Aus der Klinik für Radiologie
der Medizinischen Fakultät Charité – Universitätsmedizin Berlin

DISSERTATION

Kernspintomographische Evaluation myokardialer Geschwindigkeiten nach Vorhofumkehroperation bei Transposition der großen Gefäße und deren Auswirkung auf die ventrikuläre Funktion

zur Erlangung des akademischen Grades
Doctor medicine (Dr. med.)

vorgelegt der Medizinischen Fakultät
Charité – Universitätsmedizin Berlin

von

Sylvia Hebes, geb. Fehr

aus Strausberg
Gutachter: 1. Prof. Dr. med. M. Gutberlet

2. Priv.-Doz. Dr. med. R. Röttgen

3. Priv.-Doz. Dr. med. S. Miller

Datum der Promotion: 07.09.2012
INHALT

Inhalt...I

Abbildungsverzeichnis ...IV

Tabellenverzeichnis ..VI

Abkürzungsverzeichnis ...IX

1 Einleitung ..1

1.1 Transposition der großen Gefäße ...2

1.1.1 Formen der TGA ...2

1.1.2 Klinik und Diagnostik der TGA ...5

1.1.3 Therapie ..6

1.2 Die Entwicklung der TGA-Therapie ..8

1.3 Die atriale Switch-Operation nach Mustard und Senning8

1.4 Spätkomplikationen der atrialen Switch-Operation ...9

1.4.1 Systemventrikuläre Dysfunktion ...9

1.4.2 Trikuspidalklappensuffizienz ..11

1.4.3 Arrhythmien ...11

1.4.4 Plötzlicher Tod ..12

1.4.5 Baffle-Obstruktionen und -Leckagen ..12

1.4.6 Pulmonale Hypertonie ...13

1.5 Die Bedeutung der Magnetresonanztomographie ...13

1.6 Zielstellung ...14

2 Methodik ...16

2.1 Studienkollektive ...16

2.1.1 Patientenkollektiv ...16

2.1.2 Probandenkollektiv ..17

2.1.3 Datenakquirierung ..17

2.1.4 Magnetresonanztomographie ...18

2.1.5 CardiacTool ..21
<table>
<thead>
<tr>
<th>Abschnitt</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2 Statistische Auswertung</td>
<td>30</td>
</tr>
<tr>
<td>2.3 Ermittlung der allgemeinen Volumetrischen und Funktionellen Parameter</td>
<td>31</td>
</tr>
<tr>
<td>2.4 Ermittlung der ventrikulären Myokardgeschwindigkeiten</td>
<td>32</td>
</tr>
<tr>
<td>2.5 Ermittlung der septalen Geschwindigkeiten</td>
<td>33</td>
</tr>
<tr>
<td>2.6 Ermittlung des zeitlichen Auftretens der Geschwindigkeitspeaks</td>
<td>33</td>
</tr>
<tr>
<td>3 Ergebnisse</td>
<td>35</td>
</tr>
<tr>
<td>3.1 Allgemeine volumetrische und funktionelle kardiale Parameter</td>
<td>35</td>
</tr>
<tr>
<td>3.1.1 Ejektionsfraktion</td>
<td>35</td>
</tr>
<tr>
<td>3.1.2 Volumenparameter</td>
<td>37</td>
</tr>
<tr>
<td>3.1.3 Muskelmasse</td>
<td>38</td>
</tr>
<tr>
<td>3.2 Gesamtdarstellung der myokardialen Radialgeschwindigkeiten</td>
<td>39</td>
</tr>
<tr>
<td>3.3 Regionale Geschwindigkeitsanalyse</td>
<td>42</td>
</tr>
<tr>
<td>3.3.1 Wandgeschwindigkeitspeak der S-Welle</td>
<td>43</td>
</tr>
<tr>
<td>3.3.2 Wandgeschwindigkeitspeak der E-Welle</td>
<td>48</td>
</tr>
<tr>
<td>3.3.3 Wandgeschwindigkeitspeak der A-Welle</td>
<td>52</td>
</tr>
<tr>
<td>3.4 Zeitliches Auftreten der Geschwindigkeitspeaks</td>
<td>58</td>
</tr>
<tr>
<td>3.5 Zusammenhang zwischen den allgemeinen funktionellen und den</td>
<td>62</td>
</tr>
<tr>
<td>Geschwindigkeitsparametern</td>
<td></td>
</tr>
<tr>
<td>3.5.1 Abhängigkeit der Ejektionsfraktion von den myokardialen Geschwindigkeiten</td>
<td>62</td>
</tr>
<tr>
<td>3.5.2 Abhängigkeit der Ejektionsfraktion von der Muskelmasse</td>
<td>63</td>
</tr>
<tr>
<td>3.5.3 Abhängigkeit der myokardialen Geschwindigkeit vom Alter</td>
<td>65</td>
</tr>
<tr>
<td>3.5.4 Abhängigkeit der Ejektionsfraktion vom Alter</td>
<td>70</td>
</tr>
<tr>
<td>3.5.5 Abhängigkeit der myokardialen Geschwindigkeit von der Herzfrequenz</td>
<td>70</td>
</tr>
<tr>
<td>4 Diskussion</td>
<td>73</td>
</tr>
<tr>
<td>4.1 Allgemeine volumetrische und funktionelle Parameter</td>
<td>73</td>
</tr>
<tr>
<td>4.1.1 Ejektionsfraktion und enddiastolisches Volumen</td>
<td>74</td>
</tr>
<tr>
<td>4.1.2 Muskelmasse</td>
<td>78</td>
</tr>
<tr>
<td>4.2 Geschwindigkeitsanalyse</td>
<td>79</td>
</tr>
<tr>
<td>4.2.1 Untersuchungsmethode</td>
<td>79</td>
</tr>
<tr>
<td>4.2.2 Myokardgeschwindigkeiten</td>
<td>81</td>
</tr>
</tbody>
</table>
Inhalt

4.3 Zeitliches Auftreten der Geschwindigkeitsmaxima..88
4.4 Zusammenhang zwischen Wandgeschwindigkeit und Ejektionsfraktion........89
4.5 Einfluss der Muskelmasse auf die Ejektionsfraktion.................................90
4.6 Einfluss des Alters auf die Wandgeschwindigkeiten und die Ejektionsfraktion......91
4.7 Einfluss der Herzfrequenz auf die Wandgeschwindigkeiten..........................93
4.8 Limitation der Studie ..94
 4.8.1 Methodik: Studienkollektive ...94
 4.8.2 Methodik: MRT ..95
 4.8.3 Methodik: CardiacTool ..96
5 Ausblick ...96
6 Zusammenfassung ...97

Literatur ...102

Danksagung ...107

Erklärung ...108

Lebenslauf ...109
ABBILDUNGSVERZEICHNIS

Abbildung 1-1: Struktur der Arbeit .. 1
Abbildung 2-1: Segmentierung des Myokards im CardiacTool 22
Abbildung 2-2: (a) „Epi- und Endo-Border Pixel remove“; (b) „Epi- und Endo-Border Pixel add“-Option .. 24
Abbildung 2-3: Vektorendarstellung der Systole im LV. ... 25
Abbildung 2-4: Farbkodierte Darstellung der Radialgeschwindigkeit im LV. (a) Systole. (b) Diastole .. 26
Abbildung 2-5: Das Ergebnis-Fenster des CardiacTool... 27
Abbildung 2-6: „Regions of interest“ im LV. Blau = Septum, Rot = Außenwand 28
Abbildung 2-7: Idealisiertes Wandgeschwindigkeitsprofil eines Herzyklus 29
Abbildung 2-8: Radialgeschwindigkeiten im Apex LV. Blau = Septum, Rot = Außenwand. ... 29
Abbildung 3-1: RV-Ejektionsfraktionen (%) in den Patientensubkollektiven mit tendenziell höheren RV-EFs in der IVS-RV-Gruppe ... 36
Abbildung 3-2: Gliederung Kapitel 3.3 .. 42
Abbildung 3-3: LV S-Welle im Probanden- und Patientenkollektiv 44
Abbildung 3-4: RV S-Welle im Probanden- und Patientenkollektiv 45
Abbildung 3-5: RV S-Welle der Probanden und Patientensubkollektive (MW±STD) 47
Abbildung 3-6: RV E-Welle im Probanden- und Patientenkollektiv 50
Abbildung 3-7: Septum E-Welle in der Probandengruppe und den Patientensubgruppen. 52
Abbildung 3-8: LV A-Welle im Probanden- und Patientenkollektiv 53
Abbildung 3-9: RV A-Welle in den Patientensubgruppen ... 56
Abbildung 3-10: Septum A-Welle im Probandenkollektiv und den Patientensubgruppen. 57
Abbildung 3-11: Zusammenhang zwischen A-Geschwindigkeit und EF im RV Basis im IVS-RV-Kollektiv .. 63
Abbildung 3-12: Abhängigkeit EF von der Muskelmasse im Patientenkollektiv im RV 64
Abbildung 3-13: Abhängigkeit der S-Welle vom Alter im Probandenkollektiv Basis LV. 66
Abbildung 3-14: Abhängigkeit S-Welle vom Alter im Patientenkollektiv absolute Spitze RV ... 66
Abbildung 3-15: Abhängigkeit der S-Geschwindigkeit vom Alter in den Patientensubkollektiven: (a) IVS-LV und (b) IVS-RV Basis LV .. 67
Abbildung 3-16: Abhängigkeit der rechtsventrikulären EF vom Alter im Patientenkollektiv.70
Abbildung 3-17: Abhängigkeit der S-Geschwindigkeit von der Herzfrequenz im LV im Patientenkollektiv..71
TABELLENVERZEICHNIS

Tabelle 2-1: Altersangaben der Studienkollektive. (*) p < 0,05 in Bezug zu den Probanden (a). 16
Tabelle 3-1: Übersicht über die Ejektionsfraktionen (%) in den Studienkollektiven.36
Tabelle 3-2: Übersicht über die linksventrikulären Volumina in den Studienkollektiven............37
Tabelle 3-3: Übersicht über die rechtsventrikulären Volumina in den Studienkollektiven.............38
Tabelle 3-4: Übersicht über die Muskelnmassen in den Studienkollektiven.................................38
Tabelle 3-5: Geschwindigkeitsparameter im LV in den Studienkollektiven................................40
Tabelle 3-6: Geschwindigkeitsparameter im RV in den Studienkollektiven................................41
Tabelle 3-7: LV A-Welle in der Probandengruppe und den Patientensubkollektiven.................41
Tabelle 3-8: Maximalgeschwindigkeiten (Auswahl). ...42
Tabelle 3-9: Friedman-Test. Signifikanz niveaus (Auswahl) im Patientenkollektiv.......................43
Tabelle 3-10: LV S-Welle im Probanden- und Patientenkollektiv..43
Tabelle 3-11: RV S-Welle im Probanden- und Patientenkollektiv..44
Tabelle 3-12: Septum S-Welle im Probanden- und Patientenkollektiv..45
Tabelle 3-13: Basale S-Welle im Probandenkollektiv und den Patientensubgruppen. (*) p < 0,05
im Vergleich der Subkollektive (b). ..46
Tabelle 3-14: LV S-Welle im mittventrikulären Myokard im Probanden- und Patientenkollektiv
sowie IVS-RV-Gruppe. (*) p < 0,05 im Bezug zu den Probanden (a). ..47
Tabelle 3-15: Septum S-Welle im Probandenkollektiv und den Patientensubgruppen.................47
Tabelle 3-16: LV E-Welle im Probanden- und Patientenkollektiv..48
Tabelle 3-17: RV E-Welle im Probanden- und Patientenkollektiv..49
Tabelle 3-18: Septum E-Welle im Probanden- und Patientenkollektiv ..50
Tabelle 3-19: LV Basis der E-Welle im Probandenkollektiv und den Patientensubgruppen............51
Tabelle 3-20: RV absolute Spitze der E-Welle im Probandenkollektiv und den
Patientensubgruppen. (*) p < 0,05 in Bezug zu den Probanden (b). ...51
Tabelle 3-21: LV A-Welle im Probanden- und Patientenkollektiv...51
Tabelle 3-22: RV A-Welle im Probanden- und Patientenkollektiv...52
Tabelle 3-23: Septum A-Welle im Probanden- und Patientenkollektiv..55
Tabelle 3-24: LV A-Welle Basis und mittventrikuläres Myokard im Probandenkollektiv und den
Patientensubgruppen. (*) p < 0,05 in Bezug zu den Probanden (b). ...55
Tabelle 3-25: Maximalgeschwindigkeiten LV A-Welle in den Patientensubkollektiven..............56
Abkürzungsverzeichnis

Tabelle 3-26: Zeitliches Auftreten der A-Welle nach der R-Zacke im EKG (s) im Probandenkollektiv und den Patientensubgruppen ...58
Tabelle 3-27: Zeitliches Auftreten der Geschwindigkeitspeaks im RV im Probanden- und Patientenkollektiv. (*) p < 0,05 bzw. (**) p < 0,01 im Bezug zu den Probanden (a) oder zwischen den Patientensubgruppen (b)...........................59
Tabelle 3-28: Zeitliches Auftreten der Geschwindigkeitspeaks nach der R-Zacke im EKG (s) im jeweiligen Systemventrikel im Probanden- und Patientenkollektiv. (*) 1p < 0,05 im Bezug zu den Probanden (a)..60
Tabelle 3-29: Mittleres zeitliches Auftreten der E-Geschwindigkeitspeaks nach der R-Zacke im EKG (s) im rechten Ventrikel im Probandenkollektiv und den Patientensubgruppen. (*) p < 0,05 bzw. (**) p < 0,01 im Bezug zu den Probanden (a). oder zwischen den Patientensubgruppen (b).61
Tabelle 3-30: Zeitliches Auftreten der Geschwindigkeitspeaks der E-Welle nach der R-Zacke im EKG (s) im Septum im Probanden- und Patientenkollektiv. (*) p < 0,05 bzw. (**) p < 0,01 im Bezug zu den Probanden (a) oder zwischen den Patientensubgruppen (b)...........................62
Tabelle 3-31: Korrelation zwischen EF und S-Geschwindigkeit im Patientenkollektiv und den subgruppen. ..64
Tabelle 3-32: Korrelation zwischen EF und Muskelmasse im Patientenkollektiv.65
Tabelle 3-33: Korrelation zwischen Alter und Myokardgeschwindigkeiten in der Basis und absoluten Spitze im RV, LV und Septum im Probandenkollektiv. (*) p < 0,05. (º) p = 0,05.....66
Tabelle 3-34: Korrelation zwischen Alter und Myokardgeschwindigkeiten im IVS-LV-Kollektiv LV. (*) p < 0,05. (**) p < 0,01...67
Tabelle 3-35: Mittlere Myokardgeschwindigkeiten in den Patientensubgruppen nach postoperativem Alter. ...68
Tabelle 3-36: Korrelation (r) zwischen dem Alter und den myokardialen Geschwindigkeiten in der rechts- und linksventrikulären sowie septalen Basis und absoluten Spitze im Patientensubkollektiv ≤ 17 Jahre. (*) p < 0,05. (**) p < 0,01...69
Tabelle 3-37: Korrelation (r) zwischen dem Alter und den myokardialen Geschwindigkeiten in den rechts- und linksventrikulären myokardialen Regionen im Patientensubkollektiv > 17 Jahre. (*) p < 0,05..69
Tabelle 3-38: Korrelation zwischen Herzfrequenz und E-Geschwindigkeit im LV im Probandenkollektiv..70
Tabelle 3-39: Korrelation zwischen Herzfrequenz und Myokardgeschwindigkeiten im LV im Patientenkollektiv. (*) p < 0,05. (**) p < 0,01. (º) p = 0,05..71
Abkürzungsverzeichnis -

Tabelle 3-40: Korrelation zwischen Herzfrequenz und Myokardgeschwindigkeiten im RV in den Patientensubkollektiven. ... 72
Tabelle 4-1: Vergleich der rechtsventrikulären volumetrischen Parameter ermittelt im Längs- und Kurzachsenschnitt mittels MRT von Alfakih et al. (2003) [57] (* p < 0.05, ** p < 0.01). .. 74
Tabelle 4-2: Übersicht Ejektionsfraktion. (# Werte wurden rechnerisch ermittelt)............ 74
Tabelle 4-3: Übersicht Muskelmasse in der Literatur .. 78
Tabelle 4-4: Abweichung der Studienergebnisse ... 80
Tabelle 4-5: Übersicht Myokardgeschwindigkeiten im Probandenkollektiv 83
Tabelle 4-6: Übersicht basale Myokardgeschwindigkeiten in der Literatur 85
Tabelle 4-7: Basale Geschwindigkeitspeaks im Vergleich zu Palka et al. (1996) [73]. 89
ABKÜRZUNGSVERZEICHNIS

ap anterior – posterior (longitudinal)
AP Apex
ASO Arterielle Switch-Operation
AW Außenwand
BA Basales Myokard
BNP Brain Natriuretic Peptide
bzw. beziehungsweise
ccTGA kongenital korrigierte Transposition der Großen Gefäße Koro-
CNR Kontrast-zu-Rausch-Verhältnis („contrast to noise ratio“)
EDV Enddiastolisches Volumen
EKG Elektrokardiogramm
ESV Endsystolisches Volumen
EF Ejektionsfraktion
fh feed – head (transversal)
FOV field-of-view
GE Gradienten-Echo
ICR Interkostalraum
IVS-LV physiologische Patientensubgruppe mit Schlagrichtung des
 Septums in Richtung des linken Ventrikels
IVS-RV paradox Patientensubgruppe mit Schlagrichtung des Septums
 in Richtung des rechten Ventrikels
Kgr Körpergröße
KOF Körperoberfläche
LV Linker Ventrikel
mK Körpermasse
MM Mittventrikuläres Myokard
MRT Magnetresonanztomographie
MVG Myokardialer Velocitygradient
MW Mittelwert
n Anzahl
p Signifikanzniveau
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>postop.</td>
<td>postoperativ</td>
</tr>
<tr>
<td>r</td>
<td>Korrelationskoeffizient</td>
</tr>
<tr>
<td>rl</td>
<td>right – left (radial)</td>
</tr>
<tr>
<td>ROI</td>
<td>region of interest</td>
</tr>
<tr>
<td>RV</td>
<td>Rechter Ventrikel</td>
</tr>
<tr>
<td>s.</td>
<td>siehe</td>
</tr>
<tr>
<td>SE</td>
<td>Spin-Echo</td>
</tr>
<tr>
<td>SEP</td>
<td>Septum</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-noise-ratio</td>
</tr>
<tr>
<td>s.o.</td>
<td>siehe oben</td>
</tr>
<tr>
<td>SP</td>
<td>Absolute Spitze</td>
</tr>
<tr>
<td>STD</td>
<td>Standardabweichung</td>
</tr>
<tr>
<td>s.u.</td>
<td>siehe unten</td>
</tr>
<tr>
<td>SV</td>
<td>Schlagvolumen</td>
</tr>
<tr>
<td>Tc99m</td>
<td>Technecium99</td>
</tr>
<tr>
<td>TDI</td>
<td>Tissue Doppler Imaging</td>
</tr>
<tr>
<td>TE</td>
<td>Echozeit</td>
</tr>
<tr>
<td>TGA</td>
<td>Transposition der Großen Gefäße</td>
</tr>
<tr>
<td>TR</td>
<td>Repetitionszeit</td>
</tr>
<tr>
<td>Venc</td>
<td>Enkodiergeschwindigkeit</td>
</tr>
<tr>
<td>Vgl.</td>
<td>Vergleich</td>
</tr>
<tr>
<td>vs.</td>
<td>versus</td>
</tr>
<tr>
<td>VSD</td>
<td>Ventrikelseptumdefekt</td>
</tr>
<tr>
<td>z.B.</td>
<td>zum Beispiel</td>
</tr>
</tbody>
</table>
1 EINLEITUNG

Abbildung 1-1: Struktur der Arbeit.
1.1 TRANSPOSITION DER GROßEN GEFÄßE

Die Transposition der großen Gefäße (TGA) ist mit einer Prävalenz von 5-10 % aller angeborenen Herzfehler der zweithäufigste zyanotische Herzfehler [1, 2]. Die Inzidenz beträgt 20-30/100.000 Lebendgeburten mit einer Bevorzugung des männlichen Geschlechts, m:w = 2:1 [1].

Aufgrund der verbesserten pränatalen Diagnostik werden viele Transpositionen heutzutage bereits vor der Geburt diagnostiziert. Somit lässt sich postpartal sofort die nötige Therapie einleiten, wodurch eine Reduktion der neonatalen Mortalität und Morbidität erzielt werden kann [3]. Daher erreichen immer mehr TGA-Patienten das Erwachsenenalter, was eine intensive Beschäftigung mit der Krankheit und ihrer Therapie erfordert.

1.1.1 FORMEN DER TGA

Bei dem Krankheitsbild der Transposition der großen Gefäße werden verschiedene Formen unterschieden, die nachstehend vorgestellt werden:

- d-TGA (komplette TGA)
- l-TGA (kongenital korrigierte TGA)
- inkomplette Formen

d-TGA oder komplette TGA

Abbildung 1-2: Darstellung der Transposition der großen Gefäße, aus: [2].

Für die Versorgung des Körpers und damit für das Überleben des Neugeborenen spielt es eine entscheidende Rolle, ob und in welchem Ausmaß Kurzschlussverbindungen zwischen den zwei getrennten Kreisläufen bestehen. Danach unterscheidet man eine einfache von einer komplexen Form. In ca. 50 % der Fälle existieren lediglich die embryonalen Shuntverbindungen des Foramen ovale und des Ductus arteriosus botalli und es liegt eine einfache Transposition vor. In den verbleibenden 50 % besteht eine komplexe Form mit zusätzlichen kardialen Fehlbildungen, insbesondere einem Ventrikel septumdefekt (VSD) in 40-45 %, einer Pulmonalstenose (25 %) und der Aortenisthmusstenose (5 %) [1].

l-TGA (kongenital korrigierte TGA)
Die l-TGA oder auch kongenital korrigierte Transposition ist mit einer Prävalenz von 0,5 % aller angeborenen Herzfehler eine Rarität und wird aufgrund des besseren hämodynamischen Verhältnisses häufig erst im Erwachsenenalter diagnostiziert. Im Gegensatz zur d-TGA weist die l-TGA eine Fehlanordnung des primitiven linken Ventrikels und des Bulbus cordis, späterer rechter Ventrikel, auf. Letzterer liegt links („laevo“) des morphologisch linken Ventrikels und ist als Systemventrikel mit der Aorta verbunden, die linke Herzkammer hingegen nimmt die Stellung und Funktion des eigentlich rechten Ventrikels ein. Somit bestehen sowohl eine ventrikuloarterielle als auch eine atroventrikuläre Diskordanz, da der rechte Ventrikel mit dem linken Vorhof verbunden ist und umgekehrt. Es resultieren daraus zwar hämodynamisch normale Verhältnisse, trotzdem ist der rechte Ventrikel auch hier Systemventrikel und die Trikuspidalklappe dem Hochdrucksystem zugeordnet. Wie auch bei der d-TGA können zusätzlich ein VSD (60-80 %) sowie eine Pulmonalstenose (30-50 %) bestehen [1, 4, 6].

Inkomplette Formen
Diese Formen der TGA treten immer im Zusammenhang mit weiteren Herzfehlern auf:

- Double outlet right ventricle: beide großen Gefäße entspringen aus dem rechten Ventrikel, der linke Ventrikel ist hypoplastisch oder fehlt komplett;
- Double outlet left ventricle: umgekehrte Form mit Ursprung von Aorta und Pulmonalarterie aus dem linken Ventrikel;
- Taussing-Bing-Syndrom: auch hierbei entspringt die Aorta aus dem rechten Ventrikel, gleichzeitig kommt es zu einer unvollständigen Verlagerung der über einem VSD reitenden Pulmonalarterie [9].
1.1.2 KLINIK UND DIAGNOSTIK DER TGA

Das EKG des erkrankten Neugeborenen zeigt anfangs meistens einen unauffälligen Befund [2]. Lediglich bei enormer Druckbelastung bestehen ein Rechtslagetyp, eine rechtsventrikuläre Hypertrophie sowie ein (in-)kompletter Rechtsschenkelblock. Zusätzlich können bei einem VSD, einem persistierenden Ductus arteriosus botalli und einer obstruktiven Lungengefäßerkrankung Anzeichen für eine Linksherzhypertrophie vorliegen [8, 10].

Im Röntgenthorax lässt sich aufgrund der beidseitigen Herzverbreiterung ein typischer, großer eiförmiger Herzschaten sehen, ebenso zeigt sich eine vermehrte Lungengefäßerfüllung [8, 10]. Das Pulmonalsegment fehlt, wodurch das Bild einer betonten Herztaille entsteht [11].

