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Abstract

Magnetic radio spectrum is usually allocated by means of auctions. Mobile

operators bid for spectrum licenses which are used to offer communication and

data services to their customers. Such spectrum sales are among the biggest

trades in terms of revenue, which makes this domain especially interesting for

research in the field of market design and auctions.

For many years now, the Simultaneous Multi-Round Auction (SMRA) has

been the predominant auction format for spectrum sales worldwide. SMRA

is compelling due to its simple auction rules and its excellent price discovery,

but bidders with complementary valuations are affected by exposure risk. This

causes bidders to apply bidding strategies and various forms of signaling which

jeopardize efficiency. The recently introduced Combinatorial Clock Auction

(CCA) has been designed in order to give strong incentives for truthful bidding,

which has high efficiency as a result (Cramton, 2009b). It has been used as an

alternative to the SMRA in a number of countries.

In this thesis, we analyze the performance of CCA in comparison to SMRA and

examine bidding behavior in both formats. We have conducted experiments in

three different settings closely resembling the settings of European spectrum

auctions. We did not find a significantly superior performance of CCA in terms

of efficiency. In multiband settings, in which several spectrum bands were

sold, the efficiency of CCA was significantly worse than in SMRA. Auctioneer

revenue was significantly lower due to unsold items and the payment rule of
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the CCA. Bidders in the CCA submitted bids for only a fraction of all possible

bundles. They used simple heuristics to select bundles and focused on the

complementarities of the value models. Instead of bidding their true valuation

on all possible bundles, which is a dominant strategy in a pure Vickrey-Clarke-

Groves mechanism, bidders bid on bundles that offered the highest synergies

in their valuations. In accordance with theoretical predictions, bundle bids

were either at or slightly below the valuation. Bidding behavior in SMRA

exhibited strong signaling activities, such as the use of jump bids and bids on

the bidders’ own items, as observed in field auctions.

To improve the external validity of the experiments with unprepared subjects,

we also conducted competitions. Taking account of field auction conditions,

subjects in competitions participated as teams and had several weeks to pre-

pare for the auctions. Competition results confirmed the findings from the lab

experiments.
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Chapter 1

Introduction

Study nature, not books.

Louis Agassiz

Magnetic radio spectrum is a scarce resource which is required for many appli-

cations. One of the most prominent users is the telecommunications industry,

since service providers require spectrum to build up networks and offer mobile

voice and data services. Spectrum is considered a state property and the reg-

ulatory authority is in charge of assigning licenses for use of the spectrum to

various parties across the territory of the country. Ideally, it should be put to

the best use and contribute to social welfare as much as possible.

The assignment of usage rights is far from easy: The scarcity of licenses and

the rapid development of faster voice and data services that consume more

and more bandwidth generate a greater demand for licenses and competition

for them among the service providers. The exact value of such licenses is often

uncertain, even for the regulatory authorities.

Nowadays, spectrum is usually allocated through auctions. But before the first

spectrum auction was held in the United States of America (US) in 1994, it

1
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was common to organize administrative hearings or lotteries to assign spectrum

usage rights.

Administrative hearings require a comprehensive application by interested

telecommunication service providers. The high costs involved with such an

application can deter smaller companies from applying. The administrative

process of selecting the applicants that will receive licenses is then a quite te-

dious and often lengthy process because the concept of the intended usage, the

funding, and legal issues have to be evaluated (Hoffman, 2011). Applicants

often perceive this process as non-transparent and the results as unfair. The

goal of finding the best use of the spectrum for the society is undermined,

since applicants with more direct influence on the process or with better lob-

bying might have an advantage over better applicants. For this reason, such

administrative processes have often been called beauty contests. Court pro-

cesses have often been fought over the assignment of licenses due to this lack

of transparency in the assignment process. In the field of telecommunication

services, where technological standards are developing at an increasing pace,

administrative processes appear to be too slow and are thus less attractive for

the assignment of spectrum licenses.

Another approach for assigning licenses, which has been used, e.g., by the

FCC,1 are lotteries. All applicants are placed in one pool and the licenses

are randomly assigned. This process has the advantage of being quick but

there is no or only limited control over the quality of applicants. Thus, many

bidders applied without the intention of actually using the licenses. Their

intention was to sell them immediately after the lottery for a more or less

riskless profit. Hoffman (2011) reports on a group of dentists who made a

profit of several million US dollars by selling a single license right after such a

lottery. Speculations of that kind led to geographic fragmentation and delayed

introduction of a nationwide mobile telephone service in the US (Milgrom,

1Federal Communication Commission, the regulatory authority in the US.
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2004). Of course, this was not acceptable to the US government since a lot of

revenue was lost for the taxpayers and licenses were not allocated for best use,

i.e., efficiency was low.

After this experience, the US Court decided to allocate spectrum through

an auction and requested that the FCC define the auction rules. Among

other goals, the auction design should foster competition, earn acceptable re-

venue, and promote efficient use of the spectrum (Hoffman, 2011). Scientists

were consulted and made suggestions for the auction design, lab experiments

were conducted, and eventually the Simultaneous Multi-Round Auction

(SMRA) format was designed. The rules were first proposed by Milgrom,

Wilson, and McAfee. In 1994, the FCC was the first to run an SMRA to sell

spectrum usage rights. With some rule adjustments, it has been used in many

spectrum auctions worldwide since then and accounts for revenues in excess of

200 billion US dollars (Cramton et al., 2006b).

The SMRA design is a non-combinatorial auction format that assigns all li-

censes for sale at the same time. It has quite simple rules but it poses several

problems for the bidders, most importantly exposure risk and aggregation risk.

In SMRA, bidders can bid only on individual items and not on packages. Bid-

ders with synergistic valuations for packages of items, e.g., for several licenses

required to build a network, risk winning only a fraction of the desired license

set at prices reflecting the synergies of the larger bundle. There is no dominant

strategy for bidders telling them how to bid in such an auction independent

of the bidding of competitors. Bidders have to develop a tactic or strategy to

bid in the auction. This has led telecommunication service providers to set up

bidding teams and seek advice from experts and consultants. In SMRA, bid-

ders with a better strategy might win against bidders with a higher valuation

for the licenses. This contradicts the regulators’ goals of efficiently allocating

the spectrum.

Therefore, auctioneers have tried to amend the auction rules. For example,
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withdrawals have been suggested, allowing bidders to step back from a won

license when the new combination is not attractive anymore. But withdrawals

give bidders the possibility to apply tactics, i.e., bidders can submit high bids

on the preferred blocks of their competitors to raise their payments. If the

case arises that they are not outbid, they can withdraw their bid.

Another problem arises from the technical properties of radio spectrum. The

spectrum blocks, i.e., the units of spectrum for sale, within one band are more

or less identical for the use of service providers. Major differences exist only

for blocks of different bands. For bidders in the auction, it is difficult to

decide how to bid. In 2010, Germany auctioned off 360 MHz of spectrum from

several bands within one auction, called the German Super Auction (Niemeier,

2002). The German regulatory authority (Bundesnetzagentur) decided to offer

abstract blocks of spectrum within each band. While the intention was to

facilitate bidding for the service providers, this again opened up several new

possibilities for auction tactics. Bidders could bid on blocks which are not the

cheapest among identical abstract blocks to send signals to competitors. From

many such experiences, one lesson learned is that even small rule changes in

the mechanism can have a great impact on bidding behavior and the auction

outcome.

Cramton (2009b) suggested a new auction format, the Package Clock, also

called the Combinatorial Clock Auction (CCA). It is a combinatorial

design allowing bidders to submit all-or-nothing package bids. So there is no

exposure risk anymore. Its rules give bidders strong incentives to bid their

true valuations and to refrain from applying any bidding strategies, which

eventually should lead to high efficiency.

The CCA has already been applied to spectrum sales (section 1.2) with varying

degrees of success. There are no published lab experiments for this new format

that we know of. This is quite surprising given the huge amounts of money at

stake in spectrum auctions.
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The goal of this thesis is an experimental analysis of the performance and the

bidding behavior connected with the CCA in realistic settings of spectrum sales

and a comparison of CCA and the de facto standard SMRA. We found that

the CCA performance was not superior to that of SMRA in terms of efficiency

in a smaller setting and that in multiband settings it was even worse. Bidders

in the CCA did not report their true valuations, but followed rather simple

heuristics, which can be compared to satisficing behavior. Addressing the ex-

ternal validity of the lab experiments, we also conducted competitions in which

subjects participated in teams and had more preparation. This resembled the

situation of bidding teams in the field. The results from the competitions

confirmed the findings from the lab.

1.1 The domain of spectrum sales

Radio spectrum can be divided into several bands of frequencies which are

used to implement voice or data services, e.g., the 0.8 GHz band for GSM, the

2.0 and 2.1 GHz bands for UMTS, and the 2.6 GHz band for WiMAX or LTE.2

Typically, spectrum usage rights are sold in blocks of 5 MHz. Some technolo-

gies for mobile communication services (e.g., LTE) require paired spectrum,

i.e., one block for uplink and another for downlink. Thus, paired spectrum

encompasses two blocks to accommodate this. Other technologies, such as

WiMAX, use a single block for up- and downlink. The corresponding spec-

trum is called unpaired spectrum and is sold per block.

Within the same band, spectrum blocks can be considered identical. Some

factors such as pending law trials or interference at country borders can cause

2GSM, UMTS, LTE, and WiMAX refer to technological standards of communication ser-
vices. LTE (Long Term Evolution) and WiMAX (Worldwide Interoperability for Microwave
Access) are standards to offer mobile services of the fourth generation. UMTS (Universal
Mobile Telecommunications System) and GSM (Global System for Mobile Communications)
are third- and second-generation standards which are currently in use.
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minor differences in value among blocks of the same spectrum band. For this

study, such effects can be ignored and blocks can be treated as identical. Each

band can be considered as one item with multiple units, i.e., the number of

blocks within this spectrum band. We call such an environment a multi-unit

setting.

Determining the value of spectrum can be quite complex. The technology

implemented by the mobile service provider determines the type and the qual-

ity of services to be offered to end customers. The more revenue a provider

can expect from the market, the more attractive the business case is, and the

higher the resulting valuation of the spectrum licenses. Since the valuation is

based on expected revenue, there is some inherent value uncertainty in all

value estimates.

The characteristics of the technologies to be implemented and the specifics of

the mobile services market add to the complexity of determining valuations:

For example, LTE reaches peak performance when it is implemented on four

adjacent spectrum blocks. The respective business case and the valuation of

the four blocks are therefore quite high. An LTE-implementation on two blocks

promises only less than half the value. Therefore, the valuation of four blocks

is higher than twice the valuation of two blocks, i.e., they have a synergistic

value (the licenses are complements, see section 2.1.1). But the opposite

effect can also be observed: The value of two blocks in the 1.8 GHz band on

top of two blocks in the 2.1 GHz band might be lower than the combined value

of their single valuations. This can be the case if a bidder wants to implement,

e.g., UMTS in only one of these two bands.

In addition, a sufficiently large geographic footprint might be necessary for

a viable business plan, law trials might add additional uncertainty and risks,

licenses might come with the regulatory obligation to cover white spots3 first.

Due to the complexity and the necessity for telecommunication service

3White spots are geographical regions not covered sufficiently with voice or data services.
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providers to obtain licenses in spectrum sales, they invest considerable effort

and money to prepare for spectrum auctions.

1.2 Combinatorial auctions for spectrum sales

Combinatorial auction formats allow bidders to submit bundle bids, i.e., indi-

visible all-or-nothing bids on a set of items. Bidders can precisely state their

valuations including super-additivities (complements) and sub-additivities

(substitutes). Thus, there is no exposure risk, which is the risk of winning

only a fraction of the required bundle.

But the design rules for combinatorial auctions raise new challenges. The

choice of the bidding language is crucial: If any non-overlapping combination

of a bidder’s bids can win (OR bidding language), the bidder might end

up with more items than required. If at most only one of his bids can win

(XOR bidding language), the number of required bids can be impracticably

high. Especially in larger settings, which are encountered in spectrum sales,

the computational complexity is a serious concern. The number of possible

bundles grows exponentially in the number of items for sale. With n items for

sale, the number of all possible bundles is 2n − 1 if the bidder does not care

about the allocations of competitors. For realistic settings with several items,

it is almost impossible and impracticable to bid on all bundles. With twenty

items, there are already more than one million possible bundles. This is also

difficult for bidders, who incur costs in determining the valuation of bundles

and in communicating their preferences (Cramton et al., 2006b).

The winner determination among all submitted bids and the allocation of

bundles to winners is a complex task which is NP-hard. Due to the advent

of information technology, the computational complexity can be handled and

combinatorial auction designs have evolved.
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In recent years, academia has discussed and analyzed various combinatorial

auction formats. The Vickrey-Clarke-Groves (VCG) auction (section

2.6.1) is such a combinatorial auction format that offers attractive proper-

ties. VCG applies a second-price rule, which gives a discount to each bidder

representing the additional value the bidder adds for the auctioneer. Through

this rule, bidders have an incentive to reveal their true valuations, which sup-

ports efficient auction outcomes. While the VCG is still a point of reference for

theory, it comes with many practical limitations (section 2.6.1.2). One of the

most prominent shortcomings is that VCG outcomes do not necessarily lie in

the core if bidders’ valuations exhibit complementarities. This means that the

prices winning bidders have to pay can be so low that there are losing bidders

who wanted to pay more than the winners (section 2.4.3). Especially in sales

of public goods, such as spectrum usage licenses, this is hard to explain to

the public. Therefore, auction designs have been proposed that ensure auction

outcomes in the core.

While SMRA has been the predominant auction format to sell spectrum li-

censes worldwide, some combinatorial auctions have recently been conducted.

One prominent example is the Hierarchical Package Bidding format (HPB)

that was applied in auction 73 to sell parts of the 700 MHz band in the US in

2008. HPB allows bidders to choose from a set of pre-defined bundles which

are hierarchically structured (Goeree and Holt, 2010).

Also, the Simultaneous Clock or (single-stage) Combinatorial Clock (Porter

et al., 2003) has gained popularity. It is a round-based design which offers ask

prices (clock prices) in each round, and bidders respond with their demand at

current prices by submitting bundle bids (section 2.6.2.1). Recently, the Com-

binatorial Clock Auction (Cramton, 2009b) has been proposed, which builds

on the concept of the Simultaneous Clock and expands it with a sealed-bid

phase to improve final outcomes (section 3.2). It uses a core-selecting pay-

ment rule to avoid the problems connected with the VCG. Its activity rule

provides strong incentives to bid truthfully and, as a result, higher levels of ef-
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Country Year Auction Revenue Population Euro/
format (Euro million) (million) MHz/Pop

Norway 2007 SMRA 29 4.8 2.95
Sweden 2008 SMRA 226 9.1 13.01
Finland 2009 SMRA 3.8 5.3 0.33
Netherlands 2010 CCA 2.6 16.5 0.12
Denmark 2010 CCA 137 5.5 13.08
Germany 2010 SMRA 345 81.9 2.21

(only 2.6 GHz)
Austria 2010 CCA 40 8.3 2.50

Table 1.1: European 2.6 GHz band auctions
(Source: www.kbspectrum.com)

ficiency. Although there are no published results of any experimental analysis,

this design was used to sell the 2.6 GHz spectrum band in the Netherlands,

Denmark, and Austria, while other countries have stuck to SMRA. Table 1.1

provides an overview of the European sales of the 2.6 GHz band.

Cramton (2009b) refers to the design as Package Clock. In the field, an imple-

mentation of dotEcon was used (Maldoom, 2007) which describes this auction

format as Combinatorial Clock Auction (CCA). We stick to this term

as well.

1.3 Related literature

There is substantial literature on spectrum auction design (Banks et al., 2003;

Cramton, 1997, 2009b; Klemperer, 2002; Plott, 1997; Plott and Salmon, 2004;

Porter and Smith, 2006; Weber, 1997). Especially in recent years, combinato-

rial formats with core-selecting payment rules like the CCA have been analyzed

heavily (Day and Milgrom, 2007; Goeree and Lien, 2010b; Lamy, 2009).

There are strong experimental results in comparisons of SMRA and combina-

torial auction designs that suggest that combinatorial formats lead to higher
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efficiency when bidders’ valuations exhibit complementarities (Banks et al.,

1989, 2003; Brunner et al., 2010; Goeree and Holt, 2010; Kwasnica et al.,

2005; Ledyard et al., 1997; Porter et al., 2003; Scheffel et al., 2011).

One strand of experimental literature on spectrum auctions tries to analyze

and explain specific strategic situations as they have occurred in particular

auctions either game-theoretically, experimentally, or based on data from the

field (Bajari and Yeo, 2009; Ewerhart and Moldovanu, 2003; Grimm et al.,

2003; Klemperer, 2002; Plott and Salmon, 2004). For example, some authors

have attempted to understand why two companies bid very aggressively in

the German UMTS auction in 2000 without being able to overbid other bid-

ders. Hoffman (2011) provides an excellent survey of recent developments in

spectrum auction design.

Another strand that analyzes the mechanisms used in spectrum auctions is

based on related, but simplified settings in the lab (Abbink et al., 2005; Banks

et al., 2003; Brunner et al., 2010; Goeree and Holt, 2010; Seifert and Ehrhart,

2005). Abbink et al. (2005) found differences in results between experiments

with experienced and inexperienced students. Sutter et al. (2007) performed

experiments with individuals and teams in the context of European spectrum

auctions and found differences in the results: Teams stayed longer in an auction

and paid significantly higher prices. Although teams made smaller profits, the

efficiency was higher with teams.

A number of experimental studies have compared different combinatorial auc-

tion formats (Cramton et al., 2006a) and analyzed the conditions under which

combinatorial auctions are superior to SMRA. In an early study, Ledyard et al.

(1997) compared SMRA with a sequential auction and a combinatorial auc-

tion with various value models. They found that all three formats perform

well with homogeneous items, but SMRA outperforms the sequential auction

for heterogeneous items and the combinatorial auction is best suited in envi-

ronments with value complementarities. Also, the experiments conducted by
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Banks et al. (1989), Banks et al. (2003), and Kwasnica et al. (2005) show that

package bidding is superior in environments with super-additivities.

Brunner et al. (2010) recently compared a standard SMRA with a Simulta-

neous Clock (different to the two-phase design of the CCA used in our expe-

riments, see section 2.6.2.1) and an FCC format that augmented an SMRA

auction to allow for package bids. They also found that package bidding yields

an improved performance when complementarities are present. Accordingly,

the Simultaneous Clock provided the highest efficiency and the highest seller

revenues. The Simultaneous Clock has also been analyzed for other domains

such as emission trading (Porter et al., 2009). Experimental results on the

performance of the CCA with a sealed-bid phase have not been published yet.

The Hierarchical Package Bidding (HPB) format which has been developed for

spectrum auctions in the US was compared to SMRA and Modified Package

Bidding (a format with pseudo-dual linear prices) by Goeree and Holt (2010).

By reducing the exposure risk for large national bidders, HPB outperformed

the other two auction formats in terms of efficiency and auction revenue. In-

terestingly, combinatorial auction formats with linear, item-level prices have

achieved high levels of efficiency in the lab (Brunner et al., 2010; Goeree and

Holt, 2010; Kwasnica et al., 2005; Porter et al., 2003, 2009; Scheffel et al.,

2011). Scheffel et al. (2011) compared linear-price combinatorial auctions to

auction formats with non-linear, personalized prices for which an ex-post Nash

equilibrium bidding strategy is known, but found that bidders failed to follow

their equilibrium bidding strategies. Chen and Takeuchi (2010) analyzed the

VCG mechanism and an efficient ascending combinatorial auction (iBundle

(Ausubel and Milgrom, 2006a; Parkes, 2001)) in the lab, and found the latter

to be more efficient.
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1.4 Research objectives

SMRA has been analyzed theoretically (e.g., Brusco and Lopomo (2008)) and

tested experimentally in the lab (e.g., Brunner et al. (2010); Kwasnica et al.

(2005)). No experimental results have been published for the CCA, but it has

already been implemented in the field. The first results from the Netherlands,

the UK, and Denmark are mixed.

One goal of this study is to analyze the performance of the CCA in realistic

spectrum settings encountered in European spectrum sales and compare it to

that of SMRA.

Very often, lab experiments simplify realistic field conditions for the setting

in the lab. In order to extract a single effect, the setting is reduced to rather

small numbers of bidders and items or unrealistic assumptions are placed on

the valuations. While this enables the analysis of single effects, the transfer

of findings back to the field is difficult. In this study, the field settings are

imitated as closely as possible.

The European 2.6 GHz spectrum auctions serve as an example. The setting is

almost identical among the European countries because there is a mandatory

European spectrum plan for the 2.6 GHz band. Therefore, the setting in the

lab, i.e., the number of bidders and lots on sale, as well as the value models

of mobile operators and the auction rules are modeled as closely as possible

on these auctions. In addition, two multiband settings were analyzed in which

several spectrum bands were sold simultaneously. Such settings are discussed,

e.g., in Switzerland. We applied different types of complementarity structures,

decreasing and increasing in the bundle size, as well as identical and differing

among bidders in order to allow for different strategic environments for bidders

(section 5.1.1.4).

Another goal of this work was to analyze the bidding behavior in CCA. There

are no known equilibrium strategies for the CCA. VCG is the only incentive-



1.4. RESEARCH OBJECTIVES 13

compatible mechanism, and with the payment rule of the CCA there is no

dominant strategy. Bidders have to decide on which bundles and how much

to bid. In this study, we use experiments to analyze bidding behavior in the

lab (section 4).

Auction mechanisms have traditionally been analyzed with game theory and

computational simulations. Game theory assumes rational individuals that

optimize their personal wealth. In well-defined economic settings, game-

theoretic models study the existence of strategy equilibria. Often, these models

work well for simple settings, but require strong assumptions, e.g., of the struc-

ture of valuations, which are hardly met in the field. For larger settings and

complex market mechanisms, the space for bidding strategies and options be-

comes very large and game theory is pushed to its limits. Assuming a certain

pattern of bidder behavior, computational simulations can help to ana-

lyze auction outcomes for various settings and to create a point of reference

for auction performance. Bidding behavior cannot be analyzed with either

of them. In lab experiments, an economic setting is artificially created

and unprepared subjects are observed while participating in the auction. The

setup, auction rules, and instructions for participants are crucial for the exper-

iment. Section 4 discusses a methodological framework to set up a controllable

and manageable lab environment and to ensure internally and externally valid

results (Smith, 1982).

As described above, prior research in spectrum auctions indicates that there

are differences in behavior between teams and individuals (Sutter et al., 2007),

as well as between inexperienced and experienced bidders (Abbink et al., 2005).

To approximate the level of bidder preparation of mobile operators in spectrum

auctions, this study compares the results of the lab experiments to those in

competitions in which subjects prepare for a longer time period, have access

to additional information and literature, and participate in teams.
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1.5 Contributions

The SMRA has been the predominant auction format for spectrum sales world-

wide since it was first applied in the US in 1994. SMRA is a non-combinatorial

auction format in which bidders face the exposure problem. This has initiated

the design of fully combinatorial auction formats. In 2008, the British regula-

tory authority decided to allocate spectrum through a CCA. Since then, the

CCA has been used in a number of countries to sell spectrum licenses with

mixed success. It was designed for high efficiency and to incentivize truthful

bidding (Cramton, 2009b). While SMRA has been analyzed theoretically and

tested experimentally, only little knowledge is available about CCA’s efficiency

properties and typical bidding behavior in relevant environments.

This thesis analyzes the performance of CCA in comparison to SMRA and ex-

amines bidding behavior in both formats. While attractively simple, theoreti-

cal models are often based on assumptions not met in the field. Experiments

with unprepared subjects in a controlled lab environment can complement such

models.

We conducted experiments (i) in a base setting which closely resembles the

2.6 GHz auction setting in several European countries and (ii) in two variants

of multiband settings resembling a comparably more complex environment, in

which different spectrum bands are sold simultaneously.

The results of our work do not indicate a significantly superior performance

of CCA in terms of efficiency in the base setting. In the multiband settings,

in which bidders had comparably more possible bundles to choose from, the

efficiency of CCA was significantly lower than that of SMRA. The low number

of bundle bids submitted in both auction phases, combined with the core-

selecting payment rule of the CCA, resulted in very low auctioneer revenue

compared to SMRA, and also compared to a CCA simulation in which bidders

submitted bids on all possible bundles. SMRA does not adequately address
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synergies in bidder valuations, but bidders revealed their value for individual

blocks. Therefore, unsold blocks were not an issue and efficiency was rather

high.

Bidding behavior in CCA resembled that of bidders in the field, in that they

submitted bids for only a fraction of all possible bundles. Bidders used heuris-

tics to restrictively select bundles, which can best be explained by bounded

rationality and satisficing. Instead of bidding the true valuation on all possi-

ble bundles, which is a dominant strategy in a pure VCG mechanism, bidders

bid on bundles that offered the highest synergies or had the perceived highest

chances of winning. In accordance with theoretical predictions, bundle bids

were either at or slightly below the valuation.

Bidding behavior in SMRA exhibited strong signaling activities, such as the

use of jump bids and bids on bidders’ own blocks, as observed in field auctions.

A major characteristic of this work is the realistic setting in the lab experi-

ments. By implementing the rules of the field auctions and by closely recreating

the economic setting, meaningful results are obtained that are applicable to

spectrum auctions in Europe. The crucial factor of complementarities was var-

ied to create different strategic environments for bidders. In order to further

improve the external validity of the experiments, we also organized competi-

tions. As in auctions in the field, we let subjects in competitions participate

as teams and prepare for the auctions. Bidding strategies in SMRA were used

more wisely and with better success in the competition than in the lab. CCA

bidders followed a bundle selection and bidding strategy similar to that in the

experiments with unprepared subjects. Again, the final auction outcomes do

not indicate a significantly superior performance of CCA in terms of efficiency.

This thesis is based on the research projects I have carried out with Professor

Martin Bichler and Dr. Pasha Shabalin. Parts of this thesis have been pre-

sented at conferences and submitted to journals. The corresponding sections

of this thesis are in large part the same as in the articles. Specifically, the
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work on the external validity of lab experiments and the pre-study on compe-

titions in chapter 4 were submitted to the Jahrestagung der experimentellen

Wirtschaftsforschung 2010 and presented in Luxembourg. The results of the

principal lab experiments for the comparison of the CCA and the SMRA were

presented at the Conference on Auctions, Market Mechanisms, and their Appli-

cations (AMMA) 2011 in New York, and submitted for publication as Bichler

et al. (2011). The paper is currently under review. Parts of these submis-

sions correspond to section 1.3, chapters 3, 5, and 6. Of course, all errors,

misinterpretations, and inconsistencies in this thesis remain my own.

1.6 Outline

The rest of this thesis has the following structure:

Chapter 2 provides the required theoretical background and definitions. It

discusses the economic environment of spectrum auctions and approaches for

the determination of winners and required payments. It introduces combi-

natorial auction formats, including the Vickrey-Clarke-Groves auction, and

performance measures used to evaluate the outcome of auctions.

Chapter 3 formally defines the auction formats SMRA and CCA, which were

used in the lab experiments.

Chapter 4 introduces lab experiments as a methodology to analyze bidding

behavior in auctions and separates it from game theory and computational

simulations. It addresses issues of internal and external validity of lab expe-

riments in the domain of spectrum auctions and proposes competitions with

teams of prepared subjects as a complement to traditional lab experiments

with unprepared bidders.

Chapter 5 compares the performance of CCA and SMRA and analyzes the

bidding behavior in both auction designs. The lab experiment uses settings
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closely resembling the European 2.6 GHz setting and multiband settings in

which several spectrum bands are sold. It uses different value models to cover

a range of environments with different complexities and numbers of available

bundles for bidders. In addition, it reports on competitions conducted in the

exact same settings and compares the results.

Chapter 6 concludes the thesis and discusses areas of future research.
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Chapter 2

Design of combinatorial auction

mechanisms

Price is what you pay.

Value is what you get.

Warren Buffett

Auctions answer the most fundamental questions in economics regarding a

trade: Who should be assigned the goods on sale and at what prices? (Cram-

ton et al., 2006a) There is hardly one auction design that fits all needs, so

various auction designs try to answer these questions. Depending on the envi-

ronment and the domain, a particular design may be more suitable than others.

An environment is characterized by the number of market participants, i.e.,

the sellers and buyers, the number and type of items (or goods) on sale, the

preferences of all participants, the private information the parties have about

preferences, etc.

In many domains, bidders might have quite complex valuation structures for

bundles or packages of individual items. A logistics service provider might

value a round-trip route higher than the sum of the two single trips, since he

19
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can avoid an unloaded drive, or a mobile operator might value a bundle of

licenses covering all regions of a country higher than the sum of individual

regional licenses. So bidders might want to express such valuations within an

auction instead of bidding only on individual items.

