Contents

List of Figures ix
List of Tables xiii
List of Symbols xv

I Introduction 1
1 Scope of this Work and Summary of Results 3

II Groundwork: ‘Identifying the Problem’ 7
2 State of the Art 9
2.1 Interferometry 9
 2.1.1 Measurement Principle 9
 2.1.2 Sample Implementations 11
2.2 Deflectometry 12
 2.2.1 Measurement Principle 13
 2.2.2 Sample Implementations 16

3 Comparative Assessment 21
3.1 Information Theory as Classification Criterion 21
3.2 Analysis of Probing Mechanisms 22
 3.2.1 Primary Measurand of Interferometry 22
 3.2.2 Primary Measurand of Deflectometry 23
 3.2.3 Etalons 25
 3.2.4 Summary of Probing Mechanisms 25
3.3 Fundamental Considerations 26
 3.3.1 Information Theoretical Aspects of the Source Encoding 26
 3.3.2 Types of Errors 28
 3.3.3 Random Errors in Interferometry: Phase Noise 29
 3.3.4 Random Errors in Deflectometry: Uncertainty Relations 29
 3.3.5 Semi-Random Errors: Coherence and Speckle Contrast 34
 3.3.6 Semi-Random Errors: Quantization, Linearity and Phase Shift 38
 Quantization Errors 38
 Signal Nonlinearities 40
 Phase Step Errors 40
 3.3.7 Systematic Errors: Retrace Error and Object Position 41
 3.3.8 Systematic Errors: Reference and Null Test 42
 3.3.9 Local vs. Global Accuracy 43
 3.3.10 Sensitivity to Disturbing Environmental Influences 44
 Contamination and Partial System Damage 45
Fluctuations of the Environmental Conditions 45
Vibrations ... 46
Conclusion .. 47

3.3.11 Angular Dynamical Range: The Aperture Problem 47

3.4 Summary: Strengths and Weaknesses 49

4 Limitations of Classical Deflectometry 51
4.1 Types of Limitations .. 51
4.2 Principal Limitations .. 52
4.2.1 Types Of Objects ... 52
Surface Properties ... 52
Shape ... 54
Transparency .. 54
4.2.2 Measurement Accuracy 55
4.3 Technical Limitations ... 55
4.3.1 Measurement Range ... 56
4.3.2 Efficiency .. 56
4.3.3 Environmental Conditions 56
4.3.4 Usability .. 57
4.4 Summary of Critical Limitations 57

III Advanced Methods: 'Attacking the Problem' 59

5 Back Side Reflex .. 61
5.1 Problem Definition and Analysis 61
5.1.1 Statement of the Problem 61
5.1.2 Mathematical Model .. 62
Coherence ... 62
Signal Definition and Mindset 62
Some Notational Issues ... 63
Mathematical Structure of the Signal 63
Transition to a Complex Notation 64
Comparison with Interferometry 65
5.1.3 Quantification of the Effect 65
5.1.4 Assessment of the Severity 67
5.2 Possible Solutions ... 68
5.2.1 Starting Points .. 68
Observation Aperture ... 68
Signal Modulation .. 69
5.2.2 Existing Solutions and Approaches 69
5.2.3 Solution Categories .. 71
Signal Suppression ... 71
Signal Separation prior to Recording 71
Signal Separation after Recording 72
5.3 Algorithmic Solution .. 73
5.3.1 Principle of the Multifrequency Technique 73
5.3.2 Brute Force Evaluation 75
5.3.3 Pattern Coordinate as a Frequency 77
5.3.4 Evaluation Options .. 79
Fourier Approach: Periodogram Estimator 79
Criteria to classify the Problem .. 81
Iterative Fit on a Refined Model 82
Phase Slope Fit ... 84
5.3.5 Pathological Lines ... 87
Local Ill-Conditioning .. 87
Geometrical Considerations .. 88
5.3.6 Results of the Algorithmic Solutions 91
5.4 Line-Shift-Deflectometry ... 93
5.4.1 Measurement Principle .. 94
5.4.2 Fundamental Limits ... 95
Modeling the Signal Generation 97
Derivation of the Uncertainty Relation 100
Summary and Appraisal .. 104
5.4.3 Technological Limitations .. 105
5.4.4 Information Efficiency .. 109
5.4.5 Pathological Lines .. 110
5.4.6 Final Assessment ... 113
5.5 UV-Deflectometry ... 116
5.5.1 Measurement Principle .. 116
5.5.2 Technical Realization ... 117
Light Source .. 117
Camera .. 117
Pattern Generation .. 118
Axis System .. 119
Mask Layout ... 120
Base Frame ... 121
5.5.3 Measurement Examples ... 121
5.6 Final Assessment of the Back Side Reflex 125
6 Measurement Accuracy .. 127
6.1 Local and Global Accuracy ... 127
6.1.1 Error Distribution in Fourier Space 128
6.1.2 Impact of Correlated Errors on the Global Accuracy 129
6.2 System Calibration .. 132
6.2.1 Prior Art Calibration Procedure 132
6.2.2 Shortcomings of the Existing Concept 134
6.2.3 New Holistic Calibration Approach 135
6.3 Further Systematic Errors .. 140
6.3.1 Geometrical Errors due to an Inadequate Model 140
Shape Distortion of the Circle of Confusion 140
Image Shift .. 142
6.3.2 Angular Dependence of the Linearity of the Screen Luminance 143
6.3.3 Phase-related Wavelike Artifacts 145
6.4 Improvements ... 146
6.4.1 Results of the New Calibration Approach 146
6.4.2 Suppression of Wavelike Artifacts by the Multifrequency Method 148
6.5 Final Assessment regarding Measurement Accuracy 150