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Abstract

In the Black{Scholes type �nancial market, the risky asset S1(�) is supposed to satisfy

dS1(t) = S1(t)(b(t)dt + �(t)dW (t) where W (�) is a Brownian motion. The processes

b(�), �(�) are progressively measurable with respect to the �ltration generated by W (�).

They are known as the mean rate of return and the volatility respectively. A portfolio is

described by a progressively measurable processes �1(�), where �1(t) gives the amount

invested in the risky asset at the time t . Typically, the optimal portfolio ��
1
(�) (that,

which maximizes the expected utility), depends at the time t , among other quantities, on

b(t) meaning that the mean rate of return shall be known in order to follow the optimal

trading strategy. However, in a real{world market, no direct observation of this quantity is

possible since the available information comes from the behavior of the stock prices which

gives a noisy observation of b(�). In the present work, we consider the optimal portfolio

selection which uses only the observation of stock prices.

1 Introduction

The problem of portfolio optimization in continuous time models consists of maximizing the

total expected utility of terminal wealth and that of consumption over a given time interval.

In the context of complete, standard �nancial market (in the sense of [7]) the portfolio opti-

mization problem is solved by the martingale approach as presented by Karatzas, Lehoczky,

Sethi, and Shreve. (See [5], [6], or chapter 3 of [7] or [9]) In this approach (here, for simplicity,

we consider the case of only one risky stock) the interest rate, the mean rate of stock return,

and the volatility of the stock are described by progressively measurable stochastic processes

(r(t))t2[0;T ] , (b(t))t2[0;T ] , and (�(t))t2[0;T ] respectively on the complete �ltered probability

space (
;F ; P; (Ft)t2[0;T ]) where (Ft)t2[0;T ] is generated by a Brownian motion (W (t))t2[0;T ]
and is augmented by all P {null sets from �(W (s); s � T ). This �ltration represents the

information available to the investor. Note that in this modeling all three processes are ob-

servable. This is a simpli�cation of the real market. However, in the real{world, the interest

rate is obtained from the bond market data. The problem of volatility estimation does not

occur in this model since the time is continuous. That is, only the assumption that the mean

rate of return is known seems to be a serious disadvantage. In this work, we give a martin-

gale method of portfolio optimization for a model where the mean rate of stock return is not

observed directly. In our setting, all decisions made by an investor are based on the restricted
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information which comes from the observation of stock prices and does not include the certain

knowledge of the actual mean rate of return.

Let us brief the common portfolio optimization method as presented in [7] or in [9] to

explain the main idea of our approach. Given the processes (r(t))t2[0;T ] , (b(t))t2[0;T ] and

(�(t))t2[0;T ] on (
;F ; P; (Ft)t2[0;T ]) as above, the progressively measurable wealth processes

(Xx;�;c(t))t2[0;T ] is de�ned. It depends on the initial endowment x 2 [0;1[ , on the portfo-

lio process �(�), and on the consumption process c(�). Due to natural requirements (self{

�nancing condition, non-negativeness of the wealth) the pairs (�(�); c(�)) are restricted to

some set A(x) of admissible pairs. The attitudes towards risk are described by the utility

functions fU1(t; �); U2(�) : t 2 [0; T ]g which de�ne for each endowment x

V (x) := sup
(�;c)2A0(x)

E(

Z T

0
U1(t; c(t))dt + U2(X

x;�;c(T )));(1)

where A0(x) := f(�; c) 2 A(x) : E(
R T
0 min(0; U1(t; c(t)))dt +min(0; U2(X

x;�;c(T )))) > �1g .

The problem of portfolio optimization is, for a given x 2 [0;1[ to calculate a pair (��(�); c�(�)) 2

A
0(x) where V (x) is reached. In the martingale approach �rst the optimal consumption c�(�)

and the optimal terminal wealth X
x;��;c�(T ) are determined. After that, one computes the

corresponding portfolio �� . The reason why this method works is that the set of all possible

terminal wealths fXx;�;c(T ) : (�; c) 2 A(x)g is described by the martingale representation

theorem which states that each centered (Ft)t2[0;T ]{martingale is represented as a stochastic

integral with respect to (W (t))t2[0;T ] . However, other martingale representation theorems

are known, for example that of Fujisaki (see Theorem 16.22 in [1]). The theorem of Fujisaki

considers a Brownian motion (V(t))t2[0;T ] which is a martingale with respect to some �ltra-

tion (Ft)t2[0;T ] . In this theorem, the �ltration (Ft)t2[0;T ] may be strictly larger then the

augmentation of (�(V(s); s � t))t2[0;T ] by all null sets of �(V(s); s � T ) but each centered

(Ft)t2[0;T ]{martingale is still written as a stochastic integral with respect to (V(t))t2[0;T ] . We

apply the theorem of Fujisaki instead of the usual martingale representation theorem in the

following setting: The investor's knowledge is based only on the the past stock prices and that

gives him a noisy observation of the mean rate of return. Using tools from stochastic �ltering

theory, we de�ne the innovation process of this noisy observation which is a Brownian motion

with respect to the �ltration generated by investor's stock price observation. Moreover, the

martingale representation theorem of Fujisaki holds, and the martingale method works also

in our setting.

