Bestimmung von Phosphorwasserstoff neben flüchtigen organischen Begasungsmitteln und Industriechemikalien in Containerluft mittels Thermodesorptions-2D-Gaschromatographie-Massenspektrometrie/Flammenphotometrie

Dissertation

zur Erlangung des Doktorgrades der Naturwissenschaften
am Department Chemie der Universität Hamburg

vorgelegt von

Svea Fahrenholtz

Universität Hamburg
2012
Die vorliegende Arbeit wurde im Zeitraum von Januar 2009 bis September 2012 unter der Betreuung von PD Dr. Michael Steiger, PD Dr. Lygia Therese Budnik und Prof. Dr. Heinrich Hühnerfuss am Zentralinstitut für Arbeitsmedizin des Universitätsklinikums Hamburg-Eppendorf und am Department Chemie der Universität Hamburg angefertigt.

1. Gutachter: PD Dr. Michael Steiger
2. Gutachterin: PD Dr. Lygia Therese Budnik

Inhalt

1 Einleitung und Problemstellung ... 1
 1.1 Die Rolle von Begasungsmitteln im globalisierten Handel 1
 1.2 Definition Begasung ... 1
 1.3 Frachttcontainer .. 2
 1.4 Gefahren durch Begasungmittel und Industriechemikalien in Frachtcontainern 3
 1.5 Phosphorwasserstoff als ein neues „Begasungsmittel der Wahl“ für Container-
 begasungen ... 4
 1.6 Begasungsregularien .. 5
 1.6.1 TRGS 512 ... 5
 1.6.2 Orange Book ... 5
 1.6.2 IMDG-Code ... 6
 1.6.3 Internationales Übereinkommen zum Schutz des menschlichen Lebens auf
 See ... 6
 1.6.4 Empfehlungen für die sichere Anwendung von Schädlingsbekämpfungsmitteln
 auf Schiffen für die Begasung von Beförderungseinheiten (MSC/Circ.1265) ... 7
 1.6.5 Internationale Standards für Phytosanitäre Maßnahmen 7
 1.6.6 Pflanzenschutzmittelverzeichnis Teil 5 Vorratsschutz 8
 1.7 Problematik der Vor-Ort-Analytik von Begasungsmitteln und
 Industriechemikalien .. 8
 1.8 Gaschromatographische Methoden für die Analytik von flüchtigen Substanzen und
 Gasen in Luft .. 9
 1.8.1 Gaschromatographie ... 9
 1.8.2 Thermodesorption ... 11
 1.8.3 Massenspektrometrie ... 12
 1.8.4 Flammenphotometer ... 14
 1.9 Allgemeiner Stand der Phosphorwasserstoffanalytik 14

2 Problemstellung und Zielsetzung ... 16

3 Auswahl und Beschreibung der Zielsubstanzen 17
 3.1 Phosphorwasserstoff .. 17
 3.2 Brommethan ... 18
 3.3 Sulfuryldifluorid ... 18
 3.4 1,2-Dichlorethan ... 19
 3.5 Benzol ... 20
 3.6 Toluol ... 20
 3.7 Trichlormethan .. 21
3.8 Schwefelkohlenstoff .. 21
3.9 Dichlormethan .. 21
3.10 1,2-Dichlorpropan .. 22
3.11 Iodmethan ... 22
3.12 Tetrachlormethan ... 23
3.13 Ethylbenzol ... 23
4 Methodenentwicklung .. 24
4.1 Gas chromatographische Auftrennung der Zielsubstanzen 24
 4.1.1 Aufbau des gas chromatographischen Systems 24
 4.1.2 Funktionsprinzip der verwendeten Deans-Säulenschaltung 27
 4.1.3 Auftrennung der Analyten in der ersten chromatographischen Dimension ... 30
 4.1.3.1 Auswahl der SCOT-Säule .. 31
 4.1.3.2 Einfluss und Gestaltung des Temperaturregels 34
 4.1.3.3 Ermittlung der Säulenschaltzeiten 38
 4.1.4 Auftrennung der Analyten in der zweiten chromatographischen Dimension ... 39
 4.1.5 Optimierte gas chromatographische Methode im Überblick 41
4.2 Thermodesorption ... 43
 4.2.1 Aufbau der Thermodesorptionseinheit 43
 4.2.2 Auswahl der Kühlfalle ... 45
 4.2.3 Optimierung der Methodenparameter 46
 4.2.3.1 Probenvolumen ... 46
 4.2.3.2 Flussrate während der Probenahme 47
 4.2.3.3 Vorspülvolumen ... 48
 4.2.3.4 Temperatur der Transferleitung zum GC 48
 4.2.3.5 Spülung der Kühlfalle .. 49
 4.2.3.6 Kühlfallentemperatur während der Adsorption 49
 4.2.3.7 Kühlfallentemperatur während der Desorption 50
 4.2.3.8 Dauer der Desorption ... 50
 4.2.3.9 Split-Fluss während der Desorption 51
 4.2.3.10 Durchbruchvolumen der ausgewählten Kühlfalle 51
 4.2.4 Optimierte Thermodesorptionseinheit im Überblick 52
 4.2.5 Spätere Änderungen der Thermodesorptionseinheit 52
4.3 Flammenphotometrie ... 53
4.4 Massenspektrometrie .. 54
 4.4.1 Optimierung der Scan-Methode ... 54
 4.4.2 Erstellung der SIM-Methode ... 54
Inhalt

4.4.3 Synchronisierung von SIM- und Scanmodus ... 55

5 Methodenvalidierung .. 58
 5.1 Nachweisgrenzen und Bestimmungsgrenzen ... 58
 5.2 Arbeitsbereiche ... 60
 5.3 Blindwerte ... 63
 5.4 Wiederfindung .. 67
 5.4.1 Wiederfindungsraten der Messmethode .. 67
 5.4.2 Wiederfindung des analytischen Verfahrens ... 69
 5.4.3 Wiederfindung bei Verdünnung von höher konzentrierten Proben 70
 5.5 Präzision .. 71
 5.5.1 Messpräzision .. 72
 5.5.2 Methodenpräzision ... 73
 5.6 Zusätzliche Validierung nach Abwandlung der Methode 73

6 Containerluftproben ... 79
 6.1 Probenahmeverfahren ... 79
 6.2 Messung der Proben ... 79
 6.3 Bewertungskriterien bei der späteren Betrachtung der Ergebnisse 80
 6.4 Selektive Containerluftproben .. 81
 6.4.1 Probenbeschaffung ... 81
 6.4.2 Selektion der Container .. 81
 6.4.3 Ergebnisse .. 81
 6.5 Randomisierte Containerluftproben ... 84
 6.5.1 Probenbeschaffung ... 84
 6.5.2 Beschreibung der Randomisierung .. 84
 6.5.3 Ergebnisse .. 84
 6.6 Betrachtung und Diskussion der Ergebnisse für die Containerluftproben 90
 6.6.1 Gesamtbelastung ... 90
 6.6.2 Mit Phosphorwasserstoff belastete Container ... 99
 6.6.3 Korrelationen der Schadstoffbelastung mit Warengruppen 104
 6.6.4 Zusätzliche Substanzen in Containerluftproben .. 115

7 Begleitung einer Containerbegasung mit Phosphorwasserstoff 122
 7.1 Durchführung und Ablauf der Begasung ... 122
 7.1.1 Beschreibung des Begasungsplatzes ... 122
 7.1.2 Durchführung der Begasung .. 123
Inhalt

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2</td>
<td>Probenahmen</td>
<td>125</td>
</tr>
<tr>
<td>7.3</td>
<td>Ergebnisse</td>
<td>127</td>
</tr>
<tr>
<td>7.4</td>
<td>Diskussion der Ergebnisse</td>
<td>130</td>
</tr>
<tr>
<td>8</td>
<td>Begasungsexperimente</td>
<td>132</td>
</tr>
<tr>
<td>8.1</td>
<td>Auswahl der zu begasenden Lebensmittel</td>
<td>132</td>
</tr>
<tr>
<td>8.2</td>
<td>Durchführung der Experimente</td>
<td>132</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Durchführung der Begasung</td>
<td>132</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Ausgasung der zuvor begasten Lebensmittel</td>
<td>133</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Beprobung der Luft aus den Probenkammern und Messung der Proben</td>
<td>134</td>
</tr>
<tr>
<td>8.3</td>
<td>Ergebnisse</td>
<td>134</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Erdnüsse</td>
<td>135</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Reis</td>
<td>138</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Pistazienkerne</td>
<td>139</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Rosinen</td>
<td>140</td>
</tr>
<tr>
<td>8.3.5</td>
<td>Zusätzliche Substanzen</td>
<td>141</td>
</tr>
<tr>
<td>8.4</td>
<td>Diskussion der Ergebnisse</td>
<td>144</td>
</tr>
<tr>
<td>9</td>
<td>Zusammenfassung</td>
<td>147</td>
</tr>
<tr>
<td>10</td>
<td>Summary</td>
<td>149</td>
</tr>
<tr>
<td>11</td>
<td>Experimenteller Teil</td>
<td>151</td>
</tr>
<tr>
<td>11.1</td>
<td>Instrumentelle Ausstattung</td>
<td>151</td>
</tr>
<tr>
<td>11.1.1</td>
<td>Gaschromatograph</td>
<td>151</td>
</tr>
<tr>
<td>11.1.2</td>
<td>Massenspektrometer</td>
<td>151</td>
</tr>
<tr>
<td>11.1.3</td>
<td>Flammenphotometrischer Detektor</td>
<td>151</td>
</tr>
<tr>
<td>11.1.4</td>
<td>Thermodesorptionseinheit</td>
<td>151</td>
</tr>
<tr>
<td>11.2</td>
<td>Herstellung von Kalibrierstandards</td>
<td>152</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Vorverdünnung für flüssige Substanzen</td>
<td>152</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Gasförmige Substanzen</td>
<td>152</td>
</tr>
<tr>
<td>11.2.3</td>
<td>Kalibrierstandards</td>
<td>153</td>
</tr>
<tr>
<td>11.3</td>
<td>Verwendete Chemikalien</td>
<td>154</td>
</tr>
<tr>
<td>12</td>
<td>Literaturverzeichnis</td>
<td>161</td>
</tr>
</tbody>
</table>