In der Angiographie lassen sich die anatomicischen Veränderungen sowie eventuell weitere Anomalien des Herzens nachweisen. Weiterhin können die Shuntgrößen eingeschätzt sowie die Lungengefäßerhormorphologie beurteilt werden. Wichtig ist ebenfalls die Beurteilung des Koronarstatus, da es für die Durchführung der heutzutage angewandten arteriellen Switch-OP notwendig ist, Ursprung und Verlauf der Koronararterien zu kennen [8, 10]. In der gleichen Sitzung kann mittels Angiographie das Rashkind-Manöver durchgeführt werden (s. Abschnitt 1.1.3).
1.1.3 Therapie

Bei der Therapie der TGA muss zwischen den akuten Maßnahmen postpartum und der langfristigen, operativen Therapie im weiteren Verlauf differenziert werden.

Postpartum besteht das Ziel der Therapie zunächst darin, die fetalen Verbindungen zwischen den beiden Blutkreisläufen aufrecht zu erhalten, um die lebensnotwendige Oxygenierung des Körpers sicherzustellen und eine akute hämodynamische Entgleisung zu verhindern. Hierbei werden zum einen zum Offenhalten des Ductus arteriosus Botalli Prostaglandine E1 intravenös verabreicht, zum anderen wird die Ballonatrioseptostomie (Rashkind-Manöver) durchgeführt. Hierbei wird eine im Durchmesser 1,0 bis 1,5 cm große Verbindung auf Vorhofebene mittels Katheterintervention geschaffen, um eine ausreichende Arterialisierung des Systemkreislaufes zu gewährleisten. Bei neugeborenen TGA-Patienten kann somit ein unmittelbarer Anstieg der Sauerstoffsättigung erreicht werden [2, 4, 8]. In Ausnahmefällen kann auch eine chirurgische Teilresektion des atrialen Septums erfolgen (Blalock-Hanlon-OP, s.u.) [10].

Die Letalität dieser Therapieform liegt insgesamt bei 5-15 %, die Mortalität in den ersten 10 Lebenstagen bei ca. 2 %. Die postoperative Lebensqualität ist bei guter Belastbarkeit kaum vermindert. Im Späverlauf lassen sich periphere Pulmonalstenosen sowie leichte Aortenklappeninsuffizienzen und -stenosen beobachten. Die Transferierung der Koronararterien bei der ASO führt in der Regel zu keinen Spätkomplikationen. Als frühe oder mittelfristige Komplikationen treten jedoch Anastomosenstenosen mit entsprechender Myokardischämie auf [2, 10].

Die direkte Durchführung der ASO ist lediglich innerhalb der ersten vier Lebenswochen möglich, da der linke Ventrikel postoperativ sofort systemische Drücke aufrecht erhalten muss. Ist der linke Ventrikel zu lange an das Niederdrucksystem des Lungenkreislaufs angeschlossen,
bleibt eine ausreichende Entwicklung des linksventrikulären Myokards aus. Bei der Durchführung einer ASO würde es somit zu einer hämodynamischen Entgleisung mit akutem Linksherzversagen kommen. Daher muss gegebenenfalls eine zweizeitige Korrektur (rapid two-stage arterial switch) erfolgen, bei der durch das sogenannte pulmonalarterielle Banding (PAB) eine kurzfristige Drosselung und somit Druckerhöhung in der Pulmonalarterie provoziert wird, um den linken Ventrikel zu trainieren. Ist das linksventrikuläre Myokard an den erhöhten Druck gut angepasst, kann anschließend die ASO durchgeführt werden [1, 10].

Liegte eine komplexe Form der TGA mit VSD und Pulmonalstenose vor, kommt die intraventrikuläre Korrektur nach Rastelli zum Einsatz. Dabei wird das Blut vom linken Ventrikel über den VSD mittels eines intraventrikulären tunnelförmigen Patches zur Aorta geleitet, der rechte Ventrikel wird über ein extrakardiales klappentragendes Konduit oder einen Homograft mit der zuvor vom linken Ventrikel getrennten Pulmonalarterie verbunden. Die Letalität liegt mit 10-30 % deutlich höher als bei der ASO [8, 10].

Eine weitere Möglichkeit der Therapie der TGA ist die atriale Switch-Operation (Vorhofumkehroperation) nach Mustard und Senning, die den Schwerpunkt dieser Arbeit darstellt. Im Kapitel 1.3 wird diese Methode detailliert beschrieben.

1.2 DIE ENTWICKLUNG DER TGA-THERAPIE

1.3 DIE ATRIALE SWITCH-OPERATION NACH MUSTARD UND SENNING

Beiden Operationsformen gemeinsam ist die Umkehrung des Blutflusses auf Vorhofebene, so dass der rechte Ventrikel weiterhin Systemventrikel bleibt, d.h. die Aorta immer noch den Ausflusstrakt für die rechte Kammer darstellt (s. Abbildung 1-3). Weiterhin hat der linke Ventrikel die Verbindung zur Lunge über den Truncus pulmonalis. Durch die operative Korrektur erhält die rechte Herzkammer oxygeniertes Blut über die Trikuspidalklappe aus den Lungenvenen und pump dieses in den Körperkreislauf. Der linke Ventrikel hingegen wird mit sauerstoffarmem Blut aus dem Körper über die Mitralklappe gespeist und befördert dieses zur Oxygenierung in die Lunge. Somit ist die Sauerstoffversorgung des Körpers gewährleistet [5, 6].

Abbildung 1-3: Vorhofumkehroperation nach Mustard und Senning, aus: [6].

1.4 SPÄTKOMPLIKATIONEN DER ATRIALEN SWITCH-OPERATION
Die Einführung der Vorhofumkehroperation hat die Prognose der TGA-Patienten drastisch verbessert und zeigt im frühen postoperativen Verlauf kaum Komplikationen. Auch im Langzeitverlauf sind die meisten Patienten in ihrer Lebensqualität kaum oder nur geringfügig beeinträchtigt. So befinden sich ca. 20 Jahre postoperativ rund 95 % der Patienten im NYHA-Stadium I-II [14]. Leider hat sich aber im Laufe der Jahre gezeigt, dass es trotz asymptomatischer Klinik zu typischen Spätkomplikationen nach atrialer Switch-OP kommt, die das Outcome der Patienten enorm beeinflussen [5, 14].

1.4.1 SYSTEMVENTRIKULÄRE DYSFUNKTION
Eine Schlüsselrolle für die Langzeitprognose der TGA-Patienten stellt der als Systemventrikel dienende, morphologisch rechte Ventrikel dar [15]. So sind typische Folgezustände nach einer atrialen Switch-OP vor allem dadurch gekennzeichnet, dass der rechte Ventrikel systemische Drücke aufbauen und den Körper mit Sauerstoff versorgen muss. Die ventrikuläre Leistungsfähigkeit hat auch Auswirkungen auf weitere Spätkomplikationen (s.u.).

Bei der Einschätzung der ventrikulären Leistung muss zwischen der systolischen und diastolischen Funktion unterschieden werden. Die systolische Funktion kann anhand der
Einleitung

Ejektionsfraktion (EF) der Herzkammer beurteilt werden. Die diastolische Funktion wird zum einen durch den aktiven Vorgang der Relaxation, also die isovolumetrische Phase, in der alle vier Klappen geschlossen sind, widerspiegelt. Zum anderen wird sie durch die Füllung der Ventrikel beschrieben, was maßgeblich durch die Compliance, also die Dehnungsfähigkeit des Myokards und des umgebenden Gewebes, ermöglicht wird. Veränderungen innerhalb der Myokardstruktur können sowohl zu einer systolischen (verminderte Auswurffraktion), als auch zu einer diastolischen Dysfunktion (verminderte Füllung) führen [16, 17].

Nach einer atrialen Korrektur der TGA entwickelt sich zunächst eine Hypertrophie der rechten Herzkammer, die als Adaptationsmechanismus an die Funktion als Systemventrikel angesehen werden kann. Später kommt es dann häufig als Folge der Ausbildung einer Herzensuffizienz auch zu einer Dilatation des RV. Eine rechtsventrikuläre systolische und/oder diastolische Dysfunktion konnte jedoch nur bei ca. 10-15 % der zum Teil klinisch asymptomatischen Patienten nachgewiesen werden, wobei die diastolische Dysfunktion der systolischen zeitlich vorauszugehen scheint [14, 16-18]. In verschiedenen Studien konnte dabei nachgewiesen werden, dass die Hypertrophie des Myokards mit einer verminderten Ejektionsfraktion korreliert [19-22].

Eine rechtsventrikuläre Dysfunktion und eine präoperativ bestehende komplexe TGA sind mit einem erhöhten Auftreten von Trikuspidalinsuffizienzen (s. 1.4.2) assoziiert [14, 18]. Diese resultieren aus der Hypertrophie und Dilatation des Systemventrikels und erhöhen das Risiko für das Auftreten von Vorhofarrhythmien [4, 23]. Dieser Zusammenhang wird unter 1.4.3 näher erläutert.

Es gibt unterschiedliche Theorien, warum der rechte Ventrikel nicht optimal als Systemventrikel geeignet ist. Dabei konnten verschiedene Faktoren ermittelt werden.

Die geometrische Form des rechten Ventrikels

Die eher dreieckige Form sowie die Anordnung der Myokardfasern des rechten Ventrikels werden als ungeeignet angesehen, die systemische Pumpfunktion gegen eine hohe Nachlast aufzubringen [5].

Versorgung durch Koronargefäße

Das linksventrikuläre Myokard wird von zwei Arterien versorgt, der rechte Ventrikel jedoch nur von einer, was vor allem bei einer Hypertrophie für die Versorgung des Herzmuskels von Bedeutung ist (s.o.) [24].
Die Papillarmuskeln
Die Pappilarmuskeln entspringen linksventrikulär lediglich von der freien Wand, im rechten Ventrikel jedoch auch vom septalen Myokardanteil. Dadurch wird bei einer Dilatation des rechten Ventrikel und einer Verdrängung des Septums in Richtung linke Kammer eher eine Klappeninsuffizienz hervorgerufen als es beim linken Ventrikel der Fall wäre. Die Trikuspidalklappeninsuffizienz ist daher ein häufig auftretendes Problem bei einem systemischen rechten Ventrikel (s.u.) [24].

1.4.2 TRIKUSPIDALKLAPPENINSUFFIZIENZ

Nebenbefindlich führt die Verdrängung des Septums zum linken Ventrikel und somit in die linksventrikuläre Ausflussbahn zu einer milden subpulmonalen Stenose [5].

1.4.3 ARRHYTHMIEN

Das Auftreten einer Arrhythmie wird durch die Dilatation des rechten Ventrikel begünstigt. Diese verursacht wie bereits beschrieben eine Trikuspidalinsuffizienz, die als Folge eine erhöhte Volumen- und Druckbelastung des rechten Vorhofes und des dort liegenden
Einleitung

Als weiteres Langzeitproblem für diese Patienten werden ventrikuläre Dysfunktionen und Arrhythmien und damit verbunden ein erhöhtes Risiko für ventrikuläre Tachykarden angesehen [32].

1.4.4 Plötzlicher Tod

Die Mortalität fünf Jahre nach der Vorhofumkehroperation beträgt ca. 0,5 % pro Jahr [5], die häufigste Todesursache ist der plötzliche Tod [14]. Als wesentliche Risikofaktoren konnten die rechtsventrikuläre Dysfunktion mit/ohne Trikuspidalinsuffizienz und die supraventrikuläre Tachyarrhythmie, insbesondere das Vorhofflattern, ermittelt werden [28, 33].

Weiterhin scheinen auch Obstruktionen in den Ausflussbahnen, pulmonale Hypertonie und die Herzfrequenz eine Rolle zu spielen [5, 15, 18]. So führt eine hohe Herzfrequenz zu einer verminderten Füllung des Ventrikels und verstärkt somit die geminderte ventrikuläre Funktion [18]. Ebenso konnte gezeigt werden, dass der plötzliche Herztod vermehrt bei Patienten auftritt, die praoperativ einen VSD hatten. Hierfür wird eine mildere klinische Symptomatik und folglich verzögerte operative Therapie als Ursache diskutiert [28].

1.4.5 Baffle-Obstruktionen und -Leckagen

Eine weitere Komplikation stellen die Baffle-Obstruktionen dar, die wesentlich häufiger Mustard als Senning-Patienten betreffen (rund 1/3 der Mustard-Patienten) [14, 15].

Die Obstruktionen treten aufgrund eines kleineren Lumens meistens im Bereich der Vena cava superior auf, wobei sie bei ausreichend vorhandenen Umgebungskreisläufen klinisch oft asymptomatisch sind. Ist jedoch die untere Hohlvene betroffen, so entwickelt sich relativ schnell
Einleitung

Kernspintomographische Evaluation myokardialer Geschwindigkeiten nach Vorhofumkehroperation bei TGA

Ein Rückstau in die Leber und die Patienten werden mit Hepatomegalie und Aszites klinisch manifest. Seltener kann auch der pulmonalvenöse Anteil des Baffles betroffen sein, was klinisch einer Mitralklappenstenose ähnelt. Im Echo zeigt sich dann eine entrun dese Herzkammer statt des für Vorhofumkehr-Patienten typischen „bananenförmigen“ schmal konfigurierten linken Ventri kels. Es kommt zu Einschränkungen in der Aktivität und ein Lungenödem sowie eine pulmonale Hypertonie können sich zeigen. Bei allen Obstruktionen muss eine sich eventuell entwickelnde Thrombose berücksichtigt werden [4, 5].

1.4.6 Pulmonale Hypertonie

Es kann insbesondere bei spätoperierten Kindern und bei komplexen TGAs zur Entwicklung einer pulmonalen Hypertonie kommen, da diese längere Zeit einer höheren pulmonalen Volumenbelastung ausgesetzt sind. Ebenfalls scheint eine Rolle zu spielen, dass der linke Ventrikel höhere Drücke aufbringen kann als der rechte, der eigentlich in die Pulmonalarterie pumpt. Hierdurch könnte eine Schädigung der pulmonalen Gefäße begründet sein [4, 5].

Diese Spätkomplikationen nach der atrialen Switch-Operation sollten möglichst frühzeitig erkannt werden, was lebenslange Kontrolluntersuchungen erfordert. Als ein diagnostisches Mittel zur Einschätzung der kardialen Funktion und zum Erkennen möglicher Komplikationen steht die Magnetresonanztomographie zur Verfügung, die auch in dieser Studie genutzt wurde.

1.5 Die Bedeutung der Magnetresonanztomographie

Die Magnetresonanztomographie (MRT) stellt eine gut etablierte diagnostische Methode bei kongenitalen Herzerkrankungen dar und ermöglicht die Einschätzung und Quantifizierung von ventrikulären und atrialen Funktion, der intrakardialen Flussdynamik und des Blutflusses in den großen Gefäßen. Dabei kann zum einen die globale Funktion des Herzens, also die Auswurffraktion beider Ventrikel, ermittelt werden. Zum anderen lässt sich auch die regionale Funktion, dargestellt durch die Kontraktion und Relaxation in einzelnen Myokardabschnitten, in Ruhe und unter Stressbedingungen feststellen [16, 34].

Die Methode der Phasenkontrast-MRT, die primär zur Flussmessung in den Gefäßen eingesetzt wird, ermöglicht darüber hinaus die Messung von Gewebegeschwindigkeiten in allen drei
Einleitung

Für die Einschätzung des postoperativen Verlaufs und die Langzeitbetreuung der Patienten ist die MRT Methode der Wahl. Die in Kapitel 1.4 beschriebenen Spätkomplikationen der Vorhofumkehroperation, insbesondere die rechtsventrikuläre Funktion, lassen sich mit Hilfe der MRT gut evaluieren. Dabei ist die MRT der Echokardiographie zum Teil überlegen, die aufgrund eines ungünstigen Schallfensters oft nur begrenzt einsetzbar ist, wie zum Beispiel bei der Darstellung des rechtsventrikulären Ausflusstraktes und bei chirurgisch hergestellten Verbindungen wie dem Vorhof-Baffle [11, 16, 17, 37, 38].

1.6 ZIELSTELLUNG

Um die oftmals asymptomatischen Patienten möglichst frühzeitig einer Therapie zuzuführen, ist es notwendig, Methoden zu entwickeln oder zu verbessern, die die Spätkomplikationen frühzeitig aufdecken und die Beurteilung des rechten Systemventrikels ermöglichen. Die globale und regionale ventrikuläre Funktion, die sich für den Langzeitverlauf von korrigierten TGA-Patienten als ein wesentlicher Schlüsselfaktor erwiesen hat, ist zentraler Schwerpunkt dieser Arbeit. Als ein Maß für die ventrikuläre Funktion wird die radiale Myokardgeschwindigkeit im rechten und linken Ventrikel und im Septum von operierten TGA-Patienten untersucht und mit einem gesunden Probandenkollektiv verglichen. Es wird die MRT als Untersuchungsmethode genutzt, die neben der Echokardiographie mit dem tissue doppler eine weitere Möglichkeit zur Beurteilung der systolischen und diastolischen Ventrielfunktion darstellt [14]. Durch die Anwendung einer für diese Problemstellung speziell entwickelten Software, dem CardiacTool,
soll eine regional differenzierte Beurteilung der Wandgeschwindigkeiten erfolgen. Der aktuellen Studienlage folgend erwarten wir verminderte rechtsventrikuläre Myokardgeschwindigkeiten als (Früh-)Zeichen für eine eingeschränkte Ventrikelfunktion. Eine frühzeitige Diagnose und Therapie könnten den Langzeitverlauf der d-TGA-Patienten nach atrialer Switch-Operation positiv beeinflussen.
2 METHODIK

Nachdem in Kapitel 1 die Problematik und Zielstellung dieser Arbeit erläutert wurden, erfolgt in diesem Abschnitt die Darstellung des methodischen Vorgehens.

2.1 STUDIENKOLLEKTIVE

Um die von uns formulierte Zielstellung zu erforschen, haben wir Untersuchungen in einem Patienten- und einem Probandenkollektiv durchgeführt. Tabelle 2-1 zeigt einen Überblick über die Studienkollektive.

Tabelle 2-1: Altersangaben der Studienkollektive. () p < 0,05 in Bezug zu den Probanden (a).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Alter in Jahren</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Probanden (n = 13)</td>
</tr>
<tr>
<td>Alter bei Untersuchung</td>
<td>MW±STD 21,2±6,1</td>
</tr>
<tr>
<td></td>
<td>Spannweite 7-26 Jahre</td>
</tr>
<tr>
<td>Operationsalter</td>
<td>MW±STD 1,8±2,1</td>
</tr>
<tr>
<td>Postoperatives Alter</td>
<td>MW±STD 17,6±4,6</td>
</tr>
</tbody>
</table>

2.1.1 PATIENTENKOLLEKTIV

Die d-TGA-Patienten dieser Studie wurden in der kinderkardiologischen Ambulanz des Deutschen Herzzentrums Berlin (DHZB) sowie der Charité Campus Virchow Klinikum betreut. Die myokardialen Geschwindigkeitsmessungen mit der MRT wurden im Rahmen medizinisch indizierter kardialer MRT-Untersuchungen durchgeführt.

In das Patientenkollektiv wurden 22 Patienten, 6 Frauen und 16 Männer, eingeschlossen, die bei den MRT-Untersuchungen ein mittleres Alter von 18,1±4,2 Jahren aufwiesen. Die Vorhofumkehroperation erfolgte im Mittel im Alter von 1,8±2,1 Jahren. Die MRT-Aufnahmen sind im Mittel 17,6±4,6 Jahre nach der Operation gemacht worden.

\[1\] Im Folgenden werden die Jahresangaben mit Mittelwert ± einfache Standardabweichung angegeben.
Es zeigte sich bei den Ermittlungen der Radialgeschwindigkeiten, dass sich das Patientenkollektiv nach der Septumbewegung während des Herzzyklus in zwei Untergruppen einteilen ließ. Um eine strukturierte Darstellung der Studienkollektive zu ermöglichen, erfolgt die Darstellung dieser Subkollektive bereits in diesem Abschnitt.

2.1.2 PROBANDENKOLLEKTIV

Es hat sich zwar gezeigt, dass sich das Alter bei der Untersuchung zwischen Probanden und Patienten signifikant voneinander unterschied (Mann-Whitney-U-Test, p < 0,05). Jedoch war dies darauf zurückzuführen, dass die Patienten relativ jung waren und in diesem Alter kaum gesunde Probanden für eine MRT-Untersuchung akquiriert werden konnten.

2.1.3 DATENAKQUIRIERUNG
2.1.4 **MAGNETRESONANZTOMOGRAPHIE**

Die MRT-Untersuchungen wurden in Rückenlage an einem 1,5 Tesla Hochfeld-MRT unter Verwendung einer Oberflächenspule (PHILIPS Gyroscan ACS-NT, PowerTrak 6000) vorgenommen. Zunächst wurden Turbo-Spin-Echo-Sequenzen in transversaler Schnittführung vom Abgang der supraaortalen Gefäße bis zur Herzbasis (Repetitionszeit (TR) = 545 ms, Echozeit (TE) = 11 ms, Turbofaktor = 5, Field-of-view (FOV) = 250:1,8, Schichtdicke = 4 mm, Matrix = 203:256) angefertigt. Die Aufnahmen wurden in Atamanhaltetechnik und EKG-getriggert in der Enddiastole durchgeführt.

Bei den GE-Sequenzen besteht eine sehr kurze Repetitionszeit, was eine schnelle Bildaufnahme zulässt und daher die Anfälligkeit für Bildartefakte vermindert. Die Bilder werden dabei nicht in „real-time“, sondern während mehrerer Herzzyklen aufgezeichnet und anschließend zu einem Herzzyklus zusammengesetzt, so dass ein dynamischer Bildeindruck (CINE-Modus) entsteht [16, 40]. Diese CINE-MRT ist eine sensitive Methode zur Messung der rechts- und linksventrikulären Volumina und Funktion bei angeborenen Herzerkrankungen und abnormaler Form und Funktion des rechten Ventrikels. Es lassen sich die ventrikuläre Masse und das Volumen, globale und regionale Wandbewegungen, myokardiale Verdickeungen während des Herzzyklus sowie der Blutfluss und die Klappen beurteilen [34, 42]. Dabei hat sich diese Methode zur Einschätzung der rechtsventrikulären Funktion der Echokardiographie gegenüber als überlegen erwiesen. Da die kernspintomographischen Messungen in jeder Schnittebene einzeln erfolgen und anschließend addiert werden, beeinflusst die Geometrie des Ventrikels das Messergebnis kaum, wie es bei der Echokardiographie der Fall ist [42-44].

Die Phasenkontrasttechnik eignet sich zur Quantifizierung von Schlag-, Regurgitations- und Shuntvolumina [11]. In Kombination mit der GE-Sequenz können Blutvolumen- und Flussmessungen vorgenommen werden [45], weiterhin lässt sich die ventrikuläre Leistung und myokardiale Bewegung einschätzen [16, 35]. Das Prinzip des Phasenkontrast-MRTs beruht darauf, dass magnetische Spins von intravaskulären Protonen, die sich entlang eines magnetischen Feldgradienten bewegen, einen Phasenwechsel proportional zur Flussgeschwindigkeit erfahren [34]. Dafür muss ein zusätzlicher Gradient verwendet werden, um eine Geschwindigkeitscodierung der Bilder zu erreichen. Dieser Gradient hat eine positive und negative Halbwelle von gleicher Stärke und Dauer. Die positive Halbwelle führt zu einer unterschiedlichen Phasenverschiebung aller Spins, die durch die anschließende negative

- anterior-posterior (ap): die myokardiale Bewegung entsprechend der anatomischen Herzachse von der Herzspitze bis zur Basis (longitudinal);
- feed-head (fh): die Torsionsbewegung des Myokards („Wringbewegung“, transversal);
- right-left (rl): die Bewegung der beiden Herzkammern aufeinander zu (radial).

Für jede Phase des Herzzyklus entstanden somit ein Magnitudenbild und drei Phasenbilder in den genannten drei Raumrichtungen, die dann in dem Programm CardiacTool zusammengefügt werden konnten. Um die aus klinischer Indikation heraus durchgeführten Untersuchungen durch die Bestimmung der Wandgeschwindigkeiten nicht unnötig zu verlängern, erfolgte die Akquisition der zusätzlich durchgeführten dreidimensionalen Phasenkontrastsequenz zur Wandgeschwindigkeitsmessung in nur einer repräsentativen Schicht, dem Vierkammerblick, der alle wichtigen Herzabschnitte umfasst.

Reduzierung der Bildartefakte
Für die Bildqualität spielt das Signal-zu-Rausch-Verhältnis (signal-to-noise-Ratio, SNR) eine wesentliche Rolle. Das SNR ist ein Maß für die Wechselwirkung zwischen dem kernspintomographischen Signal und der Stärke des Rauschens und ist von einigen Parametern abhängig. So haben u.a. die Schichtdicke und Bandbreite, Field-of-View, Größe der Bildmatrix, Bildparameter (TR, TE, Flip-Winkel), Magnetfeldstärke und die Wahl der Spulen, aber auch patientenspezifische Faktoren wie Körper- und Atembewegungen einen Einfluss. Das Ziel ist, eine möglichst hohe SNR zu erreichen, um die Bildartefakte zu minimieren. Es gibt verschiedene Methoden, die patientenspezifischen Einflussparameter zu kontrollieren [40].
Eine Möglichkeit, die Bildqualität zu verbessern, stellt die Atemanhaltetechnik dar. Durch das „breath hold“ wird die Überlagerung der kardialen Kontraktion durch respiratorische Bewegungen reduziert, was die Bildqualität negativ beeinflussen würde [16]. Die Dauer des Atemanhaltes varierte je nach Herzfrequenz zwischen 10 und 30 Sekunden.