This paper is organized as follows: In the second section we recall the basic usual setting

and cite the main result on completeness of the market with known mean rates of stock return.

Sections 3 and 4 present the modi�cations of the martingale method needed to solve the

portfolio optimization problem under restricted information (unknown mean rate of return).

We conclude considering some numerical examples in Sections 5 and 6.

2 Observed mean rates of return and completeness of the mar-

ket

All processes under consideration are indexed by [0; T ] . Let W (�) be the standard Brownian

motion on the complete probability space (
;F ; P ). We denote by N all P -null sets from

�(W (s); s � T ). The continuous �ltration (Ft)t2[0;T ] is de�ned as Ft := �(�(W (s); s � t)[N )

for all t 2 [0; T ] . A share of the money market has the price S0(t) at the time t and is given

by dS0(t) := S0(t)r(t)dt , S0(0) = 1, where the risk{free rate process r(�) is progressively
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measurable with Z T

0
jr(s)jds <1 almost surely.(2)

The stock price per share S1(t) at the time t 2 [0; T ] is described by

dS1(t) := S1(t)(b(t)dt + �(t)dW (t)); S1(0) 2]0;1[;

Here, the progressively measurable mean rate of return b(�) and the progressively measurable

volatility process �(�) satisfyZ T

0
jb(s)jds <1;

Z T

0
j�(s)j2ds <1 almost surely.(3)

In the following we suppose that (�(t) := �(t)�1(b(t) � r(t)))t2[0;T ] ful�llsZ T

0
�(s)2ds <1 almost surely.(4)

Let us also de�ne the processes Z0(�), H0(�) by

Z0(t) := exp(�

Z t

0
�(s)dW (s)�

1

2

Z t

0
�(s)2ds)

H0(t) := Z0(t)S0(t)
�1 8t 2 [0; T ]:(5)

A portfolio process �(�) is a pair of progressively measurable processes �0(�), �1(�) withZ T

0
j�0(t) + �1(t)jjr(t)jdt < 1(6) Z T

0
j�1(t)(b(t) � r(t)jdt < 1(7) Z T

0
j�1(t)�(t)j

2
dt < 1(8)

A consumption process c(�) is a progressively measurable process with

c(t) � 0 t 2 [0; T ];

Z T

0
c(t)dt <1 almost surely.(9)

As usual, the wealth process Xx;�;c(�) corresponding to the initial endowment x 2 [0;1[ , to

the portfolio �(�) and to the consumption c(�) is de�ned as

X
x;�;c(t) = x+

Z t

0
(�0(s) + �1(s))r(s)ds+

Z t

0
�1(s)(b(s)� r(s))ds

+

Z t

0
�1(s)�(s)dW (s)�

Z t

0
c(s)ds; 8t 2 [0; T ]:

We rewrite the above equation using the process (W0(t) :=
R t
0 �(s)ds+W (t))t2[0;T ] as

X
x;�;c(t) = x+

Z t

0
(�0(s) + �1(s))r(s)ds+

Z t

0
�1(s)�(s)dW0(s)�

Z t

0
c(s)ds:(10)

Given a consumption c(�) and x 2 [0;1[ , the portfolio �(�) is called c(�)-�nanced, if

X
x;�;c(t) = �0(t) + �1(t) 8t 2 [0; T ]:(11)
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For the c(�)-�nanced portfolio �(�) we have

X
x;�;c(t)

S0(t)
= x�

Z t

0

c(u)

S0(u)
du+

Z t

0

1

S0(u)
�1(u)�(u)dW0(u); 8t 2 [0; T ]:(12)

Let x 2 [0;1[ . A consumption and portfolio process pair (�(�); c(�)) is called admissible at x

(written (�; c) 2 A(x)), if �(�) is c(�)-�nanced and the wealth process Xx;c;�(�) corresponding

to x; c(�); and �(�) ful�lls Xx;c;�(t) � 0 almost surely for all t 2 [0; T ] . The next theorem

(cited from [7], Theorem 3.5, p. 93) describes all terminal wealths that are attainable from

a given initial endowment x and a given consumption c(�) by using portfolios � such that

(�; c) 2 A(x). In �nancial mathematics language it states that the market model under

consideration is complete.

Proposition 1. Let x 2 [0;1[ be given, let c(�) be a consumption process, and let � be a

nonnegative, FT {measurable random variable such that

E(

Z T

0
H0(u)c(u)du +H0(T )�) = x:(13)

Then there exists a portfolio process �(�) such that (�(�); c(�)) 2 A(x) and � = X
x;c;�(T ).

This result is the main reason why the martingale method of portfolio optimization works. In

the following section we consider a �nancial market where the mean rate is not observable,

but a similar result holds.