Anhang

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Erfassungsbogen selektive Containerluftproben</td>
<td>173</td>
</tr>
<tr>
<td>A2</td>
<td>Erhobene Daten bei der Beprobung der selektiven Container</td>
<td>174</td>
</tr>
<tr>
<td>A3</td>
<td>Beschreibung des Sensorgerätes zur Vorselektion von Containern</td>
<td>176</td>
</tr>
</tbody>
</table>
Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D</td>
<td>Zweidimensional</td>
</tr>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>amu</td>
<td>Atomare Masseneinheiten</td>
</tr>
<tr>
<td>ATSDR</td>
<td>Agency for Toxic Substances and Disease Registry</td>
</tr>
<tr>
<td>Benz</td>
<td>Benzol</td>
</tr>
<tr>
<td>BImSchG</td>
<td>Bundesimmissionsschutzgesetz</td>
</tr>
<tr>
<td>BG</td>
<td>Bestimmungsgrenze</td>
</tr>
<tr>
<td>BVL</td>
<td>Bundesamt für Verbraucherschutz und Lebensmittelsicherheit</td>
</tr>
<tr>
<td>BrMe</td>
<td>Brommethan</td>
</tr>
<tr>
<td>c</td>
<td>Konzentration</td>
</tr>
<tr>
<td>CCl₄</td>
<td>Tetrachlormethan</td>
</tr>
<tr>
<td>CEL</td>
<td>Community Exposure Level</td>
</tr>
<tr>
<td>CS₂</td>
<td>Schwefelkohlenstoff</td>
</tr>
<tr>
<td>DCE</td>
<td>1,2-Dichlorethan</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichlormethan</td>
</tr>
<tr>
<td>DCP</td>
<td>1,2-Dichlorpropan</td>
</tr>
<tr>
<td>DIN</td>
<td>Deutsche Industrienorm</td>
</tr>
<tr>
<td>EB</td>
<td>Ethylbenzol</td>
</tr>
<tr>
<td>eV</td>
<td>Elektronenvolt</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organisation</td>
</tr>
<tr>
<td>FCKW</td>
<td>Fluorchlorkohlenwasserstoffe</td>
</tr>
<tr>
<td>FPD</td>
<td>Flammenphotometrischer Detektor</td>
</tr>
<tr>
<td>GC</td>
<td>Gaschromatograph, Gaschromatographie</td>
</tr>
<tr>
<td>GC-MS</td>
<td>Gaschromatographie-Massenspektrometrie</td>
</tr>
<tr>
<td>GW</td>
<td>Grenzwert</td>
</tr>
<tr>
<td>h</td>
<td>Stunde(n)</td>
</tr>
<tr>
<td>He</td>
<td>Helium</td>
</tr>
<tr>
<td>ICP-MS</td>
<td>induktiv gekoppelter Plasma Massenspektrometrie</td>
</tr>
<tr>
<td>i.d.</td>
<td>Innendurchmesser</td>
</tr>
<tr>
<td>IMDG</td>
<td>International Maritime Dangerous Goods Code</td>
</tr>
<tr>
<td>IMe</td>
<td>Iodmethan</td>
</tr>
<tr>
<td>IMO</td>
<td>International Maritime Organisation</td>
</tr>
<tr>
<td>IPPC</td>
<td>International Plant Protection Convention</td>
</tr>
<tr>
<td>ISPM</td>
<td>International Standards for Phytosanitary Measures</td>
</tr>
<tr>
<td>k</td>
<td>Geschwindigkeitskonstante</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Begriff</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>MS</td>
<td>Massenspektrometer, Massenspektrometrie</td>
</tr>
<tr>
<td>ms, msec</td>
<td>Millisekunden</td>
</tr>
<tr>
<td>MSC</td>
<td>Maritime Safety Committee</td>
</tr>
<tr>
<td>Circ.</td>
<td>Zirkular (Rundschreiben)</td>
</tr>
<tr>
<td>m/z</td>
<td>Masse/Ladung</td>
</tr>
<tr>
<td>n</td>
<td>Anzahl Proben, Anzahl Messungen</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards and Technology</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>NG</td>
<td>Nachweisgrenze</td>
</tr>
<tr>
<td>OEHHA</td>
<td>Office of Environmental Health Hazard Assessment</td>
</tr>
<tr>
<td>Pa</td>
<td>Pascal</td>
</tr>
<tr>
<td>PLOT</td>
<td>Porous Layer Open Tubular</td>
</tr>
<tr>
<td>RI</td>
<td>Retentionsindex</td>
</tr>
<tr>
<td>RIVM</td>
<td>Rijksinstituut voor Volksgezondheid en Milieu</td>
</tr>
<tr>
<td>SCOT</td>
<td>Support Coated Open Tubular</td>
</tr>
<tr>
<td>s, sec</td>
<td>Sekunden</td>
</tr>
<tr>
<td>SIM</td>
<td>Single Ion Monitoring</td>
</tr>
<tr>
<td>SOLAS</td>
<td>International Convention for the Safety of Life at Sea</td>
</tr>
<tr>
<td>Stdabw.</td>
<td>Standardabweichung</td>
</tr>
<tr>
<td>T, Tol</td>
<td>Toluol</td>
</tr>
<tr>
<td>t<sub>1/2</sub></td>
<td>Halbwertszeit</td>
</tr>
<tr>
<td>t<sub>r</sub></td>
<td>Retentionszeit</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>TD</td>
<td>Thermodesorption</td>
</tr>
<tr>
<td>TEU</td>
<td>Twenty Feet Equivalent Unit</td>
</tr>
<tr>
<td>TRGS</td>
<td>Technische Regeln für Gefahrstoffe</td>
</tr>
<tr>
<td>UN</td>
<td>United Nations, Vereinte Nationen</td>
</tr>
<tr>
<td>VOC</td>
<td>Flüchtige organische Substanzen, Volatile Organic Compounds</td>
</tr>
<tr>
<td>VROM</td>
<td>Ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieu</td>
</tr>
<tr>
<td>WF</td>
<td>Wiederfindung, Wiederfindungsrate</td>
</tr>
</tbody>
</table>
Abbildungsverzeichnis

Abbildung 1.1: Frachtcontainer im Hamburger Hafen .. 2
Abbildung 1.2: Phosphidpräparat zwischen Waren in einem Container 4
Abbildung 4.1: A: Zwei Proben und eine Messung ohne Probe mittels TD-GC-MS im SIM-Modus (m/z 34) des Massenspektrometers. B: Messung von 0,070 mg/m³ Phosphorwasserstoff .. 25
Abbildung 4.2: Zweidimensionales, gaschromatographisches System mit Thermodesorptions-einheit, Säulenschaltung und Detektoren ... 26
Abbildung 4.3: Schema der Säulenschaltung nach Dunn et al (75). Schaltung des Eluats von Säule 1 auf Säule 2 (A) und Schaltung zur Restriktion (B) ... 28
Abbildung 4.4: Fotografische Abbildung der verwendeten Deans-Schaltung (A) und ihre Positionierung im GC-Ofen .. 29
Abbildung 4.5: Vergleich der Chromatogramme einer Standardprobe mit 44 leichtflüchtigen und gasförmigen Substanzen aufgetrennt auf verschiedenen SCOT-Säulen (Fluss: 2,7 mL/min; Temperaturprogramm: 35 °C für 4 min, 10 °C/min bis 240 °C, 240 °C für 3 min). A: DB-VRX 30 m, B: DB-VRX 60 m, C: HP-1MS 30 m ... 33
Abbildung 4.6: Einfluss der anfänglichen Trägergasgeschwindigkeit auf die Trennung und die Peakform der Substanzen .. 34
Abbildung 4.7: Einfluss der Anfangstemperatur des Temperaturprogramms auf die Trennung früh eluierender Substanzen .. 36
Abbildung 4.8: Chromatogramm von 44 flüchtigen Substanzen auf Säule 1 mit dem optimierten Temperaturprogramm .. 37
Abbildung 4.9: Ermittlung der Schaltzeit für den Transfer von Phosphorwasserstoff (A) und Sulfurylfuorid (B) von Säule 1 auf Säule 2 .. 38
Abbildung 4.10: Vergleich verschiedener PLOT-Säulen bei der Auftrennung von Sulfurylfuorid und Phosphorwasserstoff. A: GS-Gas Pro (3 mg/m³ PH₃ & 210 mg/m³ SO₃F₂), B: CP-Pora- PLOT Q 12 m (0,070 mg/m³ PH₃ & 210 mg/m³ SO₃F₂), C: CP-PoraPLOT Q 25 m (0,070 mg/m³ PH₃ & 210 mg/m³ SO₃F₂) .. 40
Abbildung 4.11: A: Chromatogramm von 42 flüchtigen organischen Substanzen in der ersten Dimension. B: Sulfurylfuorid und Phosphorwasserstoff in der zweiten Dimension. 42
Abbildung 4.13: Vergleich der Peakflächen von Testsubstanzen für drei verschiedene Kühlfallen. .. 46
Abbildung 4.15: Optimierung von Vorspülvolumen (A) und Temperatur der Transferleitung (B) .. 49
Abbildung 4.16: A: Vergleich verschiedener Adsorptionstemperaturen B: Vergleich von verschiedenen Desorptionstemperaturen anhand der Peakform von Phosphorwasserstoff .. 50
Abbildung 4.17: Durchbruchvolumen der Kühl- fallen U-T14H2S.. 51
Abbildungsverzeichnis

