</td>
<td>6d</td>
</tr>
<tr>
<td>C(CH₃)₃-Substituent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position des Amins zum Erstsubstituenten</td>
<td>para⁺</td>
<td>meta</td>
</tr>
<tr>
<td>Syntheseprodukte</td>
<td>n.d.⁺</td>
<td>7d</td>
</tr>
</tbody>
</table>

⁺ nach MIKOLASCH et al. (2008); Postulierte Struktur für ein heteromolekulares Kopplungsprodukt des 4-tert-Butylbrenzkatechins (Aminkopplung unter Eliminierung einer Carbonylgruppe). n.d. - nicht determiniert, eine Zuordnung zu den mittels HPLC detektierten Produkten zu den in LC-MS-Analysen detektierten Produktpeaks war nicht möglich.

Die Aminierung des 3-Methylbrenzkatechins (1a) erfolgte stets in meta-Position (Produkte 3a-l, 3n-s), obgleich die Methylgruppe in ortho- bzw. para-Stellung dirigiert (BREITMAIER & JUNG, 1994). Nach NEMATOLLAHI et al. (2009) wäre eine Aminierung des 3-Methylbrenzkatechins prinzipiell sowohl in ortho- als auch meta-Stellung zu der elektronenabgebenden CH₃-Gruppe möglich, was zur Bildung von zwei verschiedenen aminierten Produkten führen würde. Die experimentellen Befunde zeigten jedoch, dass eine Aminierung ausschließlich in meta-Position erfolgt.
DISKUSSION

(NEMATOLLAHI et al., 2009), was auch innerhalb der eigenen Arbeit nachgewiesen werden konnte (HERTER et al., 2011a). Somit überwiegt der -I-Effekt der an den Carbonylgruppen befindlichen Sauerstoffatome den +I-Effekt der CH₃-Gruppe und bedingt daher vermutlich die Aminierung des 3-Methylbrenzkatechins in meta-Position.

Für das Produkt 4d, welches aus einer Reaktion des 3-Methoxybrenzkatechins (1b) mit n-Hexylamin isoliert wurde, konnte über NMR-Analysen eine Kopplung des Aminopartners in meta-Position zur Methoxygruppe nachgewiesen werden. Somit ergab sich erneut eine von der theoretischen Aminierungsposition (ortho-/para-Stellung) abweichende Kopplung des Aminopartners. Für die elektrochemische Oxidation des 3-Methoxybrenzkatechins in Anwesenheit eines Amin donors wurde ebenfalls eine Aminkopplung in meta-Position beschrieben (NEMATOLLAHI et al., 2009).

Die experimentellen Befunde einer Aminierung des Methoxyhydrochinons (1e) in para-Position zum OCH₃-Substituenten (Produkt 6d) stimmten mit den theoretischen Erwartungen überein. Die Kopplungsposition des Aminopartners n-Hexylamin wich damit von der des methoxylierten ortho-Isomers (3-Methoxybrenzkatechin, siehe oben) ab. Auch MIKOLASCH et al. (2008) wiesen eine Kopplung der 4-Aminobenzoesäure an das Methoxybenzochinon in para-Position nach, wobei eine Substitution in ortho-
Position zur Methoxygruppe vermutlich aufgrund einer sterischen Hinderung nicht erfolgen kann (MATTHIES, 2006).

In LC-MS-Analysen eines Gesamtextraktes der heteromolekularen Kopplung der orthodihydroxylierten Verbindung 4-tert-Butylbrenzkatechin (1c) konnten Anhaltspunkte für eine, von den in C-3-Position alkylsubstituierten Brenzkatechinen (3-Methyl- bzw. 3-Methoxybrenzkatechin), abweichende Aminierungsreaktion gewonnen werden. Das Pseudomolekülion [M+H]⁺ eines dominierenden Produktpeaks deutete auf eine Aminkopplung unter Eliminierung eines den Carbonylgruppen angehörenden Sauerstoffatoms hin. HORNER und DRUCKHEIMER (1967) beschrieben eine Iminbildung des in C-4-Position mit einer C(CH₃)₃-Gruppe substituierten Brenzkatechins. Demnach reagieren ortho-Benzochinone mit einem 4-ständigen Alkylsubstituenten, so auch das 4-tert-Butylbrenzkatechin, bevorzugt an der mit dem Substituenten nicht konjugierten Carbonylgruppe. Im Gegensatz dazu werden die mesomeren und induktiven Effekte durch die in C-3-Position befindlichen Alkylsubstituenten (3-Methylbrenzkatechin bzw. 3-Methoxybrenzkatechin) durch sterische Wechselwirkungen überspielt, sodass eine Aminierung der ortho-Benzochinone vornehmlich in meta-Stellung zu einer der Carbonylgruppen erfolgt (HORNER & DRUCKHEIMER, 1967). Dies kann auch auf die innerhalb dieser Arbeit nachgewiesenen Kopplungspositionen der Aminopartner an das 3-Methylbenzochinon (Produkte 3a-l, 3n-s) und das 3-Methoxybenzochinon (Produkt 4d) in meta-Stellung zur CH₃- bzw. OCH₃-Gruppe übertragen werden.

Die festgestellten Unterschiede bezüglich der Aminierungspositionen der monosubstituierten einkernigen Brenzkatechin- und Hydrochinon-Derivate können maßgeblich auf die Position der Hydroxyl- bzw. Carbonylgruppen und einer sich daraus ergebenden andersartigen Überlagerung der elektronischen Effekte mit den
Erstsubstituenten zurückgeführt werden. Weiterhin befinden sich die Carbonylgruppen der ortho- bzw. para-benzoquinoiden Oxidationsprodukte in jeweils unterschiedlicher Konjugation mit den Alkylsubstituenten, was den elektropositiven Charakter der Kohlenstoffatome und damit die Elektronendichte an den Sauerstoffatomen andersartig beeinflusst und verschiedene mesomere Grenzstrukturen auftreten lässt.

In Kopplungsreaktionen mit dem Phenoloxidase-Substrat 2,3-Dimethoxy-5-methylhydrochinon (1h) und dem Aminopartner Geranylamin (2m), welche zu einem Ubichinon-10-ähnlichen Produkt transformiert werden sollten, konnten heteromolekulare Produkte nur in äußerst geringen Mengen detektiert werden (vgl. Kap. 3.10.2.2). Vermutlich begründet sich dies mit einer sterischen Hinderung der Aminkopplung, welche durch die Anzahl und auch die Stellung der Alkylsubstituenten am hydrochinoiden Enzymsubstrat bedingt ist. Denn letztlich wäre prinzipiell nur das 6-ständige C-Atom des Ringsystems für eine Kopplung des Geranylamins frei. Eine Möglichkeit für die Gewinnung eines Ubichinon-10-Derivates über Phenoloxidase-katalysierte Reaktionen könnte sich mit einem anderen Enzymsubstrat mit geringerer Anzahl von Alkylsubstituenten, so z.B. dem 2,3- bzw. 2,6-Dimethoxyhydrochinon, ergeben und wäre zu prüfen.

Sowohl in MfL- als auch Pcl-katalysierten Reaktionen des Vitamin-K-analogen Enzymsubstrats 2-Methylnaphthohydrochinon (1i) mit Geranylamin (2m) wurde anhand der in Kap. 3.10.2.3 dargestellten Ergebnisse von einer erfolgreichen Aminierung - und damit der Bildung eines Vitamin-K-Derivates (Produkt MNH-1,4-HQ-KKP1) - ausgegangen. Folglich konnte gezeigt werden, dass eine Synthese dieser pharmazeutisch wertvollen Verbindung in Phenoloxidase-katalysierten Reaktionen prinzipiell möglich ist. Die Versuche einer Produktisolation mittels Festphasenextraktion wiesen auf ein Produkt mit stark hydrophoben Eigenschaften hin, was zum einen das Vorliegen eines lipophilen Vitamin-K-analogen Syntheseprodukts erhärterte und zum anderen dessen Reinigung bzw. Anreicherung erschwerte. Da an dem hydro- bzw. benzoquinoiden Teil des Enzymsubstratmoleküls ausschließlich das 3-
ständige C-Atom für eine Aminkopplung frei ist und die Methylgruppe (am C-2-Atom) zudem in ortho-Stellung dirigiert, wäre eine Besetzung des C-3-Atoms am enzymatisch gebildeten 2-Methylnaphthobenzochinon wahrscheinlich (Abb. 79).

Eine Möglichkeit für die Anreicherung des Syntheseproduktes **MNH-1,4-HQ-KKP1** und damit einer abschließenden Strukturaufklärung könnte sich in der Produktisolation mittels präparativer HPLC finden. Dies würde eine Verdünnung des Reaktionsgemisches mit einem geeigneten Lösungsmittel erfordern, um so das beschriebene Zwei-Phasen-System (vgl. Kap. 3.10.2.3) zu einer annähernd homogenen Phase umzuwandeln.

Neben einer Darstellung von Ubichinon-10- und Vitamin-K-Derivaten wurde in der vorliegenden Arbeit ebenfalls eine Phenoloxidase-vermittelte Synthese von **Mitomycin-ähnlichen Verbindungen** untersucht. In **MiL**- und **PcL**-katalysierten Transformationsreaktionen des 2-Methoxy-3-methylhydrochinons (1g) konnten sowohl mono- als auch diaminierte Produkte mit den Aminopartnern **n-Octylamin** (2f), **Geranylamin** (2m) und **Cyclooctylamin** (2t) gewonnen werden (vgl. Kap. 3.10.2.1). Eine Monoaminierung des aktivierten Enzymsubstrat-Moleküls war bei äquimolarer Konzentration der Edukte begünstigt. In Reaktionsansätzen mit der Phenoloxidase **MiL** (pH 7) wurden zwei regioisomer monoaminierte Produkte detektiert, wobei eine Reinigung von jeweils nur einem dieser Produkte (8f₂, 10m₂, 12t₂) möglich war. Über strukturchemische Analysen konnte bei diesen monoaminierten Produkten eine Kopplung des Aminopartners in para-Position zu der Methoxy- bzw. in meta-Position zur Methylgruppe nachgewiesen werden (vgl. Kap. 3.10.2.4; Abb. 79).
Abb. 79: Postulierter Reaktionsmechanismus für die Synthese von mono- und diaminierten Kopplungsprodukten mit Mitomycin-ähnlichen Strukturen in MtL-katalysierten Reaktionen (pH 7) des 2-Methoxy-3-methylhydrochinons (1g) mit den Aminopartnern n-Octylamin (2f), Geranylamin (2m) und Cyclooctylamin (2t). In MtL-katalysierten Reaktionsansätzen erfolgte ebenfalls die Bildung von korrespondierenden Regioisomeren der dargestellten dimeren Produkte, in PcL-katalysierten Reaktionen (pH 5) wurden ausschließlich diese Regioisomere generiert (Aminkopplung vermutlich am C-6-Atom; nicht dargestellt).