3 A �nancial market with unobserved mean rate of return

Let (
;G; P; (Gt)t2[0;T ]) be a complete �ltered probability space where the right continuous

�ltration (Gt)t2[0;T ] contains all P -null sets from G . Let (W (t);Gt)t2[0;T ] be a standard

Brownian motion. First, we de�ne the stock price process. Suppose that we are given the

(Gt)t2[0;T ]{adaptedmean rate of return b(�) which is a RCLL (right continuous with left limits)

process and a Borel measurable volatility function � : [0; T ]�[0;1[! R . Using theorem 5.1.1,

p. 97 of [4] we impose the integrability condition

E(

Z T

0
jb(s)j2ds) <1(14)

and the Lipschitz condition

9 K 2]0;1[ : j�(t; x) � �(t; y)j � Kjx� yj 8x; y 2 R; t 2 [0; T ](15)

to ensure the existence and uniqueness of the strong solution L(�) of

L(t) =

Z t

0
b(s)ds+

Z t

0
�(s; L(s))dW (s):

We also suppose that the volatility function is bounded from below:

inff�(t; x) : t 2 [0; T ]; x 2 Rg > 0:(16)

The stock price process S1(�) is de�ned by dS1(t) = S1(t)dL(t) with initial condition

S1(0) 2]0;1[ . The unique solution of this equation is

S1(t) = S1(0) exp(

Z t

0
b(s)ds+

Z t

0
�(s)dW (s)�

1

2

Z t

0
�(s)2ds) 8t 2 [0; T ]:
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Here (�(t) := �(t; L(t)))t2[0;T ] is to be considered as the volatility of the stock. Note that

both processes L(�) and S1(�) contain the same information since L(t) =
R t
0 S1(u)

�1
dS1(u)

for all t 2 [0; T ] . The observation of stock prices is described by the �ltration (Ft)t2[0;T ] ,

where

Ft := �(�(S1(u); u � t) [N ) = �(�(L(u); u � t) [N ) 8t 2 [0; T ];

and N denotes all P -null sets from �(S1(u); u � T ) = �(L(u); u � T ) as usual. Let us writebb(�) to denote the measurable modi�cation of (E(b(t)jFt))t2[0;T ] (it's existence is shown by

optional projection arguments, see [12], p. 319). Clearly, bb(�) is interpreted as an estimation

of the mean rate of return based on its noisy observation through stock prices. We also de�ne

the innovation process V(�) as

V(t) :=

Z t

0
�(u)�1

dL(u)�

Z t

0
�(u)�1bb(u)du =

Z t

0
�(u)�1(b(u) �bb(u))du+W (t)(17)

for all t 2 [0; T ] .

The theorem of Fujisaki for L2{martingales is found in [3] or [1], p. 231, but for our

applications we will need it for not necessarily square integrable martingales . For this reason,

we include the proof.

Proposition 2. The process (V(t);Ft)t2[0;T ] is a Brownian motion. For each centered (Ft)t2[0;T ]{

martingale N(�) there exists a (Ft)t2[0;T ]{progressively measurable �(�) with
R T
0 �(s)2ds <1

almost surely such that

N(t) =

Z t

0
�(s)dV(s) 8t 2 [0; T ]:

Proof. The process (V(t);Ft)t2[0;T ] is a continuous martingale since for all 0 � t < t+ h � T

the following holds

E(V(t+ h)� V(t)jFt) = E(

Z t+h

t

(b(u)�bb(u))�(u)�1
du+W (t+ h)�W (t)jFt)

=

Z t+h

t

E(E((b(u) �bb(u))�(u;L(u))�1 jFu))jFt)du = 0:

The quadratic variation is calculated as

< V > (t) := lim
n!1

n�1X
i=0

jV(tni+1)� V(tni )j
2

= lim
n!1

n�1X
i=0

j

Z tn
i+1

tn
i

(b(u)�bb(u))�(u)�1
du+W (tni+1)�W (tni )j

2 = t;

where the partitions 0 = t
n
0 <; : : : ; < t

n
n = t (n 2 N) of [0; t] satisfy

lim
n!1

n�1
max
i=0

jtni+1 � t
n
i j = 0:

Thus, L�evy's martingale characterization yields the �rst assertion. By the theorem of Gir-

sanov,

~W (t) :=

Z t

0
b(u)�(u)�1

du+W (t) =

Z t

0

bb(u)�(u)�1
du+ V(t)

is a Brownian motion with respect to the measure ~P , where

d ~P := exp(�

Z T

0

bb(u)�(u)�1
dV(u)�

1

2

Z T

0
(bb(u)�(u)�1)2du)dP:
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Since L(�) is the unique solution of L(t) =
R t
0 �(u;L(u))d

~W (u), we conclude that

�(L(u); u � t) � �( ~W (u); u � t) 8t 2 [0; T ]

On the other hand, we have ~W (�) =
R
�

0 �(u;L(u))
�1
dL(u) showing the converse inclusion.