Combinatorial auctions allow bidders to express their preferences for bundles

in a detailed manner. Bidders can bid on packages or bundles of items rather

than only on individual items, which allows them to exactly state preferences.

In the recent past, various industries and application fields have adopted com-

binatorial auctions, e.g., for bus route assignment (Cantillon and Pesendorfer,

2006), truck load transportation (Caplice and Sheffi, 2006), industrial pro-

curement (Bichler et al., 2006), assignment of airport departure and arrival

slots (Ball et al., 2006), or the allocation of spectrum usage licenses (Cramton,

2009b). Enabling bidders to exactly state package valuations helps improve

efficiency and revenue. Determining the valuations themselves can be a chal-

lenging task because bidders might have to perform complex calculations and

develop business cases. Ideally, the market design should handle the combina-

torial complexity of the market setup and bidders should focus on the valuation

so that no strategies are required for bidders to arrive at a desirable outcome.

Depending on the purpose and the setting of the auction, different goals may

apply: Fairness, transparency, and an efficient assignment might be more rele-

vant in the sale of public goods while revenue or low procurement costs might

be the focus of industrial applications. Since these goals are often contradic-

tory, market designers have to weigh them when designing auction mechanisms.

Within a given environment, an auction design encompasses the rules (i) to

determine the winners of the auction, i.e., who gets assigned which items (sec-

tion 2.3), and (ii) to determine the payments required from the winning bidders

(section 2.4).

The rest of this chapter formally defines the economic environment and de-

scribes goals for the auction design. It explains the determination of winners
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and several options for determining payments. Then it introduces sealed-bid

and iterative combinatorial auction designs which have fostered the develop-

ment of the Combinatorial Clock Auction, which was analyzed in the exper-

imental study. Finally, performance measures used to assess final auction

outcomes are defined.

The definitions and required concepts follow those used in the research field of

combinatorial auctions, which can be found, e.g., in Cramton et al. (2006a).

2.1 Economic environment and notation

We assume an economic setting often encountered in spectrum sales. A set of

buyers or bidders I = {1, ..., n} (e.g., the mobile operators) compete for a set

of items K = {1, ...,m} (e.g., the licenses) sold by a single seller or auctioneer

(e.g., the regulatory authority). Symbols i, j ∈ I denote specific bidders and

k, l ∈ K specific items.

A package, or bundle, S ⊆ K is a subset of items which can also be empty.

We assume each bidder i has an individual valuation vi(S) for all possible

bundles S. Of course, in the case that the bidder is not interested in a bundle,

the corresponding valuation can be zero. The valuation is a bidder’s motiva-

tion to participate in the auction and to bid for the items or bundles. A bid of

bidder i on a package S for a bid price pbid,i(S) is denoted with b(S, pbid,i(S)).

If the auction assigns the bundle S ⊆ K to bidder i and requires him to

pay a price of ppay,i(S) ∈ Ppay then πi(S,Ppay) denotes his payoff . We

assume quasi-linear payoff functions for all bidders, i.e., πi(S,Ppay) = vi(S)−
ppay,i(S), πi(∅,Ppay) = 0; ∀i.

Thus, bidder i’s valuation vi(S) represents the highest price ppay,i(S) the bidder

is willing to pay for the bundle S in order to make a non-negative profit.
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Let Π =
∑

i∈I ppay,i(Si) denote the auctioneer payoff where Si is the bundle

won by bidder i.

2.1.1 Complements and substitutes

As described in section 1.1, within spectrum sales there can be various valu-

ation types: A mobile operator might assign a value to the combination of

two licenses which is greater than the sum of the valuations of the individual

licenses. In other cases, the combination might induce a lower valuation. The

former effect characterizes a super-additive, the latter a sub-additive valuation

function. Such effects can be found in many domains.

Formally, three valuation types can be distinguished in bidders’ valuations of

two disjoint bundles S, T ⊆ K. The valuation function of bidder i is called

locally

• additive, if vi(S ∪ T ) = vi(S) + vi(T )

• super-additive, if vi(S ∪ T ) > vi(S) + vi(T )

• sub-additive, if vi(S ∪ T ) < vi(S) + vi(T ).

If the relation holds for any two disjoint bundles S, T ⊆ K, the bidder’s valu-

ation function is called additive, super-additive, or sub-additive respectively.

Super-additive valuations describe complements, i.e., items that create an

additional value when combined (synergies). Substitutes, on the other hand,

create sub-additive valuations. Items are substitutes if the demand for one item

does not change when the price of the other item is changed. A valuation func-

tion can comprehend all types of valuations for distinct bundle combinations.
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2.1.2 Private, common, and affiliated values

Vickrey (1961) introduced the private values model, which assumes that each

bidder can exactly determine the value of all possible bundles. Independent

private valuations require that these valuations do not depend on other

bidders’ valuations and that all valuations are the private information of the

bidders. Specifically, the valuations do not change when the bidder learns

more about other bidders’ valuations during the auction. This model serves as

a benchmark model for the comparison of different auction designs, although

this model implies that for larger settings, the bidders are required to know

or determine the valuation of a large number of bundles. If externalities are

excluded (the bidders are not interested in assignments to other bidders), each

bidder can bid on 2n − 1 bundles with n bundles on sale. Practically, this

entails a very large number of bundles for all but low numbers of items.

There are settings in which this assumption can be questioned because the

exact value depends on future events or cannot be specified in detail for all

possible bundles upfront. For example, drilling rights on an oil field may have

the same value for all bidders, but the value depends on the actual amount of

oil in the field, which is not known at the time of the auction. Wilson (1969)

assumes that items have a specific value which is the same for all bidders,

but that bidders do not know this value and have to rely on estimates of the

true value and on signals of other bidders. Such values are called common

valuations. The bidder with the highest estimate of the true value is likely

to win the auction. In cases where the average of all bidders’ estimates equals

the true value, the winner has estimated a too high value and might have to

pay a price exceeding the true value. This phenomenon is called the winner’s

curse, since winning is actually bad news about the winner’s own value esti-

mate. Wilson (1969) emphasizes the importance of conditioning the bidding

strategy to the negative effect winning implies in common value settings.

Milgrom and Weber (1982) generalize the approaches of independent private
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values and common values in a model of affiliated valuations, combining

private information and signals from other bidders in a bidder’s valuation.

Here, bidders’ estimates of the true value are affiliated random variables. If

one bidder has a high value estimate, it is likely that the other bidders also

have high estimates.

In spectrum sales in the field, bidders have to calculate the value of licenses

by estimating future revenues of communication services offered to customers.

The valuation of licenses also depends on the costs associated with rolling

out the services, which might differ fundamentally between mobile operators.

Thus, some authors argue that value uncertainty plays a role, and other

constraints, such as strategic considerations or budget constraints, might apply

(Bulow et al., 2009). Due to these complications, such calculations can become

very intense and expensive for mobile operators. Ideally, the auction design

guides bidders to the relevant bundles. Iterative combinatorial auctions can

guide bidders and reduce value uncertainty through price feedbacks between

rounds (section 2.6.2).

Due to the high importance of spectrum auctions for providers, there is a strong

incentive to estimate valuations accurately prior to the auction. Valuations

might differ significantly among providers due to different costs for building a

network. Therefore, the valuations used in the experiments in section 5 stick

to the common assumption of independent private valuations.

2.2 Auction design goals

Defining auction rules is a challenging task. The overarching goal is often high

efficiency (section 2.7), i.e., to achieve an allocation of the items for sale

that maximizes social welfare. That means that all items are assigned to the

bidders that put them to the best use. Thus, a central concern in mechanism

design is creating enough incentives for bidders to reveal their true valuations.
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A bidder will only participate in an auction and tell the truth about his valu-

ations of items and bundles if he can expect to be better off doing so than by

not participating. Therefore, we claim that an auction should be individually

rational.

Definition 2.1. An auction is individually rational if bidders expect to

gain higher payoff from participating in the auction than from avoiding it.

The bidder will apply some type of strategy and hide his true preferences if he

expects to be better off by doing so. But determining an efficient allocation

requires the revelation of true valuations. Therefore, we claim that an auction

should be incentive-compatible, i.e., that misreporting valuations for the items

should never give an advantage to bidders.

Definition 2.2. An auction is incentive-compatible if a bidder is better

off when he truthfully reveals any private information the auction mechanism

asks for.

Ideally, bidders do not have any incentives to speculate, but can focus solely

on reporting their true valuations. If there is no other strategy promising a

better payoff independently of the other bidders’ actions, then the bidder has

a dominant strategy to report his true valuations (section 2.5).

An outcome should also prevent any coalition of bidders from renegotiating

a better deal with the auctioneer after the auction has terminated. Such an

outcome is said to be in the core (section 2.4.3).

Putting these aspects together, we can state that an auction design should

satisfy the following properties or goals:

1. Efficiency : Items are allocated in a way that maximizes the value gen-

erated.
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2. Core property : No coalition of bidders and the auctioneer can nego-

tiate a mutually more beneficial deal among themselves.

3. Individual rationality : Each bidder expects a non-negative payoff for

participating.

4. Dominant strategy property : The dominant strategy is for bidders

to truthfully report their valuations.

Unfortunately, there is no auction design that satisfies all these goals. Mar-

ket designers have to make trade-offs in the design of auction formats. For

example, the Vickrey-Clarke-Groves auction (Vickrey (1961), section 2.6.1)

collects all valuations from all bidders in one single round and efficiently as-

signs the items. It is the only direct mechanism that requires no payments

from or to bidders and which gives bidders a dominant strategy of reporting

true valuations (Green and Laffont, 1979). The Vickrey-Clarke-Groves (VCG)

outcome satisfies properties one, three, and four, but fails to terminate in core

outcomes in general settings. This leads to the problems of low or even zero

revenue as well as incentives for bidders to collude or to use multiple fake iden-

tities to submit bids. Section 2.6.1.2 describes the weaknesses of the Vickrey-

Clarke-Groves design. In large settings, the number of possible bundles can

exceed the feasible number of bids. To guide bidders, iterative combinatorial

auctions give price feedback to bidders in between rounds, helping them to

focus on relevant bundles.

Prominent examples of iterative combinatorial auctions with attractive pro-

perties are the Ascending Proxy auction (Ausubel and Milgrom, 2006a) or

the Clock-Proxy auction (section 3.2.6.1), which satisfy properties one, two,

and three, but do not give bidders a dominant strategy to reveal their true

valuations.

It appears that the goals of core outcomes (goal two) and dominant strategy

property (goal four) cannot be achieved at the same time in general settings.
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Section 2.6.3 discusses the bidder submodularity condition, which has to be

satisfied for the Ascending Proxy auction to achieve VCG outcomes and, by

this, to give bidders strong incentives to bid truthfully.

2.3 Determination of winners

The first question to be answered by a market mechanism is: Who will be

assigned which items? In the context of an auction, an allocation X = (Si)i∈I

describes an assignment of items or bundles to bidders as a result of the auction,

based on the bids they have submitted within the auction (Cramton et al.,

2006a).

Definition 2.3. The set of feasible allocations X contains all allocations that

assign items to bidders in such a way that each item is allocated to at most

one single bidder, i.e., all bundles are disjoint. Thereby, items can also remain

unsold, i.e., not assigned to a bidder.

The allocation at the end of an auction is called final allocation, while an

allocation during the course of the auction (e.g., in between rounds of an

iterative auction format) is called provisional allocation.

Definition 2.4. Among all allocations in X , an allocation which maximizes

social welfare is called the efficient allocation X∗. The efficient allocation

does not have to be unique.

The true valuations of all bidders for all bundles are hardly known by the

auctioneer, since bidders may be hesitant to reveal their true preferences or it is

impractical due to the sheer number of possible bundle valuations. Therefore,

winners must be determined based on the elicited information available to

the auctioneer. That is the set of submitted bids from the bidders. Thus,
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one essential issue in market design is to offer enough incentives to bidders to

reveal their true valuations in order to identify an efficient allocation.

Determining the efficient allocation is comparably simple in a one-item setting.

The efficient allocation assigns the item to the bidder with the highest bid

for the item. If there are several bidders with the same highest bid, each

of these bidders is assigned the item in one of the efficient allocations. In

a combinatorial auction with multiple items, the determination of winners is

more complex since the bundle bids from all bidders must be checked to find

the best combination. Let pbid,i(S) denote the bid price of bidder i for bundle

S. If bidder i did not submit a bid on S, pbid,i(S) = 0. The determination of

winners can be formulated as an integer linear program (ILP) which is called

the winner determination problem (WDP):

max
∑
S⊆K

∑
i∈I

xi(S)pbid,i(S) (WDP)

s.t. ∑
S⊆K

xi(S) ≤ 1 ∀ i ∈ I

∑
S:k∈S

∑
i∈I

xi(S) ≤ 1 ∀ k ∈ K

xi(S) ∈ {0, 1} ∀ i ∈ I, S ⊆ K

For each bidder i and each possible bundle S there is one binary variable

xi(S) ∈ {0; 1} which equals 1 if bidder i finally wins the bundle S with the bid

price pbid,i(S) and which is 0 if he has not. The objective function maximizes

the aggregate bid prices of all bidders in I implied by the allocation. The first

constraint of the ILP guarantees that each bidder can win at most one bundle.

This implies a XOR bidding language. Abandoning the first constraint

would allow bidders to win multiple bundles (OR bidding language), but
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this would create a different kind of exposure problem for the bidders, who

could win several bundles at the same time (Hoffman, 2011). The second

constraint ensures that no item is allocated more than once and also allows for

items that are not allocated and remain unsold. In case of multiple optimal

solutions one is picked randomly.

A set of bidders I ⊆ I is called a coalition CI . The set of all bidders I
is called the grand coalition CI . Each bidder i receives a value of vi(S)

if he is finally assigned the bundle S, that is if xi(S) = 1. Assume that

bidders can transfer individual value from the trade to one another without

loss (concept of transferable utility). If bidders of the coalition CI submit their

true valuations, then the objective value of the WDP based on the efficient

allocations represents the highest value that can be generated with this set of

bidders. This corresponds to the coalitional value (or social welfare) of this

set of bidders I:

Definition 2.5. The coalitional value of a coalition CI is defined as the

maximum value created by the members of CI working together:

w(CI) = max
X∈X

∑
S⊆K

∑
i∈I

xi(S)vi(S)

2.4 Determination of payments

Once the winners of an auction have been determined and the respective bund-

les have been allocated, the auction needs to determine the payments of win-

ners, i.e., the pay prices Ppay. In order to foster participation, bidders who

have not been assigned a bundle are usually not required to make a payment.
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2.4.1 First-price rule

The most direct way of determining pay prices is to use a first-price rule. In

this case, each winning bidder i pays the amount he has bid for the won bundle

S: ppay,i(S) = pbid,i(S). One prominent example of an auction format using the

first-price rule is the Simultaneous Multi-Round Auction (section 3.1), which

has been used in many spectrum auctions worldwide and which we used in

our experimental study. One problem of the first-price rule is that a winning

bidder pays considerably more than required when the second highest bid is

far lower than his own bid. This gives bidders an incentive to shade their bids:

In order to increase their payoff, bidders might bid less than their valuations.

Thus, bidders speculate on the bid prices of other bidders and on the extent to

which they can shade their own bids. This can result in inefficient allocations.

Consider the example in table 2.1: Three bidders 1, 2, and 3 compete for one

item A. They have the valuations v1(A) = 20, v2(A) = 30, and v3(A) = 50.

The efficient allocation assigns A to bidder 3. In scenario a, all bidders bid

truthfully and submit bids corresponding to their valuations. Bidder 3 wins

the item and is required to pay his bid price of 50, giving him a payoff of 0.

In scenario b, bidder 3 shades his bid and submits a bid of only 40. He still

wins the item, but is required to pay 40, promising him a payoff of 10, which

is higher than in scenario a. Therefore, he has an incentive to not reveal his

true valuation and to speculate about how low he can bid and still win. Note

that in this example any bid price by bidder 3 above 30 makes him the winner.

But the lower his bid price, the higher his payoff.

In order to achieve an efficient allocation, the auctioneer is interested in elicit-

ing the true valuations of all bidders. The example demonstrates that bidders

have an incentive to speculate and shade their bids with the first-price rule.

In the example, bidder 3 could bid less than 30 and lose the item to bidder 2

just because of speculation. So the true valuations may not be revealed, which

can result in inefficient allocations. Vickrey (1961) suggested using a second-
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Bidder Valuation Bid price
Scenario a Scenario b

1 20 20 20
2 30 30 30
3 50 50 40

Winner Bidder 3 Bidder 3
Payoff 0 10

Table 2.1: Example for first-price rule

price rule with the intention of giving bidders a strong incentive to bid their

true valuations and to refrain from speculation. When the true valuations are

elicited, items can be allocated efficiently.

2.4.2 Second-price rule

Vickrey (1961) proposed requiring a payment from winning bidders which is

only as high as necessary. To illustrate the concept of second prices, we look

at the one-item example from above (table 2.1).

To reduce bidder 1’s incentive to speculate and shade his bid, the second-price

rule requires him to pay only 30 + ε, i.e., the second-highest bid price. So his

bid can be higher, but the payment remains at 30+ε. In order to maximize his

chances of winning, each bidder has the incentive to bid as high as possible.

The limit is set by his true valuation. If a bidder bids higher than that, he

risks a negative payoff. Bidder 3 in the example wins with any bid price above

30. But with prices above 50 he would have a negative payoff. So he has an

incentive to bid exactly 50 to maximize his chances of winning.

His strategy of truthfully reporting his valuation is independent of the bids

of the other bidders. If the other bidders bluff and bid above their valuation,

they might win the item, but would then be required to pay at least the bid

price of bidder 3 or the second-highest bid price. This price would entail a
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negative payoff for bidder 3. If the other bidders bid less than their valuation,

bidder 3 would still win with an even higher payoff. So independent of the

other players’ strategies, each bidder expects the highest payoff by revealing

his true valuation. Such a strategy is called a dominant strategy (see also

section 2.5).

The Vickrey-Clarke-Groves auction generalizes this idea for settings with many

items. We introduce this auction design in section 2.6.1.

2.4.3 The core

An auction outcome (assignment of goods to bidders and payments) can be

regarded as unstable if it leaves opportunities for a coalition of bidders to make

a counteroffer to the auctioneer, putting themselves and the auctioneer at least

as well off. Determining payments with the second-price rule can cause several

problems, such as very low or even zero revenues. In fact, in section 2.6.1.2

we show that pay prices can be even lower than what losing bidders have bid.

This can have the very unattractive consequence that these bidders can offer

the auctioneer to pay more than the actual winners of the auction. A desirable

auction outcome prevents such offers and ensures satisfactory payoffs for all

market participants so they do not want to change the final allocation at given

prices. Such payoffs are in the core of a coalitional game (Day and Raghavan,

2007).

The core concept ensures auction outcomes that are stable. The winning

bidders collectively pay enough so that no subset of bidders I ⊆ I can separate

from the set of all bidders I and collude to offer the auctioneer a more attractive

deal. The grand coalition’s valuation w(CI) corresponds to that of an efficient

allocation which was given above in definition 2.5:

w(CI) = max
X∈X

∑
S⊆K

∑
i∈I

xi(S)vi(S)
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The payments of bidders transfer a share of their value to the auctioneer.

Let π = (πi)i∈I denote the payoff vector of all bidders in the set I and

ΠCI =
∑

i∈I ppay,i(Si) denote the auctioneer’s payoff. We can also express

the coalitional value as the sum of bidders’ payoffs and auctioneer payoff:

w(CI) = ΠCI +
∑
i∈I

πi

The formal definition of the core can now be formulated.

Definition 2.6. The set of core payoffs is defined as

Core (I, w) :={
(ΠCI , π) : ΠCI +

∑
i∈I

πi = w(CI) and ∀ I ⊂ I : w(CI) ≤ ΠCI +
∑
i∈I

πi

}

In order to get a stable outcome we claim that the coalitional value of any

subset of bidders I must not exceed that of I:

w(CI) ≤ w(CI)

The auctioneer only accepts counteroffers that are at least as advantageous for

him as the original outcome. Thus, we claim that the counteroffer from the

coalition CI gives an auctioneer payoff ΠCI
that is not higher than ΠCI :

ΠCI
≤ ΠCI

By combining the claims we can state the relationship of coalitional values

that imply stable auction outcomes and define the core:

w(CI) = ΠCI
+
∑
i∈I

πi ≤ ΠCI +
∑
i∈I

πi = w(CI)−
∑
i∈I

πi +
∑
i∈I

πi
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In general, the core payoffs are not unique but all core payoffs protect against

counteroffers. An auction design needs to specify which payoff vector of the

set is to be chosen at the end of the auction. The Combinatorial Clock Auc-

tion uses a payment rule that chooses the payments which are closest to VCG

payments from the set of all core payments (section 3.2.4). By selecting bidder-

optimal core payments that maximize the bidders’ payoffs, this rule guarantees

that there is no coalition of losing bidders that can propose an attractive coun-

teroffer. In addition, it minimizes the incentives for speculation by choosing

payments as close as possible to the VCG payments as only with those bidders

have a dominant strategy of reporting true valuations. In section 2.6.3 we

discuss the conflict of the VCG outcomes with the dominant strategy property

and core outcomes.

2.5 Relevant game-theoretical solution con-

cepts

Before we look at the rules of combinatorial auction formats, we briefly in-

troduce relevant solution concepts in game theory. We point the reader to

two books that give a comprehensive overview of game theory: Vazirani et al.

(2007) and Shoham and Leyton-Brown (2009).

Game theory is a counterpart of mechanism design which looks at the same

setting from a different angle. While mechanism design is about the definition

of the rules of the game, game theory analyzes outcomes of games given the

rule set. The participants, or players, in the game have a set of strategies or

actions to choose from. If there are many players, we expect each player’s

payoff to depend not only on his own strategy but also on the other players’

strategies. In an auction, e.g., the price a bidder pays may depend not only

on his own bids but also on what other bidders have bid in the auction. A

strategy profile describes the interaction of all players’ individual strategies.
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It results in a payoff for each player. The payoff vector of all players is also

called outcome. In game theory, we generally assume that

• all available strategies or actions of all players are known by all players,

• all players’ payoffs as a result of all possible strategy profiles are also

known by all players,

• all players know and fully understand the rules of the game, and

• all players behave in an individually rational way, i.e., each player self-

ishly maximizes his own payoff.

Although all of these assumptions can be challenged in realistic settings

(Rothkopf, 2007a), game theory can contribute to the understanding of mech-

anisms and provide ideas for their design.

A strategy profile is called an equilibrium if no player could improve his pay-

off by unilaterally choosing another strategy. For auction designs, we require

that final outcomes should be Pareto-optimal and in the core to prevent any

coalitions from challenging the auction outcome. Only in such cases is the

outcome stable. In the following, we describe relevant strategy profiles.

Suppose a player has a strategy that is the best available strategy for him

regardless of the choices of the other players. Such a strategy is called a dom-

inant strategy . A game, which gives dominant strategies of telling the truth

to players, is called strategy-proof . It makes tactical analyses and specu-

lation unnecessary for players and is therefore interesting for auction design.

Green and Laffont (1979) have shown that the VCG mechanism (section 2.6.1)

is the only mechanism that gives bidders a dominant strategy to report true

valuations, which results in efficient outcomes, and which does not require any

payments from or to losing bidders.

A less strong concept is the Nash equilibrium. A Nash equilibrium is a set

of strategies in which each player’s strategy is a best response strategy to the



36 CHAPTER 2. DESIGN OF CA MECHANISMS

other players’ strategies. That means no player can achieve a better payoff by

unilaterally deviating from this equilibrium. It assumes that each player will

still try to maximize his own payoff based on the other players’ choices. Since

several Nash equilibria can exist in one game and none of the players knows

which one is chosen by the other players, the concept of the Nash equilibrium

is less strong than that of dominant strategies. It is still relevant for auction

design because if one Nash equilibrium entails reporting true valuations for

all bidders, then even if it is not a dominant strategy, bidders have a strong

incentive to do so.

If information is incomplete and players do not know about the types (i.e.,

strategy options and associated payoffs) of other players and have to rely on

probability distributions about the possible types of other players, the game is

called a Bayesian game. In such a game, players must consider all possible

types of other players in the choice of their own strategy. If players do not

want to change their strategy even when they learn about the strategies of other

players after the game, the equilibrium is called an ex post equilibrium.

2.6 Combinatorial auctions

In this section, we discuss combinatorial auction formats. We start with a

direct mechanism called Vickrey-Clarke-Groves auction (VCG). It is a sealed-

bid auction in which bidders submit all bids in one single round, and we

highlight its unique dominant strategy property, which has high theoretical

importance. We also address its weaknesses, which have prevented it from

being implemented in many applications in the field.

Many of the VCG problems can be addressed with iterative combinatorial

auctions (Porter et al., 2003). In such round-based auctions, bids are col-

lected within each round, analyzed, and then bidders receive feedback (prices,

provisional allocations, bid information, etc.). This helps guide bidders to the
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most relevant bundles aiming at efficient allocations and the reduction of value

uncertainty. We briefly describe the Simultaneous Clock and the Ascending

Proxy auction, which guarantees core outcomes. We conclude by discussing

under which circumstances the design goals of core outcomes and dominant

strategy property can both be satisfied.

2.6.1 Vickrey-Clarke-Groves auction

In order to avoid the unfavorable incentives for speculation inherent in the

first-price rule, Vickrey (1961) suggested using pay prices that differ from the

bid prices. His design is a sealed-bid second-price auction. There is only one

round, in which bidders submit their bids. For a one-item setting, the winner

is the highest bidder and is required to pay the price offered by the second-

highest bidder. These prices are called second prices or Vickrey prices.

In the example from section 2.4.1, bidder 3 wins item A with the highest bid

of 50 but has to pay only the price offered by the second-highest bidder, in

this case bidder 2’s bid of 30. The underlying idea is that bidder 3’s bid only

determines whether he wins, his own payment is not affected by the amount

he has bid. Therefore, he has no incentive to shade his bid anymore.

Clarke (1971) and Groves (1973) have amended Vickrey’s design for the multi-

item case, now known as the Vickrey-Clarke-Groves auction (VCG auc-

tion).

A VCG auction also consists of only one round of sealed bids. Each bidder

can bid on any bundle and can finally win at most one bundle (XOR bidding

language). At the end of the auction, the auctioneer runs a winner determi-

nation, examining all bids to identify the revenue-maximizing combination.

As in the single-item setting, winning bidders are not required to pay full bid

prices but only second prices reflecting the opportunity costs of the items they

have won. That means that each winning bidder receives a discount on his bid
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price which reflects the increase in auction revenue due to his participation.

To determine the pay price ppay,i(S) of winning bidder i, the auctioneer com-

putes the coalitional value w(CI\i) with all bids of i excluded, i.e., with the bids

of the coalition CI\i only. The difference of the original coalitional value w(CI)

and w(CI\i) represents the discount bidder i gets on his bid price pbid,i(S).

Definition 2.7. The pay prices of winning bidders in a VCG auction are

defined as:

ppay,i(S) = pbid,i(S)− (w(CI))− w(CI\i))

The VCG auction has some desirable properties but also some deficiencies

which are discussed in the following sections.

2.6.1.1 Strengths of the VCG auction

The VCG auction has some impressive properties: Truthfully reporting all

valuations is a dominant strategy and if all bidders bid truthfully, the auc-

tion terminates in an efficient allocation (Ausubel and Milgrom, 2006b). An

example illustrates this: Table 2.2 gives the valuations of the three bidders 1,

2, and 3 for the items A and B as well as for the bundle AB.

Bidder A B AB

1 500*

2 200
3 200

Table 2.2: Example for VCG payments

If bidders truthfully submit their valuations, the VCG auction finds the effi-

cient allocation (indicated by the star) and assigns the bundle of both items to

bidder 1. For bidder 1’s payment, we calculate the discount he gets on his bid

price. His total payment is ppay,1(AB) = pbid,1(AB)− (w(C{1,2,3})−w(C{2,3})).
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To calculate w(C{2,3}) we remove the bids of bidder 1. Now, the efficient allo-

cation assigns item A to bidder 2 and item B to bidder 3 with a total bid price

of 400. Bidder 1’s payment is therefore pbid,1(AB) = 500− (500− 400) = 400.

In contrast to the setting with the first-price rule, bidders have no incentive to

speculate about other bidders’ bids anymore or to shade their bids. Their own

bid price determines whether they win or not, but their own payment is not

affected. So they have an incentive to bid as high as possible, which is their

own true valuation.