Im Gegensatz dazu erfolgte in PcL-katalysierten Reaktionen (pH 5) ausschließlich die Bildung eines dazu regioisomeren Dimers (Aminierung vermutlich in para-Position zur Methylgruppe bzw. in meta-Position zur Methoxygruppe), d.h. nur eines dieser zwei monoaminierten Produkte wurde gebildet. Dies deutete auf eine in Abhängigkeit von den pH-Werten des Reaktionsmilieus dirigierte Bildung von monoaminierten Regioisomeren hin - bei pH 5 (PcL) wird nur ein Isomer gebildet, bei pH 7 (MtL) entstehen hingegen zwei Isomere.

Eine Diaminierung, d.h. die Bildung von trimeren Kopplungsprodukten (9f, 11m, 13t), erfolgte stets mit überschüssig eingesetzten Aminopartnern. In MtL-katalysierten Reaktionsansätzen koppelten die Aminopartner dabei jedoch nicht an dem noch unbesetzten C-6-Atom des 2-Methoxy-3-methyl-1,4-benzochinons, d.h. in ortho-Position zum ersten Aminsubstituenten, sondern unter Eliminierung der OCH$_3$-Gruppe.

Die innerhalb dieser Arbeit nachgewiesene nucleophile Verdrängungsreaktion der OCH₃-Gruppe durch einen zweiten Aminopartner (Diaminierung) wurde auch in NaIO₃-katalysierten Diaminierungsreaktionen von alkylsubstituierten Hydrochinonen nachgewiesen (SCHÄFER & AGUADO, 1971). Darüber hinaus konnte in den eigenen Untersuchungen der Aminkopplung an das 3-Methylbrenzkatechin (1a), das Eigenreaktionsprodukt M-1,2-HQ-ERP3 als ein Präkursor identifiziert werden, bei welchem - unter Eliminierung bzw. Verdrängung der OCH₃-Gruppe durch die NH₂-Gruppe - eine Bildung monoaminierter Produkte einsetzte (vgl. Kap. 4.2.2.1; HERTER et al., 2011a).

4.2.2.3 Einfluss von Reaktionsparametern auf die Gewinnung heteromolekularer Kopplungsprodukte

Die in der vorliegenden Arbeit vorgenommenen heteromolekularen Kopplungsreaktionen wurden sowohl mit Phenoloxidasen als biologische Katalysatoren als auch mit Natriumiodat (NaIO₃) als chemischen Kopplungsvermittler anhand einer Modellreaktion durchgeführt. Eine Voraussetzung für die Aminierung der eingesetzten ortho- und para-dihydroxylierten Verbindungen war deren vorangehende Aktivierung, d.h. eine Bildung von benzochinoiden Molekülen, welche durch alle der eingesetzten Katalysatoren realisiert werden kann. Bei den Aminierungsreaktionen waren unabhängig davon jedoch noch weitere Parameter zu berücksichtigen, da in Abhängigkeit von diesen nicht zuletzt die Ausbeuten der entsprechenden

Enzyme für eine Aminierung der ortho-dihydroxylierten Modellverbindung 3-Methylbrenzkatechin (1a).

Innerhalb der eigenen Arbeit wurde das Potential des chemischen Kopplungsvermittlers NaIO₃ im Vergleich zu der Phenoloxidase MtL anhand einer Aminierungsreaktion von 3-Methylbrenzkatechin (1a) mit n-Hexylamin (2d) in Abhängigkeit von den Katalysatoraktivitäten bzw. -konzentrationen untersucht. Eine Steigerung der Konzentrationen des chemischen Katalysators NaIO₃ (6 mM bis 100 mM) war mit einer Erhöhung der Ausbeuten des monoaminierten Kopplungsprodukts 3d verbunden.

In Phenoloxidase-vermittelten Aminierungsreaktionen von para-dihydroxylierten Enzymsubstraten wurden die Ausbeuten an monoaminierten Kopplungsprodukten ebenfalls mit einer Erhöhung der Aminkonzentrationen gesteigert, jedoch führte dies ab einer bestimmten Aminkonzentration zur gesteigerten Bildung von diaminierten Produkten (HAHN et al., 2009; MIKOLASCH et al., 2010). Dies traf innerhalb der eigenen Untersuchungen auch für heteromolekulare Kopplungsreaktionen mit der para-dihydroxylierten Verbindung 2-Methoxy-3-methylhydrochinon (1g) zu, welche unter dem Aspekt einer Gewinnung von Mitomycin-Derivaten (vgl. Kap. 3.10.2.1) mit diversen primären Aminen umgesetzt wurde. Bei äquimolaren Konzentration von 1g mit den Aminopartnern n-Octylamin (2f), Geranylamin (2m) und Cyclooctylamin (2t) dominierte die Bildung der monoaminierten Kopplungsprodukte (Dimere), mit Überschuss der Aminopartner die von diaminierten Produkten (Trimere). Jedoch muss bei der Wahl der Eduktkonzentration in Phenoloxidase-katalysierten Reaktionen auch berücksichtigt werden, dass die Enzyme selbst durch die im Reaktionsmilieu enthaltenen Reaktanden sowie den gebildeten Semichinon-Radikalen inhibiert werden können (ROBLES et al., 2000; LIERS et al., 2007). In Abhängigkeit von der eingesetzten Phenoloxidase und deren Substrataffinität kann eine
DISKUSSION

Der Einsatz von Lösungsmitteln wurde bereits in vorangegangenen Kapiteln hinsichtlich der Enzyme und Reaktionsmechanismen diskutiert (vgl. Kap. 4.1.3.2, Kap. 4.2.2.1) und soll an dieser Stelle nicht nochmals aufgegriffen werden.

4.2.2.4 Abschätzung des möglichen Wirkungsspektrums ausgewählter Kopplungsprodukte

In der vorliegenden Arbeit wurden die alkylaminierten Transformationsprodukte 3a-g (vgl. Kap. 3.9.2), welche aus heteromolekularen Kopplungsreaktionen des 3-Methylbrenzkatechins (1a) mit linearen aliphatischen Aminen (2a-g) isoliert wurden, hinsichtlich ihrer log \(P_{ow} \)-Werte mittels HPLC-Analyse untersucht (vgl. Kap. 3.9.3). In Abhängigkeit von der Alkylkettenlänge der an das 3-Methyl-[1,2]-benzochinon gekoppelten Amine konnte, im Vergleich zu der Ausgangsverbindung 1a, eine verminderte bzw. erhöhte Lipophilie der monoaminierten Kopplungsprodukte ermittelt werden. Der log \(P_{ow} \) dient einer quantitativen Beschreibung der Lipophilie und wird als eine Schlüsseldeterminante für die pharmakokinetischen Eigenschaften einer Verbindung, gemäß ihres Verteilungsverhaltens zwischen lipophilen Biomembranen und wässrigem Cytosol, angesehen (GULYAEVA et al., 2002). Zudem ist der log \(P_{ow} \) ein wichtiger Parameter in QSAR-Studien (quantitative structure-activity relationships) und in Bereichen des Wirkstoffdesigns, da bei diesem eine enge Verknüpfung mit der Wirkstoffabsorption, Bioverfügbarkeit, der Metabolisierung und der Toxizität besteht (WANG & LIEN, 1980). Die an den untersuchten heteromolekularen Kopplungsprodukten 3a-g angebundenen Amine tragen, in Abhängigkeit von ihrer Alkylkettenlänge und der sich daraus ergebenden Lipophilie, zu einer verbesserten Aufnahme von Wirkstoffen bei. Einerseits konnte bereits nachgewiesen werden, dass über eine Ionen-Paarung von Salicylsäure-Derivaten mit den primären aliphatischen Aminen \(n \)-Butylamin (2b), \(n \)-Hexylamin (2d) und \(n \)-Octylamin (2f) eine erhöhte Wirkstoffaufnahme bzw. Membrangängigkeit aufgrund erhöhter log \(P_{ow} \)-Werte erfolgt (KAMAL et al., 2006). Salicylsäure-Derivate können somit in ihrer ionischen Form von der Haut resorbiert werden (KAMAL et al., 2006). Andererseits kann auch eine gesteigerte Zersetzung von Cholesterin- und Gallensteinen in Anwesenheit von \(n \)-Hexylamin...
DISKUSSION

Anhand der angeführten Beispiele kann angenommen werden, dass auch die alkylaminierten Brenzkatechin-Derivate 3a-g prinzipiell ein sehr breites Wirkungsspektrum aufweisen. Ferner könnte diese Annahme auch für die dimeren Kopplungsprodukte 3j-l (vgl. Kap. 3.9.5), welche über eine heteromolekulare Kopplung von 3-Methylbrenzkatechin mit verzweigtkettigen Hexylamin-Derivaten ((R)-2-Aminohexan (2j), 2-Amino-5-methylhexan (2k) und 2-Ethyl-1-hexylamin (2l)) dargestellt wurden, zutreffen. Weitere der in dieser Arbeit für eine Derivatisierung des 3-Methylbrenzkatechins eingesetzten Aminopartner, so z.B. (R)-(+-)Bornylamin (2o), (-)-cis-Myrtanylamin (2q) und (1S,2S,3S,5R)-(+-)-Isopinocampheylamin (2r), besitzen u.a. eine hohe Wirkung gegen Tuberkulose und werden als Pharmakophore bei mycobakteriellen Infektionskrankheiten eingesetzt (PROTOPOPOVA et al., 2005; BOGATCHEVA et al., 2006). Über Phenoloxidase-katalysierte Reaktionen konnten ortho-benzochinoide Transformationsprodukte, an welchen die voran genannten bicyclischen Amine gekoppelt waren (vgl. Kap. 3.9.7), mit Ausbeuten von 45 % (Produkt 3o), 27 % (Produkt 3q) und 36 % (3r) gewonnen werden und stellen somit durchaus einen Ausgangspunkt für weitere Testungen dar. Bereits in der Einleitung
wurden diesbezüglich die vielfältigen Einsatzmöglichkeiten derartiger Kopplungsprodukte, so z.B. bei der Behandlung von Influenza A, hervorgehoben.