That is, (Ft)t2[0;T ] is the augmentation of the Brownian �ltration (�( ~W (u); u � t))t2[0;T ]

by all null sets from �( ~W (u); u � T ). The martingale representation theorem (see [8], the-

orem 3.4.15 and problem 3.4.16) implies that if ~N(�) is a centered (Ft)t2[0;T ]{martingale

with respect to ~P , then it admits the representation ( ~N(t) =
R t
0
~�(u)d ~W (u))t2[0;T ] where

the uniquely determined progressively (Ft)t2[0;T ]{measurable ~�(�) satis�es
R T
0
~�(u)2du < 1

almost surely. This means

d ~N(t) = ~�(t)dV(t) + ~�(t)bb(t)�(t)�1
dt; ~N(0) = 0:(18)

Write

�(t) :=
d ~P jFt

dP jFt

:= exp(�

Z t

0

bb(u)�(u)�1
dV(u)�

1

2

Z t

0
(bb(u)�(u)�1)2du) 8t 2 [0; T ]:

Let N(�) be a centered (Ft)t2[0;T ]{martingale with respect to P , then ~N(�) := N(�)�(�)�1

is a centered (Ft)t2[0;T ]{martingale with respect to ~P . From the stochastic di�erentials (18)

and

d�(t) = �bb(u)�(u)�1
dV(u) �(0) = 1

we verify by Ito's formula that we have the desired integral representation of N(�) by V(�):

dN(t) = d( ~N(t)�(t)) = �(t)( ~�(t)� ~N(t)bb(t)�(t)�1)dV(t); N(0) = 0:

A share of the money market has the price process (S0(t) = exp(
R t
0 r(u)du)t2[0;T ] where the

risk{free rate process r(�) is (Ft)t2[0;T ]{progressively measurable and satis�es (2). In accor-

dance to (4) we suppose that the (Ft)t2[0;T ]{progressively measurable process b�(�) de�ned

by b�(t) := �(t)�1(bb(t)� r(t)) 8t 2 [0; T ]

satis�es Z T

0

b�(s)2ds <1 almost surely.(19)

Let us now de�ne

Z0(t) := exp(�

Z t

0

b�(s)dV(s) � 1

2

Z t

0

b�(s)2ds)
H0(t) := Z0(t)S0(t)

�1 8t 2 [0; T ]:

Although in our setting these processes di�er from the ones with the same name in Section

2, we will reuse these names here as the processes will play the same role in the following as

their counterparts in Section 2. All portfolios, consumptions, and wealths are de�ned almost

as before, keeping in mind that they shall be (Ft)t2[0;T ]{progressively measurable: A portfolio
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process �(�) is a pair (�0(�); �1(�)) of (Ft)t2[0;T ]{progressively measurable processes which

satisfy Z T

0
j�0(t) + �1(t)jjr(t)jdt < 1(20)

Z T

0
j�1(t)(bb(t)� r(t)jdt < 1(21)

Z T

0
j�1(t)�(t)j

2
dt < 1(22)

A consumption c(�) is a (Ft)t2[0;T ]{progressively measurable process with (9). Furthermore,

we introduce the wealth process X
x;�;c(�) which corresponds to the initial endowment x 2

[0;1[ , to the portfolio �(�) and to the consumption c(�) by (10). Note that Xx;�;c(�) is well

de�ned and automatically (Ft)t2[0;T ]{progressively measurable since (17) implies that for all

t 2 [0; T ]

W0(t) =

Z t

0
�(s)ds+W (t) =

Z t

0
�(s)�1(b(s)� r(s))ds+W (t)

=

Z t

0
�(s)�1(bb(s)� r(s))ds+ V(t) =

Z t

0

b�(s)ds+ V(t):

Given a consumption c(�) and x 2 [0;1[ , the portfolio (�0(�); �1(�)) is called c(�)-�nanced, if

(11) holds. If Xx;�;c(�) corresponds to the c(�)-�nanced portfolio �(�), then (11) is ful�lled.

Let x 2 [0;1[ . A consumption and portfolio process pair (�(�); c(�)) is called admissible at x

(written (�; c) 2 A(x)), if �(�) is c(�)-�nanced and the wealth process Xx;c;�(�) corresponding

to x; c(�); and �(�) ful�lls Xx;c;�(t) � 0 almost surely for all t 2 [0; T ] .

Starting from an arbitrary process �1(�), a consumption c(�) and an initial endowment x ,

we may check if there exists �(�) = (�0(�); �1(�)) such that (�; c) 2 A(x) by using

Lemma 1: Let �1(�) be a (Ft)t2[0;T ]{progressively measurable process satisfying (21) and

(22), c(�) be a consumption, and x 2 [0;1[. If

X(t) := S0(t)(x�

Z t

0

c(u)

S0(u)
du+

Z t

0

1

S0(u)
�1(u)�(u)dW0(u)) � 0 almost surely

for all t 2 [0; T ] then (�0(t) := X(t) � �1(t))t2[0;T ] ful�lls (20), (�; c) 2 A(x) with corre-

sponding wealth X
x;�;c(�) = X(�).