From an economic point of view, speculation is a waste of effort, since it is not

required to find the efficient allocation. In VCG, bidders can fearlessly report

their true valuations for all available packages regardless of what competitors

do. We called this a dominant strategy in section 2.5. One of the design

goals for market mechanisms mentioned at the beginning of this chapter was

to offer a dominant strategy to bidders. The second-price rule of the VCG

auction makes truthfully reporting the valuations a dominant strategy, which

facilitates an efficient allocation. In a VCG auction, bidders do not have to

speculate, but rather can concentrate on their own valuations and simply bid

them truthfully.

Green and Laffont (1979) and Holmstrom (1979) showed that VCG is the

unique direct reporting mechanism with dominant strategies for bidders that

results in efficient outcomes and does not require any payments from (or to)

losing bidders. In other words, if we use payments that differ from the VCG

payments, we lose the dominant strategy property for bidders to truthfully

report their valuations.

Unfortunately, the VCG auction loses the dominant strategy property if va-

luations are not private and independent (Ausubel and Milgrom, 2006b). In

spectrum auctions, binding budget constraints can apply which could challenge

the assumption of independent private valuations.
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2.6.1.2 Weaknesses of the VCG auction

The efficient outcomes and the dominant strategy property of the VCG me-

chanism come with detrimental weaknesses (Ausubel and Milgrom (2006b);

Rothkopf (2007b)) which challenge the practical relevance of the design:

1. Low auctioneer revenue. Even if there is enough competition in

the market and valuations are quite high, revenue can be very low or

even zero. Consider the following example1 in which valuations comprise

complementarities: Two items A and B are auctioned to three bidders

1, 2, and 3. Bidder 1 is interested in the package of both items A and B

and is willing to pay 2, bidders 2 and 3 are interested in single items for

a maximum price of 2 each. Table 2.3 shows all valuations.

Bidder A B AB
1 2
2 2* 2 2
3 2 2* 2

Table 2.3: Example for VCG weaknesses

VCG allocates the items efficiently, i.e., item A to bidder 2 and item

B to bidder 3, since their combined bids maximize revenue. Bidder 2’s

payment is calculated as ppay,2(A) = pbid,2(A)−(w(C{1,2,3})−w(C{1,3})) =

2 − (4 − 2) = 0. The pay price of bidder 3 is calculated the same way:

ppay,3(B) = 0. The total revenue of the VCG auction is therefore 0,

even though there was competition and bidders had positive valuations

greater than 0.

The problem with such an outcome is that it is unstable in the sense

that bidder 1 might try to renegotiate privately with the auctioneer and

1The example was taken from Ausubel and Milgrom (2006b).



2.6. COMBINATORIAL AUCTIONS 41

offer to pay up to 2 for the bundle. That would increase his own payoff,

but the auctioneer would also be better off: Instead of selling both items

to bidders 2 and 3 for zero revenue, he would get positive revenue from

bidder 1. Therefore, stable outcomes require pay prices to be high enough

to prevent such counteroffers. Such a stable outcome is said to be in the

core. The concept of the core is discussed in sections 2.4.3 and 2.6.3.

Revenue is very often a concern in field applications, e.g., in industrial

procurements, but also for governments, who can hardly justify com-

parably low revenues from public goods sales to taxpayers when other

losing bidders were willing to pay more. The rather low revenue is one of

the key reasons why the VCG has only rarely been applied in practice.

2. Non-monotonicity of the revenue in the number of bidders

and in the bid amounts. The revenue of a VCG auction can actually

decrease when additional bidders participate in the auction. Suppose

bidder 3 did not participate in the example above. Then bidder 1 would

win the bundle AB and w(CI) would be 2 which would increase the

total revenue from 0 to 2. From a market design perspective, this is

counterintuitive since adding bidders increases competition.

3. Collusion. The non-monotonicity opens up various loopholes for bid-

ders. Losing bidders can collude to improve their outcomes. Consider

the example from above with the valuations of bidders 2 and 3 changed

to 0.5 for a single license. This makes them losers since bidder 1 offers 2

for the bundle of both items. If the two losing bidders collude and bid 2

for each single item, they will successfully outbid bidder 1 and win the

items for a price of 0. The example shows that the VCG mechanism is

prone to such deviations on the part of losing bidders.

4. Shill bidding. Shill bidding is closely related to the above vulnerability

of the VCG design. Suppose in the example from above that only bidders
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1 and 2 participate with bidder 1 being the winner of the package. By

making up a third bidder and submitting bids under this fake identity,

bidder 2 can turn himself into a winner with a pay price of zero. There-

fore, if the auctioneer cannot verify and check bidder identities, bidders

can try to manipulate the auction by using multiple identities.

5. Privacy concerns. Bidders might be reluctant to report all true valu-

ations due to privacy concerns. Very often, the valuations reveal inter-

nal cost structures or expectations about future market developments.

Such information is confidential, and bidders might not want to reveal it.

These concerns can be addressed through encryption and independent

auction platforms that ensure privacy.

6. Unfeasibility of reporting values for all possible bundles. In

many field applications, the determination of valuations is costly, e.g., in

the domain of spectrum sales, license valuations are based on compre-

hensive business cases which involve scenario analyses. It might just not

be feasible for mobile operators to determine the valuation of all possible

license combinations. In larger settings, the number of combinations can

be too high to submit valuations for all bundles even if they are avail-

able. One way to address this disadvantage is to use an iterative design

(section 2.6.2) which gives price feedback to bidders. This can help them

to focus on the relevant bundles.

The decisive weaknesses one through four of the VCG mechanism arise only

if bidder valuations include complementarities (Ausubel and Milgrom, 2006b;

Rothkopf, 2007b). Since complementarities are present in many domains, the

VCG design has hardly been applied in the field. Nevertheless, due to its

dominant strategy property, it continues to serve as a reference point in auction

theory.
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The problems bidders have in reporting all possible valuations in one shot can

seriously undermine efficiency. If all bidders concentrate on the most valuable

bundles or the largest bundles, the auctioneer might not be able to assign

smaller bundles, which would be necessary for an efficient assignment. This

is what we found for the Combinatorial Clock Auction in our experiments. It

is an inherent problem of sealed-bid auctions that bidders might not be able

to report valuations for all available packages. This is because bidders do not

get any price feedback to focus their attention (Parkes, 2006). In the next

section, we introduce iterative combinatorial auctions that avoid many of the

VCG problems by providing price feedback to bidders. This guides them to the

relevant bundles and lets them revise their valuations as prices are discovered.

2.6.2 Iterative combinatorial auctions

Iterative combinatorial auctions are conducted in rounds, addressing the prob-

lem of preference elicitation often encountered in the field (Parkes, 2006). In

contrast to sealed-bid auctions, the design space is a lot larger in iterative

auction designs. Parkes (2006) discusses a number of options, such as timing

issues (continuous versus discrete round-based designs), degree of information

feedback (information provided to bidders after each round, e.g., ask prices,

provisional allocation), termination conditions (fixed time versus rolling clo-

sure depending on a condition), bidding language (e.g., OR or XOR), use

of automated bidding agents (proxies that enforce a predetermined bidding

strategy), etc. Independent of the detailed rules, most iterative combinato-

rial auctions follow the same structure on a high level: At the beginning of

each round, the auctioneer provides ask prices and the provisional allocation.

Bidders can then submit new bids during the round, which are used by the

auctioneer to determine the ask prices and the provisional allocation for the

subsequent round. At the end of each round, the termination conditions are

checked.
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Many different designs have been suggested with different properties. Parkes

(2006) provides a good overview. We describe the Simultaneous Clock, or

Combinatorial Clock, (Porter et al., 2003) in section 2.6.2.1 and the Ascending

Proxy auction (Ausubel et al., 2006) in section 2.6.2.2. The auction formats

for our lab experiments are introduced in chapter 3.

The price feedback plays a pivotal role in the design of iterative combinatorial

auctions since bidders submit new bids based on this feedback. Such prices

represent the lower limit for bids in the subsequent round and are called ask

prices. Ideally, these prices guide the auction towards an efficient outcome and

provide enough incentives for bidders to reveal their true valuations (Parkes,

2006).

Ask prices can have different formats: Bundles can have a price representing

the sum of ask prices of contained items or an individual bundle price, and

prices can be identical for all bidders or personalized (Xia et al., 2004):

Definition 2.8. A set of ask prices is called

• linear, if ∀ i, S : pask,i(S) =
∑

k∈S pask,i(k), and

• anonymous, if ∀ i, j, S : pask,i(S) = pask,j(S)

Since bidders generally do not know when the auction will terminate (the

termination of an iterative auction can depend on various conditions, e.g., the

combined demand of all bidders, the submission of new bids, etc.), a common

assumption is that they will myopically maximize their payoff by bidding

straightforwardly . This means they bid their demand set, i.e., the bundles

that maximize their payoff at current prices.

Definition 2.9. A bidder’s demand set includes all bundles which maximize

the bidder’s payoff at current prices:

Di(Pask) :=

{
S ⊆ K : πi(S,Pask) ≥ max

T⊆K
πi(T,Pask) and πi(S,Pask) ≥ 0

}
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A bidder bids straightforwardly if he bids the lowest acceptable price on all

packages within Di(Pask) in every round.

After the auction has terminated, the auctioneer determines the final allocation

of the items (section 2.3) and the required payments Ppay from winning bidders

depending on a payment rule (section 2.4). The auctioneer revenue is then the

sum of the pay prices of the winning bidders.

An auction outcome is attractive when all participants, i.e., all bidders and

the auctioneer, are satisfied. That requires that no bidder wants to change

the allocation by increasing prices further through the submission of new bids.

The concept of competitive equilibrium describes such outcomes:

Definition 2.10. The allocation X∗ is supported by prices Ppay in competi-

tive equilibrium (CE) if:

πi(S
∗
i ,Ppay) = max

S⊆K
[πi(S,Ppay), 0] ∀ i ∈ I

Π(X∗,Ppay) = max
X∈X

Π(X,Ppay)

This is referred to as: Prices Ppay and allocation X∗ = (S∗1 , . . . , S
∗
n) are in

competitive equilibrium .

Thus, no bidder can expect a higher payoff by winning another bundle based

on his reported preferences. All the losing bids are below the final prices. The

auctioneer also needs to be satisfied, which requires that he cannot get higher

revenue from another allocation based on the submitted bids.

Bikhchandani and Ostroy (2002) have shown that the core (section 2.4.3) is

equivalent to the set of CE prices. All CE outcomes are in the core and all core

outcomes can be priced. Further, they have shown that for an efficient alloca-

tion non-linear, personalized CE prices can always be found. A trivial example

would be to require each bidder to pay his bid price (Parkes, 2006). But linear
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or anonymous CE prices can only be determined if specific conditions are satis-

fied (e.g., a sufficient and almost necessary condition for the existence of linear

CE prices is that all goods are substitutes (Gul and Stacchetti, 1999; Kelso

and Crawford, 1982)). That means that an iterative combinatorial auction

design requires non-linear, personalized prices to terminate in CE outcomes in

general settings (Ausubel and Milgrom, 2006a).

The following example shows that there can be a set of CE prices that satisfy

the condition above.

Suppose two bidders are competing for one item A. Their valuations are

v1(A) = 10 and v2(A) = 5. Bidder 1 would win the item since he has the higher

valuation. But any price between 5 and 10 would satisfy the CE requirement.

Assume that the auction chooses 10 to be the price for bidder 1. Bidder 2

does not want to change anything, but in that case, bidder 1 would have an

incentive to shade his bid and submit a price less than 10 but greater than 5

to remain the winner and, at the same time, reduce his payment.

In order to encourage bidders to report their valuations, an auction design

needs to ensure that the lowest prices are selected from the set of all possible

CE prices, i.e., the minimal CE prices. In the example, this would require a

price close to 5 for bidder 1.

Definition 2.11. Minimal CE prices minimize auctioneer revenue for an

efficient allocation X∗ across all CE prices.

Unfortunately, in general settings auction designs choosing outcomes with min-

imal CE prices lose the dominant strategy property of reporting true valua-

tions. A bidder’s payment in the VCG mechanism is always less than or equal

to his payment at any CE price (Bikhchandani and Ostroy 2002). For the

design of iterative combinatorial auction designs, the question of which prices

to choose from the set of CE prices remains. If the CE prices are significantly

higher than the VCG payments, bidders might have an incentive to speculate
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and shade their bids. Section 2.4.2 has shown that only VCG payments provide

a dominant strategy to report truthfully. But such outcomes can be outside

the core, which causes many problems, and results in unstable outcomes. So,

there is a dilemma for the designers of auction rules: The payment rule of an

auction can support either a dominant strategy or CE outcomes. Section 2.6.3

looks at this discrepancy.

In the following, we describe the Simultaneous Clock, which uses linear prices,

and the Ascending Proxy auction, which uses non-linear personalized prices

and implements minimal CE outcomes by using proxy bidding agents.

2.6.2.1 Simultaneous Clock

Porter et al. (2003) proposed the Simultaneous Clock, or Combinatorial Clock,

which uses linear anonymous ask prices.

It supports multi-unit settings as encountered in spectrum sales, where several

identical blocks are sold within one frequency band. In section 3.2, we formally

define the multi-unit setting when the two-phase design Combinatorial Clock

Auction (CCA) is introduced. It should not be confused with the Simultaneous

Clock which has a much simpler pricing rule than the CCA.

The Simultaneous Clock is a round-based auction format providing one clock

price for each item on sale. In the multi-unit case, there is one clock price for

each category. Prices start at zero or a reservation price. Within each round,

bidders state their demand by submitting as many bundle bids as they want,

assuming a XOR bidding language. Thereby, bidders can only accept prices

and are not allowed to use jump bids. The Simultaneous Clock uses linear

prices, i.e., bundle prices are simply the sum of the clock prices of included

items. After each round, the auctioneer aggregates the demand of all bidders

per item. In the multi-unit case, this is achieved by including the bid with the

most units from each bidder for each item. Clock prices of items for which the
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aggregate demand exceeds supply are increased by one tick, i.e., the increment,

and a new round is started. All bids from all rounds remain active throughout

the entire auction. Bids at current ask prices are called standing bids and

bidders with at least one standing bid are called standing bidders. Standing

bids can be bids from the current round or bids from previous rounds on items

for which the price has not ticked. If in one round the aggregate demand

exactly equals supply for all items, the auction terminates and assigns the

items according to the standing bids. If demand is less than supply, the WDP

is run with all bids from the auction to determine the allocation. Only if

this allocation includes all standing bidders is the allocation declared final.

Otherwise, the losing but standing bidders are given the chance to submit

higher prices. This means that the clock prices of items corresponding to the

non-standing but winning bids are ticked and the auction continues.

Bidding activity is controlled through an activity rule: Porter et al. (2003)

suggested a quantity-based rule. As prices tick upwards, a bidder cannot

increase the total quantity of demanded items.

A variant of the Simultaneous Clock uses the OR bidding language, which

requires some adjustments to the demand aggregation. The auctioneer has to

aggregate all the bids of a bidder on the specific item, instead of including only

the bid with the highest demand.

The auction rules are quite transparent, the linear anonymous prices are easy

for bidders to understand, and guide them sufficiently well to high levels of

efficiency (Scheffel et al., 2011). But especially towards the end of the auction,

bidders have an incentive to artificially reduce their demand to terminate the

auction at lower prices. This has a negative impact on efficiency. In addi-

tion, the activity rule requires some speculation or strategy from bidders since

switching from a highly valued smaller bundle to a larger bundle with a lower

value is prohibited. Thus, bidders might not bid straightforwardly and in-

stead want to maximize their options in later rounds by bidding on the largest
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bundle with positive payoff. Ausubel et al. (2006) address this problem in

their proposal of the Clock-Proxy auction (section 3.2.6.1), which combines a

clock and a proxy phase. They suggest an activity rule based on the revealed

preference of each bidder, which encourages straightforward bidding.

2.6.2.2 Ascending Proxy auction

The Ascending Proxy auction was suggested by Ausubel and Milgrom (2006a)

to preserve some of the advantages of the VCG auction and at the same time

avoid some of the disadvantages. When bidder valuations do not include com-

plementarities, the design terminates in the VCG outcome and preserves the

dominant strategy property. When this condition is not satisfied, it ensures

core outcomes, preventing most of the VCG weaknesses described in section

2.6.1.2.

The Ascending Proxy auction is a direct revelation mechanism that makes

the use of bidding proxies mandatory: Each bidder is required to report his

valuations to a proxy bidder, a bidding agent that submits bids on the bidder’s

behalf. In this way, the Ascending Proxy auction ensures straightforward

bidding. The Ascending Proxy auction implements non-linear, personalized

prices throughout the auction. With the proxies’ straightforward bidding, the

auction terminates with minimal CE prices (Parkes, 2001). When the bidder

submodularity condition (section 2.6.3) is satisfied, the payments support the

VCG payments.

The auction has the following structure: Initially, all ask prices are set to

zero. In every round, each proxy submits the demand set, i.e., all bundles

maximizing his payoff at current prices. If there are no new bids in one round,

the auction terminates. Otherwise, the auctioneer solves the WDP based on

all bids from all bidders from all rounds. If all bidders receive a bundle in

the current allocation, the auction terminates with this allocation. If there is

at least one unhappy bidder who does not win a bundle in round t, the ask
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prices for the next round t+ 1 are updated: The bundle prices of all bids from

unhappy bidders are increased by the minimum bid increment: pt+1
ask,i(S) =

ptask,i(S) +MinInc. Then, the new round is started.

When the prices reach a bidder’s valuation, he stops bidding. Then the proxy

agent submits an empty bid, i.e., a bid on the empty bundle with a price of

zero. This bidder now has at least this empty bid, which wins in each round to

serve the termination condition. If one of his bids fits well with other bidders’

bids, he wins with this bundle bid.

If a bidder wins the empty bundle, then he does not win any items and is not

required to make a payment.

The Ascending Proxy auction avoids the weaknesses of the VCG auction and

ensures core outcomes, making it an attractive design. As described above,

bidders are required to provide all valuations at the beginning, which does not

relieve the preference elicitation problem. But the Ascending Proxy auction

can also be implemented in a multi-stage version in which bidders start by

providing initial preferences and then get the opportunity to adjust and update

their preferences at several stages (Ausubel and Milgrom, 2006a). That allows

bidders to focus on the relevant packages, which in turn reduces costs for

determining valuations as well.

2.6.3 VCG outcomes versus core outcomes

In order to find an efficient allocation, it is necessary to reveal the bidders’ true

valuations. As pointed out above, the auction design should ideally provide

for a dominant bidding strategy to report true valuations. But the only direct

mechanism that ensures such dominant strategies is the VCG auction (Ausubel

and Milgrom, 2006b).

In general settings with complementarities, the VCG payments come with a

series of problems caused by the fact that the outcome does not necessarily lie
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in the core. Therefore, revenue can be unattractively low, so that losing bidders

can form coalitions and make counteroffers. In addition, they can collude or

engage in shill bidding to improve their position. Such auction outcomes are

unstable and therefore unfavorable. Thus, the VCG mechanism has hardly

been implemented in the field.

The Ascending Proxy auction leads to CE or core outcomes which prevent low

revenues and the forming of coalitions. But this comes at the price of losing

the dominant strategy property.

From a mechanism design perspective, it is interesting to check the relationship

of the dominant strategy property and the core property.

If there are no complementarities, VCG outcomes are in the core (Ausubel

and Milgrom, 2006b). With complementarities, all the problems described in

section 2.6.1.2 can arise. Bikhchandani and Ostroy (2002) show that in the

presence of complementarities, the BAS condition is necessary and sufficient

for the VCG outcome to be in the core.

Definition 2.12. The bidders are substitutes condition (BAS) is fulfilled

if ∀I ⊆ I and ∀ i ∈ I:

w(CI)− w(CI\I) ≥
∑
i∈I

(
w(CI)− w(CI\i)

)

The BAS definition requires the marginal value of a subset of bidders to the

grand coalition to be at least as high as the sum of the marginal contributions

of all bidders of the subset.

If the VCG outcome is achieved by the Ascending Proxy auction or an iterative

auction format that converges to minimal CE prices, straightforward bidding is

an ex post equilibrium strategy and both properties are fulfilled. But Ausubel

and Milgrom (2006b) show that the BAS condition is not sufficient for the

Ascending Proxy auction to terminate with VCG payments. Thus, there is
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no dominant strategy to report truthfully. They show further that an even

stronger condition, the bidder submodularity condition (definition 2.13), is

required to ensure that the set of minimal CE outcomes is equal to the set of

VCG outcomes, so that VCG payments are achieved and truthfully reporting

becomes a Nash equilibrium strategy profile (Ausubel and Milgrom, 2006b).

In addition, minimal CE outcomes avoid the VCG weaknesses when VCG

payments are not supported with minimal CE prices. This can happen when

only BAS, but not BSM is satisfied.

Definition 2.13. The bidder submodularity condition (BSM) is fulfilled

if ∀I ⊂ I ′ ⊆ I and ∀i ∈ I:

w(CI∪i)− w(CI) ≥ w(CI′∪i)− w(CI′)

The BSM condition requires that the BAS condition is satisfied for every subset

of the grand coalition. It is fulfilled if all bidders’ individual contributions are

higher when they join a smaller coalition I than a larger I ′. If BSM is fulfilled,

BAS is also satisfied.

If goods are substitutes, the BSM condition is satisfied. Unfortunately, it

is almost necessary that valuations be substitutes (Parkes, 2001). So this

condition is often not fulfilled in practical settings and, even worse, auctioneers

typically do not know whether it is satisfied or not.

2.7 Performance measures

Several desirable properties of auction mechanisms have been suggested, such

as high allocative efficiency, high revenue, low transaction costs for bidders,

high auction speed, fairness (equal treatment of bidders), transparency, and

scalability if used in a series of auctions (e.g., Pekec and Rothkopf (2003)).
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From an economic point of view, the key criteria for the assessment of an

auction outcome is efficiency, i.e., the distribution of items to bidders and

the economic value generated. In the case of sales of public goods, efficiency

maximizes the creation of income and wealth in an economy, which eventually

leads to more tax revenue in the future. Besides this most common measure to

assess auction performance, the literature uses other criteria to compare auc-

tion outcomes, such as robustness, price monotonicity, speed of convergence,

etc. In the experimental study in section 5, we use allocative efficiency and

auctioneer revenue as the main performance measures to compare the results.

Here, we provide formal definitions of both.

Assume an auction terminates with allocation X = (Si)i∈I and price set Ppay.

Let πi(Si,Ppay) denote the payoff for the bidder i for the bundle Si he has won

and πall(X,Ppay) :=
∑

i∈I πi(Si,Ppay) denote the total payoff of all bidders

for an allocation at the prices Ppay. Further, let Π(X,Ppay) =
∑

i∈I ppay,i(Si)

denote the auctioneer revenue as defined in section 2.1.

Definition 2.14. Allocative efficiency (or simply efficiency) is defined as

the ratio of the total valuation of the final allocation X to the total valuation

of an efficient allocation X∗ (Kwasnica et al., 2005):

E(X) :=
Π(X,Ppay) + πall(X,Ppay)

Π(X∗,Ppay) + πall(X∗,Ppay)
∈ [0, 1]

The comparison of efficiency levels in different value models and settings is

intricate. Depending on the setting, efficiency levels of allocations assigning

all items can be rather high or rather low. Therefore, we introduce relative

efficiency , E(X)∗, which takes this phenomenon into account by introducing

a baseline. For this, let P rand denote the mean of social welfare over all possible

feasible allocations, assuming all items are sold.
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Definition 2.15. The relative efficiency is defined as the ratio

E(X)∗ :=
Π(X,Ppay) + πall(X,Ppay)− P rand

Π(X∗,Ppay) + πall(X∗,Ppay)− P rand

This calculation follows the one used in Kagel et al. (2010). For this definition,

the relative efficiency of an efficient allocation is still 100%, while the mean

efficiency of random allocations of all items is the baseline 0. In contrast to

the first efficiency measure, allocations below this mean have negative relative

efficiency.

Another measure looks at the distribution of the overall economic value among

the auctioneer and bidders, i.e., the revenue distribution.

Definition 2.16. The auctioneer revenue share or auctioneer payoff

share is defined as the ratio of the auctioneer’s revenue to the total sum of

valuations of an efficient allocation X∗:

R(X) :=
Π(X,Ppay)

Π(X∗,Ppay) + πall(X∗,Ppay)
∈ [0, E(X)] ⊂ [0, 1]

We use the term revenue interchangeably with auctioneer revenue share de-

pending on the context.

Definition 2.17. The bidder revenue or bidder payoff is defined as the

ratio of the bidders’ revenues to the total sum of valuations of an efficient

allocation X∗:

U(X) :=
πall(X,Ppay)

Π(X∗,Ppay) + πall(X∗,Ppay)
∈ [0, E(X)] ⊂ [0, 1]

The sum of R(X) and U(X) equals E(X) of an auction outcome. The delta

of E(X) and 100% corresponds to the loss in the auction, i.e., the value that

cannot be distributed among the auctioneer and the bidders.



Chapter 3

Auction formats

You have to learn the rules of the game.

And then you have to play better than anyone else.

Albert Einstein

This section introduces the two auction formats which are used in the exper-

imental study in section 5: Simultaneous Multi-Round Auction (SMRA) and

Combinatorial Clock Auction (CCA). Both auction designs have been applied

in the field to sell spectrum in multi-unit settings: The SMRA was introduced

by the FCC in 1994 to sell spectrum licenses in the US and since then has

been used in numerous spectrum sales worldwide with only minor rule adjust-

ments. The Combinatorial Clock Auction (CCA) was recently proposed as an

alternative to SMRA (Ausubel et al., 2006; Cramton, 2009b), promising strong

incentives for truthful bidding and highly efficient results. Different versions of

the CCA have been suggested which are addressed at the end of this section.

For the experiments, we used the rules which were applied in the Austrian 2.6

GHz auction in 2010.

55
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3.1 Simultaneous Multi-Round Auction

The Simultaneous Multi-Round Auction (SMRA) is a generalization

of the English auction for more than one item. All items and units have

individual prices. In fact, SMRA treats multiple units of the same item as

individual items. For brevity, we use the term item for all units of all items

and state explicitly the difference to units where required.

All items are auctioned simultaneously in rounds, and bidders can bid on any

items but are not allowed to submit bundle bids. New bids must increase

the current item price by at least a predefined minimum increment. The

possibility of further increasing the bid price depends on the specific imple-

mentation of SMRA. Some countries allow arbitrary increases, others limit

further increases to predefined increments to prevent signaling by using the

trailing digits of the bid price to transmit information (Niemeier, 2002; We-

ber, 1997). These predefined increments are referred to as click-box. The

maximum number of bids a bidder can place in one round is governed by an

activity rule. Each item requires a certain number of bid rights depend-

ing on the properties of the item (e.g., this can be the number of MHz of a

spectrum block in the domain of spectrum sales). The number of a bidder’s

bid rights cannot increase during the course of the auction. In order to keep

a bid right, a bidder is required to use it. Bid rights that are not exerted in

a round are lost for the remaining rounds of the auction. Depending on the

implementation, several activity levels are possible. A stacked activity rule

defines different phases of required activity from the bidders. E.g., in a 50%

activity phase a bidder is required to use only half of his bid rights in order

to keep the current number of bid rights. After each round, the provisional

winner of each item is determined by the highest bid price. Ties are broken

randomly.

Depending on the chosen information policy , the bids from the previous

rounds are revealed at the beginning of each round, including the bidder iden-
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tity, item, bid price, and whether it was declared to be provisionally winning.

Information provided to bidders can be used by them for tactics and specu-

lation. Some versions of SMRA include withdrawals which allow a bidder

to withdraw a provisionally winning bid with the condition that he must pay

the bid price if no other bidder bids on the withdrawn item. Other versions

give each bidder a number of waivers. When a bidder uses a waiver, he does

not lose any bid rights even if he uses fewer than required. Of course, these

instruments can be included in a bidding tactic by bidders. In section 5.4.2

we analyze bidding tactics used by subjects in the lab experiments.

The auction terminates for all items at the same time if in a round no bidder

places a single bid, i.e., raises the price for any bid. The bidder holding the

highest bid for each item is assigned the item. SMRA uses the first-price rule

as described in section 2.4.1, so each winning bidder is required to pay the bid

price for the won item. If items are substitutes and bidders are price takers,

the auction terminates in competitive equilibrium (Milgrom, 2000).