Über die innerhalb dieser Arbeit vorgenommenen Derivatisierungsreaktionen des 2-Methoxy-3-methylhydrochinons (1g) mit den Aminopartnern n-Octylamin (2f), Geranylamin (2m) sowie Cyclooctylamin (2t) konnte gezeigt werden, dass das (Wirkungs)Spektrum bekannter und medizinisch indizierter Mitomycine über Enzym-vermittelte Reaktionen durchaus erweitert werden kann. Bereits in der Einleitung wurden diesbezüglich die bioaktiven Eigenschaften, welche allein schon die eingesetzten Aminopartner besitzen, vorgestellt. Die Syntheseprodukte 8f₂ (Dim er) bzw. 9f (Trimer), welche Kopplungsprodukte mit n-Octylamin-Substituenten darstellen, könnten neben einer antitumoralen Wirkung auch eine - durch die aliphatischen Aminsubstituenten bedingte - verbesserte Membrangängigkeit besitzen. Weiterhin könnten die Produkte 10m₂ (Dimer) und 11m (Trimer) signifikant hohe antitumorale Wirkungen aufweisen, da die gekoppelten Geranylamin-Substituenten bereits alleinig eine Unterdrückung des Wachstums von Krebstumoren bewirken (AKIYAMA et al., 2005). Darüber hinaus kann für die Produkte 12t₂ (Dimer) und 13t (Trimer) einer heteromolekularen Kopplung des 2-Methoxy-3-methylhydrochinons mit Cyclooctylamin, aufgrund der nachgewiesenen Wirksamkeit des Amins gegen Influenza A (ELEFTHERATOS et al., 2010), auch eine antivirale Aktivität angenommen werden.
5. ZUSAMMENFASSUNG

Die Ergebnisse lassen sich - gegliedert nach den Arbeitsschwerpunkten - im Einzelnen wie folgt zusammenfassen:

Untersuchungen des Stammes *Azotobacter chroococcum* SBUG 1484

1. In Isolationsversuchen für eine Anreicherung von zur Stickstofffixierung befähigten Bodenbakterien wurde das Bakterienisolat SBUG 1484 als

2. Bei der Testung geeigneter C-Quellen für eine Biomasseproduktion erwies sich nur ein begrenztes Spektrum an Zuckersubstraten als verwertbar. Das stärkste Wachstum unter stickstofffixierenden Bedingungen (d.h. ohne exogene N-Quelle) war mit Glucose in einer 1 %-igen Endkonzentration (v/v) zu verzeichnen.

auch nach Erreichen der stationären Wachstumsphase extrazellulär akkumuliert, die 3,4-Dihydroxybenzoësäure nur temporär ausgeschieden (HERTER et al., 2011c; HERTER et al., 2012).

7. Eine Kultivierung von A. chroococcum in Gegenwart verschiedener exogener Stickstoffquellen anorganischer oder organischer Natur, welche eine N₂-Fixierung unterdrückte, führte zu keinem Zeitpunkt zur Bildung melanisierter Biomasse oder dem Übergang von vegetativen Zellen in das Cystenstadium (HERTER et al., 2011c). Auf die Anwesenheit exogener N-Quellen reagierten die Zellen dagegen mit einer beträchtlichen Pleomorphie und Variation der Zellformen. Generell waren sowohl die lag- als auch die exponentielle
Wachstumsphase der Zellen bei einer Kultivierung mit exogenen Stickstoffquellen kürzer als bei einer N\textsubscript{2}-Fixierung. Anorganische NO\textsubscript{3}--Verbindungen waren geeignete N-Quellen, wogegen NH\textsubscript{4}+-Verbindungen das Wachstum kaum unterstützten. Bei einer Kultivierung mit organischen N-Quellen war die höchste Biomasseproduktion zu verzeichnen.

10. Die physiologische Funktion der bei stickstofffixierendem Wachstum von \textit{A. chroococcum} exprimierten Phenoloxidase AcCL könnte folgende Bereiche betreffen: (I) Die Phenoloxidase als ein sauerstoffverbrauchendes Enzym kann zu einer Verminderung der O\textsubscript{2}-Konzentration und damit zu einem Schutz der O\textsubscript{2}-empfindlichen intrazellulären Nitrogenase beitragen - insbesondere im Zuge des beschriebenen morphologischen Differenzierungsprozess (vegetative Zelle - Cyste) - welcher eine massive Umlagerung der Zellumhüllung mit sich bringt. (II) Das Enzym ist zu einer oxidativen Aktivierung des in das Kulturmedium ausgeschiedenen Brenzkatechins befähigt und kann die Melaninbildung aus
Semichinonradikalen initiieren. Melanin ist ein mikrobielles Schutzpolymer, welches eine Barriere gegenüber cytotoxischen O$_2$-Radikalen, Agentien und Austrocknung darstellt - die Expression einer Phenoloxidase gewährt somit einen Überlebensvorteil von *A. chroococcum* bzw. dessen Cysten. (III) Die Phenoloxidase erfüllt gleichzeitig beide Funktionen (I und II), zumal für einen hohen O$_2$-Verbrauch eine große Menge eines geeigneten Substrats zu einem Produkt umgewandelt werden muss und dieses offenbar zu Beginn der exponentiellen Wachstumsphase noch nicht in ausreichender Menge zur Verfügung steht.

11. Eine zusätzliche CuSO$_4$-Supplementierung stickstofffixierender Kulturen bewirkte innerhalb nicht kritischer Konzentrationen eine frühzeitigere Bildung des zellassozierten Melanins und induzierte eine bis zu 5-fach höhere Phenoloxidase-Aktivität (HERTER et al., 2012).

lagen zwischen 60 % bis 70 % Restaktivität vor. Die lösungsmittelabhängige Aktivität wurde mit ansteigenden Konzentrationen diverser Lösungsmittelgruppen geprüft. DMSO (15 %, v/v) führte zu einer 42%-igen Steigerung der 2,6-DMP-Oxidation (60 min Inkubation). Mit MeOH und EtOH (15 %, v/v) lag nach 20 min keine Inhibition vor; nach 60 min besaß AcCL eine Restaktivität von 63 bzw. 77 % (HERTER et al., 2011d).

14. Der Einfluss von diversen Metallionen (0,01, 0,1, 1 und 2 mM) wurde geprüft. Die stärkste Inhibition erfolgte mit FeSO₄, mit trivalenten Fe-Ionen (FeCl₃) in derselben Konzentration trat keine Inhibition auf. Ebenfalls keine bzw. eine marginale Inhibition erfolgte mit 0,1 - 1,0 mM (v/v) MgSO₄, MnCl₂, CoCl₂, NiCl₃ und Na₂MoO₄. Der Zusatz von CuSO₄ (1 mM) steigerte die Phenoloxidase-Aktivität um 30 % (HERTER et al., 2011d).

Phenoloxidase-vermittelte Kopplungsreaktionen

Homomolekulare Kopplungsreaktionen

Oxidierbarkeit und auch die Stabilitäten der aktivierten Enzymsubstratmoleküle sowie weiterer Intermediate beeinflussten.

Heteromolekulare Kopplungsreaktionen

7. Bei den para-dihydroxylierten Verbindungen Methylhydrochinon, Methoxyhydrochinon und tert-Butylhydrochinon waren die enzymatisch gebildeten para-Benzochinone stets Präkursoren für C-N-Kopplungsreaktionen - methoxyierte Eigenreaktionsprodukte stellten somit Nebenreaktionsprodukte dar. Die Aminierung erfolgte in meta- und para-Stellung zur CH$_3$-Gruppe (Regioisomere), in para-Stellung zur OCH$_3$-Gruppe und in meta-Stellung zur C(CH$_3$)$_3$-Gruppe.

8. Die heteromolekularen Kopplungsprodukte der para-dihydroxylierten Verbindungen waren in Methanol stabiler als die der ortho-dihydroxylierten

10. In Reaktionen des 2-Methoxy-3-methylhydrochinons mit den Aminopartnern n-Octylamin, Geranylamin und Cyclooctylamin konnten sowohl dimere als auch trimere Hybridmoleküle mit Mitomycin-ähnlichen Strukturen synthetisiert werden. Es erfolgte eine Bildung regioisomerer Dimere. Mit MtL (pH 7) wurden zwei Dimere (Verhältnis 1:2) gebildet, mit PcL (pH 5) ausschließlich ein Dimer, welches in Reaktionen mit MtL in geringeren Konzentrationen detektiert wurde. Bei den in MtL-katalysierten Reaktionen quantitativ dominierenden Dimeren konnte eine Monoaminierung in para-Position zur OCH3-Gruppe nachgewiesen werden. Eine Trimerbildung, d.h. die Diaminierung, bedingte die Verdrängung der OCH3-Gruppe und erfolgte in ortho-Position zur CH3-Gruppe bzw. in para-Position zum ersten Aminsubstituenten. Die Monoaminierung überwog bei äquimolarer Eduktkonzentration, eine Diaminierung mit den im Überschuss eingesetzten Aminopartnern.

11. Eine Steigerung der Ausbeuten an dimeren Kopplungsprodukten konnte durch eine Erhöhung der Amindonorkonzentrationen sowie der Optimierung der Phenoloxidase-Aktivität erzielt werden. Mit überschüssig eingesetzten Aminopartnern wurden die Nebenreaktionen der benzochinoiden Intermediate zugunsten der Produktbildungsrate unterdrückt. Insbesondere in Reaktionen

6. LITERATURVERZEICHNIS

CHRISTENSEN, W.B. (1946) Urea decomposition as a means of differentiating _Proteus_ and paracolon cultures from each other and from _Salmonella_ and _Shigella_ types. J. Bacteriol. 52: 461-466.

LITERATURVERZEICHNIS

7. ANHANG

Anhang A: Ergänzungen zu Material und Methoden...A 1

Tabelle 1: Stamm- und Arbeitslösungen für eine Differential- und
cytologische Färbung von A.-chroococcum-Zellen...A 1

Tabelle 3: Temperaturprogramme für die Gradienten- und Colony-PCR......................A 3

Tabelle 4: Übersicht über die Eigenschaften der in Biotransformationsreaktionen eingesetzten rekombinant exprimierten bakteriellen Phenoloxidaseden CotA und SLAC sowie der pilzlichen Phenoloxidase-Isoenzyme PCL35, TvL5 und TvL10..A 3

Tabelle 5: Übersicht über die Zusammensetzung der verwendeten Marker 1-5 für eine SDS- und semi-denaturierende PAGE sowie des Markers 6 für die FERGUSON-Analyse (native PAGE) ...A 4

Tabelle 6: Arbeitsschritte für eine Silberfärbung von SDS-Gelen mit dem PageSilver™ Silver Staining Kit..A 5

Tabelle 7: Reinigungsschemata für die Gewinnung von heteromolekularen Kopplungsprodukten aus Transformationsreaktionen mit den Phenoloxidase-Substraten 3-Methylbrenzkatechin (1a), 3-Methoxybrenzkatechin (1b), Methylhydrochinon (1d), Methoxyhydrochinon (1e), tert-Butylhydrochinon (1f) und 2-Methoxy-3-methylhydrochinon (1g) mittels Festphasenextraktion.....................................A 6

Tabelle 8: Strukturen der Verbindungen bei Testung von AcCL-, PCL- und AbT-Substraten..A 8