Proof. By de�nition, (�0(t) + �1(t) = X(t))t2[0;T ] is continuous, and (20) holds due to (2).

Moreover, X(�) satis�es

dX(t) =
X(t)

S0(t)
dS0(t) + �1(t)�(t)dW0(t)� c(t)dt

= (�0(t) + �1(t))r(t)dt+ �1(t)�(t)dW0(t)� c(t)dt

with initial condition X(0) = x showing that Xx;�;c(�) = X(�) and (�; c) 2 A(x).

Now we state a result similar to Proposition 1.

Proposition 3. Let x 2 [0;1[ be given, let c(�) be a consumption process, and let � be a

nonnegative, FT {measurable random variable such that

E(

Z T

0
H0(u)c(u)du +H0(T )�) = x:(23)

Then there exists a portfolio process �(�) such that (�(�); c(�)) 2 A(x) and � = X
x;c;�(T ).
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Proof. Essentially, we shall copy the proof from [7], Theorem 3.5, p. 93. The only di�erence

is that we use the innovation process V(�) instead of the Brownian motion W (�) replacing b(�)

by bb(�) and �(�) by b�(�) everywhere in the proof. Furthermore, the martingale representation

theorem of Fujisaki is used instead the usual one.

Let us de�ne J(t) :=
R t
0 H0(u)c(u)du and consider the nonnegative (Ft)t2[0;T ]{martingale

M(�)

M(t) := E(J(T ) +H0(T )�jFt); t 2 [0; T ]:

According to the martingale representation theorem of Fujisaki, there is a (Ft)t2[0;T ]{progressively

measurable process  (�) satisfying
R T
0  (u)2du <1 almost surely and

M(t) = x+

Z t

0
 (u)dV(u); 8t 2 [0; T ]:

In particular, maxt2[0;T ]M(t) <1 almost surely since M(�) has continuous paths. Similarly,

maxt2[0;T ] S0(t), maxt2[0;T ] Z0(t)
�1 are �nite almost surely. De�ne a nonnegative process X(�)

by

X(t)

S0(t)
:=

1

Z0(t)
E(

Z T

t

H0(u)c(u) +H0(T )�jFt) =
M(t)� J(t)

Z0(t)
(24)

so that X(0) =M(0) = x . Ito's rule implies

d(
X(t)

S0(t)
) = �

c(t)

S0(t)
dt+

1

S0(t)
�(t)�(t)dW0(t);(25)

where

�1(t) =
1

H0(t)�(t)
[ (t) + (M(t) � J(t))b�(t)]:

In fact, we have:

d(M(t) � J(t)) =  (t)dV(t) �H0(t)c(t)dt

Z0(t)
�1 = exp(

Z t

0

b�(s)dV(s) + 1

2

Z t

0

b�(s)2ds)
d(Z0(t)

�1) = Z0(t)
�1(b�(t)dV(t) + b�(t)2dt)

d(M(t) � J(t))d(Z0(t)
�1) =  (t)

b�(t)
Z0(t)

dt;

so that

d(
X(t)

S0(t)
) =

M(t)� J(t)

Z0(t)
(b�(t)dV(t) + b�(t)2dt)

+
1

Z0(t)
( (t)dV(t) �H0(t)c(t)dt) +  (t)

b�(t)
Z0(t)

dt

= �
H0(t)

Z0(t)
c(t)dt+

M(t)� J(t)

Z0(t)
b�(t)(b�(t)dt+ dV(t)| {z }

dW0(t)

)

+
 (t)

Z0(t)
(b�(t)dt+ dV(t)| {z }

dW0(t)

)

= �
H0(t)

Z0(t)
c(t)dt+

1

Z0(t)
[ (t) + (M(t) � J(t))b�(t)]dW0(t)

= �
H0(t)

Z0(t)
c(t)dt+

1

S0(t)

 (t) + (M(t)� J(t))b�(t)
H0(t)�(t)| {z }

�1(t)

�(t)dW0(t):

8



We check that �1 ful�lls (21) :

Z T

0
j�1(t)(bb(t)� r(t))jdt =

Z T

0
j

1

H0(t)�(t)
[ (t) + (M(t)� J(t))b�(t)](bb(t)� r(t))jdt

=

Z T

0
j

1

H0(t)
[ (t) + (M(t) � J(t))b�(t)]b�(t)jdt <1

Since almost all paths of  (�), b�(�) are square integrable and almost all paths of M(�)� J(�),

H0(�)
�1 are bounded (in fact, they are are continuous). Similarly, �1(�) ful�lls (22)Z T

0
j�(t)�(t)j2dt =

Z T

0

S0(t)
2

Z0(t)2
j (t) � (M(t)� J(t))b�(t)j2dt <1 almost surely:

>From (24) and (25) we see that

X(t) = S0(t)(x�

Z t

0

c(u)

S0(u)
du+

Z t

0

1

S0(u)
�1(u)�(u)dW0(u)) � 0; 8t 2 [0; T ]

almost surely. By the previous lemma, this shows that (�; c) 2 A(x) with corresponding

wealth X
x;�;c(�) = X(�).