3.1.1 Exposure risk

Cramton (2009a) discusses a number of problems in spectrum auctions with the

SMRA, most notably the exposure problem and limited substitution (section

3.1.2). While SMRA is compelling due to its simple auction rules, there is one

major problem for bidders with complementary valuations. This is called the

exposure risk. It describes a bidder’s problem of winning only a fraction of

the intended bundle and paying a price exceeding the valuation of the smaller

subset of items. An example illustrates the point. Assume a bidder with

valuations of 10 for each of the items A and B, and a valuation of 30 for the

bundle of A and B. If this bidder wants to bid the synergistic valuation of the

bundle, he might bid more than 10 for each item. If prices rise further, he

might not be able to win both items and end up winning only one item at a

price higher than his valuation of 10.
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3.1.2 Limited substitution

The problem of limited substitution is caused by the activity rules employed

by regulators. The monotonicity requirement does not allow bidders to submit

bids on more items than in the previous round (with the exception of activity

levels lower than 100%). Sometimes, a less preferred alternative can have more

items, which can lead to inefficiencies in cases where a bidder is outbid on the

preferred allocation. These activity rules lead to eligibility management

and the parking of eligibility points in less desirable items (Salant, 1997),

which have been observed in the context of FCC spectrum auctions (Porter

and Smith, 2006). Sometimes a bidder might also prefer to bid on a package

with a higher number of eligibility points rather than the preferred package of

items in order to have the option of returning to it later.

In contrast to clock auctions, SMRA also allows various forms of signaling and

tacit collusion. Jump bidding is usually seen as a strategy to signal strength

and preferences and post threats. Sometimes, even the standing bidder in-

creases his winning bid for the same purpose. However, there are more reasons

for jump bids, for instance avoiding ties (Boergers and Dustmann, 2003).

3.1.3 Equilibrium strategies

If bidders have substitute preferences and bid straightforwardly, the SMRA ter-

minates in a Walrasian equilibrium (Milgrom, 2000), i.e., an equilibrium with

linear prices (Gul and Stacchetti, 1999; Kelso and Crawford, 1982). Straight-

forward bidding means that a bidder bids on the bundle of items which max-

imizes his payoff at the current ask prices (section 2.6.2). However, Milgrom

(2000) has shown that with more than three bidders and at least one non-

substitutes valuation, no Walrasian equilibrium exists. Bidder valuations in

spectrum auctions typically include complementarities. Brusco and Lopomo

(2002) demonstrate the possibility of collusive demand reduction equilibria in
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the SMRA. In an environment with substitutes and complements, SMRA re-

sults in an exposure problem (section 3.1.1). A number of lab experiments

document the negative impact of the exposure problem on the performance of

the SMRA (Brunner et al., 2010; Goeree and Lien, 2010b; Kagel et al., 2010;

Kwasnica et al., 2005). Therefore, the exposure problem has become of central

concern. Goeree and Lien (2010a) provided a Bayes-Nash equilibrium analysis

of SMRA, considering complementary valuations and the exposure problem.

They show that due to the exposure problem, the SMRA may result in non-

core outcomes, where small bidders obtain items at very low prices and seller

revenue can decrease with the number of bidders just as in the VCG auction

(Ausubel and Milgrom, 2006b). Regulators have tried to mitigate this problem

via additional rules, such as the possibility to withdraw bids, provided that

the bidders make corresponding new bids on equivalent spectrum. However,

as mentioned above such rules can also provide incentives for gaming behavior.

3.2 Combinatorial Clock Auction

There have been similar suggestions for this auction format by Cramton

(2009b) or Ausubel et al. (2006) who call this design Package Clock or Clock-

Proxy auction. Work on these mechanism rules was nourished by the attempt

to address the major limitations of SMRA and to avoid the drawbacks of the

VCG auction. SMRA is quite simple in its rules and effectively guides bidders

in discovering the necessary valuations. At the same time, it makes bidding

very complicated because in settings with complementarities, bidders have to

handle the exposure problem. Further, the first-price rule gives incentives for

demand reduction, and the transparent information feedback opens up pos-

sibilities for collusion and signaling tactics, etc. Altogether, there is ample

space for tactics in SMRA. In an attempt to reduce the incentives for com-

plex bidding tactics and to foster price discovery (which is especially relevant
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Figure 3.1: CCA as a two-stage auction design

in domains with expensive value determination such as the sale of spectrum

licenses), the idea of the CCA is to use a clock phase followed by a phase of

supplementary bids to enhance efficiency.

In our experiments, we used the rules of implementation as applied in the 2.6

GHz auction in Austria and refer to it as the Combinatorial Clock Auction

(CCA). We address differences to the Clock-Proxy auction and the Package

Clock in section 3.2.6.

3.2.1 CCA as a two-stage design

The Combinatorial Clock Auction (CCA) makes explicit use of the multi-

unit setting often encountered in spectrum sales. CCA is a two-stage combi-

natorial auction design with a principal stage to determine the number of

units each bidder wins in each band, and an assignment stage to determine

the specific blocks of each band (figure 3.1).

We focus on the principal stage from now on and leave the assignment stage

aside since in the field the principal stage is most important and receives all
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the attention. We use the terminology of the spectrum domain for which the

CCA has been suggested and refer to blocks and bands instead of units and

items.

The principle stage has two phases: Bids for packages of blocks are made

through a number of sequential rounds (the primary bid rounds or clock

phase) followed by a final sealed-bid round (the supplementary bids

round). In the primary bid rounds the auctioneer announces prices from a

combinatorial clock with one clock price for each spectrum band (i.e., category

of items) k ∈ K. The bidders state their demand at the current price levels,

i.e., the number of blocks within each band. Prices of items (i.e., spectrum

bands in the context of spectrum auctions) with excess demand are increased

by a fixed increment and a new round is started until there is no longer any

excess demand. Since there are no provisional winners, bidders have to resub-

mit their bids in every round if they want to remain active. Jump bidding

is not possible. In the primary bid rounds, bidders can submit a bid on only

one package per round. This rule is different to the proposal by Ausubel et al.

(2006) (section 3.2.6.1).

An activity rule based on eligibility points is applied. This means a bidder

cannot bid on combinations requiring higher eligibility than in the previous

round. The primary bid rounds allow for price discovery, while the payment

rule is intended to induce truthful bidding. In the supplementary bids round,

bidders can submit multiple bids on arbitrary bundles, whereby the bid price is

limited by the anchor activity rule (3.2.2). The winner determination after

the supplementary bids round (section 3.2.3) involves consideration of all bids,

which have been submitted in the primary bid rounds and the supplementary

bids round and selects the revenue-maximizing allocation. The bids by a single

bidder are mutually exclusive, i.e., the CCA uses an XOR bidding language.

The CCA uses a core-selecting payment rule to guarantee stable auction

outcomes. Section 2.4.2 shows that VCG outcomes are efficient and give bid-
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ders the dominant bidding strategy of reporting true valuations. In order to

minimize incentives for bid shading, the CCA payment rule selects closest-

to-Vickrey core prices, i.e., the distance of these core prices to the VCG

prices is minimized by minimizing the Euclidean distance. Day and Milgrom

(2007) and Day and Raghavan (2007) discuss an algorithm to determine such

bidder-Pareto-optimal core payments, which guarantees a unique outcome. We

implemented an iterative approach to calculate such prices, as suggested by

Maldoom (2007) (section 3.2.4.2).

While the VCG payment rule leads to a dominant strategy equilibrium, a

core-selecting payment rule does not, and a bidder might be able to reduce

his payments by bidding less, even if the incentives are lower than in a pay-

what-you-bid sealed-bid combinatorial auction. Goeree and Lien (2010b) show

in a Bayesian-Nash equilibrium analysis that in a private values model with

rational bidders, auctions with a core-selecting payment rule are on average

further from the core than auctions with a VCG outcome. They also show

that there is no Bayesian incentive-compatible core-selecting auction when the

VCG outcome is not in the core. The core-selecting payment rule used in

the CCA also shares another unattractive feature with the VCG payment rule

introduced by Day and Milgrom (2007), namely revenue non-monotonicity

(Lamy, 2009). This means, auctioneer revenue can decrease with additional

bids in the auction.

3.2.2 Anchor activity rule

Successful price discovery depends on the incentives for bidders to reveal their

preferences truthfully. Prices after the primary bid rounds are meant to re-

duce value uncertainty in the market. Bidders can then pay attention to the

most promising bundles and put effort into determining these valuations. An

activity rule needs to be employed to prevent bidders from holding back their

true valuations until late in the auction (bid sniping) and to encourage them
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to report the payoff-maximizing bid in each round of the auction. Bidders

should not be able to shade their bids and then provide huge jump bids in the

supplementary bids round.

An eligibility points activity rule is used to enforce activity in the pri-

mary bid rounds. The number of a bidder’s eligibility points is non-increasing

between rounds, and it limits the number of items the bidder can bid on in

subsequent rounds.

In the supplementary bids round, the anchor activity rule applies as follows:

• There is no limit on the supplementary bid that can be made for the

package bid in the final primary bid round.

• The supplementary bid for any other package S is subject to a cap de-

termined in the following way:

1. First, we determine the last primary bid round in which the bidder

was eligible to bid for package S. Call this round the anchor round

n. This will either be the final round or some round in which the

bidder dropped his eligibility to bid and gave up the opportunity to

bid for packages the size of S in later primary bid rounds.

2. Suppose bidder i bid for package T in the anchor round n. Call

this package the anchor combination T . Let pmax
bid,i(T ) de-

note the highest bid of bidder i for package T which is the sup-

plementary bid for this package, if he has made one, or other-

wise the highest primary rounds bid. The supplementary bid for

package S cannot exceed the highest bid pmax
bid,i(T ) plus the price

difference between packages S and T that applied in round n

(i.e., the differing items are priced at the ask prices in round n):

psuppbid,i (S) ≤ pmax
bid,i(T ) + pnask(S)− pnask(T )

Note that after bidding on package T in the final primary bid round, a bidder

can still submit a bid on a larger bundle S in the supplementary bids round.
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However, the bid is limited by the price difference between packages S and T

of round n. Since he had the opportunity to choose between S and T back in

round n, and opted for T , the bidder revealed the relative value of S and T . In

the supplementary phase, the bidder cannot reverse this reported preference.

This is also true for packages S ′ that are smaller than the package T of the final

primary bid round. The maximal bid price for S ′ is limited by the same idea:

Since the bidder chose the larger package T instead of the smaller package S ′,

he revealed the premium that he is willing to pay for the larger package T

relative to S ′. The anchor activity rule precludes him from increasing his bid

for S ′ relative to T in the supplementary bids round.

Cramton (2009b) describes this as the simplified revealed preference activity

rule in his definition of the Package Clock (section 3.2.6.2). If a bidder is able

to follow a straightforward bidding strategy, this activity rule does not restrict

him in revealing his true valuations. But if the payoff-maximizing bundle

requires more than available eligibility points, he cannot bid straightforwardly.

Thus, Cramton (2009b) or Marsden et al. (2010) argue that the eligibility

point activity rule may encourage bidders to bid on the largest bundle with

positive payoff to maximize eiligibility points in later rounds instead of bidding

straightforwardly.

3.2.3 Winner determination

The result of the principal stage is the determination of winners and the re-

spective number of blocks each winner receives within each band. The CCA

makes use of the multi-unit character of spectrum auctions. Within one band

of spectrum, all blocks can be considered identical. Thus, bidders can state

their demand by simply announcing the number of blocks they are willing to

buy within each band. We amend the definition of the economic setting of

section 2.1 by introducing quantities of each item. For each band (or item)
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k ∈ K = {1, ...,m} let Qk denote the number of identical blocks (or units)

available of item k. The vector Q = (Q1, ..., Qm) ∈ Zm
+ describes the avail-

able number of blocks in each band. As defined in section 2.1, the bidders

I = {1, ..., n} compete for the spectrum blocks on sale. In the CCA a package

bid in round t contains the bid price ptbid,i(a) and the bundle a = (a1, ..., am)

specifying the number of lots within each band. Denote the set of all possible

bundles as A = {(0, ..., 0), ..., (Q1, ..., Qm)}. The bid price of bundles the bid-

der has not bid on throughout the primary bid rounds and the supplementary

bids round are set to zero. If a bidder has bid multiple times on the same

package a, the revenue-maximizing combination only includes the highest bid

on a package. Therefore, we can exclude all lower bids and define pbid,i(a) as

the highest bid on a of all rounds: pbid,i(a) := maxt{0, ptbid,i(a)}. The winner

determination can now be stated for the multi-unit case:

max
∑
a∈A

∑
i∈I

xi(a)pbid,i(a) (Multi-unit WDP) (1)

s.t. ∑
a∈A

xi(a) ≤ 1 ∀ i ∈ I∑
a∈A

∑
i∈I

xi(a)a ≤ Q

xi(a) ∈ {0, 1} ∀ i ∈ I, a ∈ A

As in the WDP, the solution to the Multi-unit WDP is the revenue-maximizing

allocation of blocks to bidders. It does not have to be unique. If there is a set

of optimal combinations, one is determined randomly to be the final allocation

of the CCA. The first constraint implements the XOR bidding language, i.e.,

each bidder can win at most one package bid. The second constraint ensures

that the allocation does not assign more blocks to bidders than there is supply.

It also allows for blocks to remain unassigned.
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3.2.4 Closest-to-Vickrey core payments

The payment rule plays a decisive part in creating incentives for truthful bid-

ding. First-prices as in SMRA or clock auctions create incentives for demand

reduction, especially for big bidders who recognize the negative impact of their

demand on price levels (Ausubel and Milgrom, 2002). The consequences are

complex bidding tactics. With VCG payments, on the other hand, there is a

dominant strategy to reveal the true valuations because each winner pays only

the opportunity costs of his winnings (section 2.4.2). Section 2.6.1.2 discussed

several serious deficiencies of the VCG auction which can occur if the VCG

outcomes is outside the core. One major problem is that the payments of win-

ners can be so low that a coalition of losers has actually bid more than what

winners are required to pay. Such a coalition could try to negotiate with the

auctioneer after the auction has terminated.

The solution is to raise payments of winners to ensure that they are in the

core (section 2.4.3). If the VCG payoffs are already within the core, then they

can be used as final payoffs to determine the final prices. If they are not in the

core, then there is at least one coalition of bidders which could make a more

attractive counteroffer to the auctioneer. In that case, the prices need to be

increased to prevent such coalitions and to guarantee a core outcome. In order

to accomodate the combined interest of bidders (as opposed to the auctioneer),

the bidder-optimal payments (i.e., the lowest possible combined payments) are

chosen from the core. We call such prices minimal core prices, and the

implied bidder-Pareto-optimal payoffs maximal core payoffs.

Since those are not necessarily unique, Day and Milgrom (2007) suggested us-

ing the closest-to-Vickrey core prices. In order to give bidders the least possible

incentive to deviate from reporting true valuations, the required payments are

split so that the Euclidean distance to the VCG payments is minimized. So

prices are as high as necessary to prevent any coalitions of losing bidders from

offering a more attractive deal to the auctioneer and they are as low as possible
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Bidder A B AB
1 28*
2 20*
3 32
4 14
5 12

Table 3.1: Example of core payments (Day and Cramton, 2008)

to foster truthful bidding.

An example illustrates the point (Day and Cramton, 2008). Assume two items

A and B and five bidders 1 to 5 with valuations as given in table 3.1. The

winning allocation is marked with a star. Figure 3.2 shows each bid represented

with a separate line (B1 through B5) constraining the payments of the winning

bidders 1 and 2. The VCG payments would be 14 for bidder 1 and 12 for bidder

2 in this example which are given by the losing bids of bidders 4 and 5. Clearly,

bidder 3’s bid price of 32 for the package AB is higher than the combined

VCG payments 14+12=26 of the winning bidders. Thus, the VCG outcome

is outside the core. To prevent counteroffers from bidder 3 the combined core

payments need to be at least 32. The bidder-optimal core payments are given

by this minimum of 32 (the bold line in figure 3.2). The CCA chooses the

payments which are closest to the VCG payments leading to payments of 17

and 15 for bidders 1 and 2 respectively.

Day and Raghavan (2007) proposed a constraint-generating method to deter-

mine these bidder-optimal core prices. It is based on the following idea. The

algorithm starts by determining the set of winners W by solving the original

WDP and to determine VCG payoffs for the bidders. The goal is to raise

payments of winners to ensure a core outcome. In the core the combined pay-

ments exceed the counteroffers of all possible coalitions. So each such coalition

defines a constraint on the core payments. The number of possible coalitions

that must be considered grows exponentially with the number of bidders. The
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Figure 3.2: Example for closest-to-VCG prices

method proposed by Day and Raghavan (2007) uses another optimization to

find the core constraint which is violated the most by the current solution.

This constraint is added to the original optimization to increase pay prices

and by this prevent the coalition of bidders from making a counteroffer. This

is repeated until there is no coalition left that could suggest a better deal to

the auctioneer. Cramton (2009b) argues that this approach is highly efficient

because in practical applications there are usually only a handful of violated

constraints which let the procedure terminate after a few iterations.

Besides creating incentives to truthfully report valuations, bidder-optimal core

pricing has some attractive properties: When the VCG outcome is in the core,

the closest-to-Vickrey core price rule finds the VCG prices. So bidders have an

incentive to bid truthfully. Whenever the VCG outcome is not in the core, the

closest-to-Vickrey core prices ensure that payments are high enough to prevent

the typical VCG problems of low revenue (Day and Milgrom, 2007).

For the lab experiments, we amended the MarketDesigner platform and im-

plemented an iterative approach proposed by Maldoom (2007) to compute the
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closest-to-Vickrey core prices. The rest of this section provides an overview of

this approach.

3.2.4.1 Inputs for the iterative approach

Maldoom (2007) suggests an approach that first determines the total revenue

winners are required to pay and then minimizes the distance from VCG prices.

This section gives some notation and definitions required for the description

of the approach which is based on payoffs instead of prices directly.

Since valuations are not known and only bid prices pbid,i(a) can be observed, let

πbid,i denote a bidder i’s payoff relative to his bid price, i.e., πbid,i := pbid,i(a)−
ppay,i(a). Further, let πbid = (πbid,i)i∈I denote the vector of relative payoffs of

all bidders in I.

We first determine the VCG payoffs πV CG
bid,i based on the revealed information:

The solution of the multi-unit WDP gives the coalitional value w(CI) of the

set of all bidders I. The calculation of the VCG payment for each winning

bidder i requires computing the coalitional valuation w(CI\i) for the set of

bidders with the winning bidder i taken out. This means solving the WDP

for each winner based on the set of bids with those of bidder i removed. As

described in definition 2.7, each winning bidder i is given a discount on his bid

price pbid,i(a) for the bundle a, determined by the delta in coalitional values:

pV CG
pay,i (a) = pbid,i(a)− (w(CI)− w(CI\i)) (2)

The corresponding payoff is therefore:

πV CG
bid,i = pbid,i(a)− pV CG

pay,i (a) = w(CI)− w(CI\i) (3)

Core outcomes guarantee that the total of the winners’ payments is enough

to prevent any coalition CI of bidders from offering a more attractive solution
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to the auctioneer. These payments constrain the combined payoff of winners.

Each possible coalition of a subset of bidders I defines a cap α(CI), which has

to be satisfied by a payoff vector in the core. With this, it is possible to restate

the definition of the core (Maldoom, 2007):

Core (I, w) = {(ΠCI , πbid) : πbid,i ≥ 0,∀I ⊆ I :
∑
i∈I

πbid,i ≤ α(CI)} (4)

with α(CI) = w(CI)− w(CI\I)

As pointed out, the number of possible coalitions, and therefore of constraints,

grows exponentially with the number of bidders. So even for settings of mod-

est size, there can be a large number of constraints, and enumerating all of

them might not be feasible. But checking a given payoff vector for its core

membership is comparably easy. Winning bids of the original WDP must still

be optimal if all bids of bidder i are reduced by an amount πbid,i reflecting

the new pay prices (Maldoom, 2007). This corresponds to implicit bid shad-

ing where each bidder reduces the bid prices by his target payoff. Thus, if

winning bids are reduced to the core prices with a floor at zero and all other

bids are reduced by the same amount to ensure the original preferences of the

bidder, then the originally winning bids would still win. Maldoom (2007) uses

a π-WDP reflecting this idea:

max
∑
a∈A

∑
i∈I

xi(a) max(pbid,i(a)− πbid,i, 0) (π-WDP) (5)

s.t. ∑
a∈A

xi(a) ≤ 1 ∀ i ∈ I∑
a∈A

∑
i∈I

xi(a)a ≤ Q

xi(a) ∈ {0, 1} ∀ i ∈ I, a ∈ A
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This corresponds to the original WDP, where the bid prices of bidder i are

adjusted with πbid,i.

A test on the core membership of a payoff can easily be performed now. A

payoff vector πbid ∈ RI
+ lies in the core if and only if the solution of the WDP

is also a solution to the π-WDP (Maldoom, 2007). In that case payoffs are low

enough and payments high enough to prevent any counteroffers from losing

bidders.

3.2.4.2 Iterative approach

With the definitions from above, Maldoom (2007) describes an algorithm to

determine the closest-to-Vickrey core payments pctVpay,i. We used it for the im-

plementation of the CCA in our lab experiments. The following description

follows that of Maldoom (2007) and has only been amended in some comments

and transferred to the notation used in this thesis.

1. Initialize the set of constraints to be R = {W} with the set of all winners

of the original WDP, i.e., a single constraint on the sum of all winners’

payoffs. Together with the non-negativity constraints, this ensures that

the set of feasible πbid,i is bounded.

2. Solve the linear program

max
∑
i∈W

πbid,i (6)

s.t.∑
i∈CI

πbid,i ≤ α(CI) ∀ I ∈ R

πbid,i ≥ 0 ∀ i ∈ I

If there is not a unique solution, pick one randomly.
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3. Compute the corresponding π-WDP and check whether the solution of

the original WDP is still optimal. If so, the winners’ combined payments

are sufficiently high. In this case go to step 7.

4. When the set of winners of the π-WDP is not the same as the original

set of winners, there is a coalition of bidders I that can offer a deal to the

auctioneer which puts themselves and the auctioneer in a better position.

Therefore, we need to add the coalition CI to the set of constraints, i.e.,

we add a new subset I to R, consisting of those original winners who are

no longer winners in the π-WDP.

5. Compute the corresponding α(CI) for the subset I added to R in step

4 representing the new core constraint implied by the new subset of

bidders.

6. Return to step 2 to compute the new (lower) optimal payoff vector.

7. Let T =
∑

i∈I πbid,i be the total payoff of the current intermediate solu-

tion. This is the maximal combined core payoff of all winners.

8. Determine the payoffs closest to the VCG payoffs πbid
V CG,i by solving the

quadratic program

min
∑
i∈W

(πbid,i − πV CG
bid,i )2 (7)

s.t.∑
i∈CI

πbid,i ≤ α(CI) ∀ I ∈ R

πbid,i ≥ 0 ∀ i ∈ I∑
i∈W

πbid,i = T (8)

9. Compute the corresponding π-WDP and check whether the solution of

the original WDP is still optimal. If so, terminate.
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10. Where the set of winners of the π-WDP is not the same as the original

set of winners, the outcome is outside the core. To prevent any coalitions

of losing bidders that could offer more attractive deals add a new subset

I to R consisting of those original winners who are no longer winners in

the π-WDP.

11. Compute the corresponding α(CI) for the subset I added to R in step

10.

12. Return to step 8 and iterate to exclude any coalitions of that kind.

When the algorithm terminates, the value of πbid,i represents the closest-to-

Vickrey core payoffs of a winning bidder i, which directly implies the closest-

to-Vickrey core price pctVpay,i = pbid,i − πV CG
bid,i .

3.2.5 Bidding strategies

While SMRA provides a number of opportunities for auction tactics such as

signaling or budget bluffing, the opportunities for the respective tactics are

much reduced in the CCA. The possibility to submit bundle bids avoids the

exposure problem and reduces problems of eligibility management. Since bid-

ders are only allowed to accept prices in the primary bid rounds, signaling is

prevented to a great extent. We showed above that bidders can bid their full

valuation in the supplementary bids round if they were able to bid straightfor-

wardly in the primary bid rounds. The core-selecting payment rule mitigates

demand reduction (Ausubel et al., 2006), which may be a problem in a Si-

multaneous Clock with first-price payments (section 2.6.2.1). Since there is no

dominant strategy equilibrium, the strategic thinking of bidders in the sup-

plementary bids round boils down to the questions of (i) which bundles to bid

on, and (ii) how much to bid for these bundles? We show that bidders have

incentives to bid on a large set of different bundles and also to shade their bids

to some extent.
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3.2.5.1 Bundle selection

Bidders need to decide which bundles they want to bid on in the supplementary

bids round: All possible bundles, a selected set, or none. A bidder with a high

valuation for a package A might not want to submit bids on other packages in

order to increase the likelihood of winning package A. With a VCG payment

rule, such speculation does not make sense, and bidders have a dominant

strategy of revealing the valuations for all their bundles. This means that even

if the bidder wins a smaller bundle, his payoff cannot decrease compared to

the larger bundle.

We want to illustrate this point with a simple example, which played a role in

our experiments, where bidders actually did not bid on all possible bundles but

only on a subset and the bundle selection was guided by the valuation of the

bundle. Assume there are only two items A and B and two bidders 1 and 2.

Both bidders have valuations for individual items but, for the sake of simplicity,

none of the bidders has a value for the bundle. If v1(A)+v2(B) < v2(A)+v1(B)

holds true, the efficient solution is to sell A to bidder 2 and B to bidder

1. Assume further that A is the higher valued item for both bidders and

bidder 1 speculates that he should not bid on B in order to win the higher

valued item A. His VCG payoff is v1(A) + v2(B)− v2(A) if he reports a value

v1(B) = 0. In contrast, his VCG payoff is v2(A) + v1(B) − v2(A) = v1(B) if

he reports truthfully. It would only be profitable for bidder 1 to report a zero

bid on B if v1(B) < v1(A) + v2(B) − v2(A), but this is not possible, because

v1(A) + v2(B) < v2(A) + v1(B). Assuming a traditional VCG auction, this

rationale extends to one of the value models we used in the lab experiments,

where all bidders are interested in four items, but at least one of the four

bidders cannot obtain these four items since there are only fourteen items on

sale: If a bidder does not bid on a smaller bundle which has a positive value

to him, he cannot increase his own VCG payoff, but risks not even winning

the smaller bundle.
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Strategies in core-selecting auctions are no longer dominant (Goeree and Lien,

2010b), but there is also no rationale for bidders to submit only a subset of

the available bundles.

3.2.5.2 Bid shading

In CCA, there is no dominant strategy of truthfully reporting all valuations

as is the case in VCG. Bidders can try to shade their bids because, in contrast

to the VCG auction, a bidder’s payment is influenced by his own bid price.

That implies that a lower bid price for a package could actually lead to a lower

payment by the bidder in the CCA. Given the fact that the CCA has been

used in high-stakes spectrum auctions, such speculation is not unlikely. Recall

the example of table 3.1 (Day and Cramton, 2008).

There, five bidders 1 to 5 had valuations for two items A and B. As described

in section 3.2.4, the winning allocation was to give A to bidder 1 and B to

bidder 2. The sum of the VCG payments was 26, which was outside the core

due to the price of 32 bid by bidder 3 for AB. Thus, the CCA chose closest-

to-Vickrey core payments of 17 and 15 for bidders 1 and 2 respectively.

Now, if bidder 1 shaded his bid to 15 in this example, the coalition of bidders

1 and 2 would still win with the same VCG payment, but the minimal core

prices of both bidders would be different. Bidder 1 would only pay 15, while

bidder 2 would have to pay 17 totaling 32, i.e., the bid price of bidder 3. So,

by shading his bid, bidder 1 would manage to successfully reduce his payment.

If such auctions are modeled as a complete information game, bidder-optimal

core prices yield the VCG outcome when it is in the core and result in higher

auctioneer revenue when the VCG outcome is outside the core, avoiding the

VCG drawback (Day and Milgrom, 2007). Here, bidders follow a truncation

strategy, where all reported values of non-null goods assignments are reduced

by a non-negative constant. If modeled as an incomplete-information game,
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Goeree and Lien (2010b) showed for a simple setting that risk-neutral bidders

have an incentive to shade their bids and that the resulting outcome yields

revenues that are lower than with VCG and inefficient outcomes that are on

average further from the core than VCG outcomes.

In the CCA, bidders who remain active until the end of the primary bid rounds

face the question of whether they are required to bid on the bundle of the last

primary bid round if they want to ensure that they win it. In light of the anchor

activity rule, which limits other bidders in the supplementary bids round, and

the fact that increasing the bid can result in higher pay prices, the question

is how much to raise the last bid in the supplementary bids round in order

to win the bundle. For risk-averse bidders in particular, this might serve as a

guideline in the lab as well.

Theorem 3.1. If demand equals supply in the last primary bid round, a bid-

der’s standing bid from the last primary bid round cannot become losing after

the supplementary bids round if he increases it by a small amount ε.