Anhang B: HPLC- und GC-MS-Daten...A 10

Tabelle 9: Übersicht über die UV/VIS-Absorptionsspektren und HPLC-Retentionszeiten der Phenoloxidase-Substrate sowie der enzymatisch gebildeten chinoiden Produkte...A 10

Tabelle 10: Übersicht über die UV/VIS-Absorptionsspektren, HPLC-Retentionszeiten und Strukturen heteromolekularer Kopplungsprodukte aus Transformationsreaktionen mit den Phenoloxidase-Substraten 3-Methylbrenzkatechin (1a), 3-Methoxybrenzkatechin (1b), Methylhydrochinon (1d), Methoxyhydrochinon (1e), tert-Butylhydrochinon (1f), 2-Methoxy-3-methylhydrochinon (1g), 2,3-Dimethoxy -5-methylhydrochin (1h) und 2-Methyl-naphthohydrochinon (1i). ...A 12
Tabelle 11: Retentionszeiten und Massenspektren der bei GC-MS-Analyse eines methanolischen Gesamtextraktes (underivatisiert) einer Reaktion von 3-Methyl-brenzkatechin (1a) mit MtL (pH 7) detektierten Eigenreaktionsprodukte im Vergleich zu Massenspektren und Strukturvorschlägen der Massenspektren-Bibliothek...A 17

Tabelle 12: Retentionszeiten und Massenspektren der bei GC-MS-Analyse detektierten Peaks eines underivatisierten sauren Extrakts (pH 1,8) des Kulturüberstandes von A. chroococcum (56-h-alte stickstofffixierende Kultur) ...A 18

Anhang C: LC-MS und HR-MS-Spektren..A 19

Tabelle 13: Strukturvorschläge für detektierte Peaks eines methanolischen Gesamtextraktes gewonnen aus einer MtL-katalysierten Reaktion des 4-tert-Butylbrenzkatechins mit n-Hexylamin nach einer Reaktionszeit von 100 min.................................A 26

Anhang D: NMR-Spektren..A 27
ANHANG A: Ergänzungen zu Material und Methoden

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Färbung von Bakterienzellen nach GRAM</td>
<td></td>
</tr>
<tr>
<td>Safranin-Stammlösung</td>
<td>Safranin O</td>
</tr>
<tr>
<td></td>
<td>Ethanol</td>
</tr>
<tr>
<td></td>
<td>3,4 g</td>
</tr>
<tr>
<td></td>
<td>100 mL</td>
</tr>
<tr>
<td>Safranin-Arbeitslösung</td>
<td>Safranin-Stammlösung</td>
</tr>
<tr>
<td></td>
<td>A. dest.</td>
</tr>
<tr>
<td></td>
<td>10 mL</td>
</tr>
<tr>
<td></td>
<td>100 mL</td>
</tr>
<tr>
<td>Lugolsche Lösung (Indikatorlösung)</td>
<td>KI</td>
</tr>
<tr>
<td></td>
<td>2 g</td>
</tr>
<tr>
<td></td>
<td>1 g ad 300 mL</td>
</tr>
<tr>
<td>Endosporenfärbung nach WIRTZ (1908)</td>
<td></td>
</tr>
<tr>
<td>Malachitgrün-Arbeitslösung</td>
<td>Malachitgrün</td>
</tr>
<tr>
<td></td>
<td>A. dest.</td>
</tr>
<tr>
<td></td>
<td>5 g</td>
</tr>
<tr>
<td></td>
<td>100 mL</td>
</tr>
<tr>
<td>Geißelfärbung nach KODAKA et al. (1982)</td>
<td></td>
</tr>
<tr>
<td>Lösung A (Beizmittel)</td>
<td>Tannin</td>
</tr>
<tr>
<td></td>
<td>10 g</td>
</tr>
<tr>
<td></td>
<td>50 mL</td>
</tr>
<tr>
<td></td>
<td>wässrige Lösung von KAl(SO₄)₂ x 12 H₂O (ca. 60 g L⁻¹)</td>
</tr>
<tr>
<td></td>
<td>50 mL</td>
</tr>
<tr>
<td>Lösung B (Farbstofflösung)</td>
<td>Ethanolisches Kristallviolett</td>
</tr>
<tr>
<td></td>
<td>10 mL</td>
</tr>
<tr>
<td>Färbung von Polyphosphat-Granula mit Toluidinblau</td>
<td></td>
</tr>
<tr>
<td>Toluidinblau-Arbeitslösung</td>
<td>Toluidinblau O</td>
</tr>
<tr>
<td></td>
<td>A. dest.</td>
</tr>
<tr>
<td></td>
<td>1 g</td>
</tr>
<tr>
<td></td>
<td>100 mL</td>
</tr>
<tr>
<td>Färbung von Lipiden und PHB-Granula mit Sudanschwarz</td>
<td></td>
</tr>
<tr>
<td>Sudanschwarz B-Arbeitslösung</td>
<td>Sudanschwarz B</td>
</tr>
<tr>
<td></td>
<td>Ethanol (70 %-ig)</td>
</tr>
<tr>
<td></td>
<td>0,3 g</td>
</tr>
<tr>
<td></td>
<td>100 mL</td>
</tr>
<tr>
<td>Färbung von Speicherpolysacchariden mit Lugolscher Lösung</td>
<td></td>
</tr>
</tbody>
</table>

verändert nach SCHAEFFER & FULTON (1933).

DNA-Isolation nach dem TRI REAGENT® Protokoll

<table>
<thead>
<tr>
<th>Arbeitsschritte</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>

Reinigung der PCR-Produkte

<table>
<thead>
<tr>
<th>Arbeitsschritte</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
</tbody>
</table>

Plasmid-Präparation

<table>
<thead>
<tr>
<th>Arbeitsschritte</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5*</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
</tbody>
</table>

[*] Arbeitsschritte 5 und 6 zweimal durchgeführt.
Tab. 3: Temperaturprogramme für die Gradienten- und Colony-PCR.

<table>
<thead>
<tr>
<th>Temperaturprogramm für die Gradienten-PCR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatur</td>
<td>Dauer</td>
</tr>
<tr>
<td>95 °C</td>
<td>5 min</td>
</tr>
<tr>
<td>95 °C</td>
<td>30 sec</td>
</tr>
<tr>
<td>45 °C (Annealing-Temperatur)*</td>
<td>30 sec</td>
</tr>
<tr>
<td>72 °C</td>
<td>90 sec</td>
</tr>
<tr>
<td>72 °C</td>
<td>5 min</td>
</tr>
<tr>
<td>4 °C</td>
<td>Herunterkühlen</td>
</tr>
<tr>
<td>Anzahl der Zyklen</td>
<td>30</td>
</tr>
<tr>
<td>Dauer</td>
<td>109 min</td>
</tr>
</tbody>
</table>

* Variante I 45 °C, Variante II 51,9 °C, Variante III 58,8 °C, Variante IV 65 °C.

Tab. 4: Übersicht über die Eigenschaften der in Biotransformationsreaktionen eingesetzten rekombinant exprimierten bakteriellen Phenoloxidasen CotA und SLAC sowie der pilzlichen Phenoloxidase-Isoenzymen PcL35, Tvl5 und Tvl10.

<table>
<thead>
<tr>
<th>Enzym</th>
<th>Rekombinante Herstellung</th>
<th>Präparat</th>
<th>Lagerung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Herkunft: BRAIN AG, Zwingenberg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SLAC</td>
<td>A Glycerol-stabilisierter Extrakt (50 % Glycerol, v/v)</td>
<td>4 °C</td>
</tr>
<tr>
<td></td>
<td>Eine cytoplasmatische Expression des SLAC-Gens ohne Signalsequenzen bzw. als Fusion mit vier verschiedenen Löslichkeits-vermittelnden Proteinen (u.a. MBP, GST, SUMO) erfolgte in E. coli Tuner (DE3)-Zellen. Die aus einer Fermentation im 1,5 L Maßstab stammenden Enzymproben wurden mit einer Aktivität von ca. 3,5 U mL⁻¹ (45 °C, 2,6-DMP-Assay) zur Verfügung gestellt.</td>
<td>B Unbehandeltes Lyophilisat</td>
<td>4 °C</td>
</tr>
<tr>
<td></td>
<td>Herkunft: BRAIN AG, Zwingenberg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Von dem Isoenzyme Pcl35 wurden Proben mit einer Aktivität von ca. 2 U mL⁻¹ (30 °C, ABTS-Assay) bereitgestellt, wohingegen die Aktivitäten von TvL5 und TvL10 maximal 1 U mL⁻¹ (30 °C, ABTS-Assay) betrugen.

Herkunft: AG Biotechnologie & Enzymkatalyse, Institut für Biochemie, Universität Greifswald

Tab. 5: Übersicht über die Zusammensetzung der verwendeten Marker 1-5 für eine SDS- und semi-denaturierende PAGE sowie des Markers 6 für die FERGUSON-Analyse (native PAGE).

<table>
<thead>
<tr>
<th>Marker 1: Roti®Mark STANDRAD (CARL ROTH GmbH & Co. KG, Karlsruhe)</th>
<th>Markerproteine</th>
<th>MW (kDa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lysozym (Huhn)</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Trypsin Inhibitor (Soja)</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Carbonanhydrase</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Ovalbumin (Huhn, glykosyliert)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Serumalbumin (Rind, glykosyliert)</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>β-Galaktosidase (rekombinant, E. coli)</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>Myosin (Rind)</td>
<td>212</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Marker 2: Roti®Mark BICOLOR (CARL ROTH GmbH & Co. KG, Karlsruhe)</th>
<th>Markerproteine</th>
<th>MW (kDa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lysozym (Huhn)</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Trypsin Inhibitor (Soja)</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Rekombinantes Protein</td>
<td>25 (rot)</td>
<td></td>
</tr>
<tr>
<td>Carbonanhydrase</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Ovalbumin (Huhn, glykosyliert)</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Rekombinantes Protein</td>
<td>55 (rot)</td>
<td></td>
</tr>
<tr>
<td>Serumalbumin (Rind, glykosyliert)</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>β-Galaktosidase (rekombinant, E. coli)</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td>Myosin (Rind)</td>
<td>245</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Marker 3: Sigma Marker™ Low Molecular Weight Range (SIGMA-ALDRICH, Steinheim)</th>
<th>Markerproteine</th>
<th>MW (kDa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aprotinin (Rinderlunge)</td>
<td>6,5</td>
<td></td>
</tr>
<tr>
<td>α-Lactalbumin (Rindermilch)</td>
<td>14,2</td>
<td></td>
</tr>
<tr>
<td>Trypsin Inhibitor (Soja)</td>
<td>24,0</td>
<td></td>
</tr>
<tr>
<td>Carbonanhydrase (Rindererythrozyten)</td>
<td>29,0</td>
<td></td>
</tr>
<tr>
<td>Glyceraldehyd-3-phosphat-Dehydrogenase (Hasenmuskel)</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Ovalbumin (Hühnerei)</td>
<td>45,0</td>
<td></td>
</tr>
<tr>
<td>Serumalbumin (Rind)</td>
<td>66,</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Marker 4: PageRuler™ Prestained Protein Ladder (Fermentas, St. Leon-Rot)</th>
<th>Markerproteine</th>
<th>MW (kDa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 rekombinante, hochreine vorgefärbte Markerproteine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 (grün), 17, 26, 34, 43, 55, 72 (orange) 95, 130, 170</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Marker 5: PageRuler™ Plus Prestained Protein Ladder (Fermentas, St. Leon-Rot)</th>
<th>Markerproteine</th>
<th>MW (kDa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 rekombinante, prokaryotische vorgefärbte Markerproteine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11, 17, 28 (rot), 36, 55, 72 (rot), 95, 130, 250</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 0,1 g der CotA-Präparationen C und D in 1 mL A. dest. gelöst.
Marker 6: Nondenatured Protein Molecular Weight Marker Kit (SIGMA-ALDRICH, Steinheim) für die Analyse nach FERGUSON (1964)