4 Optimal portfolio selection

In the next step of portfolio optimization the optimal consumption c
�(�) and the optimal

terminal wealth X
x;��;c�(T ) have to be determined. We shall see that the usual technique

needed for this (see [7], chapter 3 or [9], chapter 3) applies to our situation without changes.

However, let us stress the fact that now problem (1) is an optimal portfolio problem in an

incomplete market as no longer all (Gt)t2[0;T ] -measurable claims can be hedged via a portfolio

and consumption process only based on the observation of the stock price. Let us mention

�rst that for all (�; c) 2 A(x) the following budget constraint holds:

E(

Z T

0
H0(u)c(u)du +H0(T )X

x;�;c(T )) � x(26)

It is implied by the fact that

(H0(t)X
x;�;c(t) +

Z t

0
H0(u)c(u)du = x+

Z t

0
H0(u)(�(u)�(u) �X

x;�;c(u)b�(u))dV(u))t2[0;T ]
is a non-negative local martingale and hence a supermartingale, which is easily derived from

dX
x;�;c(t) = X(t)r(t)dt+ �1(t)�(t)dW0(t)� c(t)dt

= X(t)r(t)dt+ �1(t)(bb(t)� r(t))dt+ �1(t)�(t)dV(t) � c(t)dt

dW0(t) = b�(t)dt+ dV(t)

dH0(t) = H0(t)(�b�(t)dV(t)� r(t)dt):

The function U 2 C1(]0;1[; ]0;1[) is called a utility function if it is strictly increasing and

strictly concave and U
0 is strictly decreasing with limz!0 U

0(z) = +1 , limz!1U
0(z) = 0.

The inverse function I := U
0 �1 maps ]0;1[ onto ]0;1[ . We also have the inequality

U(I(b)) � U(a) + b(I(b)� a) 8a; b 2]0;1[:(27)

9



Given utility functions fU1(t; �); U2(�) : t 2 [0; T ]g such that U1 is Borel measurable, we

denote by I1(t; �) and I2(�) the inverse functions of U1(t; �)
0 and of U2(�)

0 for all t 2 [0; T ]

respectively. Let

X :]0;1[!]0;1] y 7! E(

Z T

0
H0(t)I1(t; yH0(T ))dt+H0(T )I2(yH0(T )))

We suppose that

X (y) <1 8y 2]0;1[(28)

From (28) monotone convergence implies that X is continuous and strictly decreasing with

limy!0X (y) = 1 and limy!1X (y) = 0 implying the existence of the inverse mapping

Y := X�1 .

Proposition 4. Let

E(

Z T

0
H0(t)dt+H0(T )) <1(29)

be satis�ed. For each initial endowment x 2]0;1[, the solution (��; c�) 2 A
0(x) of the

optimization problem (1) with unobservable mean rate of return is given by

c
�(t) = I1(t;Y(x)H0(t)); X

x;��;c�(T ) = I2(Y(x)H0(T )):

Proof. In view of (27) we have for all (�; c) 2 A(x):

U1(t; c
�(t)) � U1(t; c(t)) + Y(x)H0(t)(I1(t;Y(x)H0(t))� c(t))

U2(X
x;��;c�(T )) � U2(X

x;�;c(T )) + Y(x)H0(T )(I2(Y(x)H0(T ))�X
x;�;c(T )):

Choosing deterministic consumption and terminal wealth as

c(t) = X
x;�;c(T ) = xE(

Z T

0
H0(t)dt+H0(T ))

�1

in the above inequalities, (29) implies that that

E(

Z T

0
min(0; U1(t; c

�(t))dt) >1; E(min(0; U2(X
x;��;c�(T )))) >1:

That means (��; c�) 2 A0(x) since

E(

Z T

0
H0(t)I1(t;Y(x)H0(t))dt+H0(T )I2(Y(x)H0(T )) = X (Y(x)) = x:(30)

For all (�; c) 2 A(x) we have

E(

Z T

0
U1(t; c

�(t))dt+H0(T )X
x;��;c�(T )) � E(

Z T

0
U1(t; c(t))dt + U2(X

x;�;c(T )))

+Y(x)E(

Z T

0
H0(t)I1(t;Y(x)H0(t))dt+H0(T )I2(Y(x)H0(T )))

�Y(x)E(

Z T

0
H0(t)c(t)dt +H0(T )X

x;�;c(T )):

Applying budget constraint (26) and (30) we are led to optimality of (��; c�) 2 A0(x).