Aus den CINE-MRT Daten wurden die Ejektionsfraktion, die Muskelmasse und die Blutvolumina (endsystolisches Volumen, enddiastolisches Volumen und das Schlagvolumen) bestimmt. Dabei wurde die Scheibchensummationsmethode („modifizierte Simpson-Methode“) verwendet, wobei es sich um ein Verfahren handelt, bei dem aus einer oder mehreren Ebenen die Querschnittsfläche des Ventrikels bestimmt wird. Mit Hilfe der Scheibchen- bzw. Schichtdicke kann schließlich das Volumen durch einfache Summation der „Scheibchen“ berechnet werden. Dabei ist die Volumenbestimmung umso genauer, je kleiner die Schichtdicke ist und je mehr Schichten vorhanden sind [47].

2.1.5 CardiacTool
Das CardiacTool wurde an der Universität Freiburg entwickelt und stellt ein Programm dar, mit dem die Radialgeschwindigkeiten eines gekennzeichneten, segmentierten Bereiches bestimmt werden können [65]. Üblicherweise wird es zur Analyse eines Kurzachsendatensatzes verwendet und wurde von uns auch zur Analyse von im Vierkammerblick akquirierten Daten umfunktioniert. Zur Datengewinnung sind folgende Arbeitsschritte notwendig:

- Importieren
- Segmentierung
- Ermittlung der Radialgeschwindigkeiten
Importieren
Zum Importieren der MRT-Bilder in das Programm CardiacTool wurden zunächst das Magnitudenbild und die geschwindigkeitskodierenden Phasenbilder eingelesen. Dabei wurde ein Zoom von 128x128 verwendet. Vor dem Importieren und auch vor der sich anschließenden Segmentation und Auswertung wurde die jeweilige Enkodiergeschwindigkeit (10 oder 15 cm/s) eingestellt, mit der die MRT-Aufnahmen durchgeführt wurden. Das CardiacTool kombiniert die Geschwindigkeitsinformationen aus allen drei Raumebenen mit dem Magnitudenbild, so dass schließlich ein Bild zu jeder Phase des Herzyklus vorliegt, in dem die Geschwindigkeiten kodiert sind.

Segmentierung

Abbildung 2-1: Segmentierung des Myokards im CardiacTool.

Der segmentierte Myokardbereich erstreckt sich von dem Ansatz der atrioventrikulären Klappen über das Septum bzw. die freie Außenwand bis hin zur Herzs spitze. Für ein einheitliches und exaktes Vorgehen wurde die Segmentierung nach folgendem Schema durchgeführt:
- 2 Methodik -

• Sichtung des Bildmaterials mittels „eFilm“ und „Movietool“-Option des CardiacTools
• Begrenzung der endo- und epikardialen Segmentierung durch die „remove“-Option
• Segmentierung nach festgelegten Kriterien
• Überprüfung der Segmentierung mittels der myokardialen Bewegungsdarstellung

eFilm und „Movietool“
Um einen ersten Überblick über das Myokard und die Kontraktions- und Dilatationsbewegung zu erhalten, wurden die Materialien zunächst sowohl in dem Programm eFilm als auch im „Movietool“ des CardiacTools gesichtet.

Das Programm eFilm lag in der Version eFilm Workstation 1.8.3 vor und ermöglichte das Ansehen von DICOM-Images. Nach Einlesen der jeweiligen Probanden- oder Patientendaten liessen sich die morphologischen und geschwindigkeitskodierten Bilder Phase für Phase ansehen. Die myokardialen Strukturen konnten auf diese Weise gut von ventrikulären Flussartefakten differenziert werden, was eine genauere Festlegung der endo- und epikardialen Begrenzung bei der Segmentierung ermöglichte. Weiterhin liessen sich aus den eFilm-bzw. den DICOM-Bildern Angaben über die Herzfrequenz während der MRT-Messung sowie über die maximal kodierten Geschwindigkeit (10 oder 15 cm/s) entnehmen, was eine Voraussetzung für die exakte Ermittlung der Radialgeschwindigkeiten war (s.u.).

Zusätzlich bietet die „Movietool“-Option im CardiacTool die Möglichkeit, die Bewegung des Myokards als Filmsequenz anzusehen und die Funktionalität des Muskelgewebes grob optisch einschätzen zu können. Weiterhin kann die Septumbewegung im Patientenkollektiv beurteilt werden, die sich zum Teil als sehr eingeschränkt oder auch „paradoxer Weise“ als mit dem rechten Ventrikel schlagend darstellt. Wie unter Abschnitt 2.1.1 erläutert, war dies ein Kriterium zur Zuordnung der Patienten zur jeweiligen Subgruppe.

Die „remove“-Option im CardiacTool
Für eine genaue Auswertung der radialen Geschwindigkeit war es unabdingbar, dass die endo- und epikardialen Grenzen definitiv im Myokard liegen. Ein Miteinbeziehen der umliegenden Gewebe bzw. des Blutflusses in der Herzhöhle, würde zu einer erheblichen Veränderung der Radialgeschwindigkeiten und fehlerhaften Ergebnissen führen.

Um eine genaue Abgrenzung der endo- und epikardialen Strukturen sicher zu stellen, wurde bei der Segmentierung im CardiacTool mit der Option „Epi-Border Pixels remove“ und „Endo-Border Pixels remove“ gearbeitet. Bei dieser Einstellung werden die Pixel auf der eingefügten Segmentationslinie sowohl auf epi- als auch endokardialer Seite bei der Auswertung nicht
mitberücksichtigt. Es entsteht somit eine Art „Sicherheitssaum“, so dass die Segmentierung und somit die Geschwindigkeitsermittlung im Myokard sichergestellt wird und keine fehlerhaften Messungen auf der äußeren oder inneren Linie zu Abweichungen der Ergebnisse führen.

Abbildung 2-2: (a) „Epi- und Endo-Border Pixel remove“; (b) „Epi- und Endo-Border Pixel add“-Option.

Segmentierungskriterien

Wie bereits erläutert, ist eine exakte Segmentierung im Myokard ohne Miteinbeziehung umliegender Gewebe eine Grundvoraussetzung für die korrekte Auswertung. Neben der „remove“-Einstellung im Programm wurde daher die Segmentierung mittig mit einem möglichst schmal segmentierten Bereich vorgenommen. Es hat sich gezeigt, dass dieser somit entstandene kleinere Messbereich genauere Werte mit kleineren Standardabweichungen liefert als eine direkte Segmentierung am Endo- und Epikard mit erhöhtem Einschluss fehlerbehafteter Areale.

Die Segmentierung des Septums und die Ermittlung der septalen Geschwindigkeiten mussten programmbedingt separat bei beiden Ventrikeln durchgeführt werden. Anschließend erfolgte eine Mittelwertberechnung der ermittelten septalen Daten (s.u.).

Weiterhin muss der Bereich über den Herzklappen gesondert betrachtet werden. Da es nicht möglich ist, diesen Bereich und das dort fließende Blut vollständig von der Segmentierung auszusparen, wird das segmentierte Areal möglichst minimal gehalten. Dieser Raum wird später bei der Auswertung nicht mit berücksichtigt, sodass eine fehlerhafte Bemessung der radialen lokalen Myokardgeschwindigkeit vermieden wird.
Darstellung der Myokardbewegung

![Vektoredarstellung der Systole im LV.](image)

Abbildung 2-3: Vektorendarstellung der Systole im LV.

Die Richtung der radialen Myokardbewegung kann weiterhin auch farblich dargestellt werden. Hierbei werden den Wandgeschwindigkeiten unterschiedliche Farbtöne zugeordnet und diese auf den segmentierten Bereich übertragen. Ein positives Vorzeichen und somit eine Farbe im
2 Methodik

roten Bereich bedeutet eine Bewegung des Myokards auf das Zentrum zu (Kontraktion). Ein negativer Wert, durch einen blauen Farbton symbolisiert, stellt eine Bewegung von der Herzohle weg dar (Dilatation). Je kräftiger der Farbton, umso höher ist die Geschwindigkeit. Eine Skaleneinteilung von +5 cm/s als Maximum bis -5 cm/s als Minimum hat sich dabei als optimal erwiesen (vgl. Abbildung 2-4):

Abbildung 2-4: Farbkodierte Darstellung der Radialgeschwindigkeit im LV. (a) Systole. (b) Diastole.

Darüber hinaus können durch die farbkodierte Darstellung der Radialgeschwindigkeit wie auch durch die Nutzung des „Movie Tools“ (s. o.) optisch zum Teil bereits Auffälligkeiten in der Myokardbewegung festgestellt werden. In Abbildung 2-4 weicht beispielweise der Bereich der Herzspitze in der Geschwindigkeitsausprägung deutlich vom übrigen Myokard ab und zeigt während der Kontraktion und Relaxation niedrigere Radialgeschwindigkeiten als das umliegende Myokard.

Ermittlung der Radialgeschwindigkeiten im „Result-Fenster“

Anschließend teilt das Programm den markierten Bereich in 24 Segmente und es werden die „regions of interest“ (ROIs) festgelegt, in denen die Wandgeschwindigkeiten gemessen werden sollen. Die ROIs wurden jeweils in die freie Wand des Ventrikels und ins Septum gesetzt, wobei das Septum bei den separaten Messungen beider Ventrikel jeweils mitbetrachtet wurde. Es wurden insgesamt vier Bereiche analysiert (vgl. Abbildung 2-6):

- die **absolute Spitze (SP)**, in der das septale Segment direkt neben dem Segment für die freie Außenwand des jeweiligen Ventrikels liegt,
- die **apikalen Segmente (AP)**, an den SP-Bereich angrenzenden Segmente,
- das **mittventrikuläre Myokard (MM)** in der Mitte zwischen Herzbasis und Spitze und
- die **basalen Segmente (BA)** in der AV-Klappenebene.
Die septalen Segmente sind blau, die der freien Außenwand rot dargestellt.

Abbildung 2-6: „Regions of interest“ im LV. Blau = Septum, Rot = Außenwand.

Nach Festlegung der ROIs gibt CardiacTool die radiale Geschwindigkeit als Kurvenverlauf aus und die Ergebnisse für die Geschwindigkeitsmessungen können in Excel geladen und ausgewertet werden. Dabei ermitteln wir folgende Werte für jeden der vier Bereiche jeweils für das Septum und die freie Außenwand (vgl. Abbildung 2-7):

- **S-Wert**: Geschwindigkeitsmaximum in der Systole (cm/s); systolische Kontraktion;
- **E-Wert**: erstes Geschwindigkeitsmaximum in der Diastole (cm/s) entgegengesetzt zu S; frühdiastolische Bewegung („early filling“);
- **A-Wert**: letztes Geschwindigkeitsmaximum in der Diastole (cm/s) entgegengesetzt zu S; spätdiastolische Bewegung, ausgelöst durch die Vorhofkontraktion („atrial filling“).

Aufgrund von Bewegungsartefakten oder bei unregelmäßiger Herzfrequenz war es nicht bei jedem Probanden oder Patienten möglich, einen adäquaten Geschwindigkeitswert für die S-, E- und A-Welle zu ermitteln. Im Ergebnisteil ist daher für alle untersuchten Parameter und Zusammenhänge jeweils die berücksichtigte Anzahl valider Werte angegeben.

Die Richtung der Wandbewegung war ausschlaggebend für die Einteilung der Patienten in die beschriebenen Subgruppen. Schlug das Septum bei der rechtsventrikulären Auswertung entgegengesetzt zur freien Außenwand, lag also eine negative septale S-Welle und eine positive septale E- und A-Wellen vor, so wurde dies als eine „physiologische“ Bewegung des interventrikulären Septums mit dem linken Ventrikel gedeutet, d.h. die Herzscheidewand schlug während der Kontraktion in Richtung der linken Herzkammer.

Bewegte sich das Septum im rechten Ventrikel während der Kontraktion hingegen auf die rechtsventrikuläre freie Außenwand und die Herzhöhle zu, war also der septale S-Wert positiv,
die E- und A-Werte hingegen negativ, wurde dies zunächst als eine „paradoxe“ Schlagrichtung der Herzscheidewand mit der rechten Herzkammer gedeutet.

2.2 STATISTISCHE AUSWERTUNG
Für die statistische Auswertung wurde mit dem Programm SPSS für Windows Version 11.5.1. gearbeitet. Um die Daten auf signifikante Unterschiede überprüfen zu können, musste zunächst ein statistischer Test ausgewählt werden. Bei dieser Untersuchung war ein Test für zwei unverbundene Stichproben notwendig. Es konnte somit sowohl der t-Test als auch der Mann-Whitney-U-Test genutzt werden.

Aufgrund der vorliegenden empirischen Daten wurde der Mann-Whitney-U-Tests bei wohl fehlender Normalverteilung verwendet. Dieser Test bietet sich an, wenn ein kleiner Stichprobenumfang wie in der Probandengruppe vorliegt. Weiterhin wird er bei dem Vergleich zweier Stichproben, deren Umfänge stark voneinander abweichen, genutzt [49], wie es bei den Probanden mit n = 13 im Vergleich zu den Patienten mit n = 22 der Fall ist. Als Signifikanzniveau wird p < 0,05 festgelegt. Liegt eine Signifikanz p < 0,01 vor, wird diese gesondert gekennzeichnet. In den Ergebnistabellen und Diagrammen werden alle signifikanten Zusammenhänge gekennzeichnet ((*) p < 0,05; (***) p < 0,01). Wenn keine Signifikanzangaben angegeben sind, konnten für diese Ergebnisse keine signifikanten Zusammenhänge festgestellt werden.

Die Normalverteilung wird mittels des Kolmogorov-Smirnov-Test überprüft und ist eine Voraussetzung für die Nutzung des t-Tests zum Mittelwertvergleich zweier unabhängiger Stichproben ist [49, 50]. Die entsprechende Nullhypothese (es liegt eine Normalverteilung der Messewerte vor) wird bei einer Eintrittswahrscheinlichkeit von p < 0,05 verworfen. Ist p < 0,05 wird nicht von einer Normalverteilung ausgegangen.

Die Prüfung auf Korrelation zwischen den allgemeinen und den Geschwindigkeitsparametern erfolgt mittels der linearen Korrelationsanalyse nach Spearman.
2.3 **ERMITTlung DER ALLGEMEINen VOLUMETRISCHEN UND FUNKTIONELLEN PARAMETER**

Ejektionsfraktion

Die Ejektionsfraktion (EF) ist ein allgemeines Maß für die Herzleistung und bildet den Anteil des Schlagvolumens (SV) an der Blutmenge, die sich am Ende der Diastole in der Herzkammer befindet (enddiastolisches Volumen, EDV). Sie berechnet sich nach folgender Formel (1) [9]:

\[
EF(\%) = \frac{SV}{EDV} \times 100
\]

Muskelmasse

Die Muskelmasse wurde für beide Ventrikel bestimmt, dabei wurde definitionsgemäß das Septum zur linken Herzkammer gezählt. Die Muskelmasse (g) wurde auf die Körperoberfläche (m²) bezogen, um zu vermeiden, dass potentielle Muskelmassenunterschiede durch die individuelle Konstitution der Patienten und Probanden beeinflusst wird. Das gleiche Verfahren wurde auch für die Ermittlung der unten folgenden Volumina angewandt.

Die Berechnung der Körperoberfläche KOF in m² ist mittels der Körpergröße in cm (Kgr) und dem Körpergewicht in kg (mK) nach folgender Formel (2) möglich [51]:

\[
KOF (m^2) = 0,007184 \times m_K^{0,425} \times Kgr^{0,725}
\]

Anschließend erfolgte die Umrechnung der gemessenen Muskelmasse in g auf einen Quadratmeter Körperoberfläche (Formel (3)):
2. Methodik

\[
\frac{\text{Muskelmasse}}{KOF} \left(\frac{g}{m^2}\right) = \frac{\text{Muskelmasse}_{\text{roh}}(g)}{\text{Körperoberfläche}} (m^2)
\]

(3)

Endsystolisches Volumen

Das endsystolische Volumen (ESV) umfasst die Blutmenge, die sich am Ende der Systole im Ventrikel befindet und nicht durch die Myokardkontraktion in die Aorta bzw. den Truncus pulmonalis gepumpt wurde. Das ESV wurde ebenfalls in Bezug zur Körperoberfläche gesetzt (ml/m²) und analog zur Muskelmasse nach Formel (3) berechnet.

Enddiastolisches Volumen

Die Blutmenge, die sich am Ende der Diastole im Ventrikel befindet und anschließend in der Systole zum Teil hinaus befördert wird, wird als enddiastolisches Volumen (EDV) bezeichnet und ist von der Füllung während der Diastole abhängig. Die Füllung wird vor allem durch die Dilatation des Ventrikels, weniger durch die Vorhofkontraktion bestimmt. Letztere trägt etwa 8% zur Ventrikelfüllung bei, bei zunehmender Herzfrequenz liegt der Beitrag jedoch deutlich höher [8, 52, 53]. Auch das EDV wurde nach Formal (3) als EDV/Körperoberfläche (ml/m²) angegeben.

Schlagvolumen

Das Schlagvolumen (SV) ist die Blutmenge, die jeder Ventrikel bei einer Kontraktion in der Systole auswirft und berechnet sich nach Formel (4) [9]:

\[
SV (ml) = EDV (ml) - ESV (ml)
\]

(4)

Die Angabe des SV erfolgte wie für die anderen Volumina in Bezug zur Körperoberfläche (ml/m²) und wurde entsprechend nach Formel (3) berechnet.

2.4 Ermittlung der ventrikulären myokardialen Geschwindigkeiten

Von jedem Probanden und Patienten wurden die Geschwindigkeitsmaxima in cm/sec für die S-, E- und A-Welle sowie die Standardabweichung (STD) für den septalen und ventrikulären Anteil in allen vier Regionen der beiden Ventrikel zusammengetragen. Der Vergleich der Geschwindigkeiten wurde anhand folgender Parameter durchgeführt:
- 2 Methodik -

- Mittelwert±Standardabweichung (MW±STD)
- Median
- Minimum
- Maximum
- 25. Perzentile
- 75. Perzentile

Hierbei wurden die Ergebnisse zunächst für alle vier Regionen des jeweiligen Ventrikels und Septums zu je einem S-, E- und A-Wert zusammengefasst, um eine allgemeine Tendenz der Geschwindigkeiten zu erkennen (Kapitel 3.2). Anschließend erfolgte die regional getrennte Analyse der Wandgeschwindigkeiten (Kapitel 3.3).

2.5 ERMITTlung der septalen Geschwindigkeiten

Wie beschrieben wurden die Geschwindigkeitswerte des Septums jeweils bei der getrennten Auswertung des rechten und des linken Ventrikels erneut ermittelt. Um das Septum als Ganzes betrachten zu können, wurde der Mittelwert aus den links- und rechtsventrikulären septalen Geschwindigkeiten für den jeweiligen Parameter in den vier untersuchten Regionen gebildet. Dies soll am Beispiel der Ermittlung des S-Wertes für die septale Geschwindigkeit der Basis verdeutlicht werden (Formel (5)):

\[
\frac{1}{2} \left(x_{21}\text{Septum LV BA } \left(\frac{cm}{sec} \right) + x_{22}\text{Septum RV BA } \left(\frac{cm}{sec} \right) \right) = x_{2}\text{Septum BA } \left(\frac{cm}{sec} \right)
\]

(5)

2.6 ERMITTlung des zeitlichen Auftretens der Geschwindigkeitspeaks

Um zu berechnen, nach wie vielen Sekunden im Herzzyklus ein Geschwindigkeitsmaximum auftrat, wurde zunächst die vorhandene Phasenanzahl eines Herzzyklus ermittelt. In der Regel lagen 18 Phasen vor, in wenigen Ausnahmen (Probanden n=5, Patienten n=1) gab es Datensätze mit einer abweichenden Phasenanzahl. Anschließend wurde die Dauer eines Herzschlages in
Sekunden (Formel (6)) und die Dauer einer Phase ermittelt (Formel (7)). Das in einer bestimmten Phase gemessene Geschwindigkeitsmaximum kann somit schließlich einem zeitlichen Auftreten in Sekunden nach der R-Zacke im EKG zugeordnet werden (Formel (8)).

\[
\text{Dauer eines Herzens (sec)} = 60 \frac{\text{Sekunden}}{\text{Anzahl der Herzschläge}} \tag{6}
\]

\[
\text{Dauer einer Phase (sec)} = 1 \frac{\text{Herzschlag}}{\text{Anzahl der Phasen}} \tag{7}
\]

\[
\text{Zeitpunkt eines Geschwindigkeitspeaks} = \text{Dauer einer Phase (sec)} \times \text{Phase} \tag{8}
\]

Nach der Aufarbeitung der kernspintomographischen Bildmaterialien im CardiacTool und der Ermittlung der allgemeinen und Geschwindigkeitsparameter in den Studienkollektiven erfolgt im folgenden Kapitel 3 die Darstellung der Ergebnisse unserer Untersuchungen.
3 ERGEBNISSE

In diesem Kapitel wird zunächst die vergleichende Darstellung der allgemeinen Parameter des Patientenkollektives mit den Referenzdaten aus der Literatur (Kapitel 3.1) präsentiert. Wie bereits erläutert, wurden keine allgemeinen volumetrischen und funktionellen kardialen Parameter im Probandenkollektiv ermittelt, da hier von einem physiologischen Zustand auszugehen war und somit Referenzwerte aus der Literatur zur Einordnung der Patientenergebnisse genutzt werden konnten. Im Anschluss werden die ermittelten Geschwindigkeiten für die S-, E- und A-Welle dargestellt (Kapitel 3.2 und 3.3) sowie das zeitliche Auftreten der Geschwindigkeitsspeaks in den Studienkollektiven verglichen (Kapitel 3.4). In einem dritten Schritt wurde die Korrelation zwischen den allgemeinen volumetrischen und funktionellen Parametern und den Geschwindigkeitsparametern überprüft (Kapitel 3.5).

3.1 ALLGEMEINE VOLUMETRISCHE UND FUNKTIONELLE KARDIALE PARAMETER

3.1.1 EJEKTIONSFRATION
Tabelle 3-1: Übersicht über die Ejektionsfraktionen (%) in den Studienkollektiven.

<table>
<thead>
<tr>
<th>Volumenparameter</th>
<th>Probanden (n = 22)</th>
<th>Ejektionsfraktion in %</th>
<th>Patienten Gesamt (n = 22)</th>
<th>IVS-LV (n = 10)</th>
<th>IVS-RV (n = 12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EF linker Ventrikel</td>
<td>MW±STD 70,0±6,0</td>
<td>61,3±6,2</td>
<td>63,3±5,9</td>
<td>59,6±6,1</td>
<td></td>
</tr>
<tr>
<td>EF rechter Ventrikel</td>
<td>MW±STD 70,0±4,0</td>
<td>46,6±8,4</td>
<td>45,3±10,8</td>
<td>47,7±6,0</td>
<td></td>
</tr>
</tbody>
</table>

Es wird ersichtlich, dass auch die Ejektionsfraktion im Patientenkollektiv für den linken Ventrikel (LV-EF) mit einer Differenz von 8,7 % etwas niedriger ausfällt als im herzgesunden Kollektiv. In den Patientensubgruppen war die LV-EF in der IVS-LV-Subgruppe etwas höher als bei den IVS-RV-Patienten (63,3±5,9 % vs. 59,6±6,1 %), dieser Unterschied war jedoch statistisch nicht signifikant.

Die rechtsventrikuläre Ejektionsfraktion (RV-EF) war im Patientenkollektiv im Vergleich zu den Referenzwerten um 23,4 % niedriger und somit gegenüber den Gesunden stark vermindert. In den Patientensubgruppen zeigt sich bei den Patienten mit einer „paradoxis“ Septumbewegung die Tendenz zu einer höheren Ejektionsfraktion als bei den IVS-LV-Patienten. Die Differenz zwischen den Ejektionsfraktionen beträgt dabei beim Mittelwertvergleich 2,4 %, bei der Analyse der medianen Daten 6,0 % (vgl. Abbildung 3-1), sodass von einem Einfluss der Kontraktionsrichtung des Septums auf die EF auszugehen ist.

Die deutliche Diskrepanz der Ejektionsfraktionen des linken und rechten Ventrikels im TGA-Kollektiv (Differenz von 14,7 %) mit insbesondere vermindeter rechtsventrikulärer EF verdeutlicht die Beeinträchtigung des rechten Systemventrikels. Dabei ist auch die LV-EF
geringgradig niedriger als im Referenzkollektiv aus der Literatur, was bei stark vermindelter Ejektionsfraktion des rechten Ventrikels möglicherweise allein durch eine interventrikuläre Interaktion bedingt sein kann.

Die starke Verminderung der Funktion des rechten Systemventrikels bei den Patienten verdeutlicht sich weiterhin bei dem Vergleich beider Systemventrikel (linker Ventrikel Probanden vs. rechter Ventrikel Patienten), der eine Differenz von 23,4 % ergibt.