This implies that, with the CCA activity rule, a bid from the last primary

bid round can only become losing if in the last primary bid round demand is

strictly below supply. In the following corollary, Pprim
ask describes the ask prices

in the last primary bid round, and pprimbid,i (a) is the bid price of bidder i on a

bundle a, submitted in the last primary bid round.

Corollary 3.1. If in the last primary bid round supply exceeds demand by a

package M , a supplementary bid psuppbid,i > pprimbid,i (a) + M ∗ Pprim
ask cannot become

losing.

We provide proofs in Bichler et al. (2011). If the auctioneer does not reveal

by how many items supply exceeds demand after the primary bid rounds, a

standing bidder i after the primary bid rounds needs to take into account the

possibility that all other bidders I \ i might reduce their demand to zero in
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the last round. Since M is the complement of his own bid, this leads to a very

high safe supplementary bid. However, the actual amount required might be

much lower.

3.2.6 Relation to the Clock-Proxy auction and the

Package Clock

At the beginning of this chapter, we pointed out that the above introduced

CCA rules are close to those of similar proposals, namely the Clock-Proxy

auction (Ausubel et al., 2006) and the Package Clock (Cramton, 2009b). In an

attempt to reduce the incentives for complex bidding tactics and to foster price

discovery, Ausubel et al. (2006) suggested the Clock-Proxy auction. It takes a

simple Simultaneous Clock and runs a proxy phase after the clock phase has

terminated. The Clock-Proxy design was the main basis for the Package Clock

and the CCA as used in our experiments.

The following sections briefly describe the rules of the Clock-Proxy auction

and the Package Clock and highlight the differences to the CCA as used in our

experiments.

3.2.6.1 Clock-Proxy auction

Ausubel et al. (2006) suggested the Clock-Proxy auction to capture the attrac-

tive properties of two formats: It starts with a Simultaneous Clock and closes

with an Ascending Proxy auction.

In the clock phase, there is one clock with an individual price for each

item category (spectrum band). In each round, bidders state their demand

as package bids by reporting the intended quantities they are willing to buy

at current prices. In contrast to the CCA, bidders in the Clock-Proxy auction

can submit multiple bids per round. At the end of each round the auctioneer
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increases the clock price of items for which demand exceeds supply by a fixed

increment and announces a new round. Information feedback for bidders is

reduced to the new clock prices and the excess demand in order to reduce

options for signaling and speculation. The clock phase terminates when there

is no excess demand on any item.

The intention of the clock phase is to rule out the exposure problem by al-

lowing for package bids and to allow for price discovery through the iterative

approach. In many settings of spectrum sales, the number of possible pack-

ages is very high, and determining bundle valuations can be rather expensive.

Some guidance is then necessary for bidders to help them identify the most

promising bundles. The clock phase provides for this with a simple structure

and linear anonymous prices, i.e., item-based prices which are the same for

all bidders. Price discovery is threatened when bidders do not report their

true demands. Therefore, an activity rule needs to be specified accordingly.

Ausubel et al. (2006) suggested using an activity rule that ensures consistency

in the bids submitted by each bidder, i.e., the revealed preferences. We explain

this rule in detail at the end of this section. With the clock phase alone, many

bidders cannot submit bids on all bundles that they want, since only one price

path is covered. If the required bids cannot be submitted, efficiency can also

be negatively impacted.

Thus, after the clock phase comes a proxy phase, with the intention of

terminating the auction with a core outcome. Bidders report their bundle va-

luations to proxies. This can be seen as a last-and-final opportunity to submit

bids, because in the proxy phase the proxy agent bids on each bidder’s behalf.

So, it is strategically equivalent to a sealed-bid auction (Day and Raghavan,

2007). The use of a proxy ensures a straightforward bidding strategy, i.e., in

each round the proxy submits the bundles that maximize the bidder’s payoff

based on the reported valuations. At the end of each round, the auctioneer

determines the provisionally winning bids by running a WDP including all

bids from the bidders from the clock and the proxy phases. In contrast to



3.2. COMBINATORIAL CLOCK AUCTION 79

the clock phase, the auctioneer determines bidder-specific bundle prices in the

proxy phase. Although this limits price discovery, it is necessary to provide

the required incentives to arrive at an efficient allocation. For the next round,

prices are increased with a predetermined increment. The auction ends when

there is no new bid submitted within one round.

Due to the straightforward bidding of the proxies, the auction ends with a

bidder-Pareto-optimal core outcome (Day and Milgrom, 2007), which is an

efficient allocation with competitive payoffs for the bidders and competitive

revenue for the seller (Ausubel et al., 2006). There are no incentives for demand

reduction. Also, the Clock-Proxy auction is comparably fast because the proxy

phase is performed automatically by the proxies only. The interface for the

proxy can be customized to fit the requirements of the respective domain

(Hoffman, 2011). This can enhance the expressiveness of the valuations, which

finally supports efficiency (Ausubel et al., 2006).

Crucial for the Clock-Proxy auction’s support of price discovery is an appro-

priately designed activity rule. Only if bidders have the incentive to report

true preferences in the early clock rounds is price discovery supported. There-

fore, the proxy bids need to be constrained by the bidder’s clock bids in some

way. Ausubel et al. (2006) suggested a revealed preference activity rule

which ensures consistent bids throughout both phases of the auction. Con-

sider a bidder i who has valuations vi(S
s) for bundle Ss and vi(S

t) for bundle

St, Ss 6= St. Bidder i accepts a price of psask(Ss) for the package Ss in round

s and a price of ptask(St) for the package St in round t > s. By doing so, he

reveals the following preferences:

• in round s he prefers bundle Ss to bundle St, i.e., vi(S
s) − psask(Ss) ≥

vi(S
t)− psask(St), and

• in round t he prefers bundle St to bundle Ss, i.e., vi(S
t) − ptask(St) ≥

vi(S
s)− ptask(Ss).
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Together, these conditions yield the revealed preference rule, which implies that

in later rounds bidder i can switch from Ss to St only when the bundle price of

Ss has increased more than that of St. Formally, this is: ptask(Ss)− psask(Ss) ≥
ptask(St)− psask(St)

Within the proxy phase, this rule is always satisfied by the straightforward

bidding of the proxies. But in the clock phase, bidders might reduce demand

at the end to stop prices from rising higher. To prevent any inefficiencies

stemming from this demand reduction, the activity rule is amended to allow

bidders to slightly expand their demand from the end of the clock phase.

Ausubel et al. (2006) introduce a factor α ≥ 1 allowing for this. The relaxed

revealed-preference activity rule requires a bid on a bundle St to satisfy

the following condition for all bundles Ss the bidder has previously bid on:

α(ptask(Ss)− psask(Ss)) ≥ ptask(St)− psask(St)

Even in complex settings including complementary valuations, the Clock-Proxy

auction performs well due to the combination of both phases (Ausubel et al.,

2006). The clock phase is simple to understand and provides good price dis-

covery. The final allocation after the proxy phase is efficient, revenue is com-

petitive, and the outcome is in the core with respect to reported valuations. If

items are substitutes, the Clock-Proxy auction implements the VCG outcome,

since the unique bidder optimal point in the core is the VCG point. If items

are not substitutes, the VCG outcome may be outside the core and the Clock-

Proxy auction revenue may exceed the VCG revenue. Prices and revenue in the

Clock-Proxy auction are monotonic with the number of bidders. If the BSM

condition holds true (section 2.6.3), truthful reporting is a Nash equilibrium

strategy and the Clock-Proxy auction implements the VCG outcome.

Apart from its favorable properties, the Clock-Proxy design has some imple-

mentation issues (Ausubel et al., 2006):

• Expression of proxy values. Bidders are often unable to specify enough

and the right valuations for the proxy agents. A clever tool support could
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help determine the structure of valuations and create various valuations

based on input parameters. Bidders can be supported with a flexible

interface which is customized to the domain to fit individual needs.

• Calculation of final prices. VCG payments are the only payments for

which bidders have the dominant strategy of truthfully reporting the

valuations. But the VCG outcomes may be outside the core when there

are complementary valuations. In that case, there is a set of bidder-

optimal core points and the pricing rule must choose one of them as the

final prices. The closest-to-Vickrey core prices of the CCA (3.2.4) and

the Package Clock (3.2.6.2) address this problem.

• Confidentiality of private valuations. Bidders may be reluctant to reveal

private valuations to proxy agents. This can be addressed in a multi-

round implementation of the proxy phase, in which bidders can increase

their valuations in several steps in the phase depending on consistency

with prior reports.

• Clock price increments. Choosing the right increments is crucial to allow

all items to clear in the clock phase at approximately the same time.

This is necessary to avoid a decrease in demand quantities of pre-cleared

items when a bidder stops bidding on a bundle with complementarities.

3.2.6.2 Package Clock

Cramton (2009b) has built on the Clock-Proxy design and defined the Package

Clock as a clock phase followed by a single round of sealed bids. The revealed

preference activity rule of the Clock-Proxy auction is quite complex, since

checking correctness of a new bid does not involve only a single constraint. In-

stead, there is one constraint for each of the clock bids, so some sort of support

is necessary for bidders to find feasible bids. In addition, in practice some com-

mon value aspects might influence the valuation of bidders. Cramton (2009b)
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argues that in such cases the revealed preference rule is quite strong and might

limit bidders too much. He suggests a simplified revealed-preference ac-

tivity rule, which is easier but still promises enough incentives for bidders

to report valuations truthfully. Here, one constraint at most is applicable to

each new bid.

During the clock phase, demand can increase only if the larger bundle St+1

in round t+ 1 has become relatively cheaper than the package St of the prior

round t, i.e., pt+1
ask (St+1)−ptask(St+1) ≤ pt+1

ask (St)−ptask(St). In the supplementary

phase, bids are limited by a single constraint of revealed preference. This rule

has been explained in section 3.2.2 as the anchor activity rule of the CCA. In

the notation of this section it follows: Packages Ss smaller than or equal to the

package Sf of the final clock round f are constrained by the final clock package

Sf . With pmax
bid,i(S

f ) denoting the highest bid on bundle Sf by the bidder i

from the clock rounds and the supplementary round so far, the bid on Ss is

constrained by pbid,i(S
s) ≤ pmax

bid,i(S
f ) + pfask(Ss)− pfask(Sf ). Packages Sl larger

than the final clock package Sf must satisfy the revealed preference constraint

with regard to the smaller package Sm, where m is the first round the bidder

has bid on a package smaller than Sl. Let pmax
bid,i(S

m) denote the highest bid on

bundle Sm by the bidder i from the clock rounds and the supplementary round

so far. Then the constraint is: pbid,i(S
l) ≤ pmax

bid,i(S
m) + pmask(Sl)− pmask(Sm).

Together with the closest-to-Vickrey core payments (section 3.2.4), this ensures

that bidders have a strong incentive to bid truthfully in both auction phases.

Especially if bidders bid straightforwardly in the clock phase, they can bid up

to their valuations in the supplementary phase. The bundle of the last clock

round is especially important for the constraints of maximum bundle prices.

Cramton (2009b) argues that bidders do not know in advance which round is

the final clock round and thus have a strong incentive to bid straightforwardly

throughout the clock phase.

In fact, apart from differences in the activity rule of the primary bid rounds



3.2. COMBINATORIAL CLOCK AUCTION 83

the Package Clock design is very similar to the CCA implementation of the

Austrian 2.6 GHz auction that we used in the lab experiments. Our implemen-

tation used a simple eligibility points activity rule in the primary bid rounds.
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Chapter 4

Laboratory experiments

Learning to run experiments

is like learning to play the piano

- at some point you have to start practicing.

Vernon Smith

This chapter introduces laboratory experiments (or lab experiments) as a com-

plementary research approach to game theory and computational experiments.

We highlight the required assumptions and prerequisites a lab experiment has

to fulfill in order to receive transferable and reproducible results, and charac-

terize typical environments of spectrum sales focusing on bidder capabilities.

Addressing the external validity of experiments in the field of spectrum sales,

we introduce competitions in which subjects participate in teams and have

more time to prepare. The chapter closes with a pre-study comparing com-

petitions and traditional lab experiments with unprepared subjects to test for

the effect of the level of bidder preparation on bidding behavior and auction

outcome.

85
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4.1 Methodological approach of lab experi-

ments

Experimental economics are now complementing the more traditional ap-

proaches of game theory, computational simulations, and field studies in inves-

tigating market mechanisms. Lab experiments have become more and more

important in examining competitive markets, especially environments with

multiple items and many participating sellers or buyers. The principle ob-

jective of a lab experiment (or laboratory experiment) is to create a man-

ageable microeconomic environment where adequate control can be exerted

and accurate measurement of relevant variables is guaranteed (Smith, 1982).

For that purpose, unprepared participants are invited to the lab and put in

an artificially created economic environment. The description of the environ-

ment and all required information on the experimental setup, the rules, and

the reward structure are given to them at the beginning. In order to create a

controllable environment and to receive reproducible results, the subjects’ mo-

tivation is controlled through financial incentives. Each participant’s financial

reward depends on his choices during the experiment and the final outcome.

The preferences and the rules of the market mechanism are determined by

the experimentator, making it possible to analyze the results as well as the

participants’ behavior.

Game theory examines strategies in well-defined economic environments and

studies the existence and uniqueness of strategy equilibria in competitive mar-

kets. This is done by making assumptions, e.g., about bidders’ valuations

(section 2.5). Literature provides results of equilibrium strategies in small

settings and single-item auctions such as the English auction or the Vickrey

auction, which can well describe bidder behavior observed in lab experiments

(e.g., Krishna (2002); Vickrey (1961)). For more complex environments with

many items, multiple units per item, and side constraints such as budget lim-
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its, game-theoretical analysis is comparably harder since the design space is

larger. Analyzing equilibrium strategies in such settings often requires ap-

plying very restrictive assumptions of available probabilistic information on

bidder types or valuations, which are often not met in realistic environments

(Pekec and Rothkopf, 2003). For example, Brusco and Lopomo (2009) analyze

an environment with only a few items and assume budget constraints which

are known to all bidders. Other studies derive equilibrium strategies for spe-

cific value models, either including or excluding complementarities (Brusco and

Lopomo, 2002). Analyses within more complex markets often focus on a spe-

cific strategic situation observed in the field. Ewerhart and Moldovanu (2003)

described the strategic situation of a strong bidder in the German UMTS auc-

tion in 2000 who is trying to push out a weaker new entrant by disregarding

any other effects. Analyzing the complete auction, including all other bidders’

actions, would require a model which could hardly be handled.

New auction formats can be analyzed strategically by applying game-

theoretical models and past experiences, but cognitive limits and specific be-

havior of bidders might significantly influence the course and final outcome of

an auction (Scheffel, 2011; Ziegler et al., 2010). Theory helps to understand

the strategic situations in an environment, which then can be analyzed in lab

experiments that include the effects of bidding behavior. Connolly and Kwerel

(2007) argue that testing an auction design in a lab experiment is like testing

a new aircraft model in a wind tunnel: ”Both wind tunnel tests and economic

experiments can provide information about the performance of new designs

beyond what experience with old designs or theory can predict”.1 A purely

game-theoretical approach will likely lead to unrealistic results for which the

transfer to the field is quite hard (Rothkopf, 2007a). Behavior observed in the

lab itself can initiate considerations of new theoretical models.

1A prominent example of experimental results actually leading to the use of a new format
is the 700 MHz auction in the US, in which Hierarchical Package Bidding (HPB) was used
after successful experiments at the California Institute of Technology.
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4.2 Classification of lab experiments

Experiments can serve various purposes depending on the desired goals, e.g.,

comparing auction formats by average efficiency in a distinctive environment,

testing whether subjects bid in order to maximize their personal utility, or

advising policy makers and governments in choosing an appropriate mechanism

for selling public goods. Based on these, Douglas and Holt (1992) and Roth

(1995) among others, proposed classifications of lab experiments. The one by

Douglas and Holt (1992) has gained high popularity. They distinguish market

experiments, experiments on individual behavior, and experiments to test game

theoretical-models. They can be described as follows (Guala and Salanti, 2001).

Market experiments analyze trading institutions and market mechanisms in

various environments with regard to final outcomes and equilibrium properties.

Results of such experiments have furthered the design of market mechanisms

and auction formats. Experiments on individual behavior investigate implica-

tions of structural determinants on the behavior and the decision-making of

subjects in the lab. Such experiments (e.g., Mosteller and Nogee (1951)) have

added a number of contributions to the theory of individual choice behavior,

which has affected, e.g., expected utility theory. Experiments testing game-

theoretical models provide the opportunity to test theory under the strong as-

sumptions that theory is built on (e.g., complete information, no uncertainty in

valuations, no side constraints). For example, in a setting with multiple Nash

equilibria, such an experiment can investigate which of them is chosen by the

subjects. The sensitivity of such results with respect to these assumptions can

also be analyzed.

Our experiments to compare the performance of the CCA and the SMRA in the

domain of spectrum sales (section 5) can be categorized as market experiments.

We also analyzed the bidding behavior in detail which puts the experiments

into the category of experiments on individual behavior as well.
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4.3 Internal and external validity

The literature distinguishes between internal and external validity of lab ex-

periments. Internal validity is given if the setting of a lab experiment

generates robust and replicable results. Only then can reliable conclusions

be drawn from the experiment. External validity describes the ability to

transfer learnings from the lab environment to other environments of interest,

e.g., the field (Loewenstein, 1999).

Smith (1982) describes the fundamental objective of lab experiments as the

creation of a manageable environment, ”where adequate control can be main-

tained and accurate measurement of relevant variables [is] guaranteed”. In an

attempt to define a methodological framework for lab experiments to achieve

these objectives and foster valid and reproducible results in experimental eco-

nomics, Smith (1982) defines sufficient conditions for a microeconomic exper-

iment. Lab experiments differ from field experiments (e.g., Harrison and List

(2004)) in that for the latter only a few aspects of the environment can be

controlled and that access to the economic agents is limited (Roth, 1988). In

some of these experiments, the subjects’ preferences are elicited upfront in

order to determine the efficiency of auctions after the experiment (Ostertag

et al., 2002). Since this is not always feasible, field experiments cannot be con-

ducted on a large scale. In the lab, the economic environment and especially

the preferences can be fully controlled by the experimenter by using an appro-

priate reward structure and property right system. Smith (1982) postulates

five precepts that provide such a controlled environment:

1. Nonsatiation. The reward scheme needs to be designed in a way that

subjects are not saturated by the financial reward, i.e., utility U(πi) is a

monotone increasing function of the monetary reward, U ′(πi) > 0, with

πi being the payoff in Euro won by the subject i in the experiment.

2. Saliency. Subjects must fully understand the reward scheme, the mar-
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ket mechanism, and consequences of their actions in the experiment on

their financial reward. They must be able to rely on having a property

right to the reward.

3. Dominance. Costs of participation in the experiment are dominated

by the reward scheme to render non-monetary utilities non relevant.

4. Privacy. All subjects learn only about their individual payoff alterna-

tives (and valuations), a situation resembling the field, where competi-

tors’ preferences cannot be observed either.

5. Parallelism. The lab setting sufficiently fulfills the same ceteris paribus

conditions as the target environment, i.e., propositions about the market

mechanism and the behavior of subjects in the target environment also

apply in the lab.

Nonsatiation and saliency create an experimental microeconomy in which mo-

tivated individuals (through financial incentives) act within an institution de-

fined by the market mechanism. When dominance and privacy are also ful-

filled, any individual costs of participation and ”individious, egalitarian, or

altruistic cannons of taste” (Smith, 1982) are addressed and a controlled ex-

perimental microeconomy is created. In such a setting, experiments can be

conducted to test hypotheses. One can expect reliable and replicable results

in such an experimental setup, which means that the internal validity is given.

Transferring results from the lab experiment to other environments, such as

the field, is only valid if the parallelism precept holds true. If the market

mechanism and incentives in the lab differ considerably from those in the

environment to which the results should be transferred, the subjects’ behavior

may differ significantly and external validity may not be given. In such a case,

implications of lab results must be interpreted with care.

Defining an experimental setup always requires dealing with the tension of

external and internal validity and should be guided by the main goals pursued
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with the experiment. The confirmation or falsification of a game-theoretic

model often imposes strict assumptions on the setting. By oversimplification,

abstraction, reduction of complexity, and smaller numbers of items or market

participants within the lab environment, single effects can be isolated and

experimental results are more tractable and reproducible, i.e., internal validity

is high. Experimental results from more realistic settings with high external

validity can differ fundamentally from the predicted results (Smith, 1985).

But findings of experiments of that kind can more easily be transferred back

to complex environments in the field.

4.4 Competitions

The domain of spectrum auctions is characterized by a number of specific

properties, most notably complex settings and, consequently, high levels of

preparation for such auctions by bidders in the field. These need to be con-

sidered with regard to the external validity of lab experiments in this domain.

Competitions address bidder preparation by allowing subjects to prepare prior

to the experiment and participate as teams. In this way, competitions can com-

plement traditional lab experiments with unprepared subjects. In this section,

we describe the complexity of spectrum auctions, define competitions, and re-

port on a pre-study comparing the results of lab experiments and competitions

in an environment resembling the German Super Auction of 2010.

4.4.1 Spectrum auctions as complex markets

The basic characteristics of the domain of spectrum sales have been described

in section 1.1. In spectrum sales, the government, i.e., the regulatory author-

ity, offers usage rights for bandwidth to mobile operators, who build networks

to provide telecommunication and data services to end customers. Since band-
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width is limited but essential for the operations of mobile providers, they have

paid high prices for spectrum in the past. For example, the revenue of the Ger-

man 3G auction in 2000 totaled more than 50 billion Euro (Niemeier, 2002).

One difficulty is the value uncertainty faced by bidders. The valuation attached

to a spectrum block is based on projections of future revenues and anticipated

costs, which are uncertain by definition.

The setting of spectrum auctions can be quite complex. For example, in the

Advanced Wireless Service auction in 2006, no fewer than 1,122 different li-

censes were on sale to 168 bidders (Bulow et al., 2009). The licenses differed

in their geographic spread from nationwide to local licenses. Bidders could

either buy a nationwide license or aggregate regional licenses to achieve na-

tionwide coverage. Switching was difficult and risky due to the activity rules

employed. In the German 4G auction in 2010, the licenses on sale were lo-

cated among licenses that had already been sold in prior auctions. Thus, the

bidders’ valuations were rather complex, and individual valuations of specific

spectrum blocks differed fundamentally among bidders (Niemeier, 2002). Such

characteristics provide space for a range of bidding tactics during the auctions.

The sheer amount of money at stake makes mobile operators invest in the

preparation of such spectrum auctions. The literature reports on teams of

experts and consultants who spend months or even years preparing strategies

for such spectrum sales and also have considerable decision support during the

auctions (e.g., Bulow et al. (2009); Niemeier (2002)).

4.4.2 Characteristics of competitions

The traditional approach of experimental economics is to invite unprepared

subjects to the lab, provide all relevant information about an adapted, simpli-

fied economic environment and the reward structure, and conduct the exper-

iment. Through this procedure, reproducible and robust results, e.g. on the
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performance of different auction formats such as the CCA and the SMRA in

this specific environment, are generated (high internal validity). As pointed

out in section 4.3, valid transfers of lab findings to other environments require

similar ceteris paribus conditions with respect to the auction mechanism and

the behavior of participants. In the domain of spectrum sales, auction rules

can be implemented in the lab that are in accordance with the format used in

the field, but it is questionable whether this is also true for bidder behavior.

Since the preparation for spectrum auctions in the field reaches such high lev-

els, unprepared subjects in the lab might exhibit bidding behavior that is not

sufficiently similar to that of teams of experts and consultants that have pre-

pared for months or even years and have sophisticated decision support tools

at their disposal. The external validity of lab experiments with such unpre-

pared subjects, especially in a complex setting, might then not be sufficient to

transfer findings to the field without adjustments.

Only a small number of empirical studies have looked at the effects of bidder

preparation, learning, or experience levels of lab subjects. For example, Abbink

et al. (2005) compared different auction formats in the context of the British

3G auction in 2000. They allowed subjects to participate multiple times in

the experiment to gain experience and found a significant difference between

experienced and inexperienced subjects in their bidding activities in the lab.

In their experiments, differences with regard to revenue between the analyzed

auction formats diminished with higher levels of bidder experience. Sutter

et al. (2007) conducted experiments with individuals and with teams in UMTS

auction settings. They found that auctions with teams had more rounds and

that teams paid significantly higher prices. Teams made smaller profits than

individuals, but the efficiency was higher.

We propose competitions as a method to analyze bidder behavior in environ-

ments where the strategic complexity for subjects is such that bidders in the

field typically have substantial training and preparation. In such situations,
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the parallelism precept does not hold true for experiments with unprepared

subjects, and bidder behavior as well as outcomes may differ significantly. To

improve external validity, competitions differ from experiments in several ways:

1. Subjects get detailed, objective, and neutral information about different

strategies and their risks.

2. Subjects have sufficient time before the competition to become familiar

with the auction rules, strategies, and risks, and to obtain information

about other players (e.g., estimates about their preferences and side con-

straints, such as budget limits).

3. Subjects work in small teams. They prepare a written document about

their strategy before the competition and a summary of their actions and

the rationale for their behavior after the competition.

In contrast, in lab experiments, bidders only learn about the rules of the market

mechanism and are not exposed to strategies or previous experiences in order

to avoid influencing their actions. Also, they typically have a limited amount

of time to prepare for an auction, which becomes an issue when subjects face

complex decision situations.

4.4.3 Pre-study with competitions

In order to analyze the effect of the level of preparation on bidder behavior and

consequently on auction performance in rather complex environments, we ran

a pre-study with competitions and traditional lab experiments in a setting very

close to a field auction. The German 4G auction of 2010 served as an example

of a rather complex setting in which bidders in the field spent a great amount

of time and money to prepare for the auction. In an attempt to recreate these

field conditions, we did not reduce the complexity of the experimental setup



4.4. COMPETITIONS 95

and deliberately put aside common assumptions about independent private

valuations and simplified settings. Instead, we drew the full complexity of

the field setting into the lab. As described in section 4.4.2, we also allowed

subjects in the competitions to have more preparation time and access to

literature, and to participate in teams as bidders did in the field. We found

that bidders in competitions revealed a bidding behavior which was much

closer to the field than that of unprepared subjects in the lab. This resulted

in significantly different auction outcomes. Therefore, we argue that the use

of competitions serves well to enhance the external validity of experiments in

complex environments.

4.4.3.1 The German 4G auction of 2010

We based our experimental design on the German 4G auction of 2010, since bid

data is publicly available2 which allows for comparisons with bidder behavior

in the lab and in competitions. The German 4G auction is a good example

of a complex market: The economic environment as well as the auction rules3

had specific properties creating a rather complex setup for bidders.

The economic environment. Several spectrum bands (0.8 GHz, 1.8 GHz,

2.1 GHz, and 2.6 GHz) were allocated simultaneously, each band divided into

blocks of paired (10 MHz) or unpaired spectrum (5 MHz), 41 blocks in total.

Of special interest was the paired spectrum. The complexity for the four bid-

ders Deutsche Telekom (DT), Vodafone (VF), Telefonica O2 (O2), and Eplus

(E+) was based on the fact that all of them already owned licenses in the 1.8

GHz and 2.1 GHz bands prior to the auction. This made the acquisition of ad-

ditional adjacent spectrum blocks in the same band attractive to them. Thus,

preferences could become very complicated, and differ significantly between

2www2.bundesnetzagentur.de/frequenzversteigerung2010/rundenergebnisse.html
3www2.bundesnetzagentur.de/frequenzversteigerung2010/images/Praesidenten−

kammerentscheidung.pdf
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bidders depending on their individual goals. Figure 4.1 gives an overview of

the paired spectrum sold in the auction. The white color indicates blocks to

be auctioned while the shades indicate spectrum already owned by the mobile

operators.

Figure 4.1: Bandplan including pre-allocated spectrum

Due to the technical properties of the spectrum, blocks in specific bands are

more suitable for various technologies that implement voice or data services

(e.g., GSM, UMTS, LTE, WiMAX, etc.) and can have super-additive valua-

tions. In addition, the valuations can differ between bands. The 0.8 GHz band

represented the most valuable part of the spectrum due to its technical pro-

perties. Its final price in the German 4G auction made up 81% of the auction

revenue, although it comprised only 17% of the overall volume of spectrum

sold (including paired and unpaired spectrum).

The auction format. The spectrum was auctioned through an SMRA imple-

mentation (section 3.1) with the following specific amendments which further

contributed to the complexity of the setup.

To prevent monopolization of the 0.8 GHz band, spectrum caps were in-

troduced, which limited winners to at most two or three out of six blocks in

the 0.8 GHz band depending on the number of blocks already owned by the

bidder. In an attempt to reduce complexity and the exposure to win frag-

mented spectrum, blocks of equal quality within one spectrum band were sold
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as abstract blocks. This means a bidder was only required to win a sufficient

number of blocks within a band, since the regulator arranged that each winner

received adjacent blocks at the end. However, some blocks were still sold as

concrete blocks in cases where pre-owned spectrum was of importance, or

relevant technical or legal issues existed.