E(

Z T

0
U1(t; c

�(t))dt+H0(T )X
x;��;c�(T )) � E(

Z T

0
U1(t; c(t))dt+U2(X

x;�;c(T ))) 8(�; c) 2 A0(x):
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5 Estimating the mean rate

The estimation of the mean rate of return from the observation of the stock prices is a �ltering

problem. There are essentially two cases where the general �ltering theory provide recursive

�nite dimensional �lter of practical interest: The case of Kalman �ltering and that of hidden

Markov models. In both cases the hidden process b(�) is modeled as a linear functional h�; �i

of a not observed R
n {valued system process x(�), that is b(t) := h�; x(t)i for all t 2 [0; T ]

with � 2 R
n . In the �rst case the processes are modeled by di�erential equations

x(t) = x(0) +
R t
0 A(s)x(s)ds+

R t
0 B(s)dW1(s)

L(t) =
R t
0 h�; x(s)ids +

R t
0 �dW (s)

with m{dimensional Brownian motion W1(�) independent of W (�) and deterministic coeÆ-

cients A(�), B(�) of appropriated dimensions (see [4], p. 252), � > 0. The initial value x(0) is

Gaussian and independent of W1(�);W (�). In the second case the Markov process x(�) takes

its values in the set fe1; : : : ; emg of orthogonal unit vectors in R
n , and is supposed to be

independent from W (�). The observation L(�) is the same as in the �rst case. For complete

discussion of the mean rate estimation by the methods of Hidden Markov models we refer

the reader to [2] which also includes parameter re{estimation by EM{algorithm. Finally, let

us consider two examples. For simplicity, we suppose that the volatility � > 0 is constant

meaning that the observation is

z(t) := L(t) =

Z t

0
S1(u)dS1(u) =

Z t

0
b(u)du+ �W (t) 8t 2 [0; T ]:

Example 1: (A mean-reverting drift rate) Here, we assume an unobservable drift-rate

process of the formZ t

0
b(u)du = b(0) +

Z t

0
(a0 + a1b(u))du+ �dW1(u) 8t 2 [0; T ]

with known constants, b(0); a0; a1; � 2 R with a1 < 0 and W1(�) a Brownian motion inde-

pendent from W (�). This model might be particularly suited for a stock which is regarded

as one having an intrinsic drift rate but where short time e�ects cause the real drift rate to


uctuate around this intrinsic value. We obtain (see [4]) the following stochastic di�erential

equation for bb(t):
dbb(t) = (a0 + a1

bb(t))dt+ P (t)

�2
(dz(t)�bb(t)dt); bb(0) = b(0)

where P (t) is the unique solution of the Riccati equation

P
0(t) = 2a1P (t) + �

2 � (
P (t)

�
)2; P (0) = 0:

Example 2: (A random jump of the mean rate) Here we consider the situation

where the drift of a stock changes from a low value to a high value after some exponentially

distributed time. This is a possible model for a stock which is seen as some future winner. It

more or less 
uctuates around a constant value for some time but then, when the market has

realized its potential, grows at a high rate. It is of course important to realize the start of

this growth as soon as possible. Again, learning the unobserved drift rate gives an invaluable

advantage. As an example, we recall the following situation as given in [10], section 9.4

adapting the parameters to our situation: Let b(�) be a Markov process starting with a value

of zero and changing to b 2 [0;1[ after some unobservable random time which is exponentially

11



distributed with parameter � > 0. We obtain the following stochastic di�erential equation

for bb(�):
dbb(t) = �(b�bb(t))dt+bb(t)(b�bb(t))(dz(t) �bb(t)dt)

�2

with an initial value of bb(0) = 0.

6 An example: Constant unknown mean rate.

To give an application of our main result of Section 4 and to highlight its consequences by

some �gures, we will concentrate on the choice of the log-utility function, i.e. the case of

U1(t; x) = U2(x) = ln(x):

In this setting we can present very explicit. We �rst realize that by performing the same

calculations as in [9], page 71, we obtain for the given initial endowment x 2]0;1[ the

optimal consumption, the optimal �nal wealth, and the optimal portfolio as

c
�(t) =

x

T + 1

1

H0(t)
; �

� =
x

T + 1

1

H0(T )
; �

�(t) =
bb(t)� r(t)

�(t)2
X

x;��;c�(t) 8t 2 [0; T ]:

Hence, we obtain the optimal portfolio in our setting by replacing b(t) by its conditional

expectation bb(t) in the optimal strategy with observable mean rate of return. It should also

be noted that the above result directly generalizes to the n-stock situation giving an optimal

(relative) portfolio of ��(t)=Xx;��;c�(t) = (�(t)�(t)0)�1(bb(t)� r(t)1). Note in particular that

although the utility function in the above portfolio problem is typically non-quadratic, we

still have a separation result of estimation and control. To highlight the consequences of the

above form of the optimal (relative) portfolio process, we look at the special case where the

mean rate equals an unknown constant. More precisely, we have

db(t) = 0; b(0) = b

where b is an unknown ("unobservable") constant which is therefore modeled as a Gaussian

random variable with given moments E(b) and V ar(b). Let us assume a constant volatility