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Markerproteine</th>
<th>MW (kDA)</th>
<th>Anmerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>α-Lactalbumin (Kuhmilch)</td>
<td>14,2</td>
<td>Monomer</td>
</tr>
<tr>
<td>2</td>
<td>Carbonanhydrase (Rindererythrozyten)</td>
<td>29,0</td>
<td>Monomer</td>
</tr>
<tr>
<td>3</td>
<td>Albumin (Hühnerei)</td>
<td>45,0</td>
<td>Monomer</td>
</tr>
<tr>
<td>4</td>
<td>Serumalbumin (Rind)</td>
<td>66,0</td>
<td>Monomer</td>
</tr>
<tr>
<td>5</td>
<td>Urease (Jackbohne)</td>
<td>132,0</td>
<td>Dimer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>272,0</td>
<td>Trimer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>545,0</td>
<td>Hexamer</td>
</tr>
</tbody>
</table>

a, b keine Herstellerangaben zur Herkunft der Markerproteine.

Tab. 6: Arbeitsschritte für eine Silberfärbung von SDS-Gelen mit dem PageSilver™ Silver Staining Kit.

<table>
<thead>
<tr>
<th>Arbeitschritte</th>
<th>Vorgehen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixierung I</td>
<td>Entfernen des Gels aus Elektrophoresekammer und gründliches Waschen mit A. bidest. Zusatz von 100 mL der Fixierlösung I und Behandlung des Gels (abgedeckt) in Mikrowelle für 30 sec. Behutsame Inkubation des Gels auf einem Gelschüttler (Polymax 1040, Heidolph Instruments GmbH & Co. KG, Schwabach) für 10 min. Danach Abdekantieren der Fixierlösung I.</td>
</tr>
<tr>
<td>Fixierung II und Waschen a</td>
<td>Zusatz von 100 mL der Fixierlösung II und Behandlung des Gels (unabgedeckt) in Mikrowelle für 30 sec. Behutsame Inkubation des Gels auf Gelschüttler für 10 min. Abdekantieren der Fixierlösung II. Zusatz von 100 mL A. bidest. und Inkubation für 20 sec auf Gelschüttler. Danach Abdekantieren des A. bidest’s.</td>
</tr>
<tr>
<td>Sensitivierung und Waschen b</td>
<td>Zusatz von 100 mL der Sensitizing-Lösung und Inkubation des Gels für 1 min auf Gelschüttler. Abgießen der Sensitizing-Lösung. Waschen des Gels mit 100 mL A. bidest unter vorsichtigem Schütteln für 20 sec.</td>
</tr>
<tr>
<td>Färbung und Waschen c</td>
<td>Zusatz von 100 mL Färbelösung und Inkubation für 20 min auf Gelschüttler. Adekantieren der Färbelösung. Waschen des Gels mit 100 mL A. bidest. unter vorsichtigen Schütteln für 20 sec.</td>
</tr>
<tr>
<td>Entwickeln</td>
<td>Zusatz von 100 mL Entwickler-Lösung und Inkubation für ca. 4 min bis zur Darstellung gut entwickelter Banden. Abgießen der Entwickler-Lösung.</td>
</tr>
<tr>
<td>Termination</td>
<td>Zusatz von 100 mL Stop-Lösung und Inkubation unter behutsamem Schütteln für 5 min. Abgießen der Stop-Lösung.</td>
</tr>
</tbody>
</table>

*a Fixierungs- und Waschschritt 2-mal vorgenommen; b Waschschritt 2-mal durchgeführt.
Tab. 7: Reinigungsddemata für die Gewinnung von heteromolekularen Kopplungsprodukten aus Transformationsreaktionen mit den Phenoloxidase-Substraten 3-Methylbrenzkatechin (1a), 3-Methoxybrenzkatechin (1b), Methylhydrochinon (1d), Methoxyhydrochinon (1e), tert-Butylhydrochinon (1f) und 2-Methoxy-3-methylhydrochinon (1g) mittels Festphasenextraktion (Probenvolumen pro Säulenvolumen: max. 50 mL).

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Ansatz</th>
<th>Spülen</th>
<th>Eluieren</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a Dimer</td>
<td>3-Methylbrenzkatechin (1a) : n-Propylamin (2a)</td>
<td>40 mL: 30 % MeOH:70 % CH₃COOH</td>
<td>50 mL: 50 % MeOH:50 % CH₃COOH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 mL: 40 % MeOH:60 % CH₃COOH</td>
<td></td>
</tr>
<tr>
<td>3b Dimer</td>
<td>3-Methylbrenzkatechin (1a) : n-Butylamin (2b)</td>
<td>40 mL: 30 % MeOH:70 % CH₃COOH</td>
<td>70 mL: 50 % MeOH:50 % CH₃COOH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 mL: 40 % MeOH:60 % CH₃COOH</td>
<td></td>
</tr>
<tr>
<td>3c Dimer</td>
<td>3-Methylbrenzkatechin (1a) : n-Pentylamin (2c)</td>
<td>50 mL: 30 % MeOH:70 % CH₃COOH</td>
<td>60 mL: 70 % MeOH:30 % CH₃COOH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 mL: 40 % MeOH:60 % CH₃COOH</td>
<td></td>
</tr>
<tr>
<td>3d Dimer</td>
<td>3-Methylbrenzkatechin (1a) : n-Hexylamin (2d)</td>
<td>50 mL: 50 % MeOH:50 % CH₃COOH</td>
<td>70 mL: 70 % MeOH:30 % CH₃COOH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 mL: 60 % MeOH:40 % CH₃COOH</td>
<td></td>
</tr>
<tr>
<td>3e Dimer</td>
<td>3-Methylbrenzkatechin (1a) : n-Heptylamin (2e)</td>
<td>50 mL: 50 % MeOH:50 % CH₃COOH</td>
<td>80 mL: 70 % MeOH:30 % CH₃COOH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 mL: 60 % MeOH:40 % CH₃COOH</td>
<td></td>
</tr>
<tr>
<td>3f Dimer</td>
<td>3-Methylbrenzkatechin (1a) : n-Octylamin (2f)</td>
<td>50 mL: 50 % MeOH:50 % CH₃COOH</td>
<td>100 mL: 70 % MeOH:30 % CH₃COOH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 mL: 60 % MeOH:40 % CH₃COOH</td>
<td></td>
</tr>
<tr>
<td>3g Dimer</td>
<td>3-Methylbrenzkatechin (1a) : n-Nonylamin (2g)</td>
<td>50 mL: 50 % MeOH:50 % CH₃COOH</td>
<td>120 mL: 70 % MeOH:30 % CH₃COOH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 mL: 60 % MeOH:40 % CH₃COOH</td>
<td></td>
</tr>
<tr>
<td>M-1,2-HQ-KKP2 n.d.</td>
<td>3-Methylbrenzkatechin (1a) : n-Hexylamin (2d)</td>
<td>50 mL: 50 % MeOH:50 % CH₃COOH</td>
<td>30 mL: 100 % MeOH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 mL: 60 % MeOH:40 % CH₃COOH</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>70 mL: 70 % MeOH:30 % CH₃COOH</td>
<td></td>
</tr>
<tr>
<td>M-1,2-HQ-KKP3 n.d.</td>
<td>3-Methylbrenzkatechin (1a) : n-Hexylamin (2d)</td>
<td>50 mL: 50 % MeOH:50 % CH₃COOH</td>
<td>50 mL: 100 % MeOH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 mL: 60 % MeOH:40 % CH₃COOH</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>70 mL: 70 % MeOH:30 % CH₃COOH</td>
<td></td>
</tr>
<tr>
<td>3j Dimer</td>
<td>3-Methylbrenzkatechin (1a) : (R)-2-Aminohexan (2j)</td>
<td>50 mL: 50 % MeOH:50 % CH₃COOH</td>
<td>80 mL: 70 % MeOH:30 % CH₃COOH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 mL: 60 % MeOH:40 % CH₃COOH</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>70 mL: 70 % MeOH:30 % CH₃COOH</td>
<td></td>
</tr>
<tr>
<td>3k Dimer</td>
<td>3-Methylbrenzkatechin (1a) : 2-Amino-5-methylhexan (2k)</td>
<td>50 mL: 50 % MeOH:50 % CH₃COOH</td>
<td>80 mL: 70 % MeOH:30 % CH₃COOH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 mL: 60 % MeOH:40 % CH₃COOH</td>
<td></td>
</tr>
<tr>
<td>3l Dimer</td>
<td>3-Methylbrenzkatechin (1a) : 2-Ethyl-1-hexylamin (2l)</td>
<td>50 mL: 50 % MeOH:50 % CH₃COOH</td>
<td>80 mL: 70 % MeOH:30 % CH₃COOH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 mL: 60 % MeOH:40 % CH₃COOH</td>
<td></td>
</tr>
<tr>
<td>3n Dimer</td>
<td>3-Methylbrenzkatechin (1a) : exo-2-Aminonorbornan (2n)</td>
<td>50 mL: 50 % MeOH:50 % CH₃COOH</td>
<td>90 mL: 70 % MeOH:30 % CH₃COOH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 mL: 60 % MeOH:40 % CH₃COOH</td>
<td></td>
</tr>
<tr>
<td>Dimer</td>
<td>Methylbrenzkatechin (1a)</td>
<td>Amino</td>
<td>Lösungsmittelverhältnisse</td>
</tr>
<tr>
<td>-------</td>
<td>------------------------</td>
<td>-------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>3o</td>
<td>Dimer</td>
<td>(R)-(+)-Bornylamin (2o)</td>
<td>50 % MeOH: 50 % CH₃COOH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30 mL: 60 % MeOH: 40 % CH₃COOH</td>
</tr>
<tr>
<td>3p</td>
<td>Dimer</td>
<td>2-Amino-2-norbornan-carboxylsäure (2p)</td>
<td>50 % MeOH: 70 % CH₃COOH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30 mL: 40 % MeOH: 60 % CH₃COOH</td>
</tr>
<tr>
<td>3q</td>
<td>Dimer</td>
<td>(-)-cis-Myrtanylamin (2q)</td>
<td>50 % MeOH: 50 % CH₃COOH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30 mL: 60 % MeOH: 40 % CH₃COOH</td>
</tr>
<tr>
<td>3r₁</td>
<td>Dimer</td>
<td>(1S,2S,3S,5R)-(+)-Isopinocampheylamin (2r)</td>
<td>50 % MeOH: 50 % CH₃COOH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30 mL: 60 % MeOH: 40 % CH₃COOH</td>
</tr>
<tr>
<td>3s</td>
<td>Dimer</td>
<td>(-)-1-Cyclohexylethylamin (2s)</td>
<td>50 % MeOH: 50 % CH₃COOH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30 mL: 60 % MeOH: 40 % CH₃COOH</td>
</tr>
<tr>
<td>4d</td>
<td>Dimer</td>
<td>n-Hexylamin (2d)</td>
<td>50 % MeOH: 50 % CH₃COOH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30 mL: 60 % MeOH: 40 % CH₃COOH</td>
</tr>
<tr>
<td>5d₁₂</td>
<td>Dimer</td>
<td>Methylhydrochinon (1d)</td>
<td>n-Hexylamin (2d)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30 mL: 70 % MeOH: 30 % CH₃COOH</td>
</tr>
<tr>
<td>6d</td>
<td>Dimer</td>
<td>Methoxyhydrochinon (1e)</td>
<td>n-Hexylamin (2d)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30 mL: 60 % MeOH: 40 % CH₃COOH</td>
</tr>
<tr>
<td>7d</td>
<td>Dimer</td>
<td>tert-Butylhydrochinon (1f)</td>
<td>n-Hexylamin (2d)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40 mL: 70 % MeOH: 30 % CH₃COOH</td>
</tr>
<tr>
<td>8f₂</td>
<td>Dimer</td>
<td>2-Methoxy-3-methylhydrochinon (1g)</td>
<td>n-Octylamin (2f)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60 mL: 60 % MeOH: 40 % CH₃COOH</td>
</tr>
<tr>
<td>10m₂</td>
<td>Dimer</td>
<td>2-Methoxy-3-methylhydrochinon (1g)</td>
<td>Geranylamin (2m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60 mL: 60 % MeOH: 40 % CH₃COOH</td>
</tr>
<tr>
<td>12t₂</td>
<td>Dimer</td>
<td>2-Methoxy-3-methylhydrochinon (1g)</td>
<td>Cyclooctylamin (2t)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60 mL: 60 % MeOH: 40 % CH₃COOH</td>
</tr>
<tr>
<td>9f</td>
<td>Trimer</td>
<td>2-Methoxy-3-methylhydrochinon (1g)</td>
<td>n-Octylamin (2f)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60 mL: 60 % MeOH: 40 % CH₃COOH</td>
</tr>
<tr>
<td>11m</td>
<td>Trimer</td>
<td>2-Methoxy-3-methylhydrochinon (1g)</td>
<td>Geranylamin (2m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60 mL: 60 % MeOH: 40 % CH₃COOH</td>
</tr>
<tr>
<td>13t</td>
<td>Trimer</td>
<td>2-Methoxy-3-methylhydrochinon (1g)</td>
<td>Cyclooctylamin (2t)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60 mL: 60 % MeOH: 40 % CH₃COOH</td>
</tr>
</tbody>
</table>