3.1.2 VOLUMENPARAMETER

Linker Ventrikel

Tabelle 3-2: Übersicht über die linksventrikulären Volumina in den Studienkollektiven.

<table>
<thead>
<tr>
<th>Volumen-Parameter</th>
<th>Volumina/KOF in ml/m² im linken Ventrikel</th>
<th>Probanden (n = 22) [42]</th>
<th>Patienten Gesamt (n = 18)</th>
<th>IVS-LV (n = 9)</th>
<th>IVS-RV (n = 9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV-ESV</td>
<td>MW±STD</td>
<td>26,0±9,0</td>
<td>22,1±10,2</td>
<td>19,5±11,3</td>
<td>24,7±8,9</td>
</tr>
<tr>
<td>LV-EDV</td>
<td>MW±STD</td>
<td>89,0±26,0</td>
<td>54,3±20,2</td>
<td>48,0±23,0</td>
<td>60,6±15,9</td>
</tr>
<tr>
<td>LV-SV</td>
<td>MW±STD</td>
<td>62,0±18,0</td>
<td>32,2±11,6</td>
<td>28,6±13,3</td>
<td>35,9±8,9</td>
</tr>
</tbody>
</table>

Rechter Ventrikel

Im rechten Ventrikel ließen sich für das mittlere endsystolische Volumen erhöhte Werte im Patientenkollektiv feststellen, insbesondere die Patienten mit einer „parado xen“ Septumbewegung wiesen mit einer Differenz der Mittelwerte von 17,5 ml/m² ein deutlich erhöhtes Volumen am Ende der Systole im Vergleich zum Normalkollektiv auf (vgl. Tabelle 3-3).
Das mittlere enddiastolische Volumen war im TGA-Kollektiv erstaunlicherweise um 20 ml/m² niedriger als bei den Probanden. Im IVS-RV-Kollektiv war diese Abweichung erneut geringer ausgeprägt, hier betrug der Unterschied zum gesunden Kollektiv lediglich 13,2 ml/m².

Ein Vergleich zu anderen Referenzdaten [41], in denen im gesunden Kollektiv ein niedrigeres enddiastolisches Volumen ermittelt wurde als bei Helbing et al., zeigte jedoch ein leicht erhöhtes bzw. gleich hohes RV-EDV in unserem Patientenkollektiv gegenüber diesen Referenzen (vgl. Kapitel 4.1.1).

Das Schlagvolumen war im Patientenkollektiv ebenfalls deutlich vermindert gegenüber den gesunden Probanden. Die IVS-RV-Patienten wiesen dabei erneut wie bei der RV-EF höhere Werte auf als die Patienten mit physiologischer Septumbewegung (IVS-LV).

Tabelle 3-3: Übersicht über die rechtsventrikulären Volumina in den Studienkollektiven.

<table>
<thead>
<tr>
<th>Volumenparameter</th>
<th>Volumina/KOF in ml/m² im rechten Ventrikel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Probanden (n = 22)</td>
</tr>
<tr>
<td>ESV</td>
<td>MW±STD</td>
</tr>
<tr>
<td>EDV</td>
<td>MW±STD</td>
</tr>
<tr>
<td>SV</td>
<td>MW±STD</td>
</tr>
</tbody>
</table>

3.1.3 MUSKELMASSE
Für den Vergleich der Muskelmassen sind die Referenzwerte für die Probanden aus den Untersuchungen an n = 8 Probanden von Lorenz et al. (2000) [41] übernommen (vgl. Tabelle 3-4).

Tabelle 3-4: Übersicht über die Muskelmassen in den Studienkollektiven.

<table>
<thead>
<tr>
<th>Ventrikel</th>
<th>Muskelsmasse/KOF in g/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Probanden (n = 8) [41]</td>
</tr>
<tr>
<td></td>
<td>Gesamt</td>
</tr>
<tr>
<td>LV</td>
<td>MW±STD</td>
</tr>
<tr>
<td>RV</td>
<td>MW±STD</td>
</tr>
</tbody>
</table>

Die mittlere linksventrikuläre Muskelmasse lag bei den Patienten mit einer mittleren Differenz von 21,2 g/m² deutlich unter der Referenzangabe, auch die Subgruppen wiesen deutlich niedrigere Werte auf als die Gesunden. Zwischen den Subkollektiven bestand eine deutliche Muskelmassendifferenz von im Mittel 14,7 g/m² mit einem deutlich höheren Wert in der IVS-LV-Gruppe, in der sich das Septum mit dem linken Ventrikel bewegt. Dieser Zusammenhang war jedoch statistisch nicht signifikant.
Das Septum wurde in dieser Studie definitionsgemäß zum linken Ventrikel gezählt, somit lässt sich nicht abschließend feststellen, welchen Beitrag eine mögliche septale Hypertrophie zur Erhöhung der linksventrikulären Muskelmasse leistete.

Interessanterweise entsprach die mittlere linksventrikuläre Muskelmasse in der Patientengruppe, bei der der LV der Subpulmonalventrikel ist, im IVS-RV Kollektiv genau der mittleren RV-muskelmasse bei den gesunden Probanden.

Die deutlich erhöhte mittlere RV-Muskelmasse im Patientenkollektiv von im Mittel 19,4 g/m² im Vergleich zur RV-Muskelmasse gesunder Probanden spiegelt deutlich die Funktion des rechten Ventrikels als Systemventrikel wider. In den Patientensubgruppen lies sich mit einer mittleren Differenz von 1,7 g/m² nur eine leichte Tendenz zu einer höheren Muskelmasse in der IVS-LV-Gruppe ohne signifikanten Zusammenhang erkennen.

3.2 GESAMTDARSTELLUNG DER MYOKARDIALEN RADIALGESCHWINDIGKEITEN
Nach Auswertung der allgemeinen volumetrischen und funktionellen Parameter erfolgt in diesem Kapitel die Darstellung der radialen Wandgeschwindigkeiten zusammengefasst über alle vier Regionen im Probanden- und Patientenkollektiv. Eine regional differenzierte Auswertung schließt sich in Kapitel 3.3 an.

Linker Ventrikel

Die mittlere Radialgeschwindigkeit über alle vier Regionen war im linken Ventrikel für die S-Welle (Kontraktion) minimal, für die E-Welle (frühe Dilatationsgeschwindigkeit) etwas stärker erhöht im Patientenkollektiv gegenüber den Probanden. Die A-Welle (späte Dilatationsgeschwindigkeit) war hingegen geringfügig niedriger im Patientenkollektiv. Auffällig waren die erhöhten mittleren Maximalgeschwindigkeiten im Patientenkollektiv, was eventuell als ein Kompensationsmechanismus einzelner Bereiche gewertet werden kann (vgl. Kapitel 4.2). Tabelle 3-5 gibt die Mittelwerte und Maximalgeschwindigkeiten für den linken Ventrikel, vergleichend zwischen Probanden und Patienten, wieder. Für alle Differenzen besteht dabei

² Der U-Test wird auch im Folgenden für alle Überprüfungen auf signifikante Unterschiede angewandt.

Tabelle 3-5: Geschwindigkeitsparameter im LV in den Studienkollektiven.

<table>
<thead>
<tr>
<th>Geschwindigkeitsparameter</th>
<th>Maße</th>
<th>Proband (n = 13)</th>
<th>Geschwindigkeit in cm/s</th>
<th>Patient (n = 22)</th>
<th>Δ Patient - Proband</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MW±STD</td>
<td>3,3±0,8</td>
<td>3,4±1,2</td>
<td>+0,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>4,6</td>
<td>5,5</td>
<td>+0,9</td>
<td></td>
</tr>
<tr>
<td>S-Welle</td>
<td>Maximum</td>
<td>4,4</td>
<td>6,9</td>
<td>+2,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW±STD</td>
<td>2,4±0,6</td>
<td>2,4±0,9</td>
<td>−0,1</td>
<td></td>
</tr>
<tr>
<td>E-Welle</td>
<td>Maximum</td>
<td>3,3</td>
<td>4,8</td>
<td>+1,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW±STD</td>
<td>2,9±0,8</td>
<td>3,4±1,3</td>
<td>+0,5</td>
<td></td>
</tr>
<tr>
<td>A-Welle</td>
<td>Maximum</td>
<td>5,5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rechter Ventrikel

Entgegen unserer Hypothese präsentierten sich somit die myokardialen Radialgeschwindigkeiten im rechten Systemventrikel, gemittelt über alle vier Regionen als tendenziell erhöht im erkrankten Kollektiv.
Ergebnisse

Kernspintomographische Evaluation myokardialer Geschwindigkeiten nach Vorhofumkehroperation bei TGA

Tabelle 3-6: Geschwindigkeitsparameter im RV in den Studienkollektiven.

<table>
<thead>
<tr>
<th>Geschwindigkeitsparameter</th>
<th>Maße</th>
<th>Proband (n = 13)</th>
<th>Geschwindigkeit in cm/s</th>
<th>Patient (n = 22)</th>
<th>Δ Patient-Proband</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MW±STD</td>
<td>2,8±0,8</td>
<td>2,8±0,8</td>
<td>±0,0</td>
<td></td>
</tr>
<tr>
<td>S-Welle</td>
<td>Maximum</td>
<td>4,6</td>
<td>4,7</td>
<td>↑ +0,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>2,6</td>
<td>2,7</td>
<td>↑ +0,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW±STD</td>
<td>3,1±0,7</td>
<td>3,0±0,8</td>
<td>↓ -0,1</td>
<td></td>
</tr>
<tr>
<td>E-Welle</td>
<td>Maximum</td>
<td>4,3</td>
<td>4,6</td>
<td>↑ +0,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>3,3</td>
<td>3,0</td>
<td>↓ -0,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW±STD</td>
<td>1,9±0,4</td>
<td>2,2±1,1</td>
<td>↑ +0,3</td>
<td></td>
</tr>
<tr>
<td>A-Welle</td>
<td>Maximum</td>
<td>2,7</td>
<td>4,5</td>
<td>↑ +1,8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>1,9</td>
<td>2,1</td>
<td>↑ +0,2</td>
<td></td>
</tr>
</tbody>
</table>

Septum

Patientensubkollektive

Tabelle 3-7: LV A-Welle in der Probandengruppe und den Patientensubkollektiven.

<table>
<thead>
<tr>
<th>Geschwindigkeitsparameter</th>
<th>Geschwindigkeit in cm/s</th>
<th>Δ IVS-RV – IVS-LV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Probanden (n = 13)</td>
<td>IVS-LV (n = 10)</td>
</tr>
<tr>
<td>A-Welle</td>
<td>MW±STD</td>
<td>2,4±0,6</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>2,3</td>
</tr>
</tbody>
</table>

Auch die maximalen diastolischen Myokardgeschwindigkeiten sind in der IVS-RV-Gruppe tendenziell höher, ohne dass sich signifikante Zusammenhänge feststellen ließen. Dies zeigte
sich für beide Ventrikel. Die Werte für das Septum sind exemplarisch in Tabelle 3-8 festgehalten.

Tabelle 3-8: Maximalgeschwindigkeiten (Auswahl).

<table>
<thead>
<tr>
<th>Geschwindigkeitsparameter</th>
<th>Probanden (n=13)</th>
<th>Patienten</th>
<th>Δ IVS-RV – IVS-LV</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVS-LV (n = 10)</td>
<td>IVS-RV (n = 12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LV E-Welle</td>
<td>4.4</td>
<td>5.8</td>
<td>↑</td>
</tr>
<tr>
<td>LV A-Welle</td>
<td>3.3</td>
<td>2.8</td>
<td>↓</td>
</tr>
<tr>
<td>RV S-Welle</td>
<td>4.6</td>
<td>3.8</td>
<td>↓</td>
</tr>
<tr>
<td>RV E-Welle</td>
<td>4.3</td>
<td>3.9</td>
<td>↓</td>
</tr>
<tr>
<td>Septum A-Welle</td>
<td>3.8</td>
<td>2.7</td>
<td>↓</td>
</tr>
</tbody>
</table>

3.3 REGIONALE GESCHWINDIGKEITSANALYSE
Es erfolgt in diesem Kapitel die Untersuchung auf regional unterschiedliche Radialgeschwindigkeiten in den vier Bereichen Herzbasis (BA), mittventrikulär (MM), apikal (AP) und absolute Spitze (SP). Abbildung 3-2 zeigt eine Übersicht über die Gliederung dieses Kapitels.

Abbildung 3-2: Gliederung Kapitel 3.3

Mittels des Friedmann-Tests zur Prüfung auf signifikante Unterschiede bei verbundenen Stichproben konnte festgestellt werden, dass sich die Parameter S, E und A in den vier verschiedenen Regionen in beiden Studienkollektiven zum Teil signifikant voneinander unterscheiden (p < 0.05). Die Wandgeschwindigkeiten scheinen somit in den verschiedenen Herzbereichen unterschiedlich ausgeprägt zu sein. Tabelle 3-9 zeigt einige Beispiele der Ergebnisse des Friedmann-Tests für die Patientengruppe.
Ergebnisse

Kernspintomographische Evaluation myokardialer Geschwindigkeiten nach Vorhofumkehroperation bei TGA

Tabelle 3-9: Friedman-Test. Signifikanzniveaus (Auswahl) im Patientenkollektiv.

<table>
<thead>
<tr>
<th>Geschwindigkeitsparameter</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV A-Welle</td>
<td>0,00</td>
</tr>
<tr>
<td>RV S-Welle</td>
<td>0,00</td>
</tr>
<tr>
<td>RV E-Welle</td>
<td>0,00</td>
</tr>
<tr>
<td>Septum S-Welle</td>
<td>0,02</td>
</tr>
<tr>
<td>Septum E-Welle</td>
<td>0,01</td>
</tr>
</tbody>
</table>

Auf Basis dieser Erkenntnisse wird daher im Folgenden die regionale Geschwindigkeitsauswertung zwischen Probanden- und Patientenkollektiv erläutert.

3.3.1 Wandgeschwindigkeitspeak der S-Welle

Linker Ventrikel

Tabelle 3-10: LV S-Welle im Probanden- und Patientenkollektiv.

<table>
<thead>
<tr>
<th>Myokardregion</th>
<th>Proband (n)</th>
<th>Patient (n)</th>
<th>Δ Patient - Proband</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis</td>
<td>MW±STD</td>
<td>3,3±1,2</td>
<td>3,5±1,4</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>3,0 (13)</td>
<td>3,8 (22)</td>
</tr>
<tr>
<td>mittventrikular</td>
<td>MW±STD</td>
<td>2,8±0,7</td>
<td>3,6±1,5</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>2,9 (13)</td>
<td>3,8 (22)</td>
</tr>
<tr>
<td>Apex</td>
<td>MW±STD</td>
<td>3,5±0,8</td>
<td>3,3±1,3</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>3,2 (11)</td>
<td>3,3 (22)</td>
</tr>
<tr>
<td>Absolute Spitze</td>
<td>MW±STD</td>
<td>3,7±1,0</td>
<td>3,4±1,5</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>3,9 (13)</td>
<td>3,4 (22)</td>
</tr>
</tbody>
</table>

Im Probandenkollektiv lies sich dabei feststellen, dass die myokardialen S-Geschwindigkeiten von der Basis zum mittventrikulären Myokard hin abnehmen und daraufhin zur Spitze hin wieder ansteigen (vgl. Abbildung 3-3). Von basal in Richtung absolute Spitze wurde dabei eine mediane Geschwindigkeitszunahme von +0,9 cm/s erreicht.

In dem TGA-Kollektiv zeigte sich hingegen eine Geschwindigkeitsabnahme um 0,4 cm/s (Median) von basal in Richtung absolute Spitzenregion statt. Der fehlende Geschwindigkeitsanstieg in der absoluten Spitze könnte als myokardiale Reaktion auf die veränderten Druckanforderungen an den linken Ventrikel nach Vorhofumkehroperation gedeutet werden. Die geringeren Interquartilräume im gesunden Kollektiv spiegeln ein homogeneres Geschwindigkeitsverhalten wider als im Patientenkollektiv.
Ergebnisse

Kernspintomographische Evaluation myokardialer Geschwindigkeiten nach Vorhofumkehroperation bei TGA

Rechter Ventrikel

Die Radialgeschwindigkeiten der S-Welle des rechten Ventrikels präsentierten sich im Patientenkollektiv tendenziell vermindert gegenüber den Gesunden im basalen und mittventrikulären Bereich. Im Apex und der absoluten Spitze fanden sich hingegen erhöhte S-Werte bei den Patienten, die auf eine Kompensation der verminderten basalen und mittventrikulären Regionen in diesen Myokardbereichen hindeuten (vgl. Tabelle 3-11).

Tabelle 3-11: RV S-Welle im Probanden- und Patientenkollektiv.

<table>
<thead>
<tr>
<th>Myokardregion</th>
<th>Proband (n)</th>
<th>Patient (n)</th>
<th>Δ Patient - Proband</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis</td>
<td>MW±STD</td>
<td>3,0±1,3</td>
<td>2,6±1,0</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>2,7</td>
<td>2,5</td>
</tr>
<tr>
<td>mittventrikulär</td>
<td>MW±STD</td>
<td>2,8±1,4</td>
<td>2,2±1,2</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>2,4</td>
<td>1,9</td>
</tr>
<tr>
<td>Apex</td>
<td>MW±STD</td>
<td>2,8±0,8</td>
<td>2,9±1,1</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>2,7</td>
<td>2,9</td>
</tr>
<tr>
<td>Absolute Spitze</td>
<td>MW±STD</td>
<td>2,9±1,2</td>
<td>3,4±1,0</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>2,7</td>
<td>3,4</td>
</tr>
</tbody>
</table>

Im Probandenkollektiv waren die medianen Geschwindigkeiten in der Basis, dem Apex und der absoluten Spitze annähernd gleich (vgl. Abbildung 3-4). Die Wandgeschwindigkeit im mittventrikulären Myokard waren hingegen gegenüber der Basis (-0,4 cm/s) bzw. dem Apex und der absoluten Spitze (-0,3 cm/s) etwas vermindert. Für die Mittelwerte zeigten sich nahezu unveränderte Werte für alle vier Regionen.

Die Geschwindigkeitsabnahme von der Basis zum mittventrikulären Bereich fand sich auch im TGA-Kollektiv wieder (Differenz 0,6 cm/s). Weiterhin zeigte sich jedoch eine
Ergebnisse

Geschwindigkeitszunahme in Richtung der absoluten Spitze, in der die Werte des basalen Abschnitts um 0,9 cm/s überschritten werden.

Abbildung 3-4: RV S-Welle im Probanden- und Patientenkollektiv.

Septum

Wie auch im linken Ventrikel lies sich für das Septum im basalen und mittventrikulären Abschnitt festhalten, dass für die S-Welle im Mittel tendenziell höhere mittlere maximale Wandgeschwindigkeiten in der Patientengruppe nachgewiesen werden konnten. Apikal und in der Region der absoluten Spitze hingegen zeigte sich eine Tendenz zu einer Geschwindigkeitsabnahme gegenüber den Probanden (vgl. Tabelle 3-12).

Tabelle 3-12: Septum S-Welle im Probanden- und Patientenkollektiv.

<table>
<thead>
<tr>
<th>Geschwindigkeitsparameter</th>
<th>Proband (n)</th>
<th>Patient (n)</th>
<th>Δ Patient - Proband</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis</td>
<td>MW±STD</td>
<td>2.7±0.7</td>
<td>3.1±1.4</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>2.6</td>
<td>(13) 3.0</td>
</tr>
<tr>
<td>mittventrikulär</td>
<td>MW±STD</td>
<td>2.7±0.8</td>
<td>2.9±1.4</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>2.6</td>
<td>(13) 2.8</td>
</tr>
<tr>
<td>Apex</td>
<td>MW±STD</td>
<td>2.7±0.7</td>
<td>2.6±0.9</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>2.4</td>
<td>(13) 2.6</td>
</tr>
<tr>
<td>Absolute Spitze</td>
<td>MW±STD</td>
<td>3.4±0.9</td>
<td>3.2±0.7</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>3.4</td>
<td>(13) 3.1</td>
</tr>
</tbody>
</table>
Die medianen Geschwindigkeiten stiegen dabei im Probandenkollektiv tendenziell von der Basis bis zur absoluten Spitze hin an, die mittlere Geschwindigkeitszunahme betrug +0,8 cm/s.

Im Patientenkollektiv zeigten sich zunächst abnehmende mediane Geschwindigkeiten von der Basis bis zum Apex (Differenz 0,4 cm/s), in der Spitzenregion jedoch wurden annähernd die Werte der Herzbasis erreicht.

Es zeigte sich insgesamt ein geringerer Abstand zwischen Minimum und Maximum sowie ein kleinerer Interquartilsraum in allen vier Bereichen im Probandenkollektiv, was erneut auf ein homogenere Geschwindigkeitsverteilung bei den Gesunden hindeutet.

Patientensubkollektive

In Tabelle 3-13 sind exemplarisch die Geschwindigkeiten der Basis dargestellt, rechtsventrikulär ist der Geschwindigkeitsunterschied statistisch signifikant (p < 0,05). Abbildung 3-5 verdeutlicht den basalen Geschwindigkeitsverlauf in den Patientensubkollektiven.

Tabelle 3-13: Basale S-Welle im Probandenkollektiv und den Patientensubgruppen. (*) p < 0,05 im Vergleich der Subkollektive.

<table>
<thead>
<tr>
<th>Basis</th>
<th>Proband (n)</th>
<th>IVS-LV (n)</th>
<th>IVS-RV (n)</th>
<th>Δ IVS-RV – IVS-LV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linker Ventrikel</td>
<td>MW±STD</td>
<td>3,3±1,2</td>
<td>3,1±1,4</td>
<td>↓</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>3,0</td>
<td>3,4</td>
<td>↑</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>5,4</td>
<td>4,6</td>
<td>↓</td>
</tr>
<tr>
<td>Rechter Ventrikel</td>
<td>MW±STD</td>
<td>3,0±1,3</td>
<td>2,1±0,8</td>
<td>↓</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>2,7</td>
<td>2,0</td>
<td>↓</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>5,5</td>
<td>3,3</td>
<td>↑</td>
</tr>
<tr>
<td>Septum</td>
<td>MW±STD</td>
<td>2,7±0,7</td>
<td>3,0±1,6</td>
<td>↑</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>2,6</td>
<td>2,6</td>
<td>↔</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>4,4</td>
<td>5,7</td>
<td>↑</td>
</tr>
</tbody>
</table>
Ergebnisse

Kernspintomographische Evaluation myokardialer Geschwindigkeiten nach Vorhofumkehroperation bei TGA

Probanden IVS-RV IVS-LV mittlere Geschwindigkeit ± STD (cm/s)

Abbildung 3-5: RV S-Welle der Probanden und Patientensubkollektive (MW±STD).

Weiterhin ließen sich auch für das mittventrikuläre Myokard des linken Ventrikel des signifikant höhere Geschwindigkeiten (p < 0,05) in der IVS-RV-Gruppe gegenüber den Probanden festhalten (vgl. Tabelle 3-14). Im Gesamtpatientenkollektiv war der Median und der Mittelwert ebenfalls erhöht, allerdings nicht statistisch signifikant.

Tabelle 3-14: LV S-Welle im mittventrikulären Myokard im Probanden- und Patientenkollektiv sowie IVS-RV-Gruppe. (*) p < 0,05 im Bezug zu den Probanden (*).

Institute and Collaborative Groups
3.3.2 Wandgeschwindigkeitspeak der E-Welle

Linker Ventrikel

Die E-Welle war im Patientenkollektiv im Bereich der Basis, dem mittventrikulären Myokard und der Spitzenregion tendenziell erhöht gegenüber den Gesunden. Die Geschwindigkeitsdifferenz im apikanalen Bereich war nur minimal ausgeprägt (vgl. Tabelle 3-16).

Tabelle 3-16: LV E-Welle im Probanden- und Patientenkollektiv.

<table>
<thead>
<tr>
<th>Myokardregion</th>
<th>E-Geschwindigkeit in cm/s</th>
<th>Proband (n)</th>
<th>Patient (n)</th>
<th>Δ Patient - Proband</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis</td>
<td>MW±STD: 3,3±1,9</td>
<td>2,8±1,0</td>
<td>↑ +0,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Median: 2,6 (12)</td>
<td>2,9 (21)</td>
<td>↑ +0,3</td>
<td></td>
</tr>
<tr>
<td>mittventrikulär</td>
<td>MW±STD: 3,5±1,6</td>
<td>2,7±1,1</td>
<td>↑ +0,8</td>
<td></td>
</tr>
<tr>
<td>Apex</td>
<td>Median: 2,5 (12)</td>
<td>3,2 (22)</td>
<td>↑ +0,8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MW±STD: 3,2±1,5</td>
<td>2,9±1,1</td>
<td>↑ +0,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Median: 2,5 (12)</td>
<td>3,2 (22)</td>
<td>↑ +0,3</td>
<td></td>
</tr>
<tr>
<td>Absolute Spitze</td>
<td>MW±STD: 3,8±1,2</td>
<td>3,5±1,3</td>
<td>↑ +0,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Median: 3,3 (13)</td>
<td>3,8 (22)</td>
<td>↑ +0,5</td>
<td></td>
</tr>
</tbody>
</table>

Die Probandengruppe zeigte für die Geschwindigkeiten der E-Welle nur minimale Unterschiede von der Basis bis zum Apex. In der absoluten Spitzenregion wurde im Mittel der höchste Wert gemessen, der die basale mediane Geschwindigkeit um 0,7 cm/s überstieg. Auch die Maximalgeschwindigkeit war mit 5,5 cm/s in diesem Bereich am höchsten.