The German regulatory authority chose an open information policy . At

the beginning of each round the bidders were informed about all prior (winning

and losing) bids in the auction, including the identities of the corresponding

bidders. To prevent signaling by using digits of the bid price (Niemeier, 2002;

Weber, 1997), click-box bidding was introduced: Jump bids were limited to a

fixed set of values which the bidder could add to the minimum bid price. The

auction was conducted in rounds with a default round duration of 90 minutes.

To ensure active participation from the beginning, a stacked activity rule

was used (Banks et al., 2003). In order to maintain the eligibility for a certain

number of bid rights, each bidder was required to bid according to the current

level of activity. The auction started with 50% required activity and moved

to 65%, 80%, and finally 100%. The minimum increment for new bids was

set to 15% above the provisionally winning bid and was lowered to 10%, 5%,

and 2% by the regulator during the course of the auction. Ties were broken

randomly. The auction ended when no bidder submitted a bid within one

round in the 100% activity phase. Bidders had the possibility to withdraw

bids, but they had to bear the risk of paying their bid price if no other bidder

bid on the withdrawn block. The price of the withdrawn block did not decrease

to the second highest bid, but remained at the previous level.

The auction lasted for 27 days with 224 rounds. The total revenue was 4.4

billion Euro.4

4www.bundesnetzagentur.de
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4.4.3.2 Experimental setup

The goal of the pre-study was to analyze the effects of bidder preparation

within a complex environment. For this, we implemented all major charac-

teristics of the environment as described in section 4.4.3.1 above without de-

liberate simplification. Especially the complex valuation structure, differences

among bidders, mixture of blocks on sale with pre-owned spectrum, and the

specific auction rules of the field implementation made up the complexity. We

decided to model rank based utility with superimposed budget constraints,

which do not simplify the complex valuation structure of the field. All details

can be found in appendix A.

We ran lab experiments with unprepared subjects and competitions within the

exact same setting to allow for direct comparison. The only differences were

the levels of bidder preparation and the team structure. While subjects in

the lab (treatment Lab) learned about the auction rules and the valuations

on the day of the experiment, subjects in competitions (treatment Comp)

received the introduction two weeks in advance. Also, they participated in

teams of two people and were recruited from a class on auction theory and

market design. They were asked to prepare a strategy paper outlining the

basic ideas of their intended bidding strategy.

Details on the valuations, budget constraints, the treatment structure, recruit-

ing of subjects, and the organization of lab experiments and competitions can

be found in appendices A.1 and A.2.

4.4.3.3 Results and conclusion

For the sake of brevity, only the main results are presented here and the details

are provided in appendix A.3.

We found that bidders in competitions paid significantly lower final prices

(p = 0.0575) for allocations with significantly higher utility (p = 0.0249). In
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competitions, the price levels of different bands more closely resembled the

differences in valuations of the spectrum indicating a better understanding of

the value model. Comparing the bidding behavior in the two treatments, we

found that Comp bidders used various strategies similar to those observed in

the field. They placed more bids on their own blocks (p > 0.1), they placed

significantly less bids on blocks which were not the cheapest (p = 0.0068), and

used jump bids significantly more often (p = 0.0638) and more effectively than

Lab bidders.

In addition, Comp bidders managed to end the auction within the given budget

limits and exceeded their budgets only temporarily during the auction. Lab

bidders did not estimate competitors’ budgets or final price levels correctly

and violated their budget limits more often. The lack of preparation led Lab

bidders to bid in a way that maximized their flexibility in later rounds. Comp

bidders, on the other hand, managed eligibility more actively to reach their

target allocations.

This raises the question about the transferability of existing experimental re-

sults to complex spectrum auctions in the field. Recently, there have been a

number of comparisons of SMRA and various combinatorial auction formats.

Those comparisons are typically based on small value models with only a few

items. The results of our initial study suggest that competitions can add to the

external validity of lab experiments. The main experiments for this thesis (sec-

tion 5) were conducted to compare the SMRA with the Combinatorial Clock

Auction. The latter format provides fewer opportunities for the application

of tactical instruments (Cramton, 2009b). To improve the external validity of

these experiments, we used the results of this pre-study and conducted com-

petitions in addition to lab experiments with unprepared subjects.



100 CHAPTER 4. LABORATORY EXPERIMENTS



Chapter 5

Analysis of CCA and SMRA

The only relevant test of the validity of a hypothesis

is comparison of prediction with experience.

Milton Friedman

This section starts by introducing the experimental design of our experiments.

We report on the economic setting, the value models, the implementation of

auction formats, the specifics of competitions, and the organization of the ex-

periments. We then present aggregate results on the performance of CCA and

SMRA and analyze in detail the observed bidding behavior in both formats.

5.1 Experimental design

In the following, we explain the characteristics of the economic setting and

the three value models used in our experiments. We provide further details

on the implementation of the auction rules of CCA and SMRA as used in the

experiments, as well as the treatment structure and the organization of our

experiments.

101
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5.1.1 Economic setting and value models

We used an economic setting which closely resembles the settings of the Euro-

pean 2.6 GHz band spectrum auctions. The frequencies of this band are avail-

able for mobile services in all regions of Europe, which is probably unique. It

includes 190 MHz divided into blocks of 5 MHz, which can be used to deliver

wireless broadband services or mobile TV. There are two standards in partic-

ular which will likely be used in the 2.6 GHz band, LTE and WiMAX (section

1.1). LTE uses paired spectrum, i.e., units of two blocks, while WiMAX uses

unpaired spectrum, i.e., units of one block (section 1.1). While some European

countries have auctioned only the 2.6 GHz band, others have combined several

spectrum bands in a single multiband auction.

We adapted a setting mirroring the situation of many European spectrum

auctions where four large incumbents dominate the market. Therefore, four

bidders participated in each of our experiments. We used value models re-

flecting the characteristics of bidder valuations in the field. The structure of

the value model was known by all bidders. Although the value models resem-

bled the characteristics of spectrum sales in Europe, this was not known to

the subjects in the lab (neutral framing). Bidders in the lab used an artificial

currency called Franc.

In an attempt to investigate auction performance and bidding behavior in

environments of different complexity, we used three value models, allowing for

different market characteristics and alternative decision spaces for bidders.

5.1.1.1 The base value model

In the base value model, we used a band plan with two bands of items, as has

been used in several European countries. There are fourteen paired blocks (or

items) in band A and ten unpaired blocks in band B (figure 5.1). A blocks

required two eligibility points, B blocks only one. In this multi-unit setting,



5.1. EXPERIMENTAL DESIGN 103

Figure 5.1: Bandplan of the base value model

a bundle is defined by the number of blocks in band A and by the number of

blocks in band B. A specific block is assigned to a bidder after the auction.

During the auction, blocks within a single band can be considered identical.

Bidders had a positive valuation for up to six items in each band. Additional

blocks did not give extra value.

Each bidder received base valuations vA and vB for each of the bands. The

base valuations represented the valuations of a single item within each band

and were drawn randomly from a uniform distribution, vA in the range of

[120, 200] and vB in the range of [90, 160]. Reflecting the technical properties

of LTE, we modeled ascending complementarities in the valuation of bundles

of several A items. In the A band, a bundle of two items received a comple-

mentary value of 1.2 ∗ 2 ∗ vA, i.e., a complementarity bonus of 20% on top of

the base valuations. In reality, four 5-MHz blocks allow for peak performance

rates with LTE. Thus, the complementarity in the value model rose with the

number of items in the bundle. A bundle of three items had a complementarity

of 40% and a bundle of four items of 80%. There was no additional bonus for

the fifth and sixth items.

In total, each bidder was interested in up to 7 ∗ 7 − 1 = 48 different bundles.

Four items in band A had the highest valuation per item for all bidders due

to the bonuses. If all bidders aim for four items with fourteen items for sale

in the A band, it is possible that either two or three bidders will obtain this

bundle, while the other bidders will win only two or three items in band A.

Bidders had purely additive valuations in band B for up to six items. The

total valuation of items from both bands was the sum of valuations within
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the bands. We assumed item valuations to be bidder-specific, but the synergy

structure of bundles to be the same for all bidders. This can be motivated by

the fact that synergies often arise from a mobile operator’s ability to achieve

peak performance with a technological standard after winning a certain amount

of bandwidth, and these synergies are the same for all operators. It also limits

the complexity for bidders in the lab, because the valuation model is simpler.

5.1.1.2 The multiband value model

The multiband value model was inspired by recent discussions suggesting that

the CCA should be used for the sale of multiple bands in several countries.

The multiband value model also had twenty-four items, four bands with six

items each (figure 5.2).

Band A was of high value to all bidders, whereas bands B, C, and D were of

lower value. As in the base value model, each bidder received a base valuation

for an item in each band. Base valuations were uniformly distributed: vA was

in the range of [100, 300] while vB, vC , and vD were in the range of [50, 200].

Again, bidders had complementary valuations for bundles of items. The com-

plementarities in the multiband value model were descending. In all bands,

bundles of two items resulted in a bonus of 60% on top of the base valuations,

bundles of three items in a bonus of 50%. As with the base value model, more

items did not add any extra bonus on top of the base valuation for this band.

Overall, bidders in the multiband setting could bid on 7 ∗ 7 ∗ 7 ∗ 7− 1 = 2, 400

different bundles, which is significantly more than the 48 bundles in the base

value model.

5.1.1.3 The multibandsmall value model

We also configured a variant of the multiband value model to create an environ-

ment with a number of possible bundles between that of the base value model
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Figure 5.2: Bandplan of the multiband value model

(48) and that of the multiband value model (2, 400). This variant used the same

band plan as the multiband value model. But bidders in the multibandsmall

value model were restricted to at most four items per band. Thus, each bidder

could bid on 5 ∗ 5 ∗ 5 ∗ 5− 1 = 624 different bundles.

In the multibandsmall value model, we allowed for arbitrary complementar-

ities for bundle sizes of two, three, and four items per band. The complemen-

tarity factors were drawn randomly from a uniform distribution in the range

of [0, 120%] and applied only to the item it was drawn for. In contrast to the

multiband setting, we modeled bidder-specific complementarities. We drew

one set of complementarities for the A band and another set for the B, C, and

D bands. Thus, each bidder had an individual preference for a specific bundle

size per band defined by the highest complementarity. The individual draws

of complementarities for each bidder created various competitive environments

across the bands.

5.1.1.4 Overview of value models

Table 5.1 gives an overview of the key characteristics of our value models.

All settings included four bidders, which resembles the competitive situation of

European spectrum sales. We analyzed the performance of CCA and SMRA in

these settings and compared the bidding behavior depending on the complexity

of the value model. Our value models ranged from a rather simple setting

with 48 possible bundles to choose from to a large multiband setting with



106 CHAPTER 5. ANALYSIS OF CCA AND SMRA

Value model / setting Base Multiband Multibandsmall

No. of bidders 4 4 4
No. of lots 24 24 24
No. of bands (lots) 2 (14,10) 4 (6,6,6,6) 4 (6,6,6,6)

Max no. of items/band 6 6 4
Range base valuations A: [120,200] A: [100,300] A: [100,300]

B: [90,160] B,C,D: [50,200] B,C,D: [50,200]
Comp. type Fixed, Fixed, Variable

ascending descending
Bundles with comp. 2,3,4 2,3 2,3,4
Range comp. 20-80% 50-60% 0-120%

No. of possible bundles 48 2, 400 624

Table 5.1: Overview of value models

several thousand bundles. Also, several types of complementarity structures

were used: We implemented fixed and variable complementarities, ascending

and descending complementarity levels, super-additivities for different sizes

of bundles, and values were drawn from various ranges, the largest being [0,

120%].

5.1.2 Auction formats

Our experiments were based on the MarketDesigner software framework,1

which we expanded, using implementations of the SMRA and the CCA as

described in section 3. Our implementations followed those of recent spectrum

auctions in the field: The SMRA implementation was similar to the German

Super Auction in 2010,2 the implementation of the CCA followed the rules

specified in the guidelines for the Austrian spectrum auction in 2010.3

1www.marketdesigner.org
2www2.bundesnetzagentur.de/frequenzversteigerung2010/images/Praesidenten−

kammerentscheidung.pdf
3www.rtr.at
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5.1.2.1 Simultaneous Multi-Round Auction

In SMRA all items were sold at the same time with an individual price for each

item. Start prices were set to 100 Franc for each A item and 50 Franc for each

B, C, and D item. Bidders could not bid on bundles. After each round, the

provisional winner of each item was determined by the highest bid. Ties were

broken randomly. A bid on an item had to exceed the standing high bid by at

least the minimum increment. The minimum increment for items in band A

was 20 Franc and in bands B, C, and D 10 Franc. In many implementations of

SMRA in the field, further increases are restricted to predefined levels (click-

box) to prevent signaling by using the last digits of rather high bid prices.

We defined six steps from 1 up to 50 Franc to cover the range of small to

high increases. The exact steps were 1, 2, 5, 10, 20, and 50 Franc above the

minimum increment.

An activity rule restricted the number of items a bidder could bid on across

all bands. Following the German SMRA design, we implemented a stacked

activity rule with different levels: At the beginning, each bidder was assigned

eligibility to bid on all items on sale. In the first three rounds, bidders were

required to use only 50% of their eligibility to maintain all eligibility points for

the next round. From the fourth round on, 100% was required. The first level

gave bidders a chance to reduce demand in order to split the items at low prices,

which can be an attractive option for bidders in the field. At the beginning

of each round, all bids from the previous round (winning and losing) were

revealed to all bidders. Finally, the auction terminated if no bidder submitted

a bid within one round. Bidders won the items for which they held the highest

bid and were required to pay the bid price.

Appendix B.2 provides a screenshot of the bidding interface.
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5.1.2.2 Combinatorial Clock Auction

As introduced in Section 3.2, the CCA was composed of two phases, the pri-

mary bid rounds (or clock rounds) and the supplementary bids round. All

items within one band had the same price. In the base value model, there was

one price for the A band and one for the B band; in both multiband value

models, there were separate prices for all four bands.

The auctioneer announced the new ask price for each band in each round of the

clock phase, and bidders decided on the quantities of items they wanted to bid

on within each band. The quantities specified in all bands formed one package

bid. Each bidder could submit a maximum of one bid in each clock round. If

there was excess demand in at least one band (i.e., if the combined demand of

all bidders within one band exceeded the number of items), a new round was

started with higher prices for the bands with excess demand. Start prices in

the first round were set at 100 Franc for items in the A band and 50 Franc in

the B, C, and D bands. In cases of excess demand, prices were increased by

increments of 20 Franc in band A and 10 Franc in the other bands.

Bidders did not learn about other bidders’ bids; the only information they

received was whether there was excess demand in the previous round for each

band. An activity rule ensured that the bundle size remained constant or

decreased from round to round. In our experiments, each bidder started with

eligibility for all items in the first round. The primary bids phase ended when

there was no longer any excess demand in any bands.

The supplementary bids round consisted of only one round with as many sealed

bids as desired by the bidders. They were able to bid on any combination of

items regardless of the bids of the first phase. Only the maximum bid price

was limited by the anchor activity rule (section 3.2.2). At the end of the

round, the optimal allocation was calculated using all bids from both phases,

with the condition that at most one bid from each bidder could win. Then the
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bidder-optimal core-selecting payments were calculated following the algorithm

described in section 3.2.4.2.4

Appendix B.2 provides a screenshot of the bidding interface.

5.1.3 Competitions

In spectrum auctions in the field, bidders typically work in teams of experts

and they spend significant amounts of time preparing for the auction. Section

4.4.3 described a pre-study which showed that a higher level of preparation

of subjects in the lab can lead to different results than those obtained with

unprepared lab subjects. Addressing the external validity of the experiment,

we conducted competitions, as introduced in section 4.4.2, in addition to the

lab experiments with unprepared subjects.

The subjects in these competitions were recruited from a class on auction the-

ory and market design and were grouped into teams of two participants. The

subjects were invited to the lab two weeks prior to the experiment and received

the same introduction as lab subjects. In addition, we provided them with lit-

erature on previous spectrum auctions, which described known strategies and

tactics of bidders in the field. For two weeks, they prepared their strategy on

the basis of the material provided and any other resources they found useful.

We intentionally deviated from traditional experimental procedures in the as-

pects of individual participation and level of preparation, in order to under-

stand how these impact the bidding behavior of subjects and how robust ex-

periments in the lab are in a more complex environment such as spectrum

auctions. With cognitively complex environments and with complex auction

rules as in the CCA, this setting might be closer to the environment in the

field.

4All optimizations were performed using the IBM/CPLEX optimizer version 11.
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5.2 Treatment structure

We considered two major treatment factors, auction format and value

model. Auction format has two levels (SMRA and CCA), value model has

three levels (base, multiband, and multibandsmall). In addition, we analyzed

the base value model treatments with bidders in the lab (Lab) and in the com-

petition (Comp), which yields another treatment factor bidder. Overall, we

had eight treatments in total (table 5.2).

Treatment Value model Auction format Bidder Auctions

1 Base SMRA Lab 20
2 Base CCA Lab 20
3 Multiband SMRA Lab 16
4 Multiband CCA Lab 16
5 Multibandsmall SMRA Lab 8
6 Multibandsmall CCA Lab 8
7 Base SMRA Comp 9
8 Base CCA Comp 9

Table 5.2: Treatment structure

For the base value model, we drew valuations for five waves (A through F) ran-

domly. Each wave consisted of four different auctions, which were conducted

in the lab within one session. Thus, we determined a total of twenty auctions

with different valuation draws. For each treatment combination, we conducted

a run with CCA and a run with SMRA in the lab. All auctions of waves A, B,

and the first auction of wave C were also used in the competition with both

auction formats to enable a direct comparison with the lab. In the multiband

value model, we defined four waves with four different auctions each. For the

multibandsmall value model, only two waves were drawn and used in the lab.

This was sufficient to check the consistency and plausibility of the results of

the base and multiband value models which we focused on.



5.3. ORGANIZATION 111

5.3 Organization

We conducted the experiments at the TU München in 2010 and 2011. Subjects

were recruited from the departments of mathematics and computer sciences. In

total, 106 students participated in the experiments, including the students in

competitions and backups. Each lab subject participated either in one CCA

or in one SMRA session but never in both. One session comprised all four

auctions of one wave5 and lasted on average five hours.

All the information and training required were given to the participants at the

beginning of each session. To reduce differences between lab sessions, the intro-

duction was delivered in the form of a video, which was shown to the subjects.

Each participant was invited to offer comments on a handout and was able to

pause the video whenever required. In addition, at least one staff member was

present to answer questions while the participants were watching the intro-

duction video. Subjects were familiarized with the auction software through

a demo auction. An additional tool to analyze bundle valuations and payoffs

was introduced to all subjects. This tool showed a simple list of all available

bundles which could be sorted by bundle size, bidder individual valuation, or

the payoff based on current prices. In order to ensure a full understanding of

the economic environment, value model, auction rules, and the financial re-

ward scheme, all subjects had to pass a web-based test (ability checker). Any

questions that arose were answered for the benefit of all participants.

At the beginning of each auction, all subjects received their individual draw of

valuations, the distribution of valuations, and information about the comple-

mentarity structure. Examples of valuation sheets for all three value models

are provided in appendix B.1. With this information, subjects were asked to

consider the implications of the draw on their bidding in the upcoming auction.

Each round was scheduled for three minutes. The supplementary phase of the

5One session in the competition consisted of five auctions.
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CCA lasted about ten minutes to provide enough time for bid submission. The

subjects could also ask for more time if required.

After each session, subjects were compensated financially. The total compen-

sation consisted of a ten Euro show-up reward and the auction reward. The

show-up reward covered costs for participation, e.g., the ticket price for public

transportation. The auction reward consisted of a three Euro participation

reward plus the payoff of all auction payoffs converted from Franc into Euro

at a 12:1 ratio. Negative payoffs were deducted from the participation reward.

Negative payoffs higher than the participation reward were capped, i.e., there

was no negative auction reward. Due to the different payment rules in the two

auction formats, payoffs in CCAs were higher than in SMRAs. We therefore

leveled the expected payoff per participant by financially compensating three

out of the four auctions of the SMRA sessions, while only two out of the four

auctions were compensated in CCA sessions. We randomly determined the

auctions which were rewarded by rolling a dice at the end of each session. On

average, each subject received 93.52 Euro.

5.4 Results

We begin by presenting efficiency and revenue of both auction formats on an

aggregate level, comparing the outcomes of the experiments with each other

and with the results from computational simulations. We then move on to

discuss individual bidder behavior in SMRA and CCA including differences

between the lab and competitions.

Taking into account the fact that each subject participated in four auctions,

we compare the performance metrics with the rank-sum test for clustered

data (Datta and Satten, 2005): ∼ describes an insignificant order, �∗ indicates

significance at the 5% level, and �∗∗ significance at the 1% level.
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5.4.1 Aggregate measures

On the aggregate level, we compared CCA and SMRA based on the definitions

of efficiency and revenue in section 2.7. Table 5.3 presents the results of our

experiments.

Value model Auction Bidder E(X) E(X)∗ R(X)
format in (%) in (%) in (%)

Base SMRA Lab 96.16 63.27 83.74
Base CCA Lab 96.04 63.96 64.82
Multiband SMRA Lab 98.46 93.85 80.71
Multiband CCA Lab 89.28 56.71 33.83
Multibandsmall SMRA Lab 97.82 90.69 84.51
Multibandsmall CCA Lab 90.77 62.77 49.51
Base SMRA Comp 98.57 87.28 75.06
Base CCA Comp 94.15 47.17 55.38

Table 5.3: Aggregate measures of auction performance

Result 1: The efficiency of SMRA was not significantly different to that

of CCA in the base value model in both the lab (SMRA ∼ CCA) and the

competition (SMRA ∼ CCA). In contrast, the efficiency of CCA was signif-

icantly lower than that of SMRA in the multiband value model (SMRA �∗

CCA, p = 0.0123) and in the multibandsmall value model (SMRA �∗ CCA,

p = 0.0140).

Support for result 1 is presented in table 5.3 and figure 5.3. In summary, the

SMRA led to higher efficiency than the CCA in two out of three runs in the

base and both multiband value models. In the multiband value model, CCA

terminated with very low efficiency. Table 5.4 shows that the CCA led to a

number of unsold items in the multiband value model (5.2%, or 1.25 items,

CCA �∗∗ 0, p = 0.0002), in the multibandsmall value model (5.7%, or 1.38

items, CCA �∗∗ 0, p = 0.0079), and in the competition (1.9%, or 0.44 items,

CCA ∼ 0), which had a detrimental effect on efficiency.
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Figure 5.3: Efficiency

Value model Auction format Bidder Unsold items
Base SMRA Lab 0
Base CCA Lab 0
Multiband SMRA Lab 0
Multiband CCA Lab 1.25 (5.2%)
Multibandsmall SMRA Lab 0
Multibandsmall CCA Lab 1.38 (5.7%)
Base SMRA Comp 0
Base CCA Comp 0.44 (1.9%)

Table 5.4: Number of unsold items

But even in the cases where all items were sold, the CCA’s efficiency was still

considerably lower than that of SMRA. In the multiband value model it was

only 93.61% which compares to 98.46% for SMRA, and in the multibandsmall

value model it was 93.29% while SMRA reached 97.82%. In SMRA, bidders

in competitions achieved higher efficiency than lab bidders while in the CCA

lab bidders achieved higher efficiency. Both differences were not significant.

The concept of relative efficiency helps to compare performance across value

models.6 SMRA led to significantly higher relative efficiency in both multiband

6Relative efficiency emphasizes results below the mean disproportionately. In one SMRA,
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value models than in the base value model (multiband �∗ base, p = 0.0309;

multibandsmall �∗ base, p = 0.0498). With more bands of items, bidders tended

to focus on the bands for which they had high valuations, and they were willing

to take an exposure risk in these bands, which supported efficiency.

In contrast, the CCA performed best in the base value model, even though the

differences were not significant. This lack of significance is due to the large

variance of relative efficiency values. While the base value model offered 48

different bundles, the number of choices in the multiband value model (2,400

different bundles) and the multibandsmall value model (624 different bundles)

were considerably higher. The CCA uses the XOR bidding language, which

requires bidders to combine the number of items across all bands in each bundle

bid. Thus, it was more difficult for bidders to coordinate and find allocations

with high efficiency in the multiband and the multibandsmall value models.

Boxplots of all treatments can be found in appendix B.3.

Next, we analyzed auctioneer revenue. The core-selecting payment rule of the

CCA impedes a direct comparison of its auction revenue with SMRA results.

We, therefore, conducted additional simulations for the CCA which serve as

a baseline for its performance in the lab. This enabled a comparison of CCA

results in the lab to its performance with bidders in the simulation. These ar-

tificial bidders bid straightforwardly on their payoff-maximizing bundle in the

primary bid rounds and revealed all their valuations truthfully in the supple-

mentary bids round. The results helped us quantify the differences in efficiency

and revenue which arise from the fact that bidders deviated from these strate-

gies in the lab (section 5.4.3).

Table 5.5 presents aggregate results of the computational simulations. Effi-

ciency and relative efficiency of CCA were obviously 100% with truth revealing

bidders. Based on the payment rule of CCA, an auctioneer can expect revenue

the efficiency and the relative efficiency were low (82.6% and −85.7%) causing the mean
relative efficiency of SMRA in the base value model to fall even below the mean of CCA.
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of 86.16% in the base setting, 75.72% in the multiband setting, and 78.07% in

the multibandsmall setting.

Value Model Auction Format Bidder E(X) E(X)∗ R(X)
(in %) (in %) (in %)

Base CCA Simulation 100.00 100.00 86.16
Multiband CCA Simulation 100.00 100.00 75.72
Multibandsmall CCA Simulation 100.00 100.00 78.07

Table 5.5: Aggregate simulation results

Result 2: The auctioneer revenue in SMRA was significantly higher than that

in CCA in all three value models in the lab (base: SMRA �∗ CCA, p = 0.0339;

multiband: SMRA �∗∗ CCA, p = 0.0072; multibandsmall: SMRA �∗∗ CCA,

p = 0.0094). The differences between lab and competitions were not significant

for either auction format. In the multiband setting, the revenue in the CCA

in a simulation with truth revealing bidders was on average more than twice

as high as the revenue in the lab. In the multibandsmall setting it was still

approximately 60% higher. While the SMRA revenue did not differ on a large

scale between the value models, CCA earned significantly higher revenue in the

base value model.

Support for result 2 can be found in figure 5.4, table 5.3, and table 5.5. The

payment rule of the CCA had a significant impact and led to low revenue

given the discounts and the low number of bids and bidders. Another reason

for the differences was the number of unsold items in CCA runs. Unsold items

translated into missed revenue opportunities for the auctioneer. Both reasons

explain the difference in auctioneer revenue between the SMRA and the CCA,

which was highly significant in the lab. There was also a difference between the

auction formats in the competition, but it was insignificant (SMRA ∼ CCA).

But apart from the payment rule, the low number of bids in the lab had a

decisive impact on the poor revenue in CCA, especially in both multiband

settings. The simulation of CCA with truth revealing bidders led to a revenue
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Figure 5.4: Auctioneer revenue share

share of 75.72% in the multiband setting and 78.07% in the multibandsmall

setting, which compares to only 33.83% and 49.51% in the lab. Thus, if bidders

revealed more of their bundle bids truthfully, the CCA could gain considerably

more revenue and reach the levels of the SMRA in the lab (80.71% for the

multiband setting and 84.51% for the multibandsmall setting).

The exposure problem puts bidders in SMRA at risk of winning only a fraction

of their intended bundle at a price exceeding their valuation. In a number

of cases in the lab, this caused bidders to pay considerably more than their

valuation and to end up with a negative payoff. In one SMRA run, the total

revenue was even higher than the total valuation of the efficient allocation,

leading to auctioneer revenue of more than 100%.

The auctioneer revenue in CCAs was higher in the base value model than in

both multiband value models. Again, the number of possible bundles may serve

as an explanation, since it causes difficulties when bidders try to coordinate

and find the efficient solution. Given the low number of bundle bids, the

second best allocation was much lower and resulted in high discounts and low

payments. Five of sixteen CCAs in the multiband value model and two of

eight CCAs in the multibandsmall value model terminated with an auctioneer
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revenue share of 30% or less. One auction in the multiband value model yielded

as little as 2% auctioneer revenue share.