der Masse 96 im reinen SIM- und im SIM/Scan-Modus. D: Brommethanpeaks der Masse 94 im reinen SIM- und im SIM/Scan-Modus. ...57
Abbildung 5.1: Kalibriergeraden über den linearen Arbeitsbereich der 12 Zielsubstanzen....62
Abbildung 5.2: Scan- (A, D), SIM- (B, E) und FPD- (C, F) Chromatogramme der Messungen ohne Probenahme nach 0,32-0,68 (0,070) mg/m³ (A, B, C) und 3,20-6,80 (0,49) mg/m³ (D, E, F). ..63
Abbildung 5.3: Kalibriergeraden der modifizierten Methode für die Messung randomisierter Containerluftproben ..76
Abbildung 6.2: Gesamtbelastung der untersuchten Container nach den Kriterien belastet (>BG<GW) und stark belastet (>GW). A: Selektive Proben, B: Randomisierte Proben..92
Abbildung 6.3: Konzentrationsverteilungen bei belasteten (>BG<GW) und stark belasteten (>GW), selektiv beprobten Container (Anzahl betreffender Proben in Klammern)94
Abbildung 6.4: Konzentrationsverteilung bei belasteten (>BG<GW) und stark belasteten (>GW), zufällig beprobten Container (Anzahl betreffender Proben in Klammern)94
Abbildung 6.5: Phosphorwasserstoffkonzentrationen in belasteten Containern, Probennummern jeweils in Klammern (s=selektiv, siehe Tabelle 6.2; r=randomisiert, siehe Tabelle 6.3) ...99
Abbildung 6.6: Darstellung der Ergebnisse der Zielsubstanzen in mg/m³ in Proben mit Phosphorwasserstoff; Probennummern s=selektiv, Tabelle 6.2; r=randomisiert, Tabelle 6.3 ...101
Abbildung 6.7: Vergleich der Konzentrationsverteilung von Toluol in selektiven Containerluftproben (Anzahl betreffender Proben in Klammern) ...103
Abbildung 6.8: Graphische Darstellung der Ergebnisse für Container mit anderen Waren. 104
Abbildung 6.9: Graphische Darstellung der Ergebnisse für Container mit Baumaterialien (n=7). ..105
Abbildung 6.10: Graphische Darstellung der Ergebnisse für Container mit Chemikalien (n=10). ..106
Abbildung 6.11: Graphische Darstellung der Ergebnisse für Container mit Elektroartikeln (n=8). ..107
Abbildung 6.12: Graphische Darstellung der Ergebnisse für Container mit Fahrzeugen und Fahrzeugteilen (n=12). ..108
Abbildung 6.14: Graphische Darstellung der Ergebnisse für Container mit Möbeln und Haushaltsgegenständen (n=30). ..110
Abbildung 6.15: Graphische Darstellung der Ergebnisse für Container mit Naturprodukten (n=10). ..111
Abbildung 6.16: Graphische Darstellung der Ergebnisse für Container mit Sammelgut (n=17). ..112
Abbildung 6.17: Graphische Darstellung der Ergebnisse für Container mit Schuhen (n=4).113
Abbildung 6.18: Graphische Darstellung der Ergebnisse für Container mit Textilien (n=18). ..114
Abbildung 6.19: Chromatogramme zweier randomisierter Containerluftproben. A: Container mit Luftmatratzen, B: Container mit Getreide. DCE = 1,2-Dichlorethan, B = Benzol, T =
Abbildungsverzeichnis

Toluol, E = Ethylbenzol. Zusätzliche Peaks (rote Zahlen) siehe Tabellen 6.4 und 6.5. 117

Abbildung 6.20: Chromatogramme zweier selektiver Containerluftproben. A: Container mit Gewürzen, B: Container mit Schmuckkästchen. DCM = Dichlormethan, CS₂=Schwefelkohlenstoff, DCE = 1,2-Dichlorethan, B = Benzol, CCl₄ = Tetrachlormethan, DCP*=1,2-Dichlorpropan (Peak nur im SIM-Chromatogramm sichtbar), T = Toluol, E = Ethylbenzol. Zusätzliche Peaks (rote Zahlen) siehe Tabellen 6.6 und 6.7. 117

Abbildung 7.1: Begasungsplatz A: Begasungsplatz mit Absperrung durch leere Container und Absperrketten, B: Container auf dem Begasungsplatz unter Begasung, C: Hinweisschild an der Abgrenzung des Begasungsplatzes. 123

Abbildung 7.2: A: Für die Begasung abgeklebter Druckausgleichsschlitz am Container. B: Zeitgesteuerte Luftreinigungsanlage, die bereits vor Beginn der Begasung im Container positioniert wurde. 123

Abbildung 7.4: Warnhinweis gemäß TRGS 512, dass der Container unter Begasung steht. 124

Abbildung 7.5: A: Schemazeichnung des Begasungsplatzes. B: Messpunkte während der Containerbegasung. 126

Abbildung 7.6: Konzentrationsverlauf an den Messpunkten 1 bis 4 (außen) mit der Zeit. 1: Containeröffnung, 2: Druckausgleichsschlitz, 3: Absperrung, 4: 1 m Entfernung vom Container. 128

Abbildung 8.1: Begasung von Erdnüssen in einem Folienrahmen. 133

Abbildung 8.3: Darstellung der Phosphorwasserstoffemissionen aus begasten Erdnüssen (A) und Bestimmung der Geschwindigkeitskonstanten durch logarithmische Auftragung (B). 136

Abbildung 8.4: Chromatogramme einer Probe der Emission von Erdnüssen. A.B: Massenspektrometer im Scan-Modus C: Flammenphotometer. 142

Abbildung 8.5: Identifizierung von Chlormethan in einer Emissionsprobe von Pistazien. 143

Tabellenverzeichnis

Tabelle 4.1: Zuordnung der Substanzen zu den Peaks in den Chromatogrammen in Abb. 4.5 ...32
Tabelle 4.2: Zuordnung der Substanzen zu den Peaks in den Chromatogrammen in Abb. 4.6 ..35
Tabelle 4.3: Zuordnung der Substanzen zu den Peaks in den Chromatogrammen in Abb. 4.7 ..35
Tabelle 4.4: Zuordnung der Substanzen zu den Peaks in den Chromatogrammen in Abb. 4.8 ..37
Tabelle 4.5: Optimierte Parameter und Temperaturprogramm der Gaschromatographie ...41
Tabelle 4.6: Zuordnung der Substanzen zu den Peaks in Abb. 4.10 ..42
Tabelle 4.7: Beschreibung der getesteten Kühlfallen ..45
Tabelle 4.8: Optimierte Methodenparameter für die Thermodesorption ..52
Tabelle 4.9: Einstellungen des Flammenphotometers ..53
Tabelle 4.10: SIM-Gruppen mit Zielsubstanzen, Ionen und Zeitfenster ..55
Tabelle 4.11: Optimierte Parameter für den massenspektrometrischen Detektor ...57
Tabelle 5.1: Nachweis- und Bestimmungsgrenzen der Zielsubstanzen ..60
Tabelle 5.2: Arbeitsbereiche für die 12 Zielsubstanzen ..61
Tabelle 5.3: Blindwerte nach 0,49 mg/m³ (Phosphorwasserstoff) und 3,20-6,80 mg/m³ ..64
Tabelle 5.4: Blindwerte der Probenbeutel ...65
Tabelle 5.5: Messung von Raumluft nach der Messung von unterschiedlich belasteten Proben ...66
Tabelle 5.6: Blindwerte aus den Probenahmen für alle Zielsubstanzen ..66
Tabelle 5.7: Ergebnisse der Wiederfindungsbestimmung ..68
Tabelle 5.8: Wiederfindung des analytischen Verfahrens ...69
Tabelle 5.9: Wiederfindung nach Verdünnung von Proben ..71
Tabelle 5.10: Messpräzision von je zwei verschiedenen Konzentrationen der Zielsubstanzen ..72
Tabelle 5.11: Präzision der Verdünnung von höher konzentrierten Proben ..73
Tabelle 5.12: Nachweis- und Bestimmungsgrenzen mit der gemäß Abschnitt 4.2.5 modifizierten Methode ..74
Tabelle 5.13: Arbeitsbereiche für die 12 Zielsubstanzen ..75
Tabelle 5.14: Wiederfindung der modifizierten Methode für die Messung randomisierter Proben ..77
Tabelle 5.15: Messpräzision der modifizierten Methode für die Messung randomisierter Proben ..78
Tabelle 6.1: Zur Bewertung der Ergebnisse herangezogene Grenz- und Richtwerte ...80
Tabelle 6.2: Ergebnisse der selektiven Containerluftproben in mg/m³ ..82
Tabelle 6.3: Ergebnisse der randomisierten Containerluftproben in mg/m³ ..85
Tabelle 6.4: Identifizierung von zusätzlichen Substanzen in Probe 86 (Tab. 6.3) aus Abb. 6,19A ..118
Tabelle 6.5: Identifizierung von zusätzlichen Substanzen in Probe 70 (Tab. 6.3) aus Abb. 6,19B ..118
Tabellenverzeichnis