*0,1 % Essigsäure (v/v) in A. bidest.; *Struktur nicht aufgeklärt (vermutlich Trimere).
Tab. 8: Strukturen der Verbindungen bei Testung von AcCL-, PcL- und AbT-Substraten.

<table>
<thead>
<tr>
<th>Monomethoxylierte Monophenole (Gruppe 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCH₃</td>
</tr>
<tr>
<td>Guajacol</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimethoxylierte Monophenole (Gruppe 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCH₃</td>
</tr>
<tr>
<td>2,6-Dimethoxyphenol (2,6-DMP)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ortho-dihydroxylierte Verbindungen (Gruppe 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCH₃</td>
</tr>
<tr>
<td>Brenzkatechin</td>
</tr>
</tbody>
</table>

| **H₃C** | **CH₃** | **H₂C** | **OH** | **OCH₃** | **OH** |
| 3-Isopropylbrenzkatechin | Dihydrokaffeesäure |
para-dihydroxylierte Verbindungen (Gruppe 4)

<table>
<thead>
<tr>
<th>Verbindung</th>
<th>Strukturformel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrochinon</td>
<td></td>
</tr>
<tr>
<td>2-Methylhydrochinon</td>
<td></td>
</tr>
<tr>
<td>2-Methoxyhydrochinon</td>
<td></td>
</tr>
<tr>
<td>tert-Butylhydrochinon</td>
<td></td>
</tr>
<tr>
<td>2,3-Dimethylhydrochinon</td>
<td></td>
</tr>
</tbody>
</table>

2,6-Dimethoxyhydrochinon

Melanin-Präkursoren und -anologa (Gruppe 5)

<table>
<thead>
<tr>
<th>Verbindung</th>
<th>Strukturformel</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Hydroxyindol</td>
<td></td>
</tr>
<tr>
<td>3-(3,4-Dihydroxyphenyl)-L-alanin (L-DOPA)</td>
<td></td>
</tr>
<tr>
<td>Tyrosin</td>
<td></td>
</tr>
<tr>
<td>Dopamin</td>
<td></td>
</tr>
<tr>
<td>3,4-Dihydroxybenzoesäure</td>
<td></td>
</tr>
</tbody>
</table>

meta-dihydroxylierte Verbindungen (Gruppe 6)

<table>
<thead>
<tr>
<th>Verbindung</th>
<th>Strukturformel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resorcinol</td>
<td></td>
</tr>
<tr>
<td>Orcinol</td>
<td></td>
</tr>
<tr>
<td>Olivetol</td>
<td></td>
</tr>
</tbody>
</table>

Weitere Verbindungen (Gruppe 7)

<table>
<thead>
<tr>
<th>Verbindung</th>
<th>Strukturformel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrogallol</td>
<td></td>
</tr>
<tr>
<td>para-Kresol</td>
<td></td>
</tr>
<tr>
<td>para-Phenylen diamin</td>
<td></td>
</tr>
</tbody>
</table>

a dimethylierte Verbindung.

b L-DOPA, Dopamin, 3,4-Dihydroxybenzoesäure und phenylessigsäure sind ortho-dihydroxylierte Verbindungen (Gruppe 3).
ANHANG B: HPLC- und GC-MS-Daten

Tab. 9: Übersicht über die UV/VIS-Absorptionsspektren und HPLC-Retentionszeiten der Phenoloxidase-Substrate sowie der enzymatisch gebildeten chinoiden Produkte.

<table>
<thead>
<tr>
<th>Enzymsubstrat</th>
<th>UV/VIS-Spektrum/ (R_f) (HPLC)</th>
<th>Chinoide Enzymsubstratmoleküle</th>
<th>UV/VIS-Spektrum/ (R_f) (HPLC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Methylbrenz-</td>
<td> 200 300 400 nm</td>
<td>M-1,2-HQ-ERP3 (Monomethoxyliertes 3-Methyl-[1,2]-benzochinon)</td>
<td> 300 400 500 600 nm</td>
</tr>
<tr>
<td>katechin (1a)</td>
<td>7,3 min mAU</td>
<td></td>
<td>5,4 min mAU</td>
</tr>
<tr>
<td>3-Methoxybrenz-</td>
<td> 200 300 400 nm</td>
<td>MO-1,2-HQ-ERP2 (Monomethoxyliertes 3-Methoxy-[1,2]-benzochinon)</td>
<td> 300 400 500 600 nm</td>
</tr>
<tr>
<td>katechin (1b)</td>
<td>5,7 min mAU</td>
<td></td>
<td>3,0 min mAU</td>
</tr>
<tr>
<td>4-tert-Butylbrenz-</td>
<td> 200 300 400 nm</td>
<td>tertB-1,2-HQ-ERP2 (Monomethoxyliertes 4-tert-Butyl-[1,2]-benzochinon)</td>
<td> 300 400 500 600 nm</td>
</tr>
<tr>
<td>katechin (1c)</td>
<td>8,9 min mAU</td>
<td></td>
<td>6,6 min mAU</td>
</tr>
<tr>
<td>Methylhydro-</td>
<td> 250 300 350 400 nm</td>
<td>M-1,4-Q (Methyl-[1,4]-benzochinon)</td>
<td> 200 300 500 550 nm</td>
</tr>
<tr>
<td>chinon (1d)</td>
<td>4,2 min mAU</td>
<td></td>
<td>6,0 min mAU</td>
</tr>
<tr>
<td>Methoxyhydro-</td>
<td> 200 300 400 nm</td>
<td>MO-1,4-Q (Methoxy-[1,4]-benzochinon)</td>
<td> 350 400 500 550 nm</td>
</tr>
<tr>
<td>chinon (1e)</td>
<td>3,5 min mAU</td>
<td></td>
<td>4,6 min mAU</td>
</tr>
<tr>
<td>tert-Butylhydro-</td>
<td> 200 300 400 nm</td>
<td>tertB-1,4-Q (tert-Butyl-[1,4]-benzochinon)</td>
<td> 300 400 500 550 nm</td>
</tr>
<tr>
<td>chinon (1f)</td>
<td>7,4 min mAU</td>
<td></td>
<td>9,9 min mAU</td>
</tr>
</tbody>
</table>
2-Methoxy-3-methylhydrochinon (1g)

MMO-1,4-Q
(2-Methoxy-3-methyl-[1,4]-benzochinon)

- **Retention Time**: 2,8 min
- **UV Spectrum**: 200 nm to 400 nm

2,3-Dimethoxy-5-methylhydrochinon (1h)

DMOM-1,4-Q
(2,3-Dimethoxy-5-methyl-[1,4]-benzochinon)

- **Retention Time**: 6,8 min
- **UV Spectrum**: 200 nm to 400 nm

2-Methylnaphtho-hydrochinon (1i)

MNH-1,4-Q
(2-Methylnaphtho-[1,4]-benzochinon)

- **Retention Time**: 11,8 min
- **UV Spectrum**: 300 nm to 500 nm

2,6-Dimethoxyphenol (2,6-DMP)

2,2',6,6'-Tetramethoxydibenzo-1-1'-dichinin
(C-C-Kopplungsprodukt aus zwei Molekülen 2,6-Dimethoxybenzochinon)

- **Retention Time**: 5,0 min
- **UV Spectrum**: 250 nm to 400 nm

- **Retention Time (Tailing)**: 6,5 min
- **UV Spectrum**: 300 nm to 600 nm

Phenoloxidase-Substrate (und chinoide Produkte): 1a, 1b, 1d, 1e, 1h, 1i, 2,6-DMP - HPLC-Fließmittelgradient 1; 1c, 1f, 1g - HPLC-Fließmittelgradient 2.
Tab. 10: Übersicht über die UV/VIS-Absorptionsspektren, HPLC-Retentionszeiten und Strukturen heteromolekularer Kopplungsprodukte aus Transformationsreaktionen mit den Phenoloxidase-Substraten 3-Methylbrenzkatechin (1a), 3-Methoxybrenzkatechin (1b), Methylhydrochinon (1d), Methoxyhydrochinon (1e), tert-Butylhydrochinon (1f), 2-Methoxy-3-methylhydrochinon (1g), 2,3-Dimethoxy-5-methylhydrochin (1h) und 2-Methyl-naphthohydrochinon (1i).