� meaning that (L(t) :=
R t
0 S1(u)

�1
dS1(u) = tb + �W (t))t2[0;T ] and consider as observation

process

z(t) = L(t)�E(b)t = t(b�E(b)) + �W (t) 8t 2 [0; T ]:

Moreover, we suppose that b and W1(�) are independent. Then, by applying standard �ltering

results (see [4]) we obtain

bb(t) = E(b) +
V ar(b)

�2 + V ar(b)t
z(t) 8t 2 [0; T ]:

An interesting consequence of the explicit form of bb(�) is that the estimate bb(t) converges

towards the true value b with increasing time t even if the moments of b (i.e. the terms the

investor has to specify as input for the equation de�ning bb(t)) are totally misspeci�ed (i.e. if

the "initial guess" E(b) for b is far away from the real value). This is seen from the law of

large numbers:

bb(t) = E(b) +
V ar(b)

�2=t+ V ar(b)
((b�E(b)) + �

1

t
Wt) 8t 2 [0; T ]:
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This is particularly important for applications as then an exact (!) speci�cation of E(b)

and V ar(b) is important, but not indispensable. For producing the Figures 1{5 below we

have chosen the following data: b = 0:2, r = 0:05, � = 0:4, initial endowment x = 500,

S1(0) = 100. The chosen discretized step-size is 0.04, i.e. there is a rebalancing of the

holdings each day (working with a year of 250 trading days).

Figure 1 shows three di�erent wealth processes all underlying the same Brownian motion.

One wealth process is based on the full knowledge of the drift parameter ("known wealth"),

one using the learning drift bb(t) with E(b) = 0, V ar(b) = 0:2, and the �nal one uses the

initial guess of �b = 0 ("guessed wealth"). As the initial guess is far from the real constant

b = 0:2 the corresponding wealth process performs worse than the other two. Further, it is

remarkable that the learning wealth mimics the "known wealth" nearly perfectly. The drift

process seems to learn quite quickly. Figures 2 | 7 depict the mean value evolution of the

Figure 1: Simulation of wealth processes based on guessed, learned and known drift

known, guessed and learned drift and wealth, respectively. Each mean value evolution is

obtained from 5000 independently generated samples. In the Figures 2 | 5, we have chosen

b = E(b) = 0:15; V ar(b) = 0:01. The time horizon is T = 1 and T = 25 respectively. To

highlight the problems with a high variance of the learning process we give the pictures 6 and

7 where we have changed V ar(b) to 0:05 and � to 0:2, the time horizon is T = 10.

Figure 2: Mean-evolution of drift rates Figure 3: Mean-evolution of the wealth

The Figures 1{7 show that we have to balance out some problems:

� Guessing a drift rate, i.e. choosing a constant and sticking to it, is not a bad strategy

over a short time period. If its value is not too far away from the real value then the

13



Figure 4: Mean-evolution of drift rates Figure 5: Mean-evolution of the wealth

Figure 6: Mean-evolution of drift rates Figure 7: Mean-evolution of the wealth.

corresponding expected �nal log-wealth is close to the optimal one in the model with

perfect knowledge (see Figure 3).

� Using the above guess as starting value in our equations for bb(t) (or equivalently using

the expected value E(b) as initial guess) does not necessarily lead to a better perfor-

mance (at least not over a short time period) than the above strategy of sticking to the

initial guess (see Figure 3).

� The performance of the learning strategy corresponding to the use of bb(t) in the optimal

portfolio process depends heavily on both the time horizon and the value of V ar(b).

If one looks at the realistic situation that this variance is unknown then the investor

has to use an estimate (or a guess ...) of it. Here, we are faced with a typical balance

problem: If the chosen value is very small then the learning process is slow, and it takes

a long time until (the mean of) bb(t) is close to b . On the other hand, for such choices

the expected �nal log-wealth seems to beat the above guessed constant strategy even on

the short time scale. A high value of (the estimate for) V ar(b) speeds up the learning

process in the mean (see Figure 6) but also leads to a high variance of the corresponding

portfolio process. This typically leads to an underperformance of this strategy compared

to the above constant one measured in terms of the expected �nal log-wealth. However,

in the long run it easily outperforms the constant one (see Figure 7).

� If the initial guess of the constant strategy is far from the real value of b then the

learning strategy clearly outperforms the constant one even if the chosen estimate for

V ar(b) is large (see Figure 1).
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The picture changes dramatically if we increase the time horizon to T = 25 (see Figures 4

and 5). Here, the learning process has grown up to (a mean of) 0.17, and as a consequence

the (mean of the) learned wealth is visibly above the guessed wealth. If the variance is high,

(pictures 6 and 7) then, until t = 5 the learned wealth is below the guessed one, but then due

to the well-learned drift overtakes the guessed one and is consistently better in the end.
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