Tabelle 6.6: Identifizierung von zusätzlichen Substanzen in Probe 17 (Tab. 6.2) aus Abb. 6.20A .. 120
Tabelle 6.7: Identifizierung von zusätzlichen Substanzen in Probe 32 (Tab. 6.2) aus Abb. 6.20B .. 120
Tabelle 7.1: Übersicht über die zeitliche und örtliche Verteilung der Proben .. 127
Tabelle 7.2: Ergebnisse von Luftproben während der Begleitung einer Containerbegasung .. 129
Tabelle 8.1: Ergebnisse der ersten experimentellen Begasung und Ausgasung von Erdnüssen .. 135
Tabelle 8.2: Ergebnisse der zweiten experimentellen Begasung und Ausgasung von Erdnüssen .. 135
Tabelle 8.3: Ergebnisse der experimentellen Begasung und Ausgasung von Erdnüssen mit Belüftung nach dem Begasungsschritt .. 137
Tabelle 8.4: Ergebnisse der experimentellen Begasung und Ausgasung von Erdnüssen mit Belüftung nach dem Begasungsschritt .. 138
Tabelle 8.5: Ergebnisse der experimentellen Begasung von Erdnüssen mit SO$_2$$F_2$.. 138
Tabelle 8.6: Ergebnisse der ersten experimentellen Begasung und Ausgasung von Reis .. 139
Tabelle 8.7: Ergebnisse der zweiten experimentellen Begasung und Ausgasung von Reis .. 139
Tabelle 8.8: Ergebnisse der experimentellen Begasung und Ausgasung von Pistazienkernen .. 139
Tabelle 8.9: Ergebnisse der ersten experimentellen Begasung und Ausgasung von Sultaninen .. 140
Tabelle 8.10: Ergebnisse der zweiten experimentellen Begasung und Ausgasung von Sultaninen .. 140
Tabelle 8.11: Identifizierung der Peaks im Chromatogramm aus Abbildung 8.4A und 8.4B .. 141
Tabelle 8.12: Übersicht über übliche Dosierung, Einwirkzeit und Wartezeit für Begasungen mit Phosphorwasserstoff bei verschiedenen Lebensmittelgruppen .. 144
Tabelle 8.13: Vergleich ermittelter PH$_3$-Emission mit Sorptionseigenschaften der Lebensmittel .. 146
Tabelle 11.1: Volumina für die Vorverdünnung und resultierende Konzentration .. 152
Tabelle 11.2: Konzentrationen der Kalibrierstandards .. 153
Tabelle 11.3: Verwendete Chemikalien .. 154
1 Einleitung und Problemstellung

1.1 Die Rolle von Begasungsmitteln im globalisierten Handel

1.2 Definition Begasung

1.3 Frachtcontainer

Abbildung 1.1: Frachtcontainer im Hamburger Hafen
1.4 Gefahren durch Begasungsmittel und Industriechemikalien in Frachtcontainern

Obwohl einige Veröffentlichungen und Berichte über die Vergiftung mit Begasungsmitteln verfügbar sind[4-8], ist die Berichterstattung über Intoxikationen beim Umgang mit Frachtcontainern noch sehr begrenzt. Dies ist vermutlich auf das noch sehr geringe Bewusstsein für dieses Thema, sowohl bei den betroffenen Personen als auch bei behandelnden Ärzten, zurückzuführen[9].

Verschiedene Regelwerke versuchen, die Problematik durch Vorschriften und Empfehlungen zu lösen (siehe Abschnitt 1.6). Diese sind jedoch zumeist nicht verbindlich oder die Einhaltung wird kaum verfolgt und Verstöße werden nicht sanktioniert. Solange es keine weltweit einheitlichen Regularien gibt, welche die Verwendung von Begasungsmitteln und Industriechemikalien strikt regeln und die Kennzeichnung der oben genannten Gefahrenquellen zwingend vorschreiben, und solange es keine Kontrollorgane gibt, die Verstöße gegen solche Regularien streng sanktionieren, stellt jeder importierte Frachtcontainer für den Empfänger ein potenzielles Risiko dar.
1.5 Phosphorwasserstoff als ein neues „Begasungsmittel der Wahl“ für Containerbegasungen

Phosphorwasserstoff (Monophosphan) ist ein populäres Begasungsmittel, das weltweit zur Schädlingsbekämpfung eingesetzt wird. Es kann gegen eine Vielzahl von Schädlingen und für eine große Bandbreite an Gütern eingesetzt werden. Lange Zeit war Brommethan das Begasungsmittel der Wahl für den Containertransport. Mittlerweile wurde Brommethan aufgrund seiner schädigenden Wirkung auf die Ozonschicht größtenteils verboten. Da Phosphorwasserstoff ein bereits bekanntes, gut untersuchtes und allgemein akzeptiertes Begasungsmittel ist, nimmt seine Bedeutung für die Begasung im Containertransport zu.

\[
\text{(Gl. 1.1)} \quad \text{AlP} + 3 \text{H}_{2}\text{O} \rightarrow \text{PH}_3 + \text{Al(OH)}_3 \\
\text{(Gl. 1.2)} \quad \text{Mg}_3\text{P}_2 + 6 \text{H}_{2}\text{O} \rightarrow 2 \text{PH}_3 + 3 \text{Mg(OH)}_2
\]

Abbildung 1.2: Phosphidpräparat zwischen Waren in einem Container

1.6 Begasungsregularien

Vorschriften und Empfehlungen für Begasungstätigkeiten und den Umgang mit begasten Transporteinheiten sind in verschiedenen nationalen und internationalen Regelwerken festgehalten. Im Folgenden sind die wichtigsten dieser Regularien aufgeführt.

1.6.1 TRGS 512

1.6.2 Orange Book

1.6.2 IMDG-Code

1.6.3 Internationales Übereinkommen zum Schutz des menschlichen Lebens auf See

1.6.4 Empfehlungen für die sichere Anwendung von Schädlingsbekämpfungsmitteln auf Schiffen für die Begasung von Beförderungseinheiten (MSC/Circ.1265)

1.6.5 Internationale Standards für Phytosanitäre Maßnahmen

1.6.6 Pflanzenschutzmittelverzeichnis Teil 5 Vorratsschutz

1.7 Problematik der Vor-Ort-Analytik von Begasungsmitteln und Industriechemikalien

Einleitung und Problemstellung

1.8 Gaschromatographische Methoden für die Analytik von flüchtigen Substanzen und Gasen in Luft

Im Folgenden sollen die wichtigsten Grundlagen zu den in dieser Arbeit verwendeten instrumentellen Komponenten näher erläutert werden.

1.8.1 Gaschromatographie

verschiedene Substanzen eine GC-Säule mit unterschiedlichen Geschwindigkeiten
und treten am Ende nacheinander aus der Säule aus und in den Detektor ein.

Es kommen verschiedene Typen von GC-Säulen zum Einsatz. Dabei unterscheidet
man hauptsächlich zwischen Säulen, die mit einem Flüssigkeitsfilm als stationäre
Phase beschichtet sind (Support Coated Open Tubular- (SCOT-) Säulen) und solchen,
die eine Beschichtung mit porösen Polymeren als stationäre Phase haben
(Porous Layer Open Tubular- (PLOT-) Säulen)). SCOT- und PLOT-Säulen werden
wiederum mit unterschiedlichen stationären Phasen angeboten, die sich
hauptsächlich in Art und Anzahl funktioneller Gruppen unterscheiden, die einen
Einfluss auf die Trennung der Analyten haben. Bei PLOT-Säulen können auch
Molekularsiebe oder Aluminiumoxid als stationäre Phase Verwendung finden. Die
Wahl der GC-Säule richtet sich nach der Art der aufzutrennenden Substanzen.
SCOT-Säulen werden für eine Vielzahl von analytischen Fragestellungen angeboten.
PLOT-Säulen werden hauptsächlich für die Analytik von sehr flüchtigen Substanzen
und Permanentgasen eingesetzt.

Injiziert werden können gasförmige und flüssige Proben. Zu diesem Zwecke stehen
verschiedene Probeneinlasssysteme zur Verfügung. Bei der Injektion von
Flüssigkeiten wird die Probe zumeist verdampft, bevor die Probe oder ein Bruchteil
davon mit einem Trägergasfluss in die Säule gelangt. Gasförmige Proben müssen
meist zuvor aufkonzentriert werden. Möglichkeiten dazu sind im folgenden Kapitel
1.6.2 beschrieben.

Die Wahl des Detektors richtet sich bei der gaschromatographischen Luftanalytik
nach den Zielsubstanzen und nach dem Anwendungsfeld. Für schwefel- und
phosphorhaltige Substanzen kommen oft Flammenphotometer zum Einsatz.
Stickstoff und phosphorhaltige Verbindungen können mit Stickstoff-Phosphor-
Detektoren gemessen werden. Halogenkohlenwasserstoff und Kohlenwasserstoffe
werden mit Elektroneneinfangdetektoren und Flammenionisationsdetektoren erfasst.
Für Permanent- und Edelgase wird auch der Wärmeleitfähigkeitsdetektor eingesetzt.
Massenspektrometer kommen zum Einsatz, wenn die Zielsubstanzen vielfältig sind
und wenn die Zusammensetzung der Probe ungewiss ist. Die in dieser Arbeit
verwendeten Detektoren, Massenspektrometer und Flammenphotometer werden in
Abschnitt 1.8.3 und 1.8.4 beschrieben.