Im TGA-Kollektiv ließ sich tendenziell ein Anstieg von der Basis bis zur absoluten Spitze feststellen, in der mit einer Differenz von 0,9 cm/s im Vergleich zur Basis die höchsten Geschwindigkeiten erreicht wurden.

Zusammenfassend scheint linksventrikulär im gesunden Kollektiv die schnellste frühdiastolische Bewegung im Bereich der absoluten Spitze erreicht zu werden. Somit stellt diese Region sowohl für die frühe Diastole als auch für die systolische Kontraktion den Bereich mit den höchsten Wandgeschwindigkeiten im linken Ventrikel dar. Die diastolische Funktion im Bereich der absoluten Spitze scheint dabei im Patientenkollektiv eine gute, eventuell kompensatorisch erhöhte Funktion auszuüben und erreicht höhere Geschwindigkeiten als in der gesunden Vergleichsgruppe.

Rechter Ventrikel

Wie auch die S-Welle zeigte die E-Welle in der Basis und mittventrikulär verminderte mittlere Wandgeschwindigkeiten im TGA-Kollektiv, die Differenz gegenüber den Gesunden betrug in den beiden Bereichen jeweils 0,7 cm/s (Mittelwert) ohne Signifikanzen. Dies könnte ein Anzeichen einer diastolischen Funktionsstörung in diesen Regionen des rechten Ventrikels...
darstellen. Im Apex und der absoluten Spitzenregion waren die Wandgeschwindigkeiten der E-Welle hingegen erhöht. In der Herzspitze betrug die Geschwindigkeitsdifferenz gegenüber den Probanden 0,9 cm/s (Mittelwert) bzw. 1,1 cm/s (Median) und lag damit nur knapp über dem Signifikanzniveau (p = 0,05). (vgl. Tabelle 3-17). Bei einer differenzierten Analyse lies sich ein signifikanter Unterschied in der Geschwindigkeit des E-Wertes zwischen der Probandengruppe und dem Patientensubkollektiv mit „paradoxer“ Septumbewegung finden (p < 0,05) (s.u.). Die erhöhten Werte apikal und in der Spitzenregion könnten auf eine Kompensation der erniedrigten basalen und mittventrikulären Geschwindigkeiten hindeuten.

Tabelle 3-17: RV E-Welle im Probanden- und Patientenkollektiv.

<table>
<thead>
<tr>
<th>Geschwindigkeitsparameter</th>
<th>E-Geschwindigkeit in cm/s</th>
<th>Proband (n)</th>
<th>Patient (n)</th>
<th>Δ Patient - Proband</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis</td>
<td>MW±STD</td>
<td>3,5±1,4</td>
<td>2,8±1,2</td>
<td>↓ -0,7</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>3,8</td>
<td>(13)</td>
<td>2,7 (22)</td>
</tr>
<tr>
<td>mittventrikulär</td>
<td>MW±STD</td>
<td>3,2±1,5</td>
<td>2,5±1,1</td>
<td>↓ -0,7</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>3,1</td>
<td>(12)</td>
<td>2,4 (21)</td>
</tr>
<tr>
<td>Apex</td>
<td>MW±STD</td>
<td>3,0±0,9</td>
<td>3,2±1,3</td>
<td>↑ +0,2</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>2,9</td>
<td>(13)</td>
<td>3,2 (22)</td>
</tr>
<tr>
<td>Absolute Spitze</td>
<td>MW±STD</td>
<td>2,8±0,9</td>
<td>3,7±1,2</td>
<td>↑ +0,9</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>2,7</td>
<td>(13)</td>
<td>3,8 (21)</td>
</tr>
</tbody>
</table>

Der Geschwindigkeitsverlauf für die E-Welle über die vier Regionen zeigte für die Probanden im rechten Ventrikel eine Geschwindigkeitsabnahme von der Basis bis zur absoluten Spitze um 1,1 cm/s (Median) (vgl. Abbildung 3-6).

Entgegengesetzt dazu zeigte sich im Patientenkollektiv ein Anstieg um 1,1 cm/s (Median) von der Basis bis zur Spitze hin. Im mittventrikulären Myokard zeigte sich dabei eine leichte Geschwindigkeitsabnahme.
Ergebnisse
Kernspintomographische Evaluation myokardialer Geschwindigkeiten nach Vorhofumkehroperation bei TGA

Abbildung 3-6: RV E-Welle im Probanden- und Patientenkollektiv.

Insgesamt war wie bereits für die systolische rechtsventrikuläre Funktion auch für das „early filling“ eine erhöhte radiale Myokardgeschwindigkeit in der absoluten Spitze im Vergleich zu den basalen Anteilen im TGA-Kollektiv zu bemerken, wohingegen in der gesunden Gruppe die Geschwindigkeiten von basal nach apikal stetig abnahmen. Im Bereich der Herzspitze ist eine Kompensation der basalen und mittiventrikulären Dilatationsgeschwindigkeiten denkbar, um die Füllung des rechten Systemventrikels aufrecht zu erhalten. Dabei wurden im Patientenkollektiv mittlere Radialgeschwindigkeiten erreicht, die mit einer Differenz von 0,9 cm/s deutlich höher waren als bei den Gesunden. Dies könnte erneut als Anzeichen für die Adaptation an die veränderten Kreislaufverhältnisse nach einer Vorhofumkehroperation gedeutet werden.

Septum
Basal und mittiventrikulär sowie apikal waren die Geschwindigkeiten der E-Welle im erkrankten Kollektiv insgesamt eher vermindert, was auf eine diastolische Dysfunktion hindeuten könnte. Im Bereich der absoluten Spitze waren die Geschwindigkeit der E-Welle eventuell kompensatorisch etwas höher im TGA-Kollektiv gegenüber den Probanden (vgl. Tabelle 3-18).

Tabelle 3-18: Septum E-Welle im Probanden- und Patientenkollektiv.

<table>
<thead>
<tr>
<th>Geschwindigkeitsparameter</th>
<th>E-Geschwindigkeit in cm/s</th>
<th>Proband (n)</th>
<th>Patient (n)</th>
<th>Δ Patient - Proband</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis</td>
<td></td>
<td>2.9±1,2</td>
<td>2.6±1,2</td>
<td>↓</td>
</tr>
<tr>
<td>Median</td>
<td></td>
<td>2.4 (13)</td>
<td>2.4 (22)</td>
<td>↔ ±0,0</td>
</tr>
<tr>
<td>Mittventrikular</td>
<td></td>
<td>3.0±1,1</td>
<td>2.6±1,2</td>
<td>↓ -0,4</td>
</tr>
<tr>
<td>Median</td>
<td></td>
<td>2.9 (13)</td>
<td>2.6 (22)</td>
<td>↓ -0,3</td>
</tr>
<tr>
<td>Apex</td>
<td></td>
<td>2.9±0,9</td>
<td>2.7±1,2</td>
<td>↓ -0,3</td>
</tr>
<tr>
<td>Median</td>
<td></td>
<td>2.8 (12)</td>
<td>2.4 (22)</td>
<td>↓ -0,4</td>
</tr>
<tr>
<td>Absolute Spitze</td>
<td></td>
<td>3.1±0,6</td>
<td>3.3±0,8</td>
<td>↑ +0,2</td>
</tr>
<tr>
<td>Median</td>
<td></td>
<td>3.0 (13)</td>
<td>3.0 (22)</td>
<td>↔ ±0,0</td>
</tr>
</tbody>
</table>
Für die frühdiastolische Dilatationsbewegung konnte septal in der Probandengruppe ein Anstieg der medianen Geschwindigkeiten von der Basis zum mittventrikulären Myokard festgehalten werden. Anschließend blieben die Geschwindigkeiten bis zur Herzspitze hin annähernd gleich und lagen hier im Median 0,6 cm/s höher als basal.

Auch in der Patientengruppe war tendenziell ein medianer Geschwindigkeitsanstieg von der Basis bis zur absoluten Spitze hin zu verzeichnen, die Differenz zwischen beiden Bereichen betrug ebenfalls 0,6 cm/s.

Patientensubkollektive

Im Bereich der rechtsventrikulären absoluten Spitze waren für beide Patientensubgruppen erhöhte Radialgeschwindigkeiten im Vergleich zu den Probanden zu verzeichnen. Wie bereits erwähnt war die Geschwindigkeitsdifferenz dabei im Patientenkollektiv mit „paradoxer“ Septumbewegung signifikant (p < 0,05) (vgl. Tabelle 3-20).

Im Bereich der absoluten Spitze hingegen fanden sich im Septum die höchsten Geschwindigkeiten der E-Welle in der Patientengruppe mit physiologischer Septumbewegung, die eine Geschwindigkeitsdifferenz von 1,5 cm/s zwischen der Basis und der Spitzenregion
aufzeigten (vgl. Abbildung 3-7). Weiterhin fiel ein entgegengesetztes Verhalten beider Subkollektive im mittventrikulären und apikalen Bereich auf. Die mediane Radialgeschwindigkeit stieg in der IVS-LV-Gruppe vom mittventrikulären zum apikalen Bereich hin um 0,5 cm/s an, in der Patientensubgruppe mit „paradoxe“ Septumbewegung hingegen fiel sie um 0,7 cm/s ab. Dabei war eine unterschiedliche mediane Geschwindigkeit im mittventrikulären Bereich in den beiden Subgruppen mit höheren Werten in der IVS-LV-Gruppe (Differenz von 0,6 cm/s) zu beobachten.

Abbildung 3-7: Septum E-Welle in der Probandengruppe und den Patientensubgruppen.

3.3.3 Wandgeschwindigkeitspeak der A-Welle

Linker Ventrikel

Bei der Auswertung der A-Welle liessen sich linksventrikulär für die Basis tendenziell verminderte Geschwindigkeiten im Patientenkollektiv im Vergleich zu den Probanden feststellen. Die Analyse zeigte jedoch keinen signifikanten Unterschied (p=0,58). Eine daraufhin für diesen Bereich durchgeführte differenzierte Betrachtung der Patientensubgruppen nach der Septumbewegung ergab eine signifikant erniedrigte Geschwindigkeit für den A-Wert (p < 0,05) in der IVS-LV-Gruppe gegenüber den Probanden (s.u.). Im mittventrikulären Bereich und der absoluten Spitze waren die Geschwindigkeiten für die A-Welle hingegen tendenziell erhöht gegenüber den Probanden, apikal annähernd gleich (vgl. Tabelle 3-21).
Für den A-Wert des linken Ventrikels lässt sich festhalten, dass bei den Probanden die mediane Geschwindigkeit von der Basis zum mittventrikulären Myokard zunächst um im Mittel 0,4 cm/s abfällt, anschließend wieder ansteigt, um dann in der absoluten Spitzenregion die höchsten Werte zu erreichen. Diese waren im Median um 0,7 cm/s höher als basal (vgl. Abbildung 3-8).

Für das TGA-Kollektiv war eine deutliche Zunahme der medianen Geschwindigkeiten um 1,8 cm/s von der Basis bis zur absoluten Spitze zu verzeichnen. Dies galt auch für die Subgruppen.

Abbildung 3-8: LV A-Welle im Probanden- und Patientenkollektiv.

Rechter Ventrikel

Rechtsventrikulär waren die Geschwindigkeiten der A-Welle basal im Mittel annähernd gleich dem gesunden Kollektiv, mittventrikulär leicht vermindert im TGA-Kollektiv. Apikal und in der

Tabelle 3-21: LV A-Welle im Probanden- und Patientenkollektiv.

<table>
<thead>
<tr>
<th>Geschwindigkeitsparameter</th>
<th>Proband (n)</th>
<th>Patient (n)</th>
<th>Δ Patient - Proband</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis</td>
<td>MW±STD 2.3±1.0</td>
<td>1.6±0.9</td>
<td>↓ -0.7</td>
</tr>
<tr>
<td></td>
<td>Median 2.1 (9)</td>
<td>1.4 (19)</td>
<td>↓ -0.7</td>
</tr>
<tr>
<td>mittventrikular</td>
<td>MW±STD 1.9±0.8</td>
<td>2.0±1.0</td>
<td>↑ +0.1</td>
</tr>
<tr>
<td></td>
<td>Median 1.7 (10)</td>
<td>2.0 (21)</td>
<td>↑ +0.3</td>
</tr>
<tr>
<td>Apex</td>
<td>MW±STD 2.5±1.2</td>
<td>2.5±1.2</td>
<td>↔ 0.0</td>
</tr>
<tr>
<td></td>
<td>Median 2.0 (10)</td>
<td>2.1 (22)</td>
<td>↑ +0.1</td>
</tr>
<tr>
<td>Absolute Spitze</td>
<td>MW±STD 2.8±0.9</td>
<td>3.0±1.3</td>
<td>↑ +0.2</td>
</tr>
<tr>
<td></td>
<td>Median 2.8 (13)</td>
<td>3.2 (21)</td>
<td>↑ +0.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geschwindigkeitsparameter</th>
<th>Proband (n)</th>
<th>Patient (n)</th>
<th>Δ Patient - Proband</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MW±STD</td>
<td>Median</td>
<td></td>
</tr>
<tr>
<td>Basis</td>
<td>1,9±0,5</td>
<td>2,0±1,0</td>
<td>↑ +0,1</td>
</tr>
<tr>
<td></td>
<td>1,7</td>
<td>(11)</td>
<td></td>
</tr>
<tr>
<td>mittventrikulär</td>
<td>2,1±0,8</td>
<td>1,9±1,2</td>
<td>↓ -0,2</td>
</tr>
<tr>
<td></td>
<td>1,8</td>
<td>(11)</td>
<td></td>
</tr>
<tr>
<td>Apex</td>
<td>1,9±0,6</td>
<td>2,5±1,5</td>
<td>↑ +0,6</td>
</tr>
<tr>
<td></td>
<td>1,9</td>
<td>(10)</td>
<td></td>
</tr>
<tr>
<td>Absolute Spitze</td>
<td>1,8±0,5</td>
<td>2,7±1,7</td>
<td>↑ +0,9</td>
</tr>
<tr>
<td></td>
<td>1,9</td>
<td>(10)</td>
<td></td>
</tr>
</tbody>
</table>

Die rechtsventrikuläre Analyse des A-Wertes lies bei den Probanden annähernd gleiche mediane Geschwindigkeiten von der Basis bis zur Spitze mit einer maximalen Differenz von 0,2 cm/s erkennen.

In der Patientengruppe fanden sich bei leicht erniedrigten Werten im mittventrikulären Myokard ansteigende mediane Geschwindigkeiten um 0,9 cm/s von der Basis bis zur absoluten Spitze.

Für die A-Welle fanden sich im Probanden- und Patientenkollektiv für den rechten Ventrikel die höchsten Geschwindigkeiten im Bereich der absoluten Spitze, wobei die Geschwindigkeiten im Patientenkollektiv im Vergleich zu den Probanden um 0,7 cm/s höher lagen. Der absolute Spitzenbereich scheint im Patientenkollektiv für die späte Dilatationsbewegung, ausgelöst durch die Vorhofkontraktion, von besonderer Bedeutung zu sein, da von basal nach apikal ein Geschwindigkeitsanstieg zu verzeichnen ist, der bei den gesunden Probanden fehlt. Dies könnte auf eine bessere und kompensatorisch erhöhte Dilatation im Spitzenbereich im Vergleich zu den anderen Regionen hindeuten.

Da das Geschwindigkeitsprofil der Patienten dem der Probanden für den linken Ventrikel ähnelte, lässt sich dies als Zeichen für die Funktion des rechten Ventrikels als Systemventrikel deuten.

Septum

Die Geschwindigkeiten der A-Welle präsentierten sich im Septum in allen vier untersuchten Bereichen tendenziell als vermindert im erkrankten Kollektiv im Vergleich zu den mittleren Geschwindigkeiten im gesunden Kollektiv, was auf eine diastolische Dysfunktion hindeuten könnte (vgl. Tabelle 3-23).
Tabelle 3-23: Septum A-Welle im Probanden- und Patientenkollektiv.

<table>
<thead>
<tr>
<th>Geschwindigkeitsparameter</th>
<th>A-Geschwindigkeit in cm/s</th>
<th>Proband (n)</th>
<th>Patient (n)</th>
<th>Δ Patient - Proband</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MW±STD</td>
<td>Median</td>
<td></td>
</tr>
<tr>
<td>Basis</td>
<td></td>
<td>2,3±1,0</td>
<td>2,1±1,3</td>
<td>↓ -0,2</td>
</tr>
<tr>
<td>mittventrikular</td>
<td></td>
<td>2,2±1,0</td>
<td>1,9±0,8</td>
<td>↓ -0,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,9</td>
<td>2,0</td>
<td>↑ +0,1</td>
</tr>
<tr>
<td>Apex</td>
<td></td>
<td>2,1±0,8</td>
<td>1,8±0,7</td>
<td>↓ -0,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,9</td>
<td>1,8</td>
<td>↓ -0,1</td>
</tr>
<tr>
<td>Absolute Spitze</td>
<td></td>
<td>2,6±0,8</td>
<td>2,4±1,0</td>
<td>↓ -0,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,8</td>
<td>2,5</td>
<td>↓ -0,3</td>
</tr>
</tbody>
</table>

In der Probandengruppe zeigte sich insgesamt ein Anstieg der medianen Myokardgeschwindigkeiten von der Basis bis zur absoluten Spitze um 0,5 cm/s, dabei bestand eine leichte Geschwindigkeitsabnahme im mittventrikulären und apikalen Myokard.

In der Patientengruppe fand sich ebenfalls ein Geschwindigkeitsanstieg von basal zur Herzspitze hin von 0,8 cm/s. Im apikalen Myokard liegt sich auch hier eine minimale Abnahme der medianen Geschwindigkeit feststellen.

Patientensubkollektive

Rechtsventrikulär lies sich für die IVS-LV-Gruppe für die A-Welle tendenziell ein Geschwindigkeitsanstieg von basal in Richtung Herzspitze feststellen, wobei sich die größte Geschwindigkeitsdifferenz zur Basis von 1,8 cm/s bereits im apikalen Bereich zeigte (vgl. Abbildung 3-9). In der Subgruppe mit einer „paradoxe“ Septumbewegung zeigten sich
hingegen die höchsten medianen Radialgeschwindigkeiten bereits im basalen Bereich, für die Geschwindigkeiten in der absoluten Spitze war keine Geschwindigkeitszunahme zu verzeichnen und die Werte waren im Mittel um 0,8 cm/s niedriger als in dem IVS-LV-Kollektiv.

<table>
<thead>
<tr>
<th>Geschwindigkeitsparameter</th>
<th>A-Geschwindigkeit in cm/s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Proband (n)</td>
</tr>
<tr>
<td>Basis Maximum</td>
<td>3,9 (9)</td>
</tr>
<tr>
<td>Mittventrikular Maximum</td>
<td>3,4 (10)</td>
</tr>
<tr>
<td>Apex Maximum</td>
<td>4,6 (10)</td>
</tr>
<tr>
<td>Absolute Spitze Maximum</td>
<td>4,2 (13)</td>
</tr>
</tbody>
</table>

Auch für die septalen A-Wellen konnten erhöhte basale Myokardgeschwindigkeiten in der IVS-RV-Gruppe gegenüber den Patienten mit physiologischer Septumbewegung nachgewiesen werden. In der IVS-RV-Gruppe überstiegen die basalen Werte damit erneut die Geschwindigkeiten in der absoluten Spitze, wohingegen in dem IVS-LV-Kollektiv und der Probandengruppe in der Herzspitze die höchsten Geschwindigkeiten erreicht wurden. Im basalen Myokard der Teilgruppe mit „paradoxa“ Septumbewegung fiel dabei ein großer Interquartilsraum von 2,3 cm/s auf, der auf ein inhomogenes Verhalten in diesem Subkollektiv hindeutet. Auch der Abstand zwischen Minimum und Maximum war mit 5,0 cm/s basal und 3,6 cm/s in der absoluten Spitze deutlich größer als in den anderen Bereichen und
Vergleichsgruppen. Dies deutet auf ein größeres Geschwindigkeitsspektrum in dieser Teilgruppe hin (vgl. Abbildung 3-10).

Abbildung 3-10: Septum A-Welle im Probandenkollektiv und den Patientensubgruppen.

Zusammenfassung – Messung der myokardialen Radialgeschwindigkeiten

3.4 **ZEITLICHES AUFTREten DER GESCHWINDIGKEITSPEAKS**

Linker Ventrikel

Die S- und E-Wellen weisen für den linken Ventrikel im Patientenkollektiv eine Tendenz zu früheren Geschwindigkeitsmaxima im Herzzyklus auf als es im Probandenkollektiv der Fall ist. Im mittventrikulären Myokard des linken Ventrikels war der Peak der E-Welle dabei in der IVS-RV-Gruppe signifikant früher erreicht als bei den Gesunden (0,46±0,06 s IVS-RV vs. 0,52±0,07 s Probanden, p < 0,05). Insgesamt bestehen jedoch nur geringe zeitliche Unterschiede, sodass auf die Darstellung dieser Ergebnisse verzichtet wird.

Der Peak der A-Welle hingegen trat tendenziell später auf als im gesunden Kollektiv. Dabei ist zu vermerken, dass die spätdiastolische Dilatationsbewegung in der Patientensubgruppe mit physiologischer Septumbewegung in den vier Regionen um 0,04 s bis 0,12 s später auftrat als in der IVS-RV-Gruppe (vgl. Tabelle 3-26). Signifikante Zusammenhänge konnten dabei nicht festgestellt werden.

Tabelle 3-26: Zeitliches Auftreten der A-Welle nach der R-Zacke im EKG (s) im LV im Probandenkollektiv und den Patientensubgruppen.

<table>
<thead>
<tr>
<th>Geschwindigkeitsparameter</th>
<th>Zeitpunkt der Geschwindigkeitspeaks in s im linken Ventrikel (MW±STD)</th>
<th>Patient</th>
<th>Δ IVS-RV – IVS-LV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Proband (n)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IVS-LV (n)</td>
<td>IVS-RV(n)</td>
<td></td>
</tr>
<tr>
<td>A-Welle</td>
<td>Basis MW±STD 0,78±0,18 (9)</td>
<td>0,80±0,19 (10)</td>
<td>↑ -0,08</td>
</tr>
<tr>
<td></td>
<td>MM MW±STD 0,78±0,12 (10)</td>
<td>0,80±0,20 (12)</td>
<td>↑ -0,09</td>
</tr>
<tr>
<td></td>
<td>AP MW±STD 0,84±0,18 (10)</td>
<td>0,78±0,11 (12)</td>
<td>↓ -0,12</td>
</tr>
<tr>
<td></td>
<td>SP MW±STD 0,81±0,16 (13)</td>
<td>0,82±0,15 (12)</td>
<td>↑ -0,04</td>
</tr>
</tbody>
</table>

Rechter Ventrikel

Im rechtsventrikulären Vergleich zwischen Patienten und Probanden zeigte sich, dass die TGA-Patienten für alle vier untersuchten Bereiche zeitlich verzögerte Geschwindigkeitspeaks für die S-, E- und A-Welle aufwiesen. Die Unterschiede waren im basalen und mittventrikulären Abschnitt für die S- und E-Wellen, apikal lediglich für die E-Welle statistisch signifikant (p < 0,01). In der absoluten Spitze schließlich nahmen die Differenzen zwischen den Probanden und Patienten ab. Tabelle 3-27 zeigt exemplarisch die Ergebnisse für die Basis und die absolute Spitze im rechten Ventrikel an.
Tabelle 3-27: Zeitliches Auftreten der Geschwindigkeitspeaks im RV im Probanden- und Patientenkollektiv. (*) p < 0,05 bzw. (**) p < 0,01 im Bezug zu den Probanden (*) oder zwischen den Patientensubgruppen (*).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Zeitpunkt der Geschwindigkeitspeaks in s im rechten Ventrikel (MW±STD)</th>
<th>Patient</th>
<th>Δ IVS-RV – IVS-LV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Proband (n)</td>
<td>Gesamt (n)</td>
<td>IVS-LV (n)</td>
</tr>
<tr>
<td>Basis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-Welle</td>
<td>0,17±0,09 (12)</td>
<td>0,29±0,008 (10)</td>
<td>0,26±0,008 (11)</td>
</tr>
<tr>
<td>E-Welle</td>
<td>0,47±0,08 (13)</td>
<td>0,57±0,007 (12)</td>
<td>0,54±0,006 (12)</td>
</tr>
<tr>
<td>A-Welle</td>
<td>0,81±0,19 (11)</td>
<td>0,89±0,20 (22)</td>
<td>0,85±0,19 (12)</td>
</tr>
<tr>
<td>absolute Spitze</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-Welle</td>
<td>0,19±0,10 (11)</td>
<td>0,21±0,08 (22)</td>
<td>0,23±0,07 (10)</td>
</tr>
<tr>
<td>E-Welle</td>
<td>0,49±0,07 (13)</td>
<td>0,52±0,08 (21)</td>
<td>0,54±0,08 (9)</td>
</tr>
<tr>
<td>A-Welle</td>
<td>0,82±0,17 (10)</td>
<td>0,89±0,17 (21)</td>
<td>0,93±0,21 (9)</td>
</tr>
</tbody>
</table>

Das Myokard der rechten Herzkammer benötigte somit im erkrankten Kollektiv länger zum Aufbau des systolischen Druckmaximums und auch der diastolischen Myokarddilatation. Dies könnte Ausdruck der erhöhten, systemischen (Druck-) Anforderungen an den rechten Ventrikel nach Vorhofumkehroperation sein oder eine eingeschränkte rechtsventrikuläre Funktion andeuten.