One question is whether bidders would bid differently in the primary bid rounds

if there was no supplementary bids round and what the consequences would

be. Some researchers argue, that bidders would not change their behavior in

the primary bid rounds (Jewitt and Li, 2008). We evaluated the results of the

auctions, ignoring the bids in the supplementary bids round and assuming a

pay-what-you-bid payment rule.

Result 3: In all three value models, auctioneer revenue in the CCA after

the primary bid rounds (Primary) would be significantly higher than with the

supplementary bids round and the bidder-optimal core-selecting payment rule

(CCA), if bidders submitted the exact same bids as in the CCA (base: Pri-

mary �∗ CCA, p = 0.0112; multiband: Primary �∗∗ CCA, p < 0.0001;

multibandsmall: Primary �∗∗ CCA, p < 0.0001).

Value model Bidder E(X) E(X)∗ R(X)
(in %) (in %) (in %)

Base Lab 91.71 25.37 78.36
Multiband Lab 86.28 44.38 67.47
Multibandsmall Lab 78.96 13.77 62.58
Base Comp 90.19 10.54 74.30

Table 5.6: Aggregate measures of CCA after primary bid rounds

Support for result 3 is presented in table 5.6. With the pay-what-you-bid

payment rule, bidders do not get a discount on their bid price and the revenue

is higher than with the CCA payment rule.

Table 5.7 shows that the average sum of bid prices of winning bids in the

supplementary bids round is 12 to 32% above the average of winning bids in

the primary bid rounds. The analysis of bidding behavior in CCA in section

5.4.3 shows that bidders bid close to their valuations in the supplementary
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bids round. This implies that the prices in the primary rounds already rose

to quite high levels and bidders were able to bid 68 to 88% of their final bid

prices. Since bidders are only allowed to submit a single bid in each round,

the relative price levels between bands may prevent bids including bundles

with items from several bands. This can result in lower total bid prices. This

problem is most pronounced in the multibandsmall value model.

Value model Bidder Total bid price Total bid price Increase
of winning bids of winning bids (%)
in primary bid in supplementary
rounds (Franc) bids round (Franc)

Base Lab 4,084 4,594 12
Multiband Lab 4,302 5,269 22
Multibandsmall Lab 5,886 7,764 32
Base Comp 3,904 4,611 18

Table 5.7: Average sum of bid prices with and without
supplementary bids

5.4.2 Bidder behavior in the SMRA

Exposure risk is a central strategic challenge of the SMRA in the presence of

complementary valuations. It describes the bidder’s risk of ending up with

a subset of the intended bundle at a price exceeding his valuation for the

subset. Strong bidders with a high valuation might want to take this risk,

while weak bidders would decide to reduce demand in order to keep prices

low. Alternatively, weak bidders could try to pretend to be strong and bid

aggressively, hoping others would believe them and reduce their demand.

The base and multiband value models included fixed complementarities while

the multibandsmall value model assumed a variable complementarity structure

(table 5.1). Bidders in the settings with fixed complementarities, i.e., with
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identical complementarities for all bidders, can be grouped in strong and weak

bidders by their base valuation. Weak bidders have a base valuation lower than

the mean of possible draws and strong bidders greater than the mean. For the

A band in the base value model in particular, we derive in Bichler et al. (2011)

the minimum base valuation for which a risk-neutral bidder would be willing

to take exposure risk. The value is 158 Franc which is close to the mean of

160 Franc. Here, we report the results with the derived value. There are no

complementarities in band B and we take the mean of the base valuations, i.e.,

125 Franc. For the multiband setting we used the following values to separate

strong and weak bidders: 200 Franc for band A and 125 Franc for bands B, C,

and D. Due to the variable complementarity structure in the multibandsmall

value model, there are no generally strong or generally weak bidders and we

do not make such a distinction in this setting.

The fixed complementarity structure of the base setting and the multiband

setting allow for the definition of different but fixed levels of exposure risk

which let us analyze how bidders have managed the exposure risk in settings

using these two value models. Complementarities in band A in the base value

model are identical among bidders and rise with the bundle size (for up to

four items): The per item valuation in a bundle of two items is higher than

the base valuation, the per item valuation in a bundle of three items is higher

than in a bundle of two items, and the per item valuation in a bundle of four

items is higher than in a bundle of three items.

Thus, bidders have to decide whether to bid above their base valuation for an

A item (they take on Exposure1), above the per item valuation in a bundle

of two items (they take on Exposure2), or even above the per item valuation

in a bundle of three items (they take on Exposure3). Suppose a bidder keeps

bidding on four items until prices exceed the per item valuation in a bundle

of four items, i.e., he takes on Exposure3. At this point, demand reduction

is impossible without losses because the per item valuation in bundles smaller

than four items is lower than the price he has already bid.
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In the multiband value model with decreasing complementarities for bund-

les of size two and three, the decision within each band is whether to bid above

the base valuation (Exposure1) or above the per item valuation in a bundle

of two items (Exposure2). Due to the higher synergy of two items, bidders

can bid on three items and then reduce from three to two items without expe-

riencing losses when prices rise too high. Only a reduction from two items to

one item will result in a loss if prices have risen above the base valuation.

Different degrees of exposure risk in the value models and the decreasing ver-

sus increasing complementarity structures give various options to the bidders.

In the following, we analyze whether bidders took exposure risk and the sub-

sequent implications on payoffs.

Result 4: In the base value model, strong bidders took an exposure risk less

often than weak bidders in the lab and the competition. In contrast, strong bid-

ders took a moderate exposure risk (Exposure1) more often than weak bidders

in all four bands of the multiband value model. In addition, strong bidders took

higher levels of exposure risk more often than weak bidders in the more valuable

band A while weak bidders took it more often in the other bands. Bidders in

competitions took exposure risk less often than lab bidders. This holds true for

strong and weak bidders and all levels of exposure risk. Bidders in both the lab

and the competition bid up to their valuations instead of reducing demand and

terminating the auction at low prices.

Tables 5.8 and 5.9 show the share of bidders who took the different levels of

exposure risk in both value models. In the base value model, the competitive

situation made it comparably easy for strong bidders: With fourteen items on

sale in band A, strong bidders expected to win four items each while the two

weaker bidders had to split the remaining six items. Therefore, weaker bidders

faced the threat of not winning four items without taking exposure risk. This

explains why weak bidders took exposure risk more often than strong bidders

in the base value model.
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Bidder Strength No. of Exposure1 Exposure2 Exposure3
bidders bid > vA bid > 1.2 ∗ vA bid > 1.4 ∗ vA
(=100%) (%) (%) (%)

Lab All 80 88.75 72.50 56.25
Lab Strong 39 87.18 64.10 53.85
Lab Weak 41 90.24 80.49 58.54
Comp All 36 86.11 55.56 36.11
Comp Strong 18 83.33 55.56 22.22
Comp Weak 18 88.89 55.56 50.00

Table 5.8: Share of bidders taking different levels of exposure
risk in band A, base value model

Band Strength No. of Exposure1 Exposure2
bidders bid > vA bid > 1.5 ∗ vA
(=100%) (%) (%)

A All 64 79.69 21.88
A Strong 24 91.67 25.00
A Weak 40 72.50 20.00
B All 64 81.25 17.19
B Strong 33 90.91 12.12
B Weak 31 70.97 22.58
C All 64 84.38 25.00
C Strong 36 86.11 11.11
C Weak 28 82.14 42.86
D All 64 81.25 20.31
D Strong 34 91.18 14.71
D Weak 30 70.00 26.67

Table 5.9: Share of bidders taking different levels of exposure
risk, multiband value model
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Value model Bidder Bidders with Total bidders Share
negative payoff (=100%) (%)

Base Lab 19 80 23.75
Multiband Lab 5 64 7.81
Multibandsmall Lab 4 32 12.50
Base Comp 5 36 13.89

Table 5.10: Bidders with negative payoff

Bidders in the multiband setting faced a different strategic situation. With

only six items per band, it was very likely that either two bidders would win

three items each, or three bidders would win two items each. Weak bidders

were less willing to take exposure risk and to risk ending up with only one

item. Thus, the strong bidders faced strong competitors within the band,

forcing them to take exposure risk themselves. Within all four bands, strong

bidders took exposure risk more often than weak bidders.

In competitions, strong as well as weak bidders took exposure risk less often

than bidders in the lab. This difference grows for higher levels of exposure,

i.e., the risk of ending up with negative payoff.

Table 5.10 shows that bidders in competitions successfully avoided negative

payoffs by taking exposure risk at higher levels more prudently. While 23.75%

of the bidders in the lab received negative payoff, only 13.89% of the bidders

in the competition had a loss due to taking an exposure risk. Since bidders

had four bands with complementarities to coordinate in the multiband value

model, the risk was smaller and only 7.81% of bidders in the multiband and

12.50% in the multibandsmall value model made negative payoff.

We did not find evidence of successful tacit collusion in SMRA, neither in

the lab nor in the competition, although the first activity level gave bidders

the option to bid on smaller bundles without losing the chance of bidding on

larger bundles in the second activity phase. Bidders signaled their preferences,
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but none of the auctions resulted in agreements at low revenue. Even though

bidders who rate their valuations as weak have an incentive to reduce the

number of items they bid on in order to keep prices low and win a small

bundle with higher payoff, we could observe this behavior neither in the lab

nor in the competition. Final allocations of all auctions only emerged after the

weakest bidder was overbid. Nevertheless, it is interesting to observe signaling

behavior in the lab. We focus our analysis on jump bids and bids on own

items.

By using a jump bid and bidding more for an item than required by the

auction rules (i.e., price of standing bid plus minimum increment), a bidder

can demonstrate a strong will to win the item and try to discourage other

bidders from bidding on the same item. The same signal can be given by

raising the bid on an item for which the bidder already holds the standing

high bid.

Result 5: Jump bids were used by all bidders in all treatments: 41.05% to

61.42% of all bids were jump bids. Bidders in the lab used jump bids more

often than bidders in the competition (Lab �∗ Comp, p = 0.0103). Bidders in

the competition focused on lower jump bids.

Table 5.11 shows that jump bids were heavily used across all bands. The

number of jump bids varied slightly between 41.05% for band B without com-

plementarities in the competition (base value model) to 61.42% for band A

with complementarities in the lab (multibandsmall value model).

Bidders in competitions used jump bids less frequently than bidders in the

lab in all three value models. This is in line with the result that bidders in

competitions reached efficiencies similar to those of bidders in the lab, while

the total revenue of competitions was lower. One reason might be that more

bidders in competitions considered the risk of paying more than necessary by

using jump bids.

Table 5.12 shows the number of jump bids of different sizes as share of the
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Value model Bidder Band No. of No. of Share
jump bids bids (%)

Base Lab All 22.45 40.39 55.59
Base Lab A 12.91 23.23 55.60
Base Lab B 9.54 17.16 55.57
Multiband Lab All 31.50 59.52 52.93
Multiband Lab A 8.09 15.33 52.80
Multiband Lab B 6.88 14.72 46.71
Multiband Lab C 9.22 15.72 58.65
Multiband Lab D 7.31 13.75 53.18
Multibandsmall Lab All 32.31 59.75 54.08
Multibandsmall Lab A 13.28 21.63 61.42
Multibandsmall Lab B 5.88 12.53 46.88
Multibandsmall Lab C 6.44 13.50 47.69
Multibandsmall Lab D 6.72 12.09 55.56
Base Comp All 16.42 36.22 45.32
Base Comp A 8.58 17.14 50.08
Base Comp B 7.83 19.08 41.05

Table 5.11: Jump bids per bidder by band

total number of bids. Low jump bids are those bids which exceed the ask

price by 1 or 2 Franc (two lowest steps of the click-box), medium jump bids

exceed the ask price by 5 or 10 Franc (two steps in the middle) and high jump

bids by 20 or 50 Franc (two top steps). Low jump bids can be used to avoid

ties. Bidders in both the lab and the competition used low jumps quite often

(Lab ∼ Comp). Medium and high jump bids are used to demonstrate strength

and discourage other bidders from bidding on this very block. We found that

bidders in competitions used medium and high jump bids significantly less

often than lab bidders (medium: Lab �∗∗ Comp, p = 0.0004; high: Lab �∗∗

Comp, p = 0.0032). In the multiband value model, high jump bids made up the

biggest bulk of jumps altogether, while in the multibandsmall value model low

jumps were used more often. This might be explained by the lower competition

within each band induced by the flexible complementarity structure of the
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multibandsmall value model.

Value model Bidder No. of All Low Medium High
bids jumps jumps jumps jumps
(=100%) (%) (%) (%) (%)

Base Lab 40.39 55.59 21.11 21.02 13.46
Multiband Lab 59.52 52.93 18.09 14.12 20.71
Multibandsmall Lab 32.31 54.08 23.27 12.61 18.20
Base Comp 36.22 45.32 24.77 12.81 7.75

Table 5.12: Jump bids per bidder by step size (all bands)

Result 6: Bidders of all treatments placed bids on items that they had pro-

visionally won in the previous round (bids on own items). In bands of higher

valuation (band A), bidders used a higher number of bids on own items than

in other bands across all three value models.

Support for result 6 is presented in Table 5.13. Remarkably, bidders in com-

petitions placed an almost five times higher share of bids on their own items

in the more valuable A band (9.40%) than in band B (1.89%). Bidders in the

lab spread bids more equally on their own items in bands A (6.73%) and B

(4.01%). In the multibandsmall value model, bidders used twice as many bids

on their own items (4.34 or 7.27%) as in the multiband value model (2.11 or

3.54%). They focused these bids on the A band, which was most valuable,

while in the multiband value model, bidders spread their bids more equally

among bands. One reason might be that bidders expected higher chances of

winning valuable A blocks, since it was not clear upfront how the band would

be split. Due to the flexible structure of complementarities, bidders with high

base valuations as well as bidders with high complementarities for small bundle

sizes could try to succeed in the A band.
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Value model Bidder Band No. of bids No. of Share
on own items bids (%)

Base Lab All 2.25 40.39 5.57
Base Lab A 1.56 23.23 6.73
Base Lab B 0.69 17.16 4.01
Multiband Lab All 2.11 59.52 3.54
Multiband Lab A 0.68 15.33 4.44
Multiband Lab B 0.48 14.72 3.29
Multiband Lab C 0.59 15.72 3.75
Multiband Lab D 0.36 13.75 2.61
Multibandsmall Lab All 4.34 59.75 7.27
Multibandsmall Lab A 2.22 21.63 10.26
Multibandsmall Lab B 0.88 12.53 6.99
Multibandsmall Lab C 0.75 13.50 5.56
Multibandsmall Lab D 0.50 12.09 4.13
Base Comp All 1.97 36.22 5.44
Base Comp A 1.61 17.14 9.40
Base Comp B 0.36 19.08 1.89

Table 5.13: Bids on own items per bidder

5.4.3 Bidder behavior in the CCA

The two phases of the CCA design put bidders in different strategic situa-

tions. In the primary bid rounds, bidders can only accept prices and state

their demand by submitting a single bundle bid per round. The strategic de-

cisions are limited mainly to the question of whether a bidder wants to bid

straightforwardly or not. In the supplementary bids round, bidders can choose

the number of package bids, the packages, and the bid price. We start by

analyzing the considerably more complex supplementary bids round.

Result 7: Bidders in all treatments bid close to their valuation in the supple-

mentary bids round. Several bidders bid below their valuation and the slope of

the regression is less than one in all three value models in the lab and in the

competition.
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Figure 5.5: Bid prices in the supplementary bids round

Figure 5.5 shows whether bidders bid below, at, or above their valuation on

a bundle in the supplementary bids round. Interestingly, most supplementary

bids are at or below their valuation. In the base value model in the lab, some

bids were above the valuation. The figure also plots a regression line in addition

to the diagonal with a slope of one. The slope of this regression can serve as a

benchmark. For the base value model, the slope is 0.90 (adjusted R2 = 0.77)

for data from the lab and 0.92 (adjusted R2 = 0.87) for the bid data from the

competition. In the multiband value model, the slope of the regression is 0.72

(adjusted R2 = 0.79) and in the multibandsmall value model it is 0.85 (adjusted

R2 = 0.83).
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Note that bidders in the competition knew about the possibility of speculation

and they bid either at their valuation or below; almost nobody bid above their

valuation in competitions. In the base value model in the competition, only

3.24% of the bids were above their valuation, while in the lab 22.66% of the

bids were above the valuation. In the multiband value model, only 8.26% of

the bids were above the valuation and in the multibandsmall value model only

4.34%. A single lab bidder in the base value model bid consistently above

his valuations. Three out of four of his bids were above his valuation, which

accounted for almost half of all the bids above the valuation. Without this

bidder, only 12.81% of the bids were above valuations of lab bidders in the

base value model.

Next, we wanted to understand the selection of bundles in the supplementary

bids round. With a VCG auction rule and independent private values, bidders

have a dominant strategy to bid on all bundles with a positive payoff at the

prices of the last primary bid round (section 2.6.1.1). The CCA does not have

a VCG payment rule and thus no dominant strategy either. It is not obvious

how bidders might strategically select their bundles in such a setting.

Result 8: In the supplementary bids round, bidders in the lab bid only on

23.67% or 11.36 bundles out of 48 potential bundles they could bid on in

the base value model, on 8.33 of the 2,400 possible bundles (0.35%) in the

multiband value model, and on 11.50 of 624 possible bundles (1.84%) in the

multibandsmall value model. In the competition, bidders submitted an average

of 6.08 bids (12.67%) in the base value model.

Lab bidders in both multiband value models actually submitted fewer bundle

bids in absolute numbers than in the smaller base value model. Some bidders

in the small value model tried to bid on almost all bids in the supplemen-

tary bids round, while we conjecture that in the multiband value models this

was perceived as impossible. We had bidders who submitted 36 out of 48

possible bundle bids in the base value model. In contrast, in the multiband
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and multibandsmall value models, bidders submitted at most 22 bids in the

supplementary bids round.

We made similar observations in the field. In the L-band auction in the UK

in 2008, for instance, 17 specific lots were sold, resulting in 131,071 possible

bundles, but the 8 bidders only submitted up to 15 bids in the supplementary

bids round (Cramton, 2008). Similarly, in the 10-40 GHz auction in the UK in

2008, bidders could bid on 12,935 distinct bundles. 8 bidders only submitted

up to 22 bundles, while one submitted 106 and another 544 bundle bids (Jewitt

and Li, 2008).

There are several conjectures to explain this phenomenon. One explanation

is that bidders only value a small number of bundles in the field. Bidders

may also be simply unprepared and may not have fully understood the conse-

quences of particular strategies in the CCA (Jewitt and Li, 2008). This might

hold true for the lab, the competition, and the field to some extent. Another

explanation is that bidders in the field do not have a pure private values model.

In particular, strong bidders might try to maximize their chance of winning

their preferred allocation, which is a strategic goal of the company, and mini-

mize the possibility of winning a less attractive combination. In many cases,

it is also difficult to trade off various possible smaller allocations for money,

which is assumed in a pure private values model with quasi-linear utilities.

Bidders in the lab or in the competition might have been guided by similar

considerations, although this is risky, as bidders might end up winning nothing.

In the competition, bidders submitted even fewer bids in the supplementary

bids round than in the lab. On the basis of reports given by participants after

the competition, we saw that bidders with a high base valuation particularly

wanted to maximize their chances of winning bundles with the highest valua-

tion, assuming this would also yield the highest payoff. To illustrate this point,

let us assume a setting similar to our situation in band A of the base value

model with fourteen items and four bidders, each interested in four items. If
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Figure 5.6: Rank of supplementary bids by valuation and payoff
at final clock prices, base value model, lab

three strong bidders submitted a bid of 40 for four items and the weak bidder

submits a bid of only 30 for four items, the three strong bidders will win. If,

however, one of the strong bidders submitted a bid for two items at 15 in

addition, the large coalition would win, but the strong bidder would win only

the small package of two items.

Result 9: Bidders in the lab and in the competition used simple heuristics to

select bundles in the supplementary bids phase. In band A of the base value

model, they experienced the highest synergies with four items. As a conse-

quence, they submitted many bids with four items in the A band. Strong bidders

in the base value model submitted significantly fewer bids on bundles with less

than four items than weak bidders did. Similarly, in the multiband value model

bidders had the highest synergies for two items and, actually, most of their

bundles were packages with two items in a band. In the multibandsmall value

model, bidders had flexible complementarities, so we restricted the analyses to

the valuation rank and the payoff rank. Bidders submitted a larger number of

bids on bundles with a high payoff at final clock prices in all three value models,

especially in both of the multiband value models.

We began with the base value model. We calculated ranks of each bid sub-
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Figure 5.7: Number of A items in supplementary bids, base
value model, lab and competition

mitted in the supplementary bids phase, one rank based on the valuation of

the bundle for a bidder, another rank based on the payoff the bidder had for

the bundle at the end of the primary bid rounds using the ask prices in the

final round. Figures 5.6 (lab) and B.11 in the appendix (competition) show

that bidders exhibited a slight tendency to select bundles with a better rank

based on payoff in both the lab and the competition. However, bidders also

submitted a considerable number of bids for which their payoff at final clock

prices was low or negative in the base value model.

Then, figures 5.7 and 5.8 reveal that most bids in band A were on four items,

where the complementarity was highest, whereas bidders bid on up to six

items in band B. There was also a significant difference between weak and

strong bidders (figure B.7 in the appendix). While only a few strong bidders

submitted bids on less than four items in band A, weak bidders typically

submitted such bids. This was even more pronounced in the competition

(figure B.12 in the appendix).

The results indicate that bidders in the lab and in the competition did not

rely on the ranking of bundles by valuation and payoff, but used information

about the synergies in the value models and tried to win the bundles with
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Figure 5.8: Number of B items in supplementary bids, base
value model, lab and competition

the highest synergies. Remember that bidders had a spreadsheet to rank-

order their bundles by payoff at the prices of the final clock round and based

on valuation. Bounded rationality and satisficing behavior, as introduced by

Simon (1991), can serve as explanations for such behavior.

We proceeded with the multiband value models. Figures 5.9 and 5.10 show

the frequency of bids ranked by valuation or by payoff at final clock prices for

both value models. It seems that bidders picked those bundles with the highest

payoff after the primary bid rounds, but that those bundles were often worst

in terms of their valuation. Bidders often bid on small bundles which were

ranked very low compared to large bundles with many items from each band.

For the multiband value model, figure B.8 in the appendix shows that most

bundles included only two or three items from a band, which was motivated

by complementarities for bundles of these sizes in the value model. Since the

highest frequencies of all bands are at zero, it also demonstrates that many

bundle bids did not include items from all bands.

Finally, we also examined whether bidders bid straightforwardly in the primary

bid rounds. In other words, did they select the bundle with the highest payoff

in each round? This is the intention of the activity rules.
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Figure 5.9: Rank of supplementary bids by valuation and payoff
at final clock prices, multiband value model

Figure 5.10: Rank of supplementary bids by valuation and
payoff at final clock prices, multibandsmall value model
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Figure 5.11: Rank of primary bids

Result 10: In the primary bid rounds bidders did not follow a straightforward

bidding strategy in all three value models. Bundle selection followed the same

pattern as in the supplementary bids round, guided by synergies in the value

model. In contrast to the supplementary bids round, the activity rule also led

to a larger number of bundles which were not ranked top in terms of payoff in

the primary bid rounds.

Figures 5.11 (lab) and B.13 in the appendix (competition) show that the rank-

ing by payoff had less of an impact in the base value model and was outweighed

by the activity rule, which led bidders to submit large bundles, particularly

in the early rounds. Bidders did not bid straightforwardly but focused on the

synergies and eligibility in subsequent rounds. Again, figure 5.12 suggests that

bidders selected bundles with four to six items in band A.

In the multiband value model, bidders most frequently selected bundles with

two or three items in a band, because they exhibited synergies (see figure B.9 in

the appendix). Here again, many bundles did not include blocks of all bands.

Figure 5.11 shows the rank of bundle bids based on payoff at final clock prices

for the multiband and multibandsmall value models, exhibiting a strong spike to

the left. It can be explained by a number of large bundles with up to six items

per band in the multiband setting and up to four items in the multibandsmall

setting, which yield both a high valuation rank and a high payoff rank at final
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Figure 5.12: Number of items in primary bids, base value
model, lab

clock prices. Particularly in the first few rounds, bidders often selected very

large bundles which were high in value and payoff at initial prices to preserve

a high eligibility.

5.4.4 Summary

One of the main results of our experiments is that the CCA did not yield higher

efficiency in the small base value model and was significantly worse in both

multiband value models. Revenue was significantly lower in all treatments and

sometimes items remained unsold despite sufficient demand. This was due to

the low number of bundle bids, the low number of bidders in the setting, and

the CCA payment rule. It is interesting to note that if bidders had submitted

bids on all possible bundles truthfully, as we did in our simulations, the revenue

would have been competitive with the revenue of SMRA in the lab.

In the CCA, bidders submitted only a small subset of all possible bundle bids.

In the base value model 11.36 out of 48 possible bundles, in the multiband

value model only 8.33 bids out of 2,400 possible bids, and in the multibandsmall

value model only 11.50 of the 624 possible bundles were submitted by bidders
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in the supplementary bids round, which was a major reason for inefficiency and

unsold items. Bidders used heuristics to select bundles, mainly based on their

strengths and the synergies in the value model. In the base value model, strong

bidders avoided bids on small bundles in the most valuable A band, while weak

bidders bid on smaller combinations as well. The bundle bids submitted in the

supplementary bids round were either at the valuation or slightly below in all

treatment combinations, which is in line with theoretical predictions.

The observed bundle selection is more difficult to explain theoretically. The

bidders had sufficient time to submit as many bundle bids as they wanted, but

chose to submit only a few bids. One explanation is that neither bidders in the

lab nor those in the competition fully understood the dominant strategy in a

VCG mechanism and the theory of core-selecting payment rules. It is also likely

that bidders felt unable to submit 624 or 2,400 bundle bids in the multiband

settings, and they bid on those that either had the highest payoff after the

primary bid rounds (suggesting they had the highest chance of winning), or

that had the highest synergies. Such behavior could be explained as satisficing,

since bidding optimally did not seem practical.

It might be thought that bidders in high-stakes spectrum auctions behave

differently. Interestingly, observations from the field show that bidders also

submit only a small number of bundle bids in the supplementary bids round

(Hoffman, 2011). An additional reason for strong bidders in the field not to

bid on small bundles is that they sometimes have the strategic goal of winning

large bundles of licenses on top of budgets earmarked for specific allocations.

That alone cannot explain the observations from the field, however. In any

case, it seems very likely that bidders in the field, facing several hundred or

thousand possible bids, as is typically the case in multiband auctions, also do

not bid on a sufficiently large number of bids to guarantee high efficiency in

the CCA. In our experiments, this led to the effect that efficiency was very

low, items remained unsold, and revenue was much lower than expected.
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For bidders in SMRA, exposure risk was a central strategic challenge. In the

competition, bidders were more cautious about taking this risk. Jump bids

and bids on own items, where the bidder holds the high bid, were used for

signaling in both the lab and the competition. Again, bidders in the competi-

tion used these tactics more carefully, thus better avoiding the associated risks

and achieving higher payoffs. While bidders faced strategic difficulties due to

the exposure risk, the SMRA elicited the valuations of bidders on individual

items sufficiently well to allow for high efficiency even in the multiband value

models. Although bidders with low valuations did have an incentive to reduce

demand early in the auction in order to win a small bundle with a high payoff,

bidders were not able to terminate auctions at low prices.

Still, our results cannot necessarily be generalized to very different value mod-

els. We modeled different types of complementary valuations, but one could

also argue for even other types in some settings, such as sub-additivities or

inter-band complementarities. Also, we analyzed a pure private values model,

while values might be affiliated or budget constraints might apply in some

applications.
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Conclusions

It doesn’t matter how beautiful your theory is,

it doesn’t matter how smart you are.

If it doesn’t agree with experiment,

it’s wrong.

Richard P. Feynman

Spectrum and the licenses to use it are regarded as a national resource. The

sale of spectrum usage licenses to telecommunication service providers should

thus ensure that the spectrum is assigned to those who can put it to the best

use. Bidders with the highest valuations should get the licenses. The auction

should also create an acceptable level of revenue to justify the allocation to

losing bidders and to the taxpayers. The Simultaneous Multi-Round Auction

(SMRA) has been the de facto standard for selling licenses due to its simplicity

and its excellent price discovery. But it imposes serious problems for the bid-

ders, foremost the exposure risk. This has led to a lot of bidding strategies and

speculation among bidders. Mobile operators have hired experts and sought

advice from consultants to define a bidding strategy for SMRAs. From a mar-

ket design perspective, no strategies are required to find an efficient allocation,

139
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only the knowledge about the valuations is necessary. Bidding strategies are

therefore counterproductive and eventually lead to lower efficiency.