Die aus den Messungen resultierenden Chromatogramme stellen eine Auftragung
der Zeit, die die Substanzen zum Passieren der GC-Säule benötigen
(Retentionszeiten), gegen das vom Detektor registrierte Signal dar. Es resultieren,
idealerweise voneinander getrennte, schmale, gaußförmige Peaks. Die Fläche eines
Peaks steht im Verhältnis zur Konzentration der entsprechenden Substanz in der
untersuchten Probe. Verschiedene Parameter beeinflussen die Trennung der
Substanzen. Dazu gehören neben der Art der stationären Phase die Säulen-
parametern Länge, Durchmesser und Schichtdicke der stationären Phase, die
Ofentemperatur, die Art des Träergases und der Trägergasfluss.
Einleitung und Problemstellung

1.8.2 Thermodesorption

Als Adsorbentien werden üblicherweise poröse organische Polymere, graphitisierter Kohlenstoff, Molekularsiebe, Aktivkohle und Silicagele eingesetzt. Die Wahl der Adsorbentien richtet sich nicht nur nach der Effizienz bezüglich der zu untersuchenden Analyten, auch Eigenschaften der Proben, wie (Luft-)Feuchtigkeit,
Einleitung und Problemstellung

Art und Konzentration der Matrixkomponenten und daraus resultierende Temperatur-
maxima während des Desorptionsschrittes müssen berücksichtigt werden.[21, 22]

1.8.3 Massenspektrometrie

Das Massenspektrometer als gaschromatographischer Detektor ermöglicht die
Quantifizierung und in vielen Fällen eine fast sichere Identifizierung von Substanzen.
Das Funktionsprinzip basiert, vereinfacht, auf drei aufeinanderfolgenden Vorgängen:
Ionisation, Massenselektion und Detektion. Während der Ionisation werden die
Moleküle des Analyten ionisiert, wobei es verschiedene Möglichkeiten der Ionisation
 gibt. In der vorliegenden Arbeit wurde die Elektronenstoßionisation (Electron impact,
EI) eingesetzt. Dabei kann es auch zur Fragmentierung des Analyten und Bildung
mehrerer Fragmentionen kommen. Die Ionen werden im Analysator des Massen-
spektrometers nach ihrem Masse-zu-Ladung-Verhältnis aufgetrennt und nach-
einander dem Detektor zugeführt. Auch dazu kommen verschiedene Techniken zum
Einsatz. In der vorliegenden Arbeit wurde ein Quadrupol verwendet: Durch Anlegen
von Spannungen an vier Stabelektroden wird ein magnetisches Feld erzeugt, das je
nach Stärke und Ausrichtung die Ionen eines bestimmten Masse-zu-Ladung-
Verhältnisses so fokussiert, dass sie in den Detektor eintreten, während alle anderen
Ionen den Eingang zum Detektor verfehlen und aus dem Analysator austreten. Das
Massenspektrometer wird unter Hochvakuum betrieben, so dass die Ionenstrahlen
nicht durch Kollisionen mit Gasmolekülen gestört werden und Ionen, die aus dem
Quadrupol austreten, entfernt werden. Der Detektor ist zumeist ein Elektronen-
vervielfacher, der die Anzahl der einfallenden Ionen registriert. Dies wird durch
Erzeugung von Sekundärelektronen erreicht, die durch das Eintreten der Ionen in
den Detektor generiert werden und ihrerseits weitere Sekundärelektronen erzeugen,
so dass ein messbares elektrisches Signal resultiert. Die anschließende Signal-
verarbeitung gibt dann die Intensitäten für die verschiedenen Masse-zu-Ladung-
Verhältnisse wieder. Da die Fragmentierung eines Moleküls nach einem festen
Muster abläuft und die Intensitäten der resultierenden Ionen beziehungsweise
Masse-zu-Ladung-Verhältnisse ein festen Verhältnis zueinander stehen,
ergeben sich spezifische Massenspektren, in welchen die Masse-zu-Ladung-
Verhältnisse gegen ihre Intensitäten aufgetragen sind. Das Massenspektrum ist
charakteristisch für ein Molekül, ähnlich wie ein Fingerabdruck. Daher kann ein
Molekül anhand seines Massenspektrums mit großer Sicherheit identifiziert werden,
 wenn entsprechende Spektrendatenbanken zur Verfügung stehen. Die
direkten Bauarten und Funktionsweisen gängiger Massenspektrometermodelle
sind ausführlicher in der Literatur beschrieben[23, 24].

Das Massenspektrometer kann in zwei verschiedenen Arbeitsmodi verwendet
werden: Scan- und Single Ion Monitoring- (SIM) Modus. Im Scan-Modus wird ein
ausgewählter Massenbereich kontinuierlich durchgemessen. Auf diese Weise
können alle Substanzen erfasst werden, die in das Massenspektrometer gelangen

\[
\text{(Gl 1.3) } \frac{\text{scans}}{s_{\text{Scan only}}} = \frac{\text{Scan - Geschwindigkeit } [\text{amu/s}]}{\text{Massenbereich } [\text{amu}]} \times 1 \text{ s}
\]

\[
\text{(Gl 1.4) } \frac{\text{scans}}{s_{\text{SIM only}}} = \frac{1000 \text{ ms}}{\text{Ionenschwellzeit } [\text{ms}]} \times \text{Anzahl Ionen pro Gruppe}
\]

Gleichungen 1.3 und 1.4: Formeln zur Berechnung der massenspektrometrischen Datenpunkte pro Sekunde im Scan-Modus (Gl. 1.3) und SIM-Modus (Gl. 1.4).
1.8.4 Flammenphotometer

1.9 Allgemeiner Stand der Phosphorwasserstoffanalytik

Wie bereits in Abschnitt 1.5 erläutert wurde, spielt Phosphorwasserstoff aufgrund des Brommethanverbots, der einfachen Handhabbarkeit und der niedrigen Kosten zunehmend eine wichtige Rolle und der zunehmende Einsatz als Begasungsmittel ist zu erwarten. Jedoch sind analytische Verfahren für Phosphorwasserstoff noch entweder sehr aufwändig oder aber zu unempfindlich für den in Deutschland bestehenden Grenzwert von 0,014 mg/m\(^3\) (TRGS 512 Begasungen). Die Gefährdung von Arbeitnehmern durch Phosphorwasserstoff ist daher noch nicht ausreichend untersucht.

Aufgrund des ubiquitären Vorkommens flüchtiger organischer Substanzen sind diese von besonderem Interesse im Umwelt- und Arbeits- sowie Verbraucherschutz und analytischen Methoden zu ihrer Erfassung sind Thema einer Vielzahl wissenschaftlicher Veröffentlichungen. Phosphorwasserstoff dagegen kommt nur in sehr eingeschränkten Bereichen vor. Daher sind für dieses Gas auch vergleichsweise wenige wissenschaftliche Arbeiten verfügbar, die sich mit entsprechenden analytischen Methoden befassen. Darunter stellen die folgenden Veröffentlichungen die wesentlichen Beiträge der letzten Zeit dar. *Phosphine sampling and analysis using silver nitrate impregnated filters*\(^{[27]}\), *Phosphine emission measurements from a tobacco factory using cryogenic sampling and GC-ICP-MS analysis*\(^{[28]}\), *Determination of phosphine in biogas and sludge at ppt-levels with gas chromatography-thermionic specific detection*\(^{[29]}\), *Continuous real-time monitoring of phosphine concentrations in air using electrochemical detectors interfaced by radio telemetry*\(^{[30]}\), *Evaluation of microwave irradiation for analysis of carbonyl sulfide, carbon disulfide, cyanogen, ethyl formate, methyl bromide, sulfuryl fluoride, propylene oxide, and phosphine in hay*\(^{[31]}\) und *Determination of phosphine and other fumigants in air samples by thermal
desorption and 2D heart-cutting gas chromatography with synchronous SIM/Scan mass spectrometry and flame photometric detection[32]. Die Arbeiten konzentrieren sich mit Ausnahme der letzten beiden Veröffentlichungen auf die alleinige Detektion von Phosphorwasserstoff. Dies ist jedoch, wie in Abschnitt 1.4 erläutert, im Falle der Untersuchung von Frachtcontainern nicht ausreichend. Im letztgenannten Artikel sind die Methodenentwicklung der vorliegenden Arbeit und die Anwendung der Methode auf Frachtcontainer zusammengefasst.
2 Problemstellung und Zielsetzung

Aufgrund der in der Einleitung begründeten Notwendigkeit einer präzisen analytischen Labormethode für die Ermittlung von geringen Phosphorwasserstoffkonzentrationen neben anderen Begasungsmitteln und flüchtigen Industriechemikalien und der daraus resultierende Mangel an Informationen zu Gefahren durch Phosphorwasserstoffrückstände in Frachtcontainern gliedert sich das Ziel der Arbeit in drei Teile.

Im dritten Teil der Arbeit sollte im Rahmen von experimentellen Begasungen verschiedener Lebensmittel mit Phosphorwasserstoff untersucht werden, ob und in welcher Stärke nachtraglichen Emissionen des Begasungsmittels auftreten können.
Auswahl und Beschreibung der Zielsubstanzen

3.1 Phosphorwasserstoff

Auswahl der Zielsubstanzen

Erbrechen, Bauchschmerzen, Diarrhö sowie Schwäche- und Schwindelgefühle. Die Stärke der Symptome ist dabei vom Grad der Exposition abhängig.\[8, 41-43\]

3.2 Brommethan

3.3 Sulfuryldifluorid

Auswahl der Zielsubstanzen

fluorid Bedeutung als Ersatz für Schwefelhexafluorid als Isoliergas/Schutzgas in der Magnesiumindustrie49. Sulfurylfluorid ist ein vergleichsweise teures Begasungsmittel. Daher ist der Ersatz von Brommethan durch Sulfurylfluorid unwahrscheinlicher als der Ersatz durch Phosphorwasserstoff, denn es sind gerade die wirtschaftlich schlechter aufgestellten Entwicklungsländer, die einen Großteil der Waren produzieren, die nach Europa verschifft werden. Das Treibhauspotenzial und die Persistenz von Sulfurylfluorid in der Atmosphäre wurden lange Zeit als niedrig eingestuft, bis Sulfurylfluorid erstmalig in Umgebungsluftproben gemessen wurde, was den Ausschlag für weitere Untersuchungen gab49, 50. Darauf folgende Studien ergaben, dass die Persistenz von Sulfurylfluorid in der Atmosphäre und sein Treibhauspotenzial erheblich sind51-53. Sulfurylfluorid ist als giftig und umweltgefährlich eingestuft. In der Literatur sind als klinische Symptome unter anderem Hypotonie, Lungenödeme, Tetanie (Störung der Motorik und der Sensibilität, Muskelkrampf), Herzrhythmusstörungen, Krämpfe und Zuckungen angegeben54. Da einige Symptome denen der systemischen Fluoridintoxikation gleichen, wird vermutet, dass bei der Vergiftung mit Sulfurylfluorid Fluoridionen verantwortlich für die toxische Wirkung im Organismus sind54.