<table>
<thead>
<tr>
<th>Kopplungsprodukt</th>
<th>UV/VIS-Spektrum/Struktur</th>
<th>Rf HPLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a*</td>
<td></td>
<td>7.0 min</td>
</tr>
<tr>
<td>3b</td>
<td></td>
<td>8.8 min</td>
</tr>
<tr>
<td>3c</td>
<td></td>
<td>10.2 min</td>
</tr>
<tr>
<td>3d</td>
<td></td>
<td>11.6 min</td>
</tr>
<tr>
<td>3e</td>
<td></td>
<td>12.7 min</td>
</tr>
<tr>
<td>3f</td>
<td></td>
<td>13.6 min</td>
</tr>
</tbody>
</table>
ANHANG

3g

![Spectrum at time 11.55 min.](image)

3j

![Spectrum at time 12.81 min.](image)

3k

![Spectrum at time 10.06 min.](image)

3l

![Spectrum at time 12.15 min.](image)

3n

![Spectrum at time 11.30 min.](image)

3o

![Spectrum at time 10.76 min.](image)

3p

![Spectrum at time 9.38 min.](image)
Postulierte Strukturen.

DMOM-1,4-HQ-KKP1/KKP2

12,6 min (DMOM-1,4-HQ-KKP1)
12,9 min (DMOM-1,4-HQ-KKP2)

MNH-1,4-HQ-KKP1

16,5 min
Tab. 11: Retentionszeiten und Massenspektren der bei GC-MS-Analyse eines methanolischen Gesamtextraktes (underivatisiert) einer Reaktion von 3-Methylbrenzkatechin (1a) mit M/L (pH 7) detektierten Eigenreaktionsprodukte im Vergleich zu Massenspektren und Strukturvorschlägen der Massenspektren-Bibliothek.

<table>
<thead>
<tr>
<th>(R_{\text{GC-MS}}) [min]</th>
<th>Massenspektrum der Analytmoleküle (A) und von Referenzverbindungen der Massenspektren-Bibliothek (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,553</td>
<td></td>
</tr>
<tr>
<td>5,623</td>
<td></td>
</tr>
<tr>
<td>6,410</td>
<td></td>
</tr>
</tbody>
</table>
Tab. 12: Retentionszeiten und Massenspektren der bei GC-MS-Analyse detektierten Peaks eines underivatisierten sauren Extrakts (pH 1,8) des Kulturüberstandes von *A. chroococcum* (56-h-alte stickstofffixierende Kultur).

<table>
<thead>
<tr>
<th>$R_{\text{GC-MS}}$ [min]</th>
<th>Massenspektren</th>
</tr>
</thead>
<tbody>
<tr>
<td>13,943</td>
<td>Brenzkatechin</td>
</tr>
<tr>
<td>16,698</td>
<td></td>
</tr>
<tr>
<td>24,978</td>
<td></td>
</tr>
<tr>
<td>27,357</td>
<td></td>
</tr>
</tbody>
</table>
ANHANG C: LC-MS und HR-MS-Spektren

Abb. 1: LC-TOF-Massenspektrum (ESI, positiv Modus) des Produktes 3b.

Abb. 2: LC-TOF-Massenspektrum (ESI, positiv Modus) des Produktes 3c.

Abb. 3: LC-TOF-Massenspektrum (ESI, positiv Modus) des Produktes 3d.
Abb. 4: LC-TOF-Massenspektrum (ESI, positiv Modus) des Produktes 3e.

Abb. 5: LC-TOF-Massenspektrum (ESI, positiv Modus) des Produktes 3f.

Abb. 6: LC-TOF-Massenspektrum (ESI, positiv Modus) des Produktes 3g.
Abb. 7: LC-TOF-Massenspektrum (ESI, positiv Modus) des Produktes 3j.

Abb. 8: LC-TOF-Massenspektrum (ESI, positiv Modus) des Produktes 3k.

Abb. 9: LC-TOF-Massenspektrum (ESI, positiv Modus) des Produktes 3l.
Abb. 10: LC-TOF-Massenspektrum (ESI, positiv Modus) des Produktes 3n.

Abb. 11: LC-TOF-Massenspektrum (ESI, positiv Modus) des Produktes 3n.

Abb. 12: LC-TOF-Massenspektrum (ESI, positiv Modus) des Produktes 3q.
Abb. 13: LC-TOF-Massenspektrum (ESI, positiv Modus) des Produktes 3r₁.

Abb. 14: LC-TOF-Massenspektrum (ESI, positiv Modus) des Produktes 3s.

Abb. 15: LC-TOF-Massenspektrum (ESI, positiv Modus) des Produktes 4d.
Abb. 16: LC-TOF-Massenspektrum (ESI, positiv Modus) des Produktgemisches 5d₁₂.

Abb. 17: LC-TOF-Massenspektrum (ESI, positiv Modus) des Produktes 6d.

Abb. 18: LC-TOF-Massenspektrum (ESI, positiv Modus) des Produktes 7d.
Abb. 19: LC-TOF-Massenspektrum (ESI, positiv Modus) des Produktes 12t₂.

Abb. 20: LC-TOF-Massenspektrum (ESI, positiv Modus) des Produktes 13t.

Abb. 21: LC-MS-Chromatogramme (Massen- und UV-Detektion) eines methanolischen Gesamtextraktes gewonnen aus einer M/L-katalysierten Reaktion des 4-tert-Butylbrenzkatechins mit n-Hexylamin nach einer Reaktionszeit von 100 min. LC-MS-Fließmittelgradient 2.
Tab. 13: Strukturvorschläge für detektierte Peaks eines methanolischen Gesamtextraktes gewonnen aus einer \textit{M}t\textit{L}-katalysierten Reaktion des 4-\textit{tert}-Butylbrenzkatechins mit \textit{n}-Hexylamin nach einer Reaktionszeit von 100 min (vgl. Abb. 21).

<table>
<thead>
<tr>
<th>(R_{\text{AC-MS}}) [min]</th>
<th>([M+H]^+) [m/z]</th>
<th>Vorschläge für mögliche strukturähnliche Verbindungen (Massendifferenz (M_{\text{diff}}) zu detektierten Pseudomolekülionen ([M+H]^+) in Klammern)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14,0 (\textit{tert}BBK-P_1)</td>
<td>250,1</td>
<td>MW = 249 g mol(^{-1})</td>
</tr>
<tr>
<td>14,4 (\textit{tert}BBK-P_2)</td>
<td>246,0</td>
<td>MW = 247 g mol(^{-1}) [(M_{\text{diff}} +2) amu]</td>
</tr>
<tr>
<td>15,0 (\textit{tert}BBK-P_3)</td>
<td>348,1</td>
<td>MW = 326 g mol(^{-1}) [(M_{\text{diff}} -21) amu]</td>
</tr>
<tr>
<td>15,9 (\textit{tert}BBK-P_4)</td>
<td>411,0</td>
<td>MW = 411 g mol(^{-1}) [(M_{\text{diff}} +1) amu]</td>
</tr>
</tbody>
</table>

LC-MS-Fließmittelgradient 2.
ANHANG D: NMR-Spektren

Abb. 22: Ausschnitt aus dem 1H-NMR-Spektrum des Produktes 3b (d_4-MeOH).

Abb. 23: Ausschnitt aus dem 1H-NMR-Spektrum des Produktes 3c (d_4-MeOH).

Abb. 24: Ausschnitt aus dem 13C-NMR-Spektrum des Produktes 3c (d_4-MeOH).
Abb. 25: Ausschnitt aus dem 13C-DEPT-NMR-Spektrum des Produktes 3c (d_4-MeOH).

Abb. 26: HH COSY-NMR-Spektrum des Produktes 3c (d_4-MeOH).

Abb. 27: HSQC-NMR-Spektrum des Produktes 3c (d_4-MeOH).
Abb. 28: HMBC-NMR-Spektrum des Produktes 3c (d$_4$-MeOH).

Abb. 29: Ausschnitt aus dem 1H-NMR-Spektrum des Produktes 3d (d$_4$-MeOH).

Abb. 30: Ausschnitt aus dem 13C-NMR-Spektrum des Produktes 3d (d$_4$-MeOH).
Abb. 31: Ausschnitt aus dem 13C-DEPT-NMR-Spektrum des Produktes 3d (d_4-MeOH).

Abb. 32: HMBC-NMR-Spektrum des Produktes 3d (d_4-MeOH).

Abb. 33: Ausschnitt aus dem 1H-NMR-Spektrum des Produktes 3e (d_4-MeOH).
Abb. 34: Ausschnitt aus dem 1H-NMR-Spektrum des Produktes 3f (d_4-MeOH).

Abb. 35: Ausschnitt aus dem 1H-NMR-Spektrum des Produktes 3g (d_4-MeOH).

Abb. 36: Ausschnitt aus dem 1H-NMR-Spektrum des Produktes 3j (d_4-MeOH).
Abb. 37: HSQC-NMR-Spektrum des Produktes 3j (d₄-MeOH).

Abb. 38: HMBC-NMR-Spektrum des Produktes 3j (d₄-MeOH).

Abb. 39: Ausschnitt aus dem ¹H-NMR-Spektrum des Produktes 3k (d₄-MeOH).
Abb. 40: HSQC-NMR-Spektrum des Produktes 3k (d_4-MeOH).

Abb. 41: HMBC-NMR-Spektrum des Produktes 3k (d_4-MeOH).

Abb. 42: Ausschnitt aus dem 1H-NMR-Spektrum des Produktes 3l (d_4-MeOH).
Abb. 43: HSQC-NMR-Spektrum des Produktes 3l (d₄-MeOH).

Abb. 44: HMBC-NMR-Spektrum des Produktes 3l (d₄-MeOH).