Cramton (2009b) suggested a two-phase design called Package Clock or the

Combinatorial Clock Auction (CCA), which gives bidders a strong incentive

to report their true valuations and promises high efficiency. The first phase,

a clock phase, collects one bid per round from each bidder. It reduces value

uncertainty and provides some guidance for bidders to focus on the relevant

bundles. The second phase is a sealed-bid round in which bidders can bid

on any bundle they like. The activity rule gives bidders the incentive to bid

truthfully during the first phase, a bidder-optimal core-selecting payment rule

protects auctioneers against low revenues and outcomes outside the core. But

only VCG gives a dominant strategy to bidders to submit true valuations for

all bundles. Bidders in CCAs can still speculate to a limited extent and try to

earn a higher profit by deviating from reporting true valuations. If bidders do

not submit many bids, efficiency as well as revenue can be comparably low.

The contribution of this work is the lab experiments with realistic settings,

in which we compared the CCA to the SMRA. We used different settings

which closely resemble the environments of European spectrum auctions: One

setting uses the exact bandplan of the 2.6 GHz band in Europe, the other

settings resemble environments in which several bands are sold at the same

time, as discussed, e.g., in Switzerland. We showed that CCA was not supe-

rior to SMRA in the smaller base setting and significantly worse than SMRA

in the multiband settings in terms of efficiency. Revenue was lower due to

the payment rule of CCA. Performance suffered from the low number of bids

submitted with CCA, especially in the larger multiband settings that offered

hundreds and thousands of different bundles. Bidders submitted only 0.35%

of all possible bundle bids in the larger multiband setting and 1.84% in the

smaller multiband setting. Bidding on a larger number of bundles might ap-

pear impracticable and bidders might not submit the required number of bids

for the auction to terminate with high efficiency. In the lab, in the smaller base
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setting with fewer options to choose from (48 different bundles), the CCA per-

formed better and efficiency was comparable to that of SMRA. The results

of our experiments indicate that CCA appears less suited for large settings in

which several bands are sold at the same time. This is in line with, e.g., Hoff-

man (2011), who questions the suitability of clock-based combinatorial formats

for settings with many different regional licenses as in the US or Canada.

In the field, we also observed similar problems. Cramton (2008) showed for the

L-band auction in the UK that mobile operators decided to bid on only a small

number of bundles in a setting with hundreds of thousands of possible bundles.

They did so despite enough preparation and time. One reason might be that

determining the valuation of many different bundles is hardly possible since

the valuations depend on business cases. Such calculations are very extensive

because expectations of future market shares and profits and estimations of

the costs involved are required to establish the valuation of a license. If that

is the case, preference elicitation is indeed the ”bottleneck in the real-world

deployment of combinatorial auction formats” (Parkes, 2006). In large settings

with lots of different bundles, combinatorial auctions might not lead to superior

results.

In our experiments, bidders did not follow a straightforward bidding strategy

even though they had the incentive to do so. Instead, they followed simple

heuristics and their selection of bundles was mainly driven by the complemen-

tarities in the value models. Due to the small number of bids the performance

of CCA was not superior to that of SMRA, in contrast to expectations with

rational bidders. Such observations question the validity of assumptions of

purely rational bidder behavior in game-theoretical models.

An area for future work in this field is the analysis of different approaches to

foster preference elicitation and collect more relevant bids from the bidders.

Eliciting more valuations could relieve the observed problems of the CCA.

Altering some of its rules could allow the CCA to collect more bids. For
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instance, by allowing more than just one bid per round in the clock phase

(comparable to the single-phase Simultaneous Clock), bidders could specify

more preferences for different bundles, which would support efficiency and

also increase revenue. We do not know of any experimental comparison of

the CCA and the single-phase Simultaneous Clock which could highlight the

benefits of eliciting more bundle bids.

The bidding language can also be altered. The XOR bidding language lets

bidders precisely state their preferences. But at the same time, it requires a

huge number of bids to state preferences. Brunner et al. (2010) and Scheffel

et al. (2010) have shown that this can be a source of inefficiency. Especially in

larger settings with several bands, bidders have to submit an enormous number

of bids if they want to express preferences which differ in the number of blocks

for several bands. Nisan and Ronen (2001) suggested using dummy items

in combination with the OR language to express various preferences, which

is then called OR*. Boutilier and Hoos (2001) suggested the LGB language,

which allows the use of the combinatorial k − of operator applied to a set of

atomic bids. That would require fewer bids to reveal more preferences. In

addition to submitting bids, bidders could be allowed to specify other types

of constraints, such as budget or capacity limits. These constraints could be

directly represented in the winner determination.

Independent of the choice of the actual auction design and the specific auction

rules, the problems of mobile operators in determining the valuation for many

different license bundles remains. Determining a valuation is not easy in the

domain of spectrum sales because it involves financial analyses. Bid prepara-

tion and also the communication of the bids can be very expensive (Parkes,

2006). With a growing number of possible packages, mobile operators may not

be able to determine the valuations for all bundles that are required for high

efficiency. Bidders may require help and guidance in the selection of relevant

bundles worth determining the valuation for.
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In this context, Hoffman (2011) points out the importance of bidder-aide tools.

Such tools can be rule-based decision support systems which automatically sug-

gest relevant bundles or even generate bids from input parameters describing

the preferences of the bidder. These tools can hardly fit all possible domains

but must rather be tailored to the specific needs of the application. In spec-

trum auctions, they can adopt the structure of business cases to guide the

mobile operators. Parkes (2005) also suggested designs in which bidders state

preferences that are translated into packages and bid prices using a support

tool. This can be an iterative process in which the tool makes suggestions,

and the bidder revises his input until he is satisfied with the output. Then

he can submit the bids to the auctioneer. The practical implementation also

needs to address questions of liability in the translation from preferences into

bids. More research is required in this field, especially in the case of high-stake

auctions such as spectrum sales.

Altogether, we need to better understand the behavior and limitations of bid-

ders in the field and incorporate these in future designs. Bidder behavior in our

lab experiments and also in the field did not follow game-theoretical assump-

tions of purely rational bidders for the reasons mentioned above. Comprehen-

sive auction rules as those of the CCA might overcharge not only subjects in

the lab but also bidders in the field (Cramton, 2009b; Hoffman, 2011). Thus,

we argue that more empirical work in this field is necessary to pin down bidder

characteristics and their limits. Mechanism design cannot obstinately build on

the assumption of purely rational choice behavior when it comes to the design

of auction rules which should perform well in the field.
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Appendix A

Pre-study with competitions

This appendix provides detailed information on the pre-study (explained in

section 4.4.3) in which we analyzed the effect of the level of bidder preparation

on bidding behavior and auction outcome.

A.1 Experimental setup

This section explains the auction rules as well as the economic environment

used in the lab and defines the value model, which was based on utility points.

A.1.1 Auction rules and economic environment

We implemented almost all of the auction rules of the German 4G auction in

2010 as described in section 4.4.3.1 to preserve the complexity of the decision

space faced by bidders. Nevertheless, minor simplifications were necessary,

since the field auction lasted for more than 3 weeks, and we aimed at a duration

of less than 45 minutes per auction.
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We allowed all bidders to bid on and win at most two blocks in the 0.8 GHz

band and at most four blocks in the 2.6 GHz band. All blocks were abstract,

only the fourth and fifth blocks in the 1.8 GHz band were concrete. This was

the case as they were of specific interest to some of the bidders (see figure

A.1) and selling them abstractly would have changed the market structure

considerably. All bidders started with maximum eligibility, i.e., they could bid

on all blocks. The activity phases were reduced to 3 stages (50%, 75%, and

100%) to reduce the time required for an auction. The experiments used an

artificial currency (AC) to reduce the order of magnitude from the field.

The entries for the click-box were adjusted accordingly: The bidders could use

jumps of 1, 2, 5, 10, 20, or 50 AC. Start prices were set at 20 AC per block,

the minimum increment at 15 AC. The round duration was set at 10 minutes

for the first round and 3 minutes for subsequent rounds, which gave subjects

enough time to decide on and to place their bids.

To recreate closely the situation in the field, we defined four different types

of bidders: Very Big (VB), Big (B), Small (S), and Very Small (VS). These

four types differed with respect to their valuations, budget constraints, and

the spectrum they already owned prior to the auction. One bidder of each

type participated in each auction.

We restricted the set of auctioned licenses to the paired licenses (i.e., 28 blocks),

which is in line with other spectrum auction experiments (Seifert and Ehrhart,

2005). The organization of the blocks into four bands and the distribution of

the pre-owned spectrum was preserved, which strongly influenced bidder pref-

erences (section A.1.2). Figure A.1 shows the bandplan with the spectrum

bands in which blocks were sold: The white color indicates blocks to be auc-

tioned in the experiment, while the shaded blocks indicate spectrum already

owned by bidders. This corresponds exactly to the situation encountered in

the field (figure 4.1).
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Figure A.1: Bandplan in the lab including pre-allocated
spectrum

A.1.2 Value model

The bidder valuations in the German 4G auction had some key characteris-

tics: Some of the spectrum on sale was located in between pre-owned spec-

trum. Therefore, the valuations for the relevant blocks differed among bidders.

Valuations exhibited strong complementarities due to the technologies to be

implemented. Especially in the 0.8 GHz and 2.6 GHz bands, the bidders

required two or four blocks respectively to fully support the upcoming LTE

standard1 and to guarantee peak data rates for users. Implementing LTE on

fewer blocks was less valuable. We assume at least some of the bidders had

budget constraints across all bands rather than pure private values.

Therefore, in our experiments, we provided each bidder with an overall budget

limit and a utility ranking of all possible allocations. The relative strengths

and aspirations of competitors in the German 4G auction were discussed in the

media2 and we can assume that bidders had an understanding of the ranking

of the budgets of all bidders. Similarly, we modeled budget constraints for

the different bidder types with uniform distributions, and the parameters were

common knowledge:

1LTE (Long Term Evolution) is a technological standard of the fourth generation which
promises higher bandwidth for mobile communication services than older standards

2E.g., http://www.spiegel.de/wirtschaft/unternehmen/0,1518,688040-2,00.html
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• Very big bidder: 600 to 900 AC

• Big bidder: 450 to 650 AC

• Small bidder: 300 to 500 AC

• Very small bidder: 200 to 350 AC

Bidders could bid up to their budget limit and try to win the most preferred

allocation. If the budget limit was exceeded at the end of an auction (budget

break), the corresponding bidder utility for this auction was zero. Temporarily

exceeding the budget limit during the auction had no negative effect for the

bidder. No additional payoff was created by unused budget.

The bidders received utility points (UP) from winning blocks with higher

utility for sets of adjacent blocks. The smallest possible set is a single block

which is not located next to an existing block owned by the winning bidder.

In general, the more adjacent blocks within a band a bidder won, the higher

the utility of this band, i.e., the more utility points he would gain.

The chunk utility ci,m(s) of bidder i for such a set s of adjacent blocks in band

m is a uniformly distributed random variable drawn from [cmin
i,m (s), cmax

i,m (s)].

The bounds for the uniform distribution of ci,m(s) can be found in table A.1.

Band (m) 0.8 GHz 1.8 GHz 2.1 GHz 2.6 GHz
No. adjacent 1 2 1 2 3 4 5 1 2 3 4 1 2 3 4
blocks (s)

cmax
i,m (s) 5 75 2 8 15 15 17 5 11 11 20 4 6 10 50

cmin
i,m (s) 0 70 0 4 9 10 10 0 6 9 15 1 4 7 40

Table A.1: Ranges for chunk utilities

Since table A.1 gives the ci,m(s) for the combination of pre-owned and new

spectrum of the bidder, e.g., winning two blocks in the 2.1 GHz band would

give four adjacent blocks to the bidders B, S, and VS, but only two adjacent
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blocks for VB (see figure A.1). The utility resulting from winning these two

blocks would therefore differ as well. We get bidder i’s utility ui,m of an

entire band m by adding up all chunks ci,m owned by bidder i within band m:

ui,m =
∑

k=m ci,k(s). Free disposal was given, but acquiring more spectrum

than defined in table A.1 did not result in higher utilities.

The total utility Ui of bidder i’s allocation is the sum of the utilities of all

bands: Ui =
∑4

m=1 ui,m

This deviates from quasi-linear utility functions as they are used in game-

theoretical analysis, but can be motivated by the crucial value of the spectrum

to participating companies. The valuation structure depending on pre-owned

spectrum serves well for the purpose of this pre-study, i.e., it helps create a

complex environment.

A.2 Treatment structure and organization

In total, we ran eight auctions in lab experiments and eight auctions in com-

petitions using eight different value model instances. The experiments were

conducted at the TU München from November 2009 through July 2010 with

the MarketDesigner (www.marketdesigner.org) software. Altogether, 16 sub-

jects were involved. The lab experiments and the competitions differed only

in the level of bidder preparation.

No subject in the lab experiments (Lab treatment) had ever participated in

a lab experiment on auctions before. Lab participants did not have to prepare

for the experiment in advance. On the day of the experiment, the subjects

were first introduced to the experimental setting, the auction rules, and the

value model. Correct understanding of the auction rules was ensured with

a questionnaire which all subjects had to fill in. Prior to the first auction,

the software was explained and a test auction was conducted to familiarize all
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subjects with the user interface. The complete introduction took about one

hour. At the beginning of each auction, participants received their individual

valuations and budget limits. Subjects were compensated financially: The

total compensation was made up of a 20 Euro show-up reward and an allocation

reward. The utilities of the final allocations were translated into Euros with

a conversion factor of 15 utility points to 1 Euro. On average, each subject

received 67.62 Euro.

The competitions (Comp treatment) were conducted with subjects who

went through extended training: Bidders were recruited among students who

attended a lecture on auction theory. Two weeks before the auctions were con-

ducted, they received the same introduction as in the Lab treatment, expanded

with a broad overview of spectrum sales through SMRA, known strategies and

past experiences. Participants were assigned to groups of three. During the

two weeks prior to the experiment, they were asked to prepare comprehensive

strategy papers (up to ten pages in size) outlining goals and tactics for each

bidder role. The strategy papers were graded. The results of the competitions

were rewarded as in the lab: Each participant received a show-up reward of

20 Euro and the utilities of final allocations were converted into Euro. On

average, each participant earned 78.29 EUR.

A.3 Results

Basic tactical instruments in SMRA are discussed in the literature (e.g., Cram-

ton et al. (2006a), Porter and Smith (2006), Salant (1997), Boergers and Dust-

mann (2003)): The auction rules give room for various types of signaling, bud-

get bluffing, budget binding, eligibility parking and demand reduction. Some

of the tactics used in the German 4G auction, such as signaling and budget

bluffing, can be analyzed using the publicly available data. However, most of

the tactical instruments are difficult to quantify without knowing the exact
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budgets and valuations of the bidders. Take demand reduction as an example:

It can be caused either by a tactical decision or simply by a budget limit.

The goal of this pre-study was to investigate differences in bidding behavior

due to differences in the preparation level of bidders in the Lab and Comp

treatments. Therefore, we focus our analyses on various signaling activities,

measures of budget bluffing, and eligibility management. We also briefly report

the differences in the overall auction results. Where possible, we compare

both treatments to field data from the German 4G auction. We applied the

nonparametric Wilcoxon rank sum test (Hollander and Wolfe, 1973) to test

the significance between the treatments: ∼ is used to indicate an insignificant

order, � indicates significance at a 10% level, �∗ indicates significance at a

5% level, and �∗∗ indicates significance at a 1% level.

A.3.1 Auction outcomes

In both treatments, subjects were incentivized to maximize utility based on a

given budget limit in the auction. Therefore, we compare the treatments by

overall utility gained in the auctions, measured in utility points (UP), and the

used budget as a share of the total budget of each bidder.

One would expect that the preparation prior to the experiment and the appli-

cation of tactics during the auctions would lead to higher overall utility or

lower revenue. But this must not necessarily be the case.

Result 1a: Comp bidders achieved significantly higher utility than Lab bidders

(Comp �∗ Lab, p=0.0249).

Comp bidders won an allocation worth 377.75 utility points on average, while

Lab bidders’ allocation achieved a utility of only 316.25 utility points on aver-

age. That implies that Lab bidders were not able to coordinate the distribution

of spectrum among themselves as well as the Comp bidders. Furthermore, if we
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measure coordination by the number of high-value bundles (as defined by tech-

nological requirements, e.g., 4 blocks in the 2.6 GHz band), we find that Comp

bidders won more such bundles than Lab bidders (Comp � Lab, p=0.0780).

At the same time, Comp bidders utilized their allocated budget more efficiently

(Figure A.2).

Result 1b: Comp bidders paid lower prices for the spectrum they won. They

saved a larger share of their budget (Comp � Lab, p=0.0575).

Figure A.2: Overall utility and used budget

In the Comp treatment, an average of 90.7% of the bidders’ budgets was paid

to the auctioneer. Lab bidders paid an average of 94.4%. Hence, Lab bidders

paid significantly more for less attractive allocations.

Another observation is the distribution of the budget over spectrum bands.

Figure A.3 shows the development of average prices by band over the auction

duration, which is scaled to 100% to facilitate the comparison. Similar to

the observations in the field, the 0.8 GHz band had the highest utility for all

bidders in the experiment (table A.1): Winning two blocks resulted in up to 75

utility points. The second highest utility reward (up to 50 points) was provided

by four blocks in the 2.6 GHz band. Thus the relation between the potential
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Figure A.3: Average band prices for Comp and Lab

values of these two bands was 75/50 = 1.5 according to the value model. In the

Comp treatment the levels of the final prices reflected this relationship very

well: The price of one block in the 0.8 GHz band was the highest (approx.

110 AC) and in the 2.6 GHz band the second highest (approx. 40 AC). The

relationship of prices for the two most valuable allocations in 0.8 GHz and

2.6 GHz bands was (2 ∗ 110)/(4 ∗ 40) ≈ 1.4 which is close to the 1.5 of the

underlying value relationship. Lab bidders, on the other hand, did not focus

their bidding to the same extent: The price of the 0.8 GHz band was just 90

AC (while the 1.8 GHz band was more expensive) and one block in the 2.6

GHz band cost 40 AC on average. This equals a price relationship of ≈ 1.1.

A.3.2 Signaling

Signaling was the most often used tactic in the field. Mobile operators released

public statements before and during the auction which gave some indication

of their goals and their assessment of the market. During the auction, jump

bids were used heavily. In the public data, we found that 8.1% of all bids were

jumps, i.e. higher than required by the auction rules. 2.2% of bids were placed
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on bidders’ own blocks, i.e. on blocks for which the bidder was the provisional

winner. This is obviously a form of signaling since, according to the auction

rules, the bidder need not raise the bid in such a case. Bids were also placed

on blocks which were not the cheapest within a band of identical blocks. This

tactic could be used to intentionally overbid the previous winner, which is a

signal visible to all bidders.

Applying these tactical instruments successfully requires preparation and a

clear goal for the auction. As expected, in our experiments Comp bidders

applied more of these tactics:

Result 2: Comp bidders placed more bids on their own blocks than Lab bidders

(Comp ∼ Lab, p=0.2010).

We found that in Comp treatments 0.21 bids per round were placed on bidders’

own blocks, which compares to only 0.12 bids in the Lab setting. In the field,

this tactic was heavily applied by TO2 (perceived to be the weakest bidder),

which placed fourteen bids on its own blocks. One application of this tactic is

to avoid the situation of binding budget constraints. By raising his own bid,

bidder A can reach a price which prevents bidder B from placing the same bid

and becoming the new high bidder. Without using this tactic, bidder A would

have to bid at least another minimum increment to win back this block. Since

this tactic requires a sound strategic goal and an estimation of the competitors’

budget constraints, it was less often applied by Lab bidders.

Result 3: Lab bidders placed significantly more bids on blocks which were not

the cheapest (Lab �∗∗ Comp, p=0.0068).

Straightforward bidding implies choosing the cheapest block within a band of

identical spectrum (section 2.6.2). However, there were deviations from this

behavior both in the field and in our experiments. Such bids can be used to

specifically target a selected bidder in order to find a compromise. We counted

0.66 bids per round that were not on the cheapest available blocks in the Comp
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treatment and 1.14 in the Lab treatment. In the field, bidders placed 1.39 bids

per round on blocks which were not the cheapest within the corresponding

band. Interviews with bidders of the Lab treatment revealed that participants

did not pay a lot of attention to the selection of the blocks, especially in the 2.6

GHz band, when prices differed only a little. Comp participants, on the other

hand, pointed out that they checked price levels thoroughly and deliberately

did not bid on the cheapest block in a band, which was possible because

of better task management within a bidding team compared to individual

bidders in the Lab treatment. They were also aware that such behavior would

be interpreted by their opponents. Such bids observed in the field can be

attributed to tactical considerations.

Result 4: Comp bidders used jump bids more effectively than Lab bidders.

Jump bids can be applied to quickly raise the price level in a band (high jumps),

to avoid ties (small sized jumps), or to effectively demonstrate or signal the

willingness to pay a high price for the block (medium to high jumps). At the

same time, a considerably high jump puts the bidder at risk of overpaying.

Measure Comp Lab p-value
Number of high jumps per auction 3.94 7.08 0.0638
Average share of jumps in 0.8 GHz 50% 40% 0.0329
Average jump premium (in AC) 3.2 16.2 0.0325

Table A.2: Jump bids

The sunk cost assumption for budgets in the experimental setting led to a

comparatively high level of jumps in Lab and Comp, because bidders had

no incentive to save any of their budget (Table A.2). Data from the field is

not directly comparable to the experimental data, since the the German 4G

auction lasted more than 3 weeks and 224 rounds.

Comparing the experimental treatments, we find result 4a:
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Result 4a: Lab bidders used high jumps to a significantly greater extent (Lab

� Comp, p=0.0638).

We define high jump bids as bids that exceed the required minimum increment

by 10, 20, and 50 AC (click-box). Lab bidders placed an average of 7.08 high

jumps per auction, which compares to only 3.94 for Comp bidders.

Even though the overall number of high jumps was higher for the Lab setting,

Comp bidders used the jumps strategically and applied them for the most

valuable spectrum.

The total number of jump bids alone is not sufficient for an understanding of

differences in bidding behavior. The desired effects and risks of a jump bid

depend on its position and its relation to the average price in the corresponding

band. Therefore, we also compared the bands in which jump bids were used

(result 4b) as well as the average jump premium paid (result 4c).

Result 4b: Comp bidders focused their jump bids on the most important

blocks, i.e., the 0.8 GHz band (Comp �∗ Lab, p=0.0329).

We found a significant difference in the ratio of jump bids that were placed in

the hot spot band 0.8 GHz: Comp bidders recognized the high importance of

the 0.8 GHz band and the need to coordinate in this band. Therefore, they

concentrated their comparatively smaller total number of jump bids on this

band: They placed 50% of their jump bids in the 0.8 GHz band, while Lab

bidders did not recognize this importance and spread their jumps across all

bands (only 40% in the 0.8 GHz band). This result is in line with findings on

average final prices for bands: Comp bidders paid a significantly higher price

for the 0.8 GHz band (p=0.0015) and significantly lower prices for the 1.8

and 2.0 GHz bands (p=0.0035 and p=0.0249 respectively). The price for the

second most important 2.6 GHz band was higher but not significantly. This

implies that Lab bidders were not able to estimate possible final allocations

given the market structure.
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Jump bids can be a useful strategy, but they bear a certain risk of overpaying.

In the following, we consider the jump bids which won at the end of the auction,

and define jump premium as the difference between the jump bid price and

the average price of all other blocks in the corresponding band. Following

this definition, the jump premium represents the lost budget which the bidder

could have saved by making a lower bid.

Result 4c: Lab bidders paid a significantly higher jump premium than Comp

bidders (Lab �∗ Comp, p=0.0325).

We found that Lab bidders paid, on average, a premium of 16.2 AC, which

compares to only 3.2 AC for Comp bidders. This difference is significant. As

pointed out before, using jump bids is far from easy. The preparation of Comp

bidders resulted in a better understanding of auction dynamics and estimations

of competitors’ budgets, which allowed for a more effective use of jump bids.

Lab bidders had less preparation and were less able to assess the implications

of jump bids. They used jump bids more imprudently and paid a high price

for it. In addition, Lab bidders were less aware of the risks of jump bids and

overestimated their advantages.

A.3.3 Budget bluffing

Since binding budget constraints are crucial to the auction outcome, bidders

in the field spend a great deal to estimate competitors’ budget limits prior to

and during the auction (Bulow et al. (2009)). Bidders do not want to reveal

their budget constraints and make it as difficult as possible for competitors to

estimate their budgets. Therefore, they might deliberately exceed their budget

temporarily to make their competitors believe they are stronger than they are.

This is called budget bluffing . We cannot be sure whether budget bluffing

was used in the German 4G auction, but the smaller players definitively had

the incentive to do so. In the experimental setting, we know the exact budget
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constraints and can analyze such bluffs.

Successful applications of budget bluffing require that the bidder still remain

within the budget at the end of the auction, which implies a reliable estimate

of the financial power of other bidders, their targets, final prices in different

bands, and the remaining auction duration. Only with such estimates is a

bidder able to avoid exceeding his budget at the end of the auction, which

results in zero utility.

Result 5: In both treatments, budget bluffing was used to a similar extent, but

Comp bidders succeeded more often in staying within their budget limits at the

end of the auction.

Figure A.4: Budget breaks during the auction

We found that Comp bidders considerably overdrew their budgets in the first

half of the auction, up to 17.8 AC per bidder on average, but usually managed

to be within budget limits at the end of the auction. At the auction end,

they exceeded the budget by only 0.5 AC per bidder on average (figure A.4).

In contrast, Lab bidders exceeded their budget by 6.2 AC per bidder at the

beginning and instead of resolving this situation, they ended up overdrawing

their budget by 8.8 AC on average at the end of the auction. Although the
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difference was not significant, it supports the conclusion that Lab bidders more

often failed to judge the market situation correctly. In absolute numbers, at

the end of the auction budgets were exceeded four times in the Lab setting

and only once in the Comp setting.

A.3.4 Eligibility management

In both treatments of our experiments and in the field, bidders had to adhere to

activity rules in order to maintain the right to participate in the auction. The

SMRA with a stacked activity rule gives bidders a lot of freedom in managing

the eligibility points, for instance by using a parking strategy and bidding on

blocks of minor interest in the early stages of the auction.

Result 6: Comp bidders actively managed eligibility points while Lab bidders

bid to maximize eligibility points.

Comparing the number of bids and the available eligibility, we found that

Lab bidders submitted a higher number of bids per round (6.89) than Comp

bidders (3.93). While Comp bidders used their highest number of activity

points, 12.44, in round nine (normalized auction duration to 100 rounds), Lab

bidders kept up activity longer and achieved a maximum of 17.50 in round

twelve. From the peak, the Lab bidders constantly decreased their eligibility

until the end of the auction, which was caused by the budget limits. Comp

bidders, on the other hand, reduced eligibility to the level of the final allocation

shortly after half of the auction duration. This can be attributed to proactive

eligibility management.

We conjecture that, due to lack of preparation time, Lab bidders did not have

a specified target allocation and eligibility requirement at the beginning of the

auction. Thus, Lab bidders bid on more blocks to maximize their flexibility

for later rounds. The different approach to eligibility management is also

illustrated by the convergence of the auctions. Auctions in the Lab treatment
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finished on average three to four rounds earlier, which is significantly less,

because by bidding on more lots they caused prices to rise more quickly. This

is supported by the fact that the number of bids submitted per round by Comp

bidders (3.93) more closely matches those encountered in the field (3.27). The

Lab bidders submitted 6.89 bids per round.
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Experimental study of CCA and

SMRA

B.1 Example valuation sheets

Figure B.1: Valuation sheet, base value model
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Figure B.2: Valuation sheet, multiband value model

Figure B.3: Valuation sheet, multibandsmall value model
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B.2 Screenshots of the bidding interfaces

Figure B.4: Bidding interface SMRA

Figure B.5: Bidding interface CCA
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B.3 Relative efficiency

Figure B.6: Relative efficiency
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B.4 Bidding behavior in CCA: Additional

plots and tables

B.4.1 Base value model

Figure B.7: Number of items in supplementary bids per band,
strong vs. weak bidders, base value model, lab
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B.4.2 Multiband value model

Figure B.8: Number of items in supplementary bids per band,
multiband value model
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Figure B.9: Number of items in primary bids per band,
multiband value model
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B.5 Additional results of the competition

Figure B.10: Aggregate performance measures, competition

Figure B.11: Rank of supplementary bids by valuation and
payoff at final clock prices, base value model, competition
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Figure B.12: Number of items in supplementary bids per band,
strong vs. weak bidders, base value model, competition
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Figure B.13: Rank of primary bids, base value model,
competition

Figure B.14: Number of items in primary bids, base value
model, competition
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