3.4 1,2-Dichlorethan

1,2-Dichlorethan wird häufig auch als Ethylenchlorid bezeichnet. Es handelt sich um eine klare, farblose und brennbare Flüssigkeit mit hohem Dampfdruck und chloroformartigem Geruch. 1,2-Dichlorethan wird hauptsächlich als Lösungs- und Extraktionsmittel genutzt sowie für die Produktion von Vinylchlorid. Darüber hinaus wird 1,2-Dichlorethan in einigen Ländern als Pestizid eingesetzt. Es ist als Begasungsmittel eingestuft und wird zum Beispiel in einer Mischung mit Tetrachlorkohlenstoff und 1,2-Dibromethan als Dowfume EB-5 angeboten55, 56. In den letzten Jahren ist die Anzahl der Frachtcontainer, die mit 1,2-Dichlorethan kontaminiert waren, in einem ähnlichen Maße gestiegen, wie die Anzahl der mit Brommethan kontaminierten Container abgenommen hat53. Der Ersatz von Brommethan durch 1,2-Dichlorethan könnte die Ursache dafür sein.

1,2-Dichlorethan ist als karzinogen und mutagen eingestuft worden. Hauptaufnahmewege sind die Atemwege sowie die Haut und die Schleimhäute, auf welche die Substanz reizend und entfettend wirkt. Außerdem hat 1,2-Dichlorethan eine narkotisierende Wirkung und andere Auswirkungen auf das ZNS, die sich durch Kopfschmerzen, Unruhezustände und Tremor äußern können. Weiterhin werden verschiedenste Organschädigungen mit der Intoxikation durch 1,2-Dichlorethan in Zusammenhang gebracht, die vor allem Leber, Niere und Lunge betreffen.57
Auswahl der Zielsubstanzen

3.5 Benzol

In vielen Entwicklungsländern wird Benzol noch immer in verschiedenen Industriezweigen eingesetzt. So zum Beispiel bei der Produktion von Schuhen in Entwicklungsländern[59]. Dies spiegelt sich auch in der Benzolbelastung vieler Importcontainer wider, die mit Schuhen und Textilien bestückt sind[33, 34].

3.6 Toluol

Toluol gehört zu den Substanzen, die am häufigsten in Frachtcontainern nachgewiesen werden[32, 33]. Besonders dominant ist dabei die Belastung von Containern, die Schuhe und Textilien transportieren. Symptome einer akuten Exposition gegenüber hohen Toluolkonzentrationen sind hauptsächlich narkotische Wirkungen. Chronische Exposition gegenüber höheren Toluolkonzentrationen ruft unspezifische Wirkungen auf das Zentrale Nervensystem hervor. Dabei handelt es sich zum Beispiel um Schwindel, Kopfschmerzen, verlängerte Reaktionszeiten[60].

Toluol wird im menschlichen Stoffwechsel von Alkohol-Dehydrogenase und Aldehyde-Dehydrogenase durch Oxidation der Methylgruppe zu Benzoesäure metabolisiert und unterscheidet sich daher in seiner Toxizität erheblich vom strukturell nächsten Verwandten Benzol.
3.7 Trichlornitromethan

Trichlornitromethan wird häufig als Chlorpikrin bezeichnet. Es wurde ursprünglich als Lungenkampfstoff unter den Namen GrünkreuZ-1 und Klop eingesetzt. Es handelt sich um eine klare, farblose und flüchtige Flüssigkeit mit stechendem Geruch. Trichlornitromethan wird aufgrund seines stechenden Geruchs und Reizwirkung auf die Augen als warnende Substanz Begasungsmitteln zugesetzt, die selbst eine hohe Geruchsschwelle haben, so zum Beispiel zu Brommethan und Sulfurylfluorid, und spielt daher auch eine Rolle bei der Belastung von Frachtcontainerinnenluft. Darüber hinaus wird Trichlornitromethan als Entseuchungsmittel für Böden und als Begasungsmittel für Getreidelager eingesetzt[57].

Trichlornitromethan wird hauptsächlich über die Atemwege und die Schleimhäute resorbiert. Es wirkt reizend auf die Augen und die Schleimhäute. Weitere Symptome bei Exposition sind brennende Schmerzen und Engegefühl in der Brust sowie Kurzatmigkeit. Bei Intoxikation mit hohen Konzentrationen kann es außerdem zu Kopfschmerzen, Übelkeit, Verwirrtheit und abdominalen und allgemeinen Muskelkrämpfen kommen.[61]

3.8 Schwefelkohlenstoff

3.9 Dichlormethan

3.10 1,2-Dichlorpropan

1,2-Dichlorpropan wird auch Propylendichlorid genannt und besitzt ein Chiralitätszentrum, kommt jedoch meist als Racemat zum Einsatz. Es handelt sich um eine klare, farblose Flüssigkeit, die süßlich riecht und leicht flüchtig ist. 1,2-Dichlorpropan wird als Lösungsmittel, Entfettungs- und Extraktionsmittel verwendet. Früher wurde es auch als Begasungsmittel und Pflanzenschutzmittel verwendet. 1,2-Dichlorpropan wirkt reizend auf die Haut und führt zur Bildung von Ekzemen. Die Leber ist Hauptzielorgan von 1,2-Dichlorpropan, welches schwere Leberentzündungen verursachen kann. Aber auch Nieren, Zentralnervensystem und Herz können geschädigt werden. 1,2-Dichlorpropan ist als möglicherweise krebserregend eingestuft.

3.11 Iodmethan

3.12 Tetrachlormethan

Tetrachlormethan, auch als Tetrachlorkohlenstoff bezeichnet, ist eine klare, farblose und flüchtige Flüssigkeit und hat einen süßlichen Geruch. Tetrachlormethan wird bzw. wurde zur Herstellung von Fluorkohlenwasserstoffen und Bioziden verwendet sowie als Lösungsmittel\[^{57}\]. Im Montreal-Protokoll haben sich die unterzeichnenden Staaten verpflichtet, die Herstellung und Verwendung von Tetrachlormethan einzustellen\[^{58}\].

Hauptaufnahmewege von Tetrachlormethan sind die Atemwege und die Haut. Symptome einer akuten Vergiftung mit Tetrachlormethan sind Kopfschmerzen, Benommenheit, Übelkeit und Erbrechen. Chronische Exposition gegenüber kleineren Konzentrationen führt zu Schwindel und Empfindungsstörungen der Haut\[^{57}\].

Tetrachlormethan wird meist inhalativ aufgenommen. In der Leber erfolgt dann die Metabolisierung zum zellschädigenden Trichlormethylradikal\[^{60}\].

3.13 Ethylbenzol

Ethylbenzol ist eine klare, farblose Flüssigkeit, die leichtentzündlich ist. Ethylbenzol wird hauptsächlich zur Herstellung von Styrol verwendet und zum Teil als Lösungsmittel eingesetzt\[^{58}\]. Das Vorkommen von Ethylbenzol in Frachtcontainersäuleninnennluft ist wahrscheinlich auf Verwendung als Industriechemie zurückzuführen, da es keine Angaben über die Verwendung als Pestizid gibt. Ethylbenzol reizt die Augen und die Haut, seine Dämpfe wirken in hohen Konzentrationen betäubend\[^{58}\]. Außerdem kann eine Belastung mit Ethylbenzol zu Störungen des ZNS führen, die sich zum Beispiel in Form von Müdigkeit, Kopfschmerz, Schwindel und Depression bemerkbar machen\[^{57}\].
Methodenentwicklung

4 Methodenentwicklung

Die Entwicklung der Methode zur gleichzeitigen Messung von Phosphorwasserstoff und flüchtigen organischen Substanzen in Containerluftproben umfasste drei ineinandergreifende Arbeitsschritte: Gaschromatographische Auftrennung der Zielsubstanzen, Optimierung des Thermodesorptionsprozesses und Auswahl der bestmöglichen Detektorbedingungen.

4.1 Gaschromatographische Auftrennung der Zielsubstanzen

4.1.1 Aufbau des gaschromatographischen Systems

Die besondere Herausforderung bei der parallelen gaschromatographischen Messung von Phosphorwasserstoff, Sulfurylfluorid und flüchtigen organischen Substanzen innerhalb einer Probe liegt zum einen in der Notwendigkeit unterschiedlicher Detektoren und zum anderen in der schwierigen Auftrennung von Sulfurylfluorid und Phosphorwasserstoff.

Während für eine Vielzahl von Verbindungen die Massenspektrometrie eine sehr gut geeignete Methode zur qualitativen und quantitativen Erfassung darstellt, ist sie für Phosphorwasserstoff aufgrund der relativ geringen Empfindlichkeit gegenüber dieser Substanz nur bedingt geeignet. Abbildung 4.1 zeigt einen Vergleich der Messung von Phosphorwasserstoff mittels Massenspektrometer und Flammenphotometer. Darin wird deutlich, dass für die Analytik von Phosphorwasserstoff in Luft mittels Thermodesorption und Gaschromatographie das Massenspektrometer nicht geeignet ist. Eine dem geringen Grenzwert von 0,014 mg/m³ Phosphorwasserstoff gemäß TRGS 512 Begasung entsprechende Konzentration würde massenspektrometrisch nicht oder nur unzureichend erfasst. Zudem wurde im Rahmen der vorliegenden Arbeit eine Interferenz mit einer Substanz festgestellt, die ebenfalls das Ion 34 im Massenspektrum aufweist und die Analytik von Phosphorwasserstoff zusätzlich erschwert, wie in Abbildung 4.1A zu erkennen ist: Es wurde eine Probe mit 0,070 mg/m³ Phosphorwasserstoff, eine Messung von reinem Stickstoff und eine Messung ohne Probe durchgeführt. Die interferierende Substanz ist sowohl im Chromatogramm von Stickstoff (blau) und der Phosphorwasserstoffprobe (rot) präsent, nicht aber bei der Desorption der Kühlflasche ohne Probenahme (schwarz). Die Natur der interferierenden Substanz konnte im Rahmen der Arbeit nicht abschließend geklärt werden. Abbildung 4.1B zeigt das Chromatogramm der 0,070 mg/m³ Phosphorwasserstoff-Probe mittels Flammenphotometer. Die störende Substanz ist ausgebldendet und die Intensität für Phosphorwasserstoff ist gegenüber der MS-Messung vielfach höher.
Methodenentwicklung

Abbildung 4.1: A: Zwei Proben und eine Messung ohne Probe mittels TD-GC-MS im SIM-Modus (m/z 34) des Massenspektrometers. B: Messung von 0,070 mg/m³ Phosphorwasserstoff.