Die Angleichung der zeitlichen Unterschiede an die Werte der Gesunden in Richtung Herzspitze verdeutlicht sich in der Patientensubgruppe mit „paradoxer“ Septumbewegung. So bestanden basal und im mittventrikulären Myokard für den S- und E-Wert signifikant spätere Geschwindigkeitsmaxima gegenüber den Probanden (p < 0,05 bzw. p < 0,01). In der absoluten Spitze wurden bei einer maximalen Abweichung von 0,04s (A-Wert) annähernd die Werte der Gesunden und des linken Systemventrikels erreicht (s.u.). Dies könnte eine positive Auswirkung der „paradoxen“ Septumbewegung auf die Myokardfunktion widerspiegeln, da in der IVS-LV-Gruppe diese Annäherung an die Probandenergebnisse nicht in dem Maße erreicht wurde.

Ebenso wiesen die Patienten mit einer „paradoxen“ Septumbewegung tendenziell frühere Geschwindigkeitsmaxima für die S-, E- und A-Wellen auf als die IVS-LV-Patienten, für den E-Wert der basalen Außenwand war dieser Zeitunterschied statistisch signifikant (0,61±0,06s IVS-LV vs. 0,54±0,06s IVS-RV; p < 0,05).

Die Hauptbewegungsrichtung des septalen Myokards mit dem rechten Ventrikel scheint somit zu einer besseren funktionellen Leistung des Systemventrikels insbesondere in der Diastole zu führen.
Um die Ergebnisse des zeitlichen Auftretens der Geschwindigkeitspeaks des rechten Ventrikels in der Patientengruppe besser einordnen zu können, erfolgte der Vergleich beider Systemventrikel der Studienkollektive. Die Ergebnisse dieser Untersuchung sind für die Basis und das mittventrikuläre Myokard in dargestellt. Dabei wird ersichtlich, dass die Geschwindigkeitspeaks im rechten Systemventrikel vor allem für die diastolischen Parameter der Myokarddilatation zeitlich verzögert auftraten im Vergleich zum gesunden linken systemischen Ventrikel. Eine Betonung lag dabei auf dem Erreichen des Peaks A-Welle, der im Patientenkollektiv im Mittel bis zu 0,10s später auftrat als im Probandenkollektiv.

Hierbei muss allerdings erneut eine eventuell operativ bedingte Verminderung der Vorhoffunktion durch ausgeprägte Vorhofmanipulation während der Operation berücksichtigt werden.

Tabelle 3-28: Zeitliches Auftreten der Geschwindigkeitspeaks nach der R-Zacke im EKG (s) im jeweiligen Systemventrikel im Probanden- und Patientenkollektiv. (*) p < 0,05 im Bezug zu den Probanden (a).

<table>
<thead>
<tr>
<th>Geschwindigkeitsparameter</th>
<th>Zeitpunkt der Geschwindigkeitspeaks in s (MW±STD)</th>
<th>Patientenkollektiv</th>
<th>Probandenkollektiv</th>
<th>Δ Patientenkollektiv – Probandenkollektiv</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Proband LV (n)</td>
<td>Patient RV (n)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-Welle</td>
<td>0,24±0,06 (13)</td>
<td>0,17±0,07 (22)</td>
<td>↓ -0,07</td>
<td></td>
</tr>
<tr>
<td>E-Welle</td>
<td>0,52±0,07 (12)</td>
<td>0,54±0,07 (22)</td>
<td>↑ +0,02</td>
<td></td>
</tr>
<tr>
<td>A-Welle</td>
<td>0,78±0,18 (9)</td>
<td>0,88±0,16 (22)</td>
<td>↑ +0,10</td>
<td></td>
</tr>
<tr>
<td>mittventrikuläres Myokard</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-Welle</td>
<td>0,21±0,06 (13)</td>
<td>0,18±0,08 (22)</td>
<td>↓ -0,03</td>
<td></td>
</tr>
<tr>
<td>E-Welle</td>
<td>0,52±0,07 (12)</td>
<td>0,55±0,09 (22)</td>
<td>↑ +0,03</td>
<td></td>
</tr>
<tr>
<td>A-Welle</td>
<td>0,78±0,12 (10)</td>
<td>0,87±0,16 (22)</td>
<td>↑ +0,09</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 3-29: Mittleres zeitliches Auftreten der E-Geschwindigkeitspeaks nach der R-Zacke im EKG (s) im rechten Ventrikel im Probandenkollektiv und den Patientensubgruppen. (*) p < 0,05 bzw. (**) p < 0,01 im Bezug zu den Probanden (*) oder zwischen den Patientensubgruppen (b).

Abschließend lässt sich festhalten, dass der rechte Ventrikel als Systemventrikel wohl eine längere Zeit zum (höheren) Druckaufbau und zur Relaxation benötigt als die physiologische rechte und linke Herzkammer, was eine ventrikuläre Dysfunktion andeuten kann. Dabei ist eine unterschiedliche Adaptation der Patientensubkollektive festzustellen, wobei sich insbesondere für die diastolischen Parameter frühere Geschwindigkeitspeaks bei einer „paradoxen“ Septumbewegung zeigen.

Septum

Auch für das Septum zeigte die Auswertung des zeitlichen Auftretens der Geschwindigkeitspeaks im Herzzyklus zumeist verzögerte Kontraktionen und Dilatationen in der Patientengruppe. In dem IVS-RV-Teilkollektiv fanden sich dabei auch hier vor allem für die A-Welle tendenziell frühere Peaks als in der IVS-LV-Gruppe, was Ausdruck eines effizienteren Kompensationsmechanismus in dieser Subgruppe sein könnte. Wie auch im linken und rechten Ventrikel traten insbesondere die Geschwindigkeitspeaks der E-Wellen in der IVS-LV-Gruppe gegenüber den Probanden und den IVS-RV-Patienten zum Teil signifikant später auf (p < 0,01 bzw. p < 0,05) (vgl. Tabelle 3-30).

Tabelle 3-30: Zeitliches Auftreten der Geschwindigkeitspeaks der E-Welle nach der R-Zacke im EKG (s) im Septum im Probanden- und Patientenkollektiv. (*) p < 0,05 bzw. (**) p < 0,01 im Bezug zu den Probanden (*) oder zwischen den Patientensubgruppen (b).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Proband (n)</th>
<th>Zeitpunkt der Geschwindigkeitspeaks in s im Septum (MW±STD)</th>
<th>Patient Gesamt (n)</th>
<th>Patient IVS-LV (n)</th>
<th>Patient IVS-RV (n)</th>
<th>Δ IVS-RV – IVS-LV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basis</td>
<td>0,48±0,07 (13)</td>
<td>0,54±0,07±0,07 (22) ↑</td>
<td>0,57±0,08 (10) ↑</td>
<td>0,51±0,05 (12) ↑</td>
<td>-0,06</td>
</tr>
<tr>
<td></td>
<td>mittventrikulär</td>
<td>0,49±0,06 (13)</td>
<td>0,55±0,09±0,09 (22) ↑</td>
<td>0,58±0,09 (10) ↑</td>
<td>0,52±0,07 (12) ↑</td>
<td>-0,06</td>
</tr>
<tr>
<td></td>
<td>Apex</td>
<td>0,49±0,08 (13)</td>
<td>0,54±0,07 (22) ↑</td>
<td>0,56±0,08 (10) ↑</td>
<td>0,52±0,07 (12) ↑</td>
<td>-0,04</td>
</tr>
<tr>
<td></td>
<td>Absolute Spitze</td>
<td>0,50±0,08 (13)</td>
<td>0,51±0,07 (22) ↑</td>
<td>0,52±0,07 (10) ↑</td>
<td>0,50±0,06 (12) ↔</td>
<td>-0,02</td>
</tr>
</tbody>
</table>
3.5 **ZUSAMMENHANG ZWISCHEN DEN ALLGEMEINEN FUNKTIONELLEN UND DEN GESCHWINDIGKEITSPARAMETERN**

3.5.1 ABHÄNGIGKEIT DER EJEKTIONSFRAKTION VON DEN MYOKARDIALEN GESCHWINDIGKEITEN

Für diesen Zusammenhang ist im Probandenkollektiv davon ausgegangen worden, dass die ermittelten Radialgeschwindigkeiten zu einer normalen Ejektionsfraktion führen, daher erfolgte diesbezüglich keine Analyse. Im Patientenkollektiv hingegen sollte ein möglicher Einfluss der regionalen Myokardgeschwindigkeiten auf die verminderten Ejektionsfraktionen untersucht werden. Hierbei wurde davon ausgegangen, dass sich insbesondere die Geschwindigkeit der systolischen Kontraktion (S-Welle) am stärksten auf die Ejektionsfraktion auswirkt, jedoch über die ventrikuläre Füllung auch ein Einfluss der Diastole besteht.

In der Auswertung hat sich gezeigt, dass es zumeist nur sehr niedrige Korrelationskoeffizienten für diesen Zusammenhang gibt, sodass sich keine abschließende Aussage treffen lässt. Es wird daher im Folgenden lediglich auf den Einfluss der Wandgeschwindigkeiten in der rechtsventrikulären Basis und absoluten Spitze eingegangen, für die sich die genannten Zusammenhänge aufzeigen ließen.

Einfluss der Wandgeschwindigkeiten im rechten Ventrikel

In der Auswertung zeigte sich für den Zusammenhang zwischen den Wandgeschwindigkeiten der S-, E- und A-Welle und der Ejektionsfraktion im rechten Ventrikel basal eine positive, in der absoluten Spitze jedoch tendenziell eine negative Korrelation. Dies wird in Tabelle 3-31 exemplarisch für die S-Geschwindigkeit dargestellt.

<table>
<thead>
<tr>
<th>Korrelationspaar</th>
<th>Korrelationskoeffizient r im Patientenkollektiv</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BA</td>
</tr>
<tr>
<td>EF RV und S-Welle (n)</td>
<td>0,24</td>
</tr>
</tbody>
</table>

In der Patientensubgruppe mit „paradoxe“ Septumbewegung bestand für den Einfluss der A-Geschwindigkeit auf die Auswurffraktion in der rechtsventrikulären Basis eine signifikante (positive) Korrelation \((r = 0,63, p < 0,05)\), der in Abbildung 3-11 wiedergegeben ist.
Zusammenfassend lässt sich festhalten, dass der Einfluss der myokardialen Geschwindigkeit der systolischen und diastolischen Parameter aufgrund insgesamt nur sehr niedriger Korrelationskoeffizienten ausschließlich Tendenzen aufzeigte. Jedoch ist von regional unterschiedlichen Zusammenhängen zwischen den untersuchten Parametern auszugehen, wobei die nachgewiesenen erhöhten Radialgeschwindigkeiten in der absoluten Spitze im TGA-Kollektiv per se nicht zu einer erhöhten Ejektionsfraktion führten.

Entgegen unserer Hypothese bestand auch in den meisten anderen Myokardbereichen kein eindeutig positiver Zusammenhang zwischen der Höhe der S-Welle und der Ejektionsfraktion, was vermuten lässt, dass eine gewisse Zeitspanne für einen koordinierten und effizienten Kontraktionsablauf benötigt wird. Neben den Radialgeschwindigkeiten scheint es schließlich weitere wichtige Faktoren zu geben, die die Ejektionsfraktion beeinflussen.

3.5.2 Abhängigkeit der Ejektionsfraktion von der Muskelmasse

Ergebnisse

Kernspintomographische Evaluation myokardialer Geschwindigkeiten nach Vorhofumkehroperation bei TGA

Seite | 64

Linker Ventrikel
Die Korrelationsanalyse nach Spearman ergab für die linke Herzkammer sehr geringe Korrelationen im Patientenkollektiv, sodass sich keine Aussage bezüglich eines positiven oder negativen Zusammenhanges zwischen den beiden Variablen formulieren ließ (vgl. Tabelle 3-32). Die Analyse der Patientensubgruppen konnte schließlich im IVS-RV-Kollektiv bei einem Korrelationskoeffizienten von $r = -0.28$ tendenziell eine abnehmende Auswurffraktion bei zunehmender Muskelmasse aufzeigen.

Tabelle 3-32: Korrelation zwischen EF und Muskelmasse im Patientenkollektiv.

<table>
<thead>
<tr>
<th>Korrelationspaar</th>
<th>Patientenkollektiv</th>
<th>Korrelationskoeffizient r</th>
<th>Linker Ventrikel</th>
<th>Rechter Ventrikel</th>
</tr>
</thead>
<tbody>
<tr>
<td>EF und Muskelmasse</td>
<td>Gesamt (n) 0,05 (15) 0,27 (16)</td>
<td>IVS-RV (n) -0,28 (9) 0,07 (9)</td>
<td>IVS-LV (n) -0,06 (6) 0,64 (7)</td>
<td></td>
</tr>
</tbody>
</table>

Rechter Ventrikel
Für den rechten Ventrikel bestand im Patientenkollektiv mit $r = 0,27$ eher ein positiver Zusammenhang zwischen Ejektionsfraktion und Muskelmasse (vgl. Tabelle 3-32 und Abbildung 3-12). Insbesondere in der IVS-LV-Subgruppe zeigt sich eine zunehmende Auswurffraktion bei erhöhter Muskelmasse ($r = 0,64$).

Im rechten Ventrikel scheint somit in unserem Patientenkollektiv nach einer Vorhofumkehroperation eine höhere Muskelmasse zu einer gesteigerten Auswurffraktion bzw. zum Aufrechterhalten einer ausreichenden Auswurffraktion beizutragen.

![Abbildung 3-12: Abhängigkeit EF von der Muskelmasse im Patientenkollektiv im RV.](image)
3.5.3 Abhängigkeit der myokardialen Geschwindigkeit vom Alter

Probandenkollektiv

Die Untersuchung des Einflusses des Alters auf die Wandgeschwindigkeiten der S-, E- und A-Welle in den vier Myokardbereichen ergab in der Probandengruppe bei einem mittleren Alter von 21,2±6,1 Jahren für beide Ventrikel und das Septum tendenziell negative Zusammenhänge mit abnehmenden Wandgeschwindigkeiten bei zunehmendem Alter. Dies traf insbesondere für die S-Welle zu, für die in der linksventrikulären Basis eine signifikante Korrelation (p < 0,05) bestand (vgl. Abbildung 3-13). Rechtsventrikulär wurde für die Korrelation zwischen dem Alter und der S-Welle der Basis bzw. der A-Welle der absoluten Spitze das Signifikanzniveau (p = 0,05) knapp verfehlt. Tabelle 3-33 zeigt beispielhaft die Korrelationen in der Basis und der absoluten Spitze der Probanden an. Dabei ist zu beachten, dass aufgrund der Altersverteilung im Probandenkollektiv nur zwei Patienten mit einem Alter jünger als 20 Jahre einem homogenen älteren Probandenfeld gegenüberstehen und daher lediglich tendenzielle Entwicklungen für die Altersabhängigkeit formuliert werden können.

Tabelle 3-33: Korrelation zwischen Alter und Myokardgeschwindigkeiten in der Basis und absoluten Spitze im RV, LV und Septum im Probandenkollektiv. (*) p < 0,05. (†) p = 0,05.

<table>
<thead>
<tr>
<th>Region</th>
<th>Unabhängige Variable</th>
<th>Korrelationskoeffizient r im Probandenkollektiv</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S-Welle</td>
</tr>
<tr>
<td>LV</td>
<td>Alter (n)</td>
<td>-0,62*</td>
</tr>
<tr>
<td>RV</td>
<td>Alter (n)</td>
<td>-0,57*</td>
</tr>
<tr>
<td>Septum</td>
<td>Alter (n)</td>
<td>-0,29</td>
</tr>
</tbody>
</table>
Ergebnisse

Kernspintomographische Evaluation myokardialer Geschwindigkeiten nach Vorhofscheidungoperation bei TGA

Abbildung 3-13: Abhängigkeit der S-Welle vom Alter im Probandenkollektiv Basis LV.

Patientenkollektiv

Für die Korrelation zwischen den Wandgeschwindigkeiten und dem Alter lassen sich bei der Auswertung der Patientendaten nur sehr geringe Zusammenhänge zwischen diesen Parametern feststellen. Dabei zeigten sich für den rechten Ventrikel eher positive Korrelationskoeffizienten, sodass ein höheres Alter mit gesteigerten Wandgeschwindigkeiten einherging. Für die S-Welle der absoluten Spitze lag im Gegensatz zum Probandenkollektiv eine signifikant gleichsinnige Korrelation mit $r = 0,43$ ($p < 0,05$) vor (vgl. Abbildung 3-14).

Abbildung 3-14: Abhängigkeit S-Welle vom Alter im Patientenkollektiv absolute Spitze RV.

In der Patiententeilgruppe mit physiologischer Septumbewegung präsentierten sich wie auch im Probandenkollektiv für den linken Ventrikel tendenziell negative Korrelationen, die für den S-

Tabelle 3-34: Korrelation zwischen Alter und Myokardgeschwindigkeiten im IVS-LV-Kollektiv LV. (*) p < 0,05, () p < 0,01.**

<table>
<thead>
<tr>
<th>Region</th>
<th>Unabhängige Variable</th>
<th>Korrelationskoeffizient r im IVS-LV-Kollektiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV</td>
<td>Alter (n)</td>
<td>S-Welle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0,80** (10)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0,08 (9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0,72* (10)</td>
</tr>
</tbody>
</table>

In der IVS-RV-Subgruppe bestand für den linken Ventrikel im Gegensatz zur IVS-LV-Gruppe die Tendenz zu zunehmenden Myokardgeschwindigkeiten mit steigendem Alter. Insbesondere im basalen Bereich war für die S-Welle ($r = 0,63$, $p < 0,05$) und die E-Welle ($r = 0,73$, $p < 0,05$) ein signifikanter Zusammenhang zwischen den beiden Parametern auszumachen. Abbildung 3-15 verdeutlicht beispielhaft die Unterschiede in den beiden Subkollektiven anhand des S-Wertes in der linksventrikulären Basis.

![Abbildung 3-15: Abhängigkeit der S-Geschwindigkeit vom Alter in den Patientensubkollektiven: (a) IVS-LV und (b) IVS-RV Basis LV.](image)

Einfluss des postoperativen Alters

Tabelle 3-35: Mittlere Myokardgeschwindigkeiten in den Patientensubgruppen nach postoperativerm Alter.

<table>
<thead>
<tr>
<th>Region</th>
<th>Geschwindigkeitsparameter</th>
<th>Geschwindigkeit in cm/s (MW±STD)</th>
<th>Mittventrikulares Myokard</th>
<th>Δ > 17 Jahre - ≤ 17 Jahre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>≤ 17 Jahre</td>
<td>> 17 Jahre</td>
<td></td>
</tr>
<tr>
<td>LV</td>
<td>S-Welle</td>
<td>3,7±1,6 (11)</td>
<td>3,4±1,5 (11)</td>
<td>-0,3</td>
</tr>
<tr>
<td></td>
<td>E-Welle</td>
<td>3,4±1,5 (11)</td>
<td>3,6±1,9 (11)</td>
<td>+0,2</td>
</tr>
<tr>
<td></td>
<td>A-Welle</td>
<td>1,8±0,5 (11)</td>
<td>2,1±1,4 (10)</td>
<td>+0,3</td>
</tr>
<tr>
<td>RV</td>
<td>S-Welle</td>
<td>2,2±1,1 (10)</td>
<td>2,2±1,4 (11)</td>
<td>±0,0</td>
</tr>
<tr>
<td></td>
<td>E-Welle</td>
<td>2,3±0,8 (10)</td>
<td>2,7±1,3 (11)</td>
<td>+0,4</td>
</tr>
<tr>
<td></td>
<td>A-Welle</td>
<td>1,9±1,5 (10)</td>
<td>1,9±1,1 (11)</td>
<td>±0,0</td>
</tr>
</tbody>
</table>

Patienten ≤ 17 Jahre

In der Patientensubgruppe mit einem Alter von ≤ 17 Jahren präsentieren sich in der Korrelationsanalyse für den linken Ventrikel und das Septum entgegengesetzt zu den Probanden vor allem positive Zusammenhänge, sodass hier bei einem zunehmenden Alter eher ansteigende Myokardgeschwindigkeiten in den vier Regionen auftreten.

Rechtsventrikulär zeigen sich hingegen wie auch im gesunden Kollektiv eher negative Zusammenhänge, das heißt, dass mit höherem Alter die Wandgeschwindigkeiten abnehmen. Dieser Zusammenhang ist für die S-Welle im Basisbereich signifikant (r = -0,68, p < 0,05). In Richtung des Apex und der absoluten Spitze hingegen bestehen signifikante positive Korrelation mit ansteigenden S-Geschwindigkeiten bei zunehmendem Alter (r = 0,74, p < 0,01 im Apex.
r = 0,71, p < 0,01 in der absoluten Spitze). Tabelle 3-36 zeigt den Sachverhalt beispielhaft für die Basis und die absolute Spitze in der Patiententeilgruppe mit einer Altersgrenze von ≤ 17 Jahren.

Tabelle 3-36: Korrelation (r) zwischen dem Alter und den myokardialen Geschwindigkeiten in der rechts- und linksventrikulären sowie septalen Basis und absoluten Spitze im Patientensubkollektiv ≤ 17 Jahre. (*) p < 0,05. (**) p < 0,01.

<table>
<thead>
<tr>
<th>Region</th>
<th>Unabhängige Variable</th>
<th>Korrelationskoeffizient r im Patientensubkollektiv ≤ 17 Jahre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BA S-Welle</td>
</tr>
<tr>
<td>LV</td>
<td>Alter (n)</td>
<td>0,53 (11)</td>
</tr>
<tr>
<td>RV</td>
<td>Alter (n)</td>
<td>-0,68* (10)</td>
</tr>
<tr>
<td>Septum</td>
<td>Alter (n)</td>
<td>0,45 (11)</td>
</tr>
</tbody>
</table>

Patienten > 17 Jahre

Für die rechte Herzkammer sind wie auch in der „jüngeren“ Patientensubgruppe die signifikant positiven Zusammenhänge zwischen der S-Geschwindigkeit und dem Alter im Apex und der absoluten Spitze zu erwähnen (r = 0,62, p < 0,05 im Apex, r = 0,67, p < 0,05 in der absoluten Spitze). Rechtsventrikulär unterscheiden sich die Korrelationen somit auch in dieser Altersgruppe von denen der Probanden, die hier einen negativen Zusammenhang aufwiesen.

Tabelle 3-37: Korrelation (r) zwischen dem Alter und den myokardialen Geschwindigkeiten in den rechts- und linksventrikulären myokardialen Regionen im Patientensubkollektiv > 17 Jahre. (*) p < 0,05.

<table>
<thead>
<tr>
<th>Region</th>
<th>Unabhängige Variable</th>
<th>Korrelationskoeffizient r im Patientensubkollektiv > 17 Jahre</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BA S-Welle</td>
</tr>
<tr>
<td>LV</td>
<td>Alter (n)</td>
<td>-0,22 (11)</td>
</tr>
<tr>
<td>RV</td>
<td>Alter (n)</td>
<td>-</td>
</tr>
</tbody>
</table>

3.5.4 **Abhängigkeit der Ejektionsfraktion vom Alter**

Im Patientenkollektiv war linksventrikulär tendenziell eine zunehmende EF bei steigendem Alter zu verzeichnen mit allerdings nur geringer Korrelation ($r = 0.17$). Im rechten (System-) Ventrikel hingegen sank die Auswurffraktion mit höherem Alter ($r = -0.40$), wobei mit $p = 0.06$ das Signifikanzniveau knapp verfehlt wurde (vgl. Abbildung 3-16). Da im gesunden Kollektiv kein negativer Einfluss des Alters auf die Auswurffraktion festgestellt werden konnte [54-56], lässt sich vermuten, dass die Abnahme der Ejektionsfraktion im operierten TGA-Kollektiv auf die Funktion der rechten Herzkammer als Systemventrikel zurückzuführen ist.

Abbildung 3-16: Abhängigkeit der rechtsventrikulären EF vom Alter im Patientenkollektiv.