Abb. 45: Ausschnitt aus dem ^1H-NMR-Spektrum des Produktes 3n (d₄-MeOH).
Abb. 46: Ausschnitt aus dem 13C-NMR-Spektrum des Produktes 3n (d_4-MeOH).

Abb. 47: Ausschnitt aus dem 1H-NMR-Spektrum des Produktes 3o (d_4-MeOH).

Abb. 48: HSQC-NMR-Spektrum des Produktes 3o (d_4-MeOH).
Abb. 49: HMBC-NMR-Spektrum des Produktes 3o (\(d_4\)-MeOH).

Abb. 50: Ausschnitt aus dem \(^1\)H-NMR-Spektrum des Produktes 3q (\(d_4\)-MeOH).

Abb. 51: Ausschnitt aus dem \(^{13}\)C-NMR-Spektrum des Produktes 3q (\(d_4\)-MeOH).
Abb. 52: Ausschnitt aus dem 1H-NMR-Spektrum des Produktes 3r$_1$ (d_4-MeOH).

Abb. 53: Ausschnitt aus dem 13C-NMR-Spektrum des Produktes 3r$_1$ (d_4-MeOH).

Abb. 54: Ausschnitt aus dem 1H-NMR-Spektrum des Produktes 3s (d_4-MeOH).
Abb. 55: Ausschnitt aus dem 13C-NMR-Spektrum des Produktes 3s (d_4-MeOH).

Abb. 56: Ausschnitt aus dem 1H-NMR-Spektrum des Produktes 4d (d_4-MeOH).

Abb. 57: Ausschnitt aus dem 13C-NMR-Spektrum des Produktes 4d (d_4-MeOH).
Abb. 58: Ausschnitt aus dem 1H-NMR-Spektrum des Produktes 6d (d_4-MeOH).

Abb. 59: Ausschnitt aus dem 13C-NMR-Spektrum des Produktes 6d (d_4-MeOH).

Abb. 60: Ausschnitt aus dem 1H-NMR-Spektrum des Produktes 7d (d_4-MeOH).
Abb. 61: Ausschnitt aus dem 13C-NMR-Spektrum des Produktes 7d (d_4-MeOH).

Abb. 62: Ausschnitt aus dem 1H-NMR-Spektrum des Produktes 8f2 (d_4-MeOH).

Abb. 63: HMBC-NMR-Spektrum des Produktes 8f2 (d_4-MeOH).
Abb. 64: Ausschnitt aus dem 1H-NMR-Spektrum des Produktes 9f (d_4-MeOH).

Abb. 65: Ausschnitt aus dem 1H-NMR-Spektrum des Produktes 10m$_2$ (d_4-MeOH).

Abb. 66: HSQC-NMR-Spektrum des Produktes 10m$_2$ (d_4-MeOH).
Abb. 67: HMBC-NMR-Spektrum des Produktes 10m₂ (d₄-MeOH).

Abb. 68: Ausschnitt aus dem ¹H-NMR-Spektrum des Produktes 11m (d₄-MeOH).

Abb. 69: HSQC-NMR-Spektrum des Produktes 11m (d₄-MeOH).
Abb. 70: HMBC-NMR-Spektrum des Produktes 11m (d₄-MeOH).

Abb. 71: Ausschnitt aus dem ¹H-NMR-Spektrum des Produktes 12t₂ (d₄-MeOH).

Abb. 72: Ausschnitt aus dem ¹³C-NMR-Spektrum des Produktes 12t₂ (d₄-MeOH).
Hiermit erkläre ich, dass diese Arbeit bisher von mir weder an der Mathematisch-Naturwissenschaftlichen Fakultät der Ernst-Moritz-Arndt-Universität Greifswald noch einer anderen wissenschaftlichen Einrichtung zum Zwecke der Promotion eingereicht wurde.

Ferner erkläre ich, dass ich diese Arbeit selbständig verfasst und keine anderen als die darin angegebenen Hilfsmittel und Hilfen benutzt und keine Textabschnitte eines Dritten ohne Kennzeichnung übernommen habe.

Greifswald, 09. Februar 2012
LEBENSLAUF

<table>
<thead>
<tr>
<th>Persönliche Daten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name: Susanne Herter</td>
</tr>
<tr>
<td>Geburtsdatum: 01.09.1982</td>
</tr>
<tr>
<td>Geburtsort: Greifswald</td>
</tr>
<tr>
<td>Nationalität: deutsch</td>
</tr>
<tr>
<td>Familienstand: ledig</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bildungsweg</th>
</tr>
</thead>
<tbody>
<tr>
<td>09/1989 - 06/1993 Erich-Böhmke-Grundschule, Greifswald</td>
</tr>
<tr>
<td>08/1993 - 06/1995 Karl-Krull-Gesamtschule, Greifswald</td>
</tr>
<tr>
<td>Abschluss: Abitur</td>
</tr>
<tr>
<td>Hauptfach: Angewandte Mikrobiologie und Biotechnologie</td>
</tr>
<tr>
<td>Thema der Diplomarbeit: „Abbau von Phenylalkanen und substituierten Derivaten durch Bakterien“</td>
</tr>
<tr>
<td>Abschluss: Diplom-Umweltwissenschaftlerin</td>
</tr>
<tr>
<td>05/2007 - gegenwärtig Promotionsstudentin</td>
</tr>
<tr>
<td>Institut für Mikrobiologie, E.-M.-A.-Universität, Greifswald</td>
</tr>
<tr>
<td>Gefördert im Rahmen eines von der Deutschen Bundestiftung Umwelt (DBU, Osnabrück) finanzierten Drittmittelprojektes („Rekombinante Enzyme für die Feinchemie“, AZ 13191) sowie eines Landesgraduiertenstipendiums des Landes Mecklenburg-Vorpommern</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Berufserfahrungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>05/2007 - 02/2009 Wissenschaftliche Mitarbeiterin</td>
</tr>
<tr>
<td>Institut für Mikrobiologie, E.-M.-A.-Universität, Greifswald</td>
</tr>
</tbody>
</table>
DANKSAGUNG

Die vorliegende Arbeit entstand unter der wissenschaftlichen Leitung von Herrn Prof. Dr. F. Schauer in der Arbeitsgruppe Angewandte Mikrobiologie am Institut für Mikrobiologie der Ernst-Moritz-Arndt-Universität Greifswald. Herrn Prof. Dr. F. Schauer gilt mein besonderer und herzlicher Dank für die Übernahme des Referats dieser Arbeit, die vielen fachlichen Diskussionen und wertvollen Anregungen, welche im erheblichen Maße zum Gelingen der Arbeit beigetragen haben sowie der mir stets gewährten wissenschaftlichen Freiheit.

Herrn Prof. Dr. U. Kragl danke ich ebenfalls für die freundliche Übernahme des Koreferats.

- Herrn Prof. Dr. U. Bornscheuer vom Institut für Biochemie der Universität Greifswald danke ich sehr herzlich für die qualifizierte Projektleitung, die zielgerichtete Koordination aller und auch meiner Arbeiten sowie seiner fachlichen Hinweise. Darüber hinaus war Herr Prof. Dr. U. Bornscheuer auch nach Abschluss der Projektarbeiten stets eine große Hilfe, wofür ich ihm zu Dank verpflichtet bin.

- In diesem Zusammenhang sei auch ein großer Dank an Frau Dr. M. Schmidt vom Institut für Biochemie der Universität Greifswald gerichtet, die eine nicht mindere Beteiligung an dem Fortgang meiner Arbeiten hatte und sowohl auf Projekt- als auch persönlicher Ebene stets ein vertrauenswürdiger Ansprechpartner war.

- Herrn Prof. Dr. U. Kragl vom Institut für Technische Chemie der Universität Rostock sowie den Mitarbeitern Frau Dr. D. Hameister und der Doktorandin Frau S. Illner danke ich für die unkomplizierte und sehr freundliche Zusammenarbeit, die ständige Hilfsbereitschaft und auch die Bereitstellung von
Chemikalien. An dieser Stelle sei auch Herrn Dr. W. Ruth für die Vermessung von Proben sowie die Überlassung eines Fraktionssammlers recht herzlich gedankt.

- Herrn Dr. K. Liebeton von der Biotechnology Research und Information Network AG (BRAIN AG, Zwingenberg) danke ich herzlichst für die Bereitstellung der rekombinant exprimierten bakteriellen Phenoloxidasesen und die zügige Übersendung stets neuer Präparate sowie der vielen Emails und Telefonate, die bei der Bearbeitung dieses Projekteils sehr hilfreich waren.

Desweiteren möchte ich mich bei dem Land Mecklenburg-Vorpommern für die finanzielle Unterstützung im Rahmen des Landesgraduiertenstipendiums bedanken.

Frau Dr. A. Mikolasch vom Institut für Mikrobiologie der Universität Greifswald danke ich herzlich für die Interpretation der NMR-Daten, die vielen fachlichen Ratschläge und die kritischen Anmerkungen beim Anfertigen dieser Arbeit.

Ein großer Dank sei auch an Herrn Dr. D. Michalik vom Leibniz-Institut für Katalyse e.V. an der Universität Rostock gerichtet, da durch ihn viele NMR- und HRMS-Messungen erst ermöglicht wurden, er mit der Interpretation der Spektren einen wesentlichen Beitrag geleistet und diese Arbeit damit bereichert hat. Für die Aufnahme von NMR-Spektren bedanke ich mich auch bei Herrn PD Dr. M. Lalk vom Institut für Pharmazeutische Biologie der Universität Greifswald und Herrn Prof. Dr. K. Weisz sowie Herrn Dr. M. Kindermann vom Institut für Biochemie der Universität Greifswald.

Auch weiteren Wissenschaftlern, die mich während meiner Promotion begleitet haben, möchte ich recht herzlich danken, da sie mir viele interessante Einblicke in ihre Fachgebiete gewährt und dabei auch ihr Vertrauen in mich gesteckt haben. Ihnen danke ich auch für ihre Freundschaft:

- Herrn Dr. R. Kourist, Herrn Dr. G. S. Nguyen sowie dem Doktoranden Herrn F. Steffen-Munberg vom Institut für Biochemie an der Universität Greifswald danke ich für die angenehme und fruchtbare Zusammenarbeit innerhalb des
VENTURECUP-MV-Projekts „Baltic Fine Chemicals - Valuable Products for the Pharmaceutical Industry.“

- I am deeply thankful to Dr. M. L. Thompson for his contribution on this work, his faithful friendship and attendance during creative breaks with chocolate and coffee. His ideas and suggestions have been more than helpful and often encouraged me to follow my objectives.

Abstracts

Poster

Vorträge

Degradation of environmental pollutants by microorganisms and the use of fungal enzymes for degradative and synthetic purposes. Polish-German Life Science Conference, Stettin, September 2009.