Bei den Analyten handelt es sich sowohl um leichtflüchtige Substanzen als auch um gasförmige Substanzen. Im Rahmen der vorliegenden Arbeit wurde festgestellt, dass sich die beiden Gase Sulfurylfluorid und Phosphorwasserstoff nur mit Hilfe einer PLOT-Säule chromatographisch voneinander trennen lassen, während die übrigen Zielsubstanzen mittels einer trägerbeschichteten Kapillarsäule voneinander getrennt werden können, auf einer PLOT-Säule jedoch zum Teil zu stark retardiert würden.

Für die konkrete analytische Fragestellung sollte die Abtrennung von Sulfurylfluorid und Phosphorwasserstoff von den übrigen flüchtigen organischen Substanzen und die Auftrennung der organischen Substanzen voneinander mittels einer SCOT-Säule als Säule 1 erfolgen. Anschließend sollte mit der Deans-Schaltung die Phosphorwasserstoff und Sulfurylfluorid enthaltene Fraktion auf eine PLOT-Säule als Säule 2 transferiert werden, während die organischen Substanzen über eine Restriktionskapillare zum Massenspektrometer geleitet werden sollten. Da, wie im Laufe der Arbeit festgestellt wurde, Sulfurylfluorid bei erhöhten Konzentrationen oberhalb von 20 mg/m³, wie sie nach Begasungen vorkommen können, auch ein Signal im für Phosphordetektion eingestellten Flammenphotometer erzeugt, war die Trennung von Sulfurylfluorid und Phosphorwasserstoff notwendig. Andernfalls hätte die Selektivität des Detektors für phosphorhaltige Komponenten eine Trennung erübrigt.
4.1.2 Funktionsprinzip der verwendeten Deans-Säulenschaltung

Die Deans-Säulenschaltung wurde von D.R. Deans im Jahr 1968 vorgestellt\cite{73}. Es handelt sich um eine pneumatisch gesteuerte Schaltung für die Kapillargaschromatographie zum Zwecke der Überleitung von Peaks von einer Kapillarsäule zu einer zweiten. Diese Schaltung brachte gegenüber den mechanisch betriebenen Säulenschaltungen verschiedene Vorteile. Dazu zählten die geringere Peakverbreiterung durch den Schaltvorgang, die einfachere Nachrüstung in Gaschromatographen und die bessere Temperaturbeständigkeit\cite{73}.

In Abbildung 4.3 ist der Aufbau der Säulenschaltung schematisch dargestellt. Sie besteht aus einem elektronisch steuerbaren Drei-Wege-Schalter und einem Mikro-Strömungsverteiler mit fünf Ausgängen. Zwei gleichartige Ausgänge a und b sind mit dem Drei-Wege-Schalter verbunden. Zwei weitere gleichartige Ausgänge c und d liegen den beiden ersten gegenüber. Ein weiterer Ausgang e befindet sich zwischen c und d\cite{74}. Zwischen dem Drei-Wege-Schalter und dem Mikro-Strömungsverteiler befindet sich eine Kurzschlussverbindung, die eine Rückströmung von Trägergas zum Drei-Wege-Schalter verhindert. Ausgang e fungiert als Einlass für das Eluat von Säule 1. Ausgang c ist mit Säule 2 verbunden. Ausgang d ist mit einer Restriktionskapillare (nicht beschichtetes, desaktiviertes Stück Glaskapillare) verbunden. Je nach Stellung des magnetischen Drei-Wege-Schalters wird über Ausgang a oder b Trägergas auf den Mikro-Strömungsverteiler gegeben und erreicht Ausgang e aus der entsprechenden Richtung. Der Trägergasdruck vom Schalter wird so gewählt, dass am Ausgang e das gesamte Eluat von Säule 1 je nach Stellung der Säulenschaltung in Richtung c zur Säule 2 (Abb. 4.3A) oder in Richtung d zur Restriktionskapillare (Abb. 4.3B) gezwungen wird\cite{74, 75}. Um dies zu gewährleisten, muss am Ausgang e ein Druckgleichgewicht zwischen Ausgangsdruck der Säule 1 und dem Trägergasfluss vom Schalter gehalten werden. Dazu ist es notwendig, den Gaschromatographen im druckkonstanten Modus zu betreiben\cite{75}.

Entscheidend für die Druckeinstellungen am Einlass von Säule 1 und am magnetischen 3-Wege-Schalter sowie für Länge und Innendurchmesser der Restriktionskapillare sind Länge und Innendurchmesser der verwendeten Säulen, Druckverhältnisse der verwendeten Detektoren (z.B. Vakuum für das Massenspektrometer) sowie der gewünschte Trägergasfluss und die anfängliche Ofentemperatur. Der Ausgangsdruck von Säule 1 entspricht dem Eingangsdruck für die Restriktion und für Säule 2. Um zu vermeiden, dass beim Durchlaufen der Substanzen durch die Säulenschaltung ein Tailing der Peaks entsteht, muss der Fluss auf der zweiten Säule und der Restriktion um den Faktor 1,5 und mindestens 1 mL/min höher sein als auf Säule 1. Entsprechend hoch muss der Ausgangsdruck P_2 von Säule 1 sein. Auf Basis des gewünschten Ausgangsdrucks P_2 von Säule 1 und der gewünschten Säulenflüsse wird der Eingangsdruck P_1 gewählt. Der Druck der Säulenschaltung P_3 wird dann so gewählt, dass es am Ausgang e der Säulenschaltung zur Druckbalance kommt.
Der effektive Innendurchmesser von PLOT-Säulen unterscheidet sich aufgrund der Beschaffenheit der Beschichtung vom tatsächlichen, in der Spezifikation angegebenen Säulendurchmesser. Für die Berechnung der Trägergasdruckeinstellungen zum Betreiben des Deans Switch ist der effektive Säulendurchmesser relevant\cite{76}. Zur Bestimmung des effektiven Innendurchmessers der PLOT Säule wurde die Säule am Einlass des Gaschromatographen installiert. Der Einlass-Druck wurde dann variiert, während mit Hilfe eines digitalen Flussmessers der Ausgangsfluss am Ende der Säule gemessen wurde. Die Poiseuille-Gleichung (Gleichung 4.1) beschreibt den Gasfluss durch eine offene, kapillare GC-Säule. Durch Auflösen der Gleichung nach dem Durchmesser \(r \) (Gleichung 4.2) wurde der effektive Innendurchmesser für die verschiedenen Einlass-Drücke berechnet.
Methodenentwicklung

\[
(Gl. 4.1) \quad F = \left(\frac{\pi \cdot r^4}{16 \cdot \eta \cdot l} \right) \cdot \left(\frac{p_i^2 - p_o^2}{p_o} \right) \cdot \left(\frac{p_o}{p_{ref}} \right) \cdot \left(\frac{T_{ref}}{T} \right)
\]

\[
(Gl. 4.2) \quad r = \sqrt{\frac{F \cdot l \cdot 16 \cdot \eta}{\left(\frac{T_{ref}}{T} \right) \cdot \left(\frac{p_o}{p_{ref}} \right) \cdot \left(\frac{p_i^2 - p_o^2}{p_o} \right) \cdot \pi}}
\]

\(F\) = Ausgangsfluss \([m^3 \cdot \text{sec}^{-1}]\)

\(r\) = Säulenradius \([m]\)

\(\eta\) = Viskosität \([\text{kg} \cdot \text{m}^{-1} \cdot \text{sec}^{-1}]\)

\(l\) = Länge der Säule \([m]\)

\(p_i\) = Eingangsdruck \([\text{Pa}]\)

\(p_o\) = Ausgangsdruck \([\text{Pa}]\)

\(p_{ref}\) = Referenzdruck \([\text{Pa}]\)

\(T\) = Ofentemperatur \([\text{K}]\)

\(T_{ref}\) = Referenztemperatur \([\text{K}]\)

Gleichungen 4.1 und 4.2: Poiseuille-Gleichung (4.1) mit Auflösung nach Radius \(r\) (4.2).

4.1.3 Auftrennung der Analyten in der ersten chromatographischen Dimension

Die erste Dimension (Säule 1) des in Abbildung 4.2 dargestellten GC-Systems sollte der Abtrennung von Phosphorwasserstoff und Sulfurylfluorid von den übrigen Zielsubstanzen und der Auftrennung der übrigen Zielsubstanzen voneinander dienen.