3.5.5 **Abhängigkeit der myokardialen Geschwindigkeit von der Herzfrequenz**

Ergebnisse

Kernspintomographische Evaluation myokardialer Geschwindigkeiten nach Vorhofumkehroperation bei TGA

Tabelle 3-38: Korrelation zwischen Herzfrequenz und E-Geschwindigkeit im LV im Probandenkollektiv.

<table>
<thead>
<tr>
<th>Region</th>
<th>Korrelationspaar</th>
<th>Korrelationskoeffizient r im Probandenkollektiv</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BA</td>
</tr>
<tr>
<td>LV</td>
<td>Herzfrequenz und E-Welle (n)</td>
<td>-0,08</td>
</tr>
</tbody>
</table>

Im TGA-Kollektiv hingegen ließen sich eher positive, zum Teil signifikante Korrelationen und somit zunehmende Myokardgeschwindigkeiten bei steigender Herzfrequenz für beide Ventrikel feststellen.

Tabelle 3-39 gibt beispielhaft die Ergebnisse für den linken Ventrikel im TGA-Kollektiv wieder, Abbildung 3-17 zeigt die Zusammenhänge zwischen der S-Geschwindigkeit und der Herzfrequenz für die linksventrikuläre Basis.

Tabelle 3-39: Korrelation zwischen Herzfrequenz und Myokardgeschwindigkeiten im LV im Patientenkollektiv. (* p < 0,05. (**) p < 0,01. (#) p = 0,05.

<table>
<thead>
<tr>
<th>Region</th>
<th>Unabhängige Variable</th>
<th>Korrelationskoeffizient r im Patientenkollektiv</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>S-Welle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BA</td>
</tr>
<tr>
<td>LV</td>
<td>HF (n)</td>
<td>0,55(**) (22)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,45(#) (22)</td>
</tr>
</tbody>
</table>

Abbildung 3-17: Abhängigkeit der S-Geschwindigkeit von der Herzfrequenz im LV im Patientenkollektiv.

Rechtsventrikulär bestanden im Patientenkollektiv für die E-Welle im Apex (r = 0,42, p < 0,05) und der absoluten Spitze (r = 0,52, p < 0,05) signifikante positive Zusammenhänge.

Die Ergebnisse des Patientenkollektives fanden sich tendenziell auch in den Subgruppen wieder. Wie Tabelle 3-40 zu entnehmen ist, lassen sich jedoch für den S- und A-Wert im rechten Ventrikel unterschiedliche Zusammenhänge zwischen den untersuchten Parametern finden. In den Teilkollektiven ist daher eine unterschiedliche Adaptation an die veränderten...
Ergebnisse

Myokardanforderungen zu vermerken, wobei ein differenzierter Einfluss, insbesondere auf die beschriebenen S- und A-Parameter, besteht.

Tabelle 3-40: Korrelation zwischen Herzfrequenz und Myokardgeschwindigkeiten im RV in den Patientensubkollektiven.

<table>
<thead>
<tr>
<th>Region</th>
<th>Korrelationspaar</th>
<th>Korrelationskoeffizient r im Patientenkollektiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV</td>
<td></td>
<td>IVS-LV</td>
</tr>
<tr>
<td>BA</td>
<td>HF und A-Welle (n)</td>
<td>0,20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10)</td>
</tr>
<tr>
<td>MM</td>
<td>HF und A-Welle (n)</td>
<td>0,42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10)</td>
</tr>
<tr>
<td>AP</td>
<td>HF und S-Welle (n)</td>
<td>-0,35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10)</td>
</tr>
<tr>
<td>SP</td>
<td>HF und S-Welle (n)</td>
<td>-0,12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10)</td>
</tr>
</tbody>
</table>

Ergänzend sei erwähnt, dass für den Zusammenhang zwischen der Herzfrequenz und der rechts- und linksventrikulären Ejektionsfraktion aufgrund sehr niedriger Korrelationskoeffizienten im TGA-Kollektiv kein abschließender Einfluss aufgezeigt werden konnte.

Zusammenfassend lässt sich festhalten, dass die Probandengruppe ein heterogenes Verhalten aufzeigte, wobei zumindest für die frühdiastolische Myokardbewegung im linken Ventrikel tendenziell ein negativer Zusammenhang zwischen Herzfrequenz und Myokardgeschwindigkeit bestand. Im Patientenkollektiv bestand hingegen in nahezu allen Bereichen eine gleichsinnige positive Korrelation, wobei es einige Bereiche gab, in denen sich die Patientensubgruppen IVS-LV und IVS-RV voneinander unterschieden.

4 DISKUSSION

In diesem Kapitel erfolgt die Einordnung der dargestellten Ergebnisse in die aktuelle Literatur. Es werden die allgemeinen Parameter und Myokardgeschwindigkeiten betrachtet (Kapitel 4.1 und Kapitel 4.2). Im Anschluss erfolgt die Diskussion des zeitlichen Auftretens der Geschwindigkeitsmaxima (Kapitel 4.3) sowie der Zusammenhänge zwischen den allgemeinen volumetrischen, Funktions- und Geschwindigkeitsparametern (Kapitel 4.4). Abschließend wird eine Einschätzung der Studie und ein Ausblick über weiteren Forschungsbedarf gegeben (Kapitel 4.8).

4.1 ALLGEMEINE VOLUMETRISCHE UND FUNKTIONELLE PARAMETER

Als wesentliche Ergebnisse unserer Untersuchung der allgemeinen volumetrischen und funktionellen Parameter konnten wir folgende Kernaussagen festhalten:

- verminderte links- und rechtsventrikuläre Ejektionsfraktionen im Patientenkollektiv im Vergleich zu den Normwerten aus der Literatur von Gesunden Probanden (Helbing et al. (1995) [42]);
- geringere enddiastolische Volumina im TGA-Kollektiv für beide Ventrikel, aber erhöhte mittlere endsystolische RV-Volumina gegenüber den Probandenwerten von Helbing et al. (1995) [42];
- deutliche rechtsventrikuläre Hypertrophie des Myokards im TGA-Kollektiv im Vergleich zu den Gesunden, bei gleichzeitig reduzierter linksventrikulärer Muskelmasse, die in der IVS-LV-Gruppe geringer ausfiel als bei den IVS-RV-Patienten.

Allgemein sei für die Einordnung unserer Ergebnisse der allgemeinen Parameter auf eine Untersuchung von Alfakih et al. (2003) [57] verwiesen, die MRT-Messungen an 20 gesunden Probanden im Kurz- und Längsachsenschnitt miteinander verglichen haben. Dabei konnten sie signifikante Unterschiede zwischen diesen beiden Methoden bei der Ermittlung der rechtsventrikulären Volumina feststellen. EDV und ESV waren bei der Messung in Längsachse signifikant niedriger als im Kurzachsenschnitt, die rechnerisch ermittelte Ejektionsfraktion signifikant höher als im Kurzachsenschnitt. Das Schlagvolumen war annähernd gleich. Da die Angaben für gesunde Probanden ermittelt wurden und nicht auf die Körperoberfläche bezogen sind, ist ein direkter Vergleich mit unseren Patientenergebnissen leider nicht möglich. Tabelle 4-1 zeigt die Ergebnisse von Alfakih et al. für den Kurz- und längsachsenschnitt. Schlussfolgernd
muss der Vergleich zwischen unseren Ergebnissen (gemessen in der Längsachse) und denen aus Studien mit Kurzachsschnitten kritisch erfolgen.

Tabelle 4-1: Vergleich der rechtsventrikulären volumetrischen Parameter ermittelt im Längs- und Kurzachsschnitt mittels MRT von Alfakih et al. (2003) [57] ((*) p < 0,05, (**) p < 0,01).

<table>
<thead>
<tr>
<th></th>
<th>RV-EDV (ml)</th>
<th>RV-ESV (ml)</th>
<th>RV-SV (ml)</th>
<th>RV-EF (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 20)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Längsachse</td>
<td>155,6 ±39,1</td>
<td>163,7 ±19,5</td>
<td>92,0±21.9</td>
<td>59,4±4,6</td>
</tr>
<tr>
<td>Kurzachse</td>
<td>163,1 ±37,8</td>
<td>70,9±16,5</td>
<td>92,2±24,3</td>
<td>56,4±4,8</td>
</tr>
</tbody>
</table>

4.1.1 EJEKTIONSFRAKTION UND ENNDIASTOLISCHES VOLUMEN

Tabelle 4-2: Übersicht Ejektionsfraktion. (# Werte wurden rechnerisch ermittelt).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter als MW±STD (Späne in Jahren)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n Probanden</td>
<td>8 (21.9±5,4)</td>
<td>8 (7-20)</td>
<td>22 (11,2±2,5)</td>
<td></td>
<td>13 (12±3)</td>
<td></td>
</tr>
<tr>
<td>n Patienten</td>
<td>22 (18,1±4,2)</td>
<td>7 (12,8±2,9)</td>
<td>23 (23±7)</td>
<td>29 (32,2±9,6), (11 CCTGA)</td>
<td>6 (2±1,3)</td>
<td></td>
</tr>
<tr>
<td>OP-Alter</td>
<td>1,8±2,1</td>
<td>1±0,9</td>
<td>~0,75</td>
<td>1,6±1,9</td>
<td>k. A.</td>
<td></td>
</tr>
<tr>
<td>Studiendesign</td>
<td>MRT, Längsachse</td>
<td>MRT, Kurzachse</td>
<td>MRT</td>
<td>MRT, Kurzachse</td>
<td>k. A.</td>
<td>MRT</td>
</tr>
<tr>
<td>LV Proband</td>
<td>EF (%)</td>
<td>~65,7*</td>
<td>70±6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient</td>
<td>EDV (ml/m²)</td>
<td>67±12</td>
<td>89±26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RV Proband</td>
<td>EF (%)</td>
<td>~61,4*</td>
<td>70±4</td>
<td>69±4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient</td>
<td>EDV (ml/m²)</td>
<td>70±11</td>
<td>92±27</td>
<td>72±8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EF (%)</td>
<td>46±8,8</td>
<td>55±5</td>
<td>40±10</td>
<td>39,4±11,4</td>
<td>44±9</td>
</tr>
<tr>
<td></td>
<td>EDV (ml/m²)</td>
<td>72,0±23,3</td>
<td>94±26</td>
<td>114±39</td>
<td>137,8±82,1</td>
<td>96±25</td>
</tr>
</tbody>
</table>

Im Vergleich zu den Probandendaten von Lorenz et al. präsentieren sich die Ejektionsfraktionen in beiden Ventrikeln unseres TGA-Kollektives als erniedrigt, die Differenz ist dabei kleiner als im Vergleich zu Helbing et al. Das EDV ist linksventrikulär ebenfalls vermindert in unserer Studie, rechtsventrikulär wie bereits erläutert jetzt erwartungsgemäß leicht erhöht im Vergleich zu den Ergebnissen von Lorenz et al.

Giardini et al. (2006) [58] untersuchten ebenfalls mit der MRT TGA-Patienten (mittleres Alter 23±7 Jahre) nach einer Senningoperation, die in einem mittleren Alter von 9±4 Monaten (ca. 0,75 Jahre) durchgeführt wurde. Wie bei Helbing et al. stellt dies einen früheren operativen Zeitpunkt dar als in unserem Kollektiv. Die Auswurffraktion der Patienten jedoch zeigt niedrigere Werte für beide Ventrikel an als wir sie gemessen haben. Somit scheint eine frühe Durchführung der Operation allein nicht für eine gute ventrikuläre Funktion über einen langen Zeitraum auszureichen. Die Untersuchungen bei Giardini et al. wurden im Mittel an 5 Jahre älteren Patienten als unsere Untersuchungen durchgeführt. Da insbesondere die postoperative Zeit für die Entwicklung von Langzeitkomplikationen wichtig ist, muss der Vergleich der Ergebnisse zu unserer Untersuchung vorsichtig erfolgen. Für die verminderte Ejektionsfraktion bei Giardini et al. ist weiterhin ein möglicher Einfluss der (rechtsventrikulären) Muskelmasse zu berücksichtigen, die bei Giardini et al. deutlich erhöht ist im Vergleich zu unserer Studie (Differenz 39,6 g/m²) (s.u.), so dass davon auszugehen ist, dass das höhere Untersuchungsalter der Patienten und damit eine längere Druckbelastung des RV zu einer höheren mittleren Muskelmasse und auch niedrigeren RV-Funktion geführt hat.

Auch bei Salehian et al. (2004) [59] war die rechtsventrikuläre Ejektionsfraktion niedriger im Vergleich zu unseren Ergebnissen. Auffällig ist das hohe enddiastolische Volumen (137,8±82,1 ml/m²), das erneut als Ausdruck einer erhöhten Vorlast zur Aufrechterhaltung des Schlagvolumens im Rahmen des Frank-Starling-Mechanismus gedeutet werden kann. Zu berücksichtigen ist, dass bei Salehian et al. neben 18 operierten TGA-Patienten auch 11 ccTGA-Patienten miteinbezogen wurden und somit kein reines TGA-Kollektiv nach Vorhofumkehroperation vorlag.

Weiterhin waren die Patienten bei der Untersuchung im Mittel 14,1 Jahre älter als in unserem Kollektiv und der postoperative Zeitraum war bei Salehian et al. 9,1 Jahre länger. Die bessere ventrikuläre Funktion in unserem Kollektiv könnte somit unter anderem auf diese zwei Punkte...
zurückzuführen sein. Dabei ist das mittlere Alter bei der Operation in beiden Studien annähernd gleich und kann nicht zu den beschriebenen Differenzen führen.

Rebergen et al. (1995) [17] konnten für den rechten Ventrikel im Patientenkollektiv (n=6) nach Vorhofumkehroperation eine ähnlich verminderte Ejektionsfraktion von 44±9% beobachten wie wir in unseren Untersuchungen (46,6±8,4%). Das Studiendesign des Patientenkollektives (mittleres Alter bei Untersuchung, postoperativer Beobachtungszeitraum) zeigte dabei ähnliche Charakteristika, so dass die Werte eine gute Vergleichsicherung darstellen.

Darüber hinaus konnten Rebergen et al. eine eingeschränkte diastolische Dilatationsfähigkeit des rechten Ventrikels bei Vorhofumkehr-Patienten feststellen, die ca. 50 ms länger bis zum Erreichen des enddiastolischen Volumens benötigen als die Probanden. Die Füllungsrate des rechten Ventrikels und die Ejektionsfraktion wiesen dabei eine starke Korrelation auf, was den Einfluss der diastolischen Funktion auf die systolische Leistung widerspiegelt.

4.1.2 MUSKELMASSE
In Kapitel 3.1.3 haben wir die Ergebnisse unserer Patientendaten bezüglich der Muskelsmasse mit den Angaben für gesunde Probanden von Lorenz et al. (2000) [41] verglichen. Linksventrikulär konnten wir dabei eine Hypotrophie, rechtsventrikulär eine Hypertrophie im TGA-Kollektiv feststellen. Tabelle 4-3 zeigt eine Übersicht über die Muskelsmasse in unserer Studie und Vergleichsuntersuchungen.

Tabelle 4-3: Übersicht Muskelsmasse in der Literatur.

<table>
<thead>
<tr>
<th></th>
<th>ÜBERSICHT ÜBER DIE MUSKELMASSE (MW±STD) verschiedener Studien</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>n Proband</td>
<td>8 (21,9±5,4)</td>
</tr>
<tr>
<td>n Patienten</td>
<td>22 (18,1±4,2)</td>
</tr>
<tr>
<td>OP-Alter</td>
<td>1,8±2,1</td>
</tr>
<tr>
<td>Studie postop.</td>
<td>17,6±6,6</td>
</tr>
<tr>
<td>Studiendesign</td>
<td>MRT, Längsachse</td>
</tr>
<tr>
<td>LV Proband MM (g/m²)</td>
<td>53±8</td>
</tr>
<tr>
<td>LV Patient MM (g/m²)</td>
<td>31,8±17,0</td>
</tr>
<tr>
<td>RV Proband MM (g/m²)</td>
<td>26±3</td>
</tr>
<tr>
<td>RV Patient MM (g/m²)</td>
<td>45,4±11,4</td>
</tr>
</tbody>
</table>

Die Relation der rechts- und linksventrikulären Muskelsmassen zueinander beträgt für unser Patientenkollektiv 1,4:1, was die Hypertrophie der rechten Herzkammer widerspiegelt. Dieses Verhältnis findet sich in der Literatur unter anderem bei Theissen et al. (1991) [38] wieder, die eine Relation von 1,9:1 ermittelten konnten.

Auswertung der Parameter unserer Studie, in der bei einer Hypertrophie des rechtsventrikulären Myokards mit einer mittleren Ejektionsfraktion von 46,6 ± 8,4 % ebenfalls bei der Mehrzahl unserer Patienten nicht von einer relevanten rechtsventrikulären Dysfunktion auszugehen ist.

Die myokardiale Hypertrophie hingegen muss wie bereits erläutert als ein möglicher Faktor für die eingeschränkte Ventrikelfunktion (EF von 40 %) bei Giardini et al. (2006) [58] berücksichtigt werden.

4.2 GESCHWINDIGKEITSANALYSE

4.2.1 UNTERSUCHUNGSMETHODE

Unsere Studie ist die erste Studie, die radiale Myokardgeschwindigkeiten mit der MRT an einem Patientenkollektiv nach Vorhofumkehroperation untersucht hat. Die Ergebnisse müssen daher mit Literaturangaben aus der Doppler-Echokardiographie (Tissue Doppler Imaging (TDI)-Werten) verglichen werden. Insgesamt fallen dabei im Vergleich zu den angegebenen Studien im Mittel um 62,8 % niedrigere Radialgeschwindigkeiten in unserer Untersuchung auf, wobei die Abweichungen zu den einzelnen Studien unterschiedlich ausgeprägt und Tabelle 4-4 zu entnehmen sind. Alle angegebenen Vergleichsdaten sind dabei mit der Doppler-Echokardiographie ermittelt worden.
Als eine methodische Ursache kann die Nutzung der verschiedenen Untersuchungstechniken des TDI bzw. der Phasenkontrast-MRT angesehen werden. Lidegran et al. (2000) [65] konnten an 10 TGA-Patienten eine um ~22,2 % niedrigere linksventrikuläre Ejektionsfraktionen mittels MRT im Vergleich zur Echokardiographie ermitteln, sodass eventuell auch die niedrigeren Radialgeschwindigkeiten unserer Studie durch die genutzte Untersuchungsmethode bedingt sein können. Bei der Geschwindigkeitsermittlung spielt dabei insbesondere die zeitliche Auflösung der Untersuchungsmethoden eine Rolle, die für das MRT niedriger ist als für den Tissue-Doppler.

Hierbei muss berücksichtigt werden, dass bei diesen Untersuchungen MRT-Aufnahmen als Kurzachsenschnitte vorlagen, wir hingegen Messungen an Längachsenschnitten vornahmen.

Weiterhin muss die verwendete Geschwindigkeitsrichtung der Messungen (longitudinal, transversal oder radial) berücksichtigt werden. In den Vergleichsstudien sind zum Teil keine Angaben über die Geschwindigkeitsausrichtung zu finden, ein möglicher Einfluss auf die Ausprägung der Myokardgeschwindigkeiten bei Kontraktion und Dilatation muss jedoch beachtet werden.

Die Geschwindigkeitsausrichtung sowie die genutzte Untersuchungsmethode können als eine Erklärung für die Unterschiede zwischen den Studienergebnissen dienen und der Vergleich der Daten muss insgesamt vorsichtig erfolgen.

4.2.2 MYOKARDGESCHWINDIGKEITEN
Für die Ergebnisse der Radialgeschwindigkeiten lassen sich folgende Hauptpunkte festhalten:

- in der rechten Herzkammer basal und mittventrikulär tendenziell verminderte, apikal und in der Herzspitze erhöhte Myokardgeschwindigkeiten für alle drei Parameter gegenüber den Gesunden;
- Zunahme der Wandgeschwindigkeiten von basal in Richtung absolute Spitze, insbesondere im rechten Ventrikel im Patientenkollektiv, wie es auch bei einem linken Systemventrikel des Probandenkollektivs nachweisbar war;
- Diskussion -

- tendenziell höhere Werte im IVS-RV-Kollektiv als im Probandenkollektiv bzw. im IVS-LV-Kollektiv;
- höhere Maximalgeschwindigkeiten in dem Subkollektiv mit „paradoxe“ Septumbewegung gegenüber den IVS-LV-Patienten, insbesondere für die A-Welle.

Entgegen unserer Hypothese sind die Wandgeschwindigkeiten nach einer Vorhofumkehroperation somit nicht generell erniedrigt, sondern es zeigt sich eine regional unterschiedliche Anpassung des Myokards an die veränderten Druckverhältnisse. Dabei lassen die höchsten Kontraktions- und Dilatationsgeschwindigkeiten im Bereich der Herzspitze eine bessere Adaptation dieser Region vermuten bzw. deuten eine Kompensation der anderen Myokardregionen an.

Probanden

Vergleichsdaten zu den Probandenwerten liegen in den genannten Regionen von Harada et al. (2000) [62] und Kapusta et al. (2000) [63] vor (vgl. Tabelle 4-5). Allgemein fällt auf, dass die Standardabweichungen in unserer Untersuchung (0,5 cm/s bis 1,9 cm/s) geringer ausfallen und somit homogene Werte widerspiegeln als in den Vergleichsstudien (1,0 cm/s bis 4,1 cm/s).
Bei Harada et al. (2000) [62] lassen sich im Vergleich zu unserer Studie erhöhte rechts- und linksventrikuläre Geschwindigkeitsangaben, gemessen im Längsachsenschnitt, für 48 gesunde Kinder finden, die zwischen 7 und 18 Jahre alt und somit jünger als unser Probandenkollektiv waren. Weiterhin fällt eine Geschwindigkeitsabnahme für alle drei Parameter von der Basis in Richtung Apex auf, die in unserem Probandenkollektiv in dieser Deutlichkeit nicht festzustellen ist. Hier zeigten sich tendenziell gleichbleibende oder leicht zunehmende Geschwindigkeiten zur Herzspitze hin. Zu beachten ist, dass die Geschwindigkeiten in longitudinaler Richtung gemessen wurden, was wie beschrieben eine Ursache für die Unterschiede darstellen kann. Eine Differenz zwischen der Longitudinal- und Radialgeschwindigkeit insbesondere im Bereich der Herzspitze mit erhöhten radialen Werten erscheint möglich, da in diesem Bereich die Myokardfasern zusammenlaufen und eine stärkere Kontraktion in Richtung Ventrikelzentrum (radial) als von der Spitze zur Basis (longitudinal) ermöglichen können.

Tabelle 4-5: Übersicht Myokardgeschwindigkeiten im Probandenkollektiv.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MRT, 4-KB, Längsachse, radial</td>
<td>TDI, apikaler 4-KB, longitudinal</td>
<td>TDI, Längsachse longitudinal</td>
</tr>
<tr>
<td>Literatur (Alter als MW±STD bzw. Spanne bzw. Median in Jahren)</td>
<td>Probanden</td>
<td>Basis</td>
<td>S</td>
</tr>
<tr>
<td>** linker Ventrikel **</td>
<td>Linker Ventrikel</td>
<td>MRT, 4-KB, Längsachse, radial</td>
<td>TDI, apikaler 4-KB, longitudinal</td>
</tr>
<tr>
<td>Probanden</td>
<td>Basis</td>
<td>S</td>
<td>E</td>
</tr>
</tbody>
</table>

Patienten
Der Vergleich der Patientenergebnisse mit Daten aus der Literatur erfolgt anhand der basalen Geschwindigkeiten und ist in Tabelle 4-6 widergegeben. Wie bereits erläutert, waren zu den anderen Myokardbereichen keine Vergleichsdaten zu finden.

Tabelle 4-6: Übersicht basaler Myokardgeschwindigkeiten in der Literatur.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n Probanden</td>
<td>13 (21,2±6,1)</td>
<td>48 (7-18)</td>
<td>160 (10,8)</td>
<td>14 (age-matched)</td>
<td>29 (19,9±3,8)</td>
</tr>
<tr>
<td></td>
<td>n Patienten</td>
<td>22 (18,1±4,2)</td>
<td></td>
<td></td>
<td>44 (19,7±4,0)</td>
<td>28 (21,1±3,5)</td>
</tr>
<tr>
<td></td>
<td>OP-Alter</td>
<td>Postoperativ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Studie</td>
<td>MRT, 4-KB, Längsachse, radial</td>
<td>TDI, apikaler 4-KB, longitudinal</td>
<td>TDI, Längsachse longitudinal</td>
<td>TDI, basal 4-KB, longitudinal</td>
<td>TDI, basal, longitudinal</td>
</tr>
<tr>
<td></td>
<td>Proband</td>
<td>S</td>
<td>3,3±1,2</td>
<td>8,0±2,4</td>
<td>9,7</td>
<td>12,3±3,5</td>
</tr>
<tr>
<td></td>
<td>Patient</td>
<td>E</td>
<td>2,8±1,0</td>
<td>15,0±4,1</td>
<td>17,6</td>
<td>18,9±3,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>2,3±1,0</td>
<td>6,1±1,7</td>
<td>5,5</td>
<td>9,0±3,1</td>
</tr>
<tr>
<td></td>
<td>RV Proband</td>
<td>S</td>
<td>3,5±1,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Patient</td>
<td>E</td>
<td>3,3±1,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>1,6±0,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RV Proband</td>
<td>S</td>
<td>3,0±1,3</td>
<td>10,0±3,0</td>
<td>12,8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Patient</td>
<td>E</td>
<td>3,5±1,4</td>
<td>13,2±3,0</td>
<td>16,2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>1,9±0,5</td>
<td>8,7±2,5</td>
<td>8,6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Septum Proband</td>
<td>S</td>
<td>2,6±1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Patient</td>
<td>E</td>
<td>2,8±1,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>2,0±1,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Septum Patient</td>
<td>S</td>
<td>2,7±0,7</td>
<td>6,1±1,7</td>
<td>8,1</td>
<td>10,2±3,1 (LV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E</td>
<td>2,9±1,2</td>
<td>10,3±2,7</td>
<td>14,3</td>
<td>17,0±3,6 (LV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>2,3±1,0</td>
<td>5,2±1,4</td>
<td>5,8</td>
<td>9,1±3,7 (LV)</td>
</tr>
</tbody>
</table>

Die Gegenüberstellung zu den anderen Studien lässt ebenfalls niedrigere Geschwindigkeiten im basalen Myokard in unserer Untersuchung erkennen. Das Studiendesign von Chow et al. (2008a) [64] zeigt vom mittleren Alter und dem postoperativen Zeitraum bis zur Untersuchung eine gute Übereinstimmung mit unserer Untersuchung, wobei die Messung von Longitudinalgeschwindigkeiten zu beachten ist.

In dieser Studie wurden die Geschwindigkeiten des jeweiligen Systemventrikels im Probanden- und Patientenkollektiv ausgewertet. Hierbei weist der rechte Systemventrikel deutlich verminderte Geschwindigkeiten im Vergleich zu dem physiologischen linken Ventrikel auf. Dieser Unterschied findet sich in unseren Ergebnissen in abgeschwächter Form wieder, was auf die allgemein niedrigeren Geschwindigkeiten in unserer Studie gegenüber Chow et al. mit einer mittleren Abweichung von 67,4 % zurückzuführen sein könnte.

Insgesamt zeigt der Vergleich unserer Ergebnisse mit denen der Vergleichsstudien deutliche Geschwindigkeitsdifferenzen mit niedrigeren Werten in unserer Analyse. Dabei muss das unterschiedliche Studiendesign der angegebenen Untersuchungen berücksichtigt werden.

Interventrikularseptum

Das Septum diente in unserem Patientenkollektiv zur Einteilung in die Subgruppen IVS-RV und IVS-LV und soll daher kurz gesondert betrachtet werden.

Eine gezielte Betrachtung des Septums bei operierten TGA-Patienten nach der Vorhofumkehrmethode erscheint somit notwendig, um die Bedeutung des Septums und die morphologische und funktionelle Anpassung, auch in einem gesunden Herzen, besser einschätzen zu können. Grundsätzlich zeigten sich jedoch in der Gruppe mit vermeintlich „paradoxer“ Septumbewegung funktionell günstigere rechtsventrikuläre Parameter, so dass dies als ein erfolgreicher Adaptationsmechanismus angesehen werden kann.
4.3 **ZEITLICHES AUFTREten DER GESCHWINDIGKEITSMAXIMA**

Der Zeitpunkt des Auftretens der S-, E- und A-Wellen im Herzzyklus kann eventuell Veränderungen der myokardialen Funktionsfähigkeit bzw. eine Anpassung an neue Druckverhältnisse aufzeigen. Es lassen sich folgende Ergebnisse hervorheben:

- für die S- und E-Welle tendenziell frühere, für die A-Welle verzögerte Geschwindigkeitspeaks im linken Ventrikel im Vergleich zu den Gesunden;
- rechtsventrikulär insbesondere spätere diastolische Geschwindigkeitspeaks gegenüber dem gesunden rechten und linken Ventrikel;
- abnehmende rechtsventrikuläre Differenzen zwischen Probanden- und Patientenkollektiv in Richtung Herzspitze;

Durch die eingeschränkte diastolische Funktion kann wie bereits dargestellt auch die Systole beeinträchtigt sein, was sich bei unseren Patienten durch die verminderte Ejektionsfraktion widerspiegelte. Es muss jedoch beachtet werden, dass der rechte (System-)Ventrikel der Patienten höhere Drücke aufbringen muss als die subpulmonale rechte Herzkammer im Probandenkollektiv. Das spätere Auftreten der Geschwindigkeitsmaxima kann somit auch die (physiologische) Adaptation des Myokards an die veränderte Eingliederung in den Blutkreislauf darstellen. Der Vergleich der Systemventrikel beider Kollektive zeigte jedoch ebenfalls spätere Geschwindigkeitspeaks im erkranken Kollektiv, so dass von einer ventrikulären Beeinträchtigung auszugehen ist. Die früheren Peaks in der Patientengruppe mit „paradoxe“ Septumbewegung gegenüber dem IVS-LV-Kollektiv spiegeln potentiell eine bessere Adaptation des Myokards wider und könnten unter anderem die höhere rechtsventrikuläre Ejektionsfraktion in dieser Subgruppe erklären.

Die geringeren Geschwindigkeitsdifferenzen zwischen den Probanden und Patienten in der Herzspitze vor allem rechtsventrikulär lassen sich unter anderem durch den zentral...
ausgerichteten myokardialen Faserverlauf im Spitzenbereich und/oder durch einen Kompensationsmechanismus erklären.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S-Welle (n)</td>
<td>0,24±0,06 (13)</td>
<td>0,10±0,02 (42)</td>
<td>↓</td>
<td>+0,14</td>
</tr>
<tr>
<td>E-Welle (n)</td>
<td>0,52±0,07 (12)</td>
<td>0,41±0,05 (42)</td>
<td>↓</td>
<td>+0,11</td>
</tr>
<tr>
<td>A-Welle (n)</td>
<td>0,78±0,18 (9)</td>
<td>0,78±0,03 (42)</td>
<td>↔</td>
<td>±0,00</td>
</tr>
</tbody>
</table>

Bei der Gegenüberstellung der Ergebnisse wird deutlich, dass die von uns ermittelten Geschwindigkeitspeaks für die S-Welle um +0,14 s und die E-Welle um +0,11 s später auftraten als in der Vergleichsstudie, die A-Welle findet annähernd zeitgleich statt. Das Intervall zwischen der S- und E-Welle ist mit einer Differenz von 0,03 Sekunden in beiden Untersuchungen in etwa gleich groß, während der Abstand zwischen der E- und A-Welle bei Palka et al. mit 0,37 Sekunden größer ist als in unserer Untersuchung (0,26 Sekunden).

Diese Unterschiede können zum einen ihre Ursache in dem bei Palka et al. höheren mittleren Probandenalter (47±16 Jahre bei Palka et al. vs. 21,2±6,1 Jahre in unserer Studie) finden, da sich ein Einfluss des Alters auf die Wandgeschwindigkeiten und somit eventuell auch auf das zeitliche Auftreten gezeigt hat (vgl. Kapitel 3.5.3 und 4.4). Zum anderen ist die Fallzahl mit n=42 in der Vergleichsstudie wesentlich höher als bei uns (n=13). Weiterhin muss erneut die unterschiedliche Messmethode mittels MRT und TDI berücksichtigt werden, wobei eine zu geringe zeitliche Auflösung bei der MRT als Ursache denkbar ist.

4.4 ZUSAMMENHANG ZWISCHEN WANDGESCHWINDIGKEIT UND EJEKTIONSFRAKTION

Für diesen Zusammenhang konnten wir folgendes Kernergebnis formulieren:

- im rechten Ventrikel basal für alle drei Parameter positive Zusammenhänge, in Richtung absolute Spitze negative Korrelationen.

Es lässt sich festhalten, dass der Einfluss der myokardialen Geschwindigkeiten nach Vorhofumkehroperation auf die Ejektionsfraktion regional unterschiedlich ist. Um die tendenziellen Ergebnisse unserer Studie zu vertiefen, ist eine Untersuchung an größeren Kollektiven erforderlich.

4.5 **Einfluss der Muskelsmasse auf die Ejektionsfraktion**

Für den Zusammenhang zwischen der Muskelsmasse und der Ejektionsfraktion lässt sich festhalten:

- im linken Ventrikel tendenziell abnehmende Ejektionsfraktion bei steigender Muskelsmasse im IVS-RV-Kollektiv;
- rechtsventrikulär insbesondere für die IVS-LV-Patienten ein positiver Zusammenhang zwischen den Parametern.
Die Diskussion

In verschiedenen Studien konnten verminderte Ejektionsfraktionen bei einer Hypertrophie des Myokards nachgewiesen werden. Als Ursache wird eine unzureichende Kapillardichte im hypertrophierten Gewebe mit folgender Perfusionsinsuffizienz und myokardialer Ischämie diskutiert. Es resultiert eine Beeinträchtigung der Myokardbewegungen bis hin zur Fibrose mit negativer Auswirkung auf die (rechtsventrikuläre) Auswurffraktion. Ebenfalls konnte zum Teil eine herabgesetzte systolische Funktion des linken Ventrikels nachgewiesen werden, eventuell aufgrund eines koronaren Stealphänomens oder einer funktionellen Interaktion der Kammern [19-22]. Wie bereits in Abschnitt 4.1.2 beschrieben, konnte dieser Zusammenhang unter anderem von Hornung et al. (2002) [19] beschrieben werden. In ihrer Untersuchung ging eine geringere Muskelmasse (84±11 g/m²) mit einer „normalen“ rechtsventrikulären EF (> 50 %) einher. Bei erhöhten Muskelmassen (108±27 g/m²) zeigte sich jedoch eine verminderte EF (< 50 %). Die niedrigeren Muskelmassen in unserem Patientenkollektiv gegenüber Hornung et al. können erklären, dass wir keinen negativen Einfluss einer rechtsventrikulären Hypertrophie auf die Ejektionsfraktion sowie eine nach Hornung et al. annähernd „normale“ EF (46,6±8,4 %) feststellen konnten. In unserem Patientenkollektiv ermittelten wir Muskelmassen zwischen 29,6 g/m² und 67,6 g/m² (im Mittel 45,4±11,4 g/m²), bei Hornung et al. hingegen lagen Werte zwischen 67 g/m² und 166 g/m² (im Mittel 97±25 g/m²) vor. Die im Vergleich zu den Referenzstudien niedrige Muskelmasse des rechten Systemventrikels in unserer Untersuchung limitiert die Möglichkeiten der Aussage über eine potentielle Auswirkung der Hypertrophie auf die ventrikuläre Leistung.

4.6 Einfluss des Alters auf die Wandgeschwindigkeiten und die Ejektionsfraktion

Folgende Aussagen konnten wir für diesen Zusammenhang formulieren:

- im Probandenkollektiv für beide Ventrikel und das Septum tendenziell negative Korrelationen insbesondere für die S-Welle in der Basis und absoluten Spitze;
- im Patientenkollektiv eher positive Korrelationen für den rechten Ventrikel vor allem für die S-Welle in der absoluten Spitze, dies bestätigt sich auch in Patiententeilgruppen jünger oder älter als 17 Jahre;
- linksventrikulär in der IVS-LV-Gruppe ein negativer, in der IVS-RV-Gruppe ein positiver Zusammenhang insbesondere zwischen der S- bzw. E-Welle und dem Alter;
- Zunahme der linksventrikulären Auswurffraktion bei steigendem Alter im Patientenkollektiv, rechtsventrikulär hingegen tendenziell negative Korrelationen.

In unserer Studie konnten wir lediglich Tendenzen aufzeigen, die in einer folgenden Untersuchung mit älteren Patienten und einer größeren Fallzahl vertieft werden sollten. Ein Einfluss des Alters auf die Wandgeschwindigkeiten und die Ejektionsfraktion lässt sich jedoch erkennen, was die Bedeutung des postoperativen Zeitraums für die kardiale Funktion nach einer Vorhofumkehroperation betont.
Ergänzend sei erwähnt, dass sich mit zunehmendem Alter eine vermehrte linksventrikuläre Hypotrophie zeigte, rechtsventrikulär ist jedoch bei längerer systemventrikulärer Funktion keine weiter gesteigerte Muskelsmasse zu verzeichnen. (vgl. Kapitel 4.5).

4.7 EINFLUSS DER HERZFREQUENZ AUF DIE WANDGESCHWINDIGKEITEN

Für diesen Zusammenhang lässt sich in unserer Untersuchung festhalten:

- in der Probandengruppe eine tendenziell abnehmende E-Welle bei erhöhter Herzfrequenz im linken Ventrikel;
- im Patientenkollektiv eher positive Zusammenhänge zwischen den untersuchten Parametern für beide Ventrikel, rechtsventrikulär vor allem für die E-Welle.

Im gesunden Herzen nimmt die myokardiale Kontraktionskraft bei ansteigender Herzfrequenz im Sinne des „Bowditch-Effekts“ zu, um weiterhin eine ausreichende kardiale Leistung zu gewährleisten [74]. Bei Vorliegen einer kardialen Dysfunktion jedoch ist der „Bowditch-Effekt“ nicht mehr wirksam und es kann zu einer Abnahme der Kontraktionskraft kommen. Ein Einfluss der Herzfrequenz auf die Radialgeschwindigkeiten ist somit ebenfalls zu vermuten und wurde auch in unserer Studie untersucht. Dabei scheinen erneut regionale Unterschiede zu bestehen. Der Einfluss auf die diastolischen Parameter könnte sich durch die Abhängigkeit der Diastolendauer von der Herzfrequenz im physiologischen Kontraktionszyklus erklären lassen, wohingegen die Systole in ihrer Länge durch eine veränderte Herzfrequenz kaum variiert [8, 35]. Eine erhöhte Herzfrequenz führt zu einer verkürzten Diastolendauer. Dadurch kann die Durchblutung des Myokards vermindert werden, was an einem vorgeschädigten Herzmuskel zu einer Beeinträchtigung der Kontraktion und der ventrikulären Leistung führen kann.

Dabei muss erneut beachtet werden, dass Harada et al. lediglich die Basis des linken Ventrikels untersuchten und keine regionale Analyse durchgeführt wurde.

4.8 LIMITATION DER STUDIE

4.8.1 METHODIK: STUDIENKOLLEKTIVE
regionale Geschwindigkeitsanalyse ist dabei bisher in der deutschen und internationalen Forschungslandschaft nur selten Untersuchungsschwerpunkt. Die tendenziellen Entwicklungen unserer ermittelten Wandgeschwindigkeiten sollten in größeren Probanden- und Patientenkollektiven noch intensiver erforscht werden, um allgemeingültige Aussagen für die regionalen Differenzen der myokardialen Geschwindigkeit und deren Auswirkung auf die ventrikuläre Funktion treffen zu können. Dabei ist auf eine gute Übereinstimmung des Alters in den Studienpopulationen zu achten, was sich aufgrund der Untersuchung von Kindern zum Teil schwierig gestalten kann.

4.8.2 Methodik: MRT

4.8.3 **METHODIK: CARDIAC TOOL**
Das Programm CardiacTool stellt eine gute Möglichkeit dar, um die MRT-Phasenkontrastaufnahmen auszuwerten und die Radialgeschwindigkeiten zu ermitteln. Insgesamt lassen sich einige Kritikpunkte an dem Programm formulieren.

Die Bildqualität der MRT-Aufnahmen nimmt nach Einlesen in das Programm etwas ab, was die Differenzierung zwischen Myokard und umliegendem Gewebe bzw. Blut erschwert. Auch die Segmentierung sehr schmaler Myokardbereiche wie etwa des rechten Ventrikels der Probanden gestaltet sich als schwierig. Hier muss mittels der „Endo- und Epi-Border Pixel remove“-Option die Messung fehlerhafter Areale außerhalb des Myokards minimiert werden. Da das Septum nicht gesondert betrachtet werden kann, ist eine Segmentierung und Auswertung in beiden Ventrikeln mit anschließender Mittelwertbildung erforderlich. Dies muss bei der Einschätzung dieser Ergebnisse berücksichtigt werden.

5 **AUSBLICK**
Wir konnten in unserer Studie zeigen, dass sich eine Vorhofumkehroperation im Langzeitverlauf auf die myokardialen Geschwindigkeiten auswirkt und es verschiedene Faktoren gibt, die Einfluss auf deren Ausprägung nehmen. Die Übersicht über die aktuelle Studienlage verdeutlicht, dass diese Problematik und die Bedeutung für die Patienten bislang nur wenig untersucht wurde. Weiterhin ist eine regional differenzierte Betrachtung wie in unserer Studie in den Vergleichsdaten nicht zu finden.

Die Forschung zur Früherkennung der ventrikulären Dysfunktion muss weitergeführt werden, um nach einer Vorhofumkehroperation, aber auch bei anderen Patienten mit einem systemischen rechten Ventrikel, eine optimale Betreuung und Behandlung zu ermöglichen. Dabei scheint es sinnvoll, zusätzlich zu den untersuchten Parametern neue Größen zur Einschätzung der Herzfunktion zu suchen. Bereits bestehende Studien, beispielsweise zum Brain Natriuretic Peptide (BNP) [64], können die Kenntnis über die Adaptation und Funktion des Myokards erweitern und somit zu einem größeren Verständnis der Problematik beitragen.

Wie bereits erläutert, sollten weitere Studien mit einer Optimierung des Studiendesigns sowie der Erhebung zusätzlicher Parameter, wie zum Beispiel des Herzrhythmus, die von uns aufgezeigten Tendenzen und Beobachtungen vertiefen.
6 ZUSAMMENFASSUNG

Zur Einschätzung der Wandgeschwindigkeit wurden Untersuchungen an einem nach Senning oder Mustard operierten TGA-Kollektiv (n=22) mit einer Probandengruppe (n=13) verglichen. Im Patientenkollektiv bestand ein mittleres Alter von 18,1±4,2 Jahren, die Operation wurde in einem Alter von 1,8±2,1 Jahren durchgeführt. Dies entspricht einem postoperativen Zeitraum von 17,6±4,6 Jahren bei der Untersuchung. Die Probandengruppe wies ein mittleres Alter von 21,2±6,1 Jahren auf.

Zur Einschätzung der Myokardgeschwindigkeit wurden drei Parameter ermittelt: die **S-Welle** (Geschwindigkeitsmaximum in der Systole als Ausdruck der systolischen Kontraktion), die **E-Welle** (frühdiaustolische Bewegung; erstes Geschwindigkeitsmaximum in der Diastole entgegengesetzt zur S-Welle) sowie der **A-Wert** (spätdiastolische Bewegung; letztes Geschwindigkeitsmaximum in der Diastole entgegengesetzt zu S-Welle, ausgelöst durch die Vorhofkontraktion).

Die Auswertung der Ejektionsfraktion des LV ergab im Mittel leicht erniedrigte Werte im Patientenkollektiv (-8.7 %) gegenüber den gesunden Referenzwerten, die für die Probanden aus der Literatur entnommen wurden. In der Patientensubgruppe mit physiologischer Septumbewegung war die EF dabei um im Mittel 3.7 % höher als in der Vergleichssubgruppe. Rechtsventrikulär ließ sich eine im Mittel verminderte Auswurffraktion um 23.4 % bei den Patienten verzeichnen, hier präsentierte sich die RV-EF bei den IVS-RV-Patienten um 2.4 % höher als in der IVS-LV-Gruppe. Insgesamt fiel in dem TGA-Kollektiv eine interventrikuläre Differenz der Ejektionsfraktion von 14.7 % auf.

Die linksventrikuläre Muskelsmasse stellte sich im Patientenkollektiv um im Mittel 21.2 g/m² im Vergleich zum gesunden Referenzkollektiv vermindert dar, im rechten Ventrikel konnte eine myokardiale Hypertrophie von im Mittel 19.4 g/m² ermittelt werden. Dabei zeigte die IVS-LV-Gruppe für die linke Herzkammer eine im Mittel um 14.7 g/m² höhere Muskelsmasse als die IVS-RV-Gruppe.

Zusammenfassung

Kernspintomographische Evaluation myokardialer Geschwindigkeiten nach Vorhofumkehroperation bei TGA

auch der Einfluss einer möglichen (postoperativ bedingten) Vorhofdysfunktion mit Auswirkung auf die A-Welle berücksichtigt werden.

Ein Vergleich zur Literatur ließ allgemein niedrigere Werte in unseren Ergebnissen erkennen, wobei die Vergleichsstudien nicht mit der MRT, sondern mittels Tissue Doppler Imaging durchgeführt wurden. Hierbei ist insbesondere die niedrigere zeitliche Auflösung der MRT im Vergleich zum TDI bei der Geschwindigkeitsanalyse zu berücksichtigen. Weiterhin wurde zum Teil nicht die Radialgeschwindigkeit, sondern die longitudinale Ausdehnung gemessen bzw. fehlte die Angabe über die Geschwindigkeitsausrichtung. Dabei sind lediglich Vergleichsuntersuchungen für die basale Region zu finden, für die anderen drei Bereiche existieren im Patientenkollektiv keine Studien. Insbesondere der Geschwindigkeitsanstieg in der Herzspitze kann daher nicht weiter eingeordnet werden.

Für den Zusammenhang zwischen den Wandgeschwindigkeiten und der Ejektionsfraktion konnte für den rechten Ventrikel in der Basis tendenziell für alle drei Parameter ein positiver Zusammenhang festgestellt werden, in Richtung absolute Spitze entwickelten sich eher negative Korrelationen. Es zeigte sich somit ein regional unterschiedlicher Einfluss der myokardialen Geschwindigkeiten auf die EF, dies kann unter anderem auf die veränderten Anforderungen an
Zusammenfassung

Kernspintomographische Evaluation myokardialer Geschwindigkeiten nach Vorhofumkehroperation bei TGA

Bezüglich des Einflusses der Muskelmasse auf die Ejektionsfraktion konnte aufgrund sehr geringer Korrelationskoeffizienten für den linken Ventrikel lediglich in der Patientensubgruppe mit „paradoxy“ Septumbewegung ein tendenzieller Zusammenhang mit einer abnehmenden Ejektionsfraktion bei steigender Muskelmasse ermittelt werden. In der rechten Herzkammer hingegen war insbesondere für die IVS-LV-Patienten ein positiver Zusammenhang zu verzeichnen. Als eine Ursache für eine verminderte Ejektionsfraktion bei steigender Muskelmasse wird die Blutversorgung des Myokards angesehen. In unserem Kollektiv war die rechtsventrikuläre Hypertrophie bei einer Muskelmasse von 45,4±11,4 g/m² deutlich geringer ausgeprägt als in den Referenzen, so dass eine Minderversorgung und ein negativer Einfluss der Muskelmasse auf die Auswurffraktion eventuell noch nicht zum Tragen kommen.

Weiterhin zeigte sich ein Einfluss der Herzfrequenz auf die Myokardgeschwindigkeiten, vor allem auf die E-Welle. In der Probandengruppe nahm die E-Welle im linken Ventrikel bei zunehmender Herzfrequenz tendenziell ab. Im Patientenkollektiv bestanden für beide Ventrikel eher positive Zusammenhänge zwischen den untersuchten Parametern. Die Auswirkung der Herzfrequenz auf die Dilatationsparameter lässt sich unter anderem durch den Einfluss der Herzfrequenz auf die Diastolendauer erklären.
LITERATUR

2. Mayatepek, E., Pädiatrie : mit 327 Tab. 2007, München {{[u.a.]: Elsevier, Urban und Fischer. XX, 1100 S.
16. Bogaert, J., Magnetic resonance of the heart and great vessels : clinical applications. 2000, Berlin {{[u.a.]: Springer. XII, 284 S.

Kernspintomographische Evaluation myokardialer Geschwindigkeiten nach Vorhofumkehroperation bei TGA

Seite | 102
47. Thelen, M. and N. Abegunewardene, Bildgebende Kardiodiagnostik : mit MRT, CT, Echokardiographie und anderen Verfahren ; mit 61 Tabellen. 2007, Stuttgart ([u.a.]: Thieme. XVI, 301 S. +.
52. Golenhofen, K., Basislehrbuch Physiologie : Lehrbuch, Kompendium, Fragen und Antworten ; mit 11 Tabellen. 3. Aufl., ed. 2004, München ([u.a.]: Urban & Fischer. XI, 530 S.

DANKSAGUNG

Ich danke meinem Doktorvater Prof. Dr. med. M. Gutberlet für die Betreuung und Unterstützung und dem intensiven Feedbackprozess zu meiner Dissertation.

Von ganzem Herzen danke ich meiner Familie für die langjährige Unterstützung und nie endende Motivation. Vor allem meinem Mann und meinen Kindern danke ich für ihre unendliche Liebe und Hilfe, ohne die diese Arbeit nicht entstanden wäre.

Besonderer Dank gebührt auch meinen Freunden, insbesondere Adrian Obladen, dem ich für die gute und lange Zusammenarbeit sehr dankbar bin.
ERKLÄRUNG

Berlin, den 01.09.2011

Sylvia Hebes
LEBENSLAUF

Mein Lebenslauf wird aus datenschutzrechtlichen Gründen in der elektronischen Version meiner Arbeit nicht veröffentlicht.