Da die Zusammensetzung von Containerluftproben sehr vielfältig sein kann, sollte bei der Optimierung der chromatographischen Trennung in der ersten Dimension eine möglichst große Anzahl von verschiedenen Substanzen berücksichtigt werden. Daher wurde zur Methodenentwicklung ein Gasstandard (Scott TO-14A Calibration Mix) verwendet, der 39 Substanzen enthielt. Dabei handelte es sich um verschiedene gesättigte und ungesättigte halogenierte Kohlenwasserstoffe, die BTEX-Aromaten, Mesitylene und Chlorbenzole. Es handelt sich dabei um Substanzen, die unter anderem als Lösungsmittel (z.B. Tetrachlorethen, Xylole), als Pestizide (z.B. \(cis\)- und \(trans\)-1,3-Dichlorpropen) oder als Monomere für die Kunststoffproduktion (z.B. Vinylchlorid) und FCKWs (z.B. Dichlordifluormethan) eingesetzt werden, so dass die Möglichkeit besteht, dass sich diese Substanzen in der Innenluft von Importcontainern befinden. Die Zielsubstanzen Benzol, Brommethan, 1,2-Dichlorethan, Dichlormethan, 1,2-Dichlorpropan, Ethylbenzol, Tetrachlorkohlenstoff und Toluol sind in diesem Gasstandard enthalten. Die weiteren Zielsubstanzen Iodomethan, Phosphorwasserstoff, Schwefelkohlenstoff, Sulfuryldifluorid und Trichlornitromethan
wurden dem Gasstandard noch hinzugefügt. Bei den Zielsubstanzen und den zusätzlichen Substanzen aus dem TO14-Gasstandard handelt es sich sowohl um polare als auch unpolare, leichtflüchtige sowie gasförmige Substanzen.

4.1.3.1 Auswahl der SCOT-Säule

Drei verschiedene SCOT-Säulen standen zur Verfügung und wurden anhand der im vorigen Absatz beschriebenen Standardproben auf ihre Eignung für die Analytik der Zielsubstanzen hin untersucht.

Zunächst wurde eine 30 m lange Säule mit proprietärer, d.h. vom Hersteller nicht beschriebener Beschichtung niedriger Polarität getestet, die besonders für die Analytik flüchtiger Verbindungen angeboten wird (Agilent, DB-VRX, 30 m, 0,25 mm i.d., 1,4 µm Film). Diese zeigten eine gute Trennleistung für alle organischen Substanzen und trennten außerdem Phosphorwasserstoff und Sulfurylfluorid von den übrigen flüchtigen Substanzen ab. Die Trennung von Sulfurylfluorid und Phosphorwasserstoff selbst gelang jedoch nicht (Tabelle 4.1 und Abbildung 4.5A).

Anschließend wurde eine 60 m lange Variante der gleichen Säule (Agilent, DB-VRX, 60 m, 0,25 mm i.d., 1,4 µm Film) eingesetzt. Die Trennung von Sulfurylfluorid und Phosphorwasserstoff gelang jedoch auch mit dieser Säule nicht. Insgesamt ergaben sich aber relativ lange Analysenzeiten. Darüber hinaus war die Säule bereits längere Zeit verwendet worden und zeigte ein deutliches Säulenbluten, das sich in einer erhöhten Basislinie äußerte. Einige der zuletzt eluierenden Komponenten der Testsubstanzen konnten daher nicht detektiert werden (Siehe Tabelle 4.1 und Abbildung 4.5B).

Eine 30 m lange Säule mit 100 %-iger Methylpolysiloxanphase und einer etwas geringeren Filmdicke als die vorigen Säulen (Agilent, HP-1MS, 30 m, 0,25 mm i.d., 1 µm Film) ergab bei kürzeren Analysenzeiten und gleichzeitiger Abtrennung von Phosphorwasserstoff und Sulfuryldifluorid von den übrigen Substanzen die im Vergleich beste Auftrennung der Peaks (Tabelle 4.1 und Abbildung 4.5C). Auch hier konnten Sulfurylfluorid und Phosphorwasserstoff nicht voneinander getrennt werden. Dennoch wurde diese Säule aufgrund der ansonsten zufriedenstellenden Auftrennung als Säule 1 (Abbildung 4.1) ausgewählt.

Da die Auftrennung von Sulfurylfluorid und Phosphorwasserstoff mit einer für die Auftrennung von flüchtigen organischen Substanzen geeigneten Säule nicht gelang, sollten beide Substanzen auf Säule 2 (siehe Abbildung 4.1) gebracht und dort mit einer geeigneten Säule voneinander getrennt werden, wie in Abschnitt 4.1.4 beschrieben wird.
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Substanz</th>
<th>Nr.</th>
<th>Substanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sulfurylfluorid</td>
<td>23</td>
<td>Trichlorethen</td>
</tr>
<tr>
<td>2</td>
<td>Phosphorwasserstoff</td>
<td>24</td>
<td>cis-1,3-Dichlor-1-propen</td>
</tr>
<tr>
<td>3</td>
<td>Dichlordifluormethan</td>
<td>25</td>
<td>trans-1,3-Dichlor-1-propen</td>
</tr>
<tr>
<td>4</td>
<td>Chlormethan</td>
<td>26</td>
<td>1,1,2-Trichlorethan</td>
</tr>
<tr>
<td>5</td>
<td>1,2-Dichlor-1,1,2,2-tetrafluor-</td>
<td>27</td>
<td>Toluol</td>
</tr>
<tr>
<td>6</td>
<td>Chloroethen</td>
<td>28</td>
<td>Trichlornitromethan</td>
</tr>
<tr>
<td>7</td>
<td>Brommethan</td>
<td>29</td>
<td>1,2-Dibrommethan</td>
</tr>
<tr>
<td>8</td>
<td>Chloroethen</td>
<td>30</td>
<td>Tetrachlorethen</td>
</tr>
<tr>
<td>9</td>
<td>Trichlorfluormethan</td>
<td>31</td>
<td>Chlormethanol</td>
</tr>
<tr>
<td>10</td>
<td>Iodmethan</td>
<td>32</td>
<td>Ethylbenzol</td>
</tr>
<tr>
<td>11</td>
<td>1,1-Dichlorethene</td>
<td>33</td>
<td>m-Xylol</td>
</tr>
<tr>
<td>12</td>
<td>Dichlormethan</td>
<td>34</td>
<td>p-Xylol</td>
</tr>
<tr>
<td>13</td>
<td>1,1,2-Trichlor-1,2,2-trifluor-</td>
<td>35</td>
<td>Styrol</td>
</tr>
<tr>
<td>14</td>
<td>Schwefelkohlenstoff</td>
<td>36</td>
<td>1,1,2,2-Tetrachlorethanol</td>
</tr>
<tr>
<td>15</td>
<td>1,1-Dichlorethene</td>
<td>37</td>
<td>o-Xylol</td>
</tr>
<tr>
<td>16</td>
<td>cis-1,2-Dichlorethene</td>
<td>38</td>
<td>1,3,5-Trimethylbenzol</td>
</tr>
<tr>
<td>17</td>
<td>Trichlormethan</td>
<td>39</td>
<td>1,2,4-Trimethylbenzol</td>
</tr>
<tr>
<td>18</td>
<td>1,2-Dichlorethene</td>
<td>40</td>
<td>1,3-Dichlorbenzol</td>
</tr>
<tr>
<td>19</td>
<td>1,1,1-Trichlorethene</td>
<td>41</td>
<td>1,4-Dichlorbenzol</td>
</tr>
<tr>
<td>20</td>
<td>Benzo1</td>
<td>42</td>
<td>1,2-Dichlorbenzol</td>
</tr>
<tr>
<td>21</td>
<td>Tetrachlormethan</td>
<td>43</td>
<td>1,2,4-Trichlorbenzol</td>
</tr>
<tr>
<td>22</td>
<td>1,2-Dichlorpropan</td>
<td>44</td>
<td>Hexachlor-1,3-butadien</td>
</tr>
</tbody>
</table>
Abbildung 4.5: Vergleich der Chromatogramme einer Standardprobe mit 44 leichtflüchtigen und gasförmigen Substanzen aufgetrennt auf verschiedenen SCOT-Säulen (Fluss: 2,7 mL/min; Temperaturprogramm: 35 °C für 4 min, 10 °C/min bis 240 °C, 240 °C für 3 min). A: DB-VRX 30 m, B: DB-VRX 60 m, C: HP-1MS 30 m.
1,2,4-Trichlorbenzol, das ebenfalls in dem Multikomponenten-Gasstandard enthalten war, war mit der vorgestellten Methode nur schwer nachweisbar und wurde in den abgebildeten Messungen (Abb. 4.5) nicht detektiert. Hexachlor-1,3-butadien eluierte erst relativ spät und ist zwecks Übersichtlichkeit hier nicht abgebildet, in Abbildung 4.8 wird der betreffende Peak für die optimierte Methode dargestellt.

4.1.3.2 Einfluss und Gestaltung des Temperaturprogramms

Da aufgrund der Säulenschaltung mit konstantem Druck gearbeitet werden musste (siehe Abschnitt 4.1.2), nahm der Trägergasfluss mit steigender Temperatur ab. Um einen zu kleinen Trägergasfluss und dadurch bedingt breite Peaks bei späterer Elution zu verhindern, wurde der Trägergasfluss zu Beginn des Temperaturprogramms von 2,7 mL/min (während des Säulenvergleiches verwendet) auf 3 mL/min erhöht. Ein Vergleich der beiden anfänglichen Trägergasgeschwindigkeiten auf die chromatographische Trennung und Peakform ist in Abbildung 4.6 dargestellt (Die Zuordnung der Peaks zu den Chromatogrammen befindet sich in Tabelle 4.2). Sowohl bei frühen (A und B) als auch bei späten Retentionszeiten (C und D) ergeben sich bei größerem anfänglichen Trägergasfluss von 3 mL/min (B und D) schmalere und höhere Peaks als bei 2,7 mL/min Anfangsfluss (A und C).

Abbildung 4.6: Einfluss der anfänglichen Trägergasgeschwindigkeit auf die Trennung und die Peakform der Substanzen.
Dann wurde das Temperaturprogramm der GC-Methode für die Separation der 42 flüchtigen organischen Komponenten voneinander und die Abtrennung von Phosphorwasserstoff und Sulfurylfluorid in der ersten Dimension optimiert.

Eine Steigerung der Temperatur mit 9 °C pro Minute auf 70 °C ergab eine gute Trennung der Substanzen im ersten Drittel des Chromatogramms. Um eine bessere Trennung der später eluierenden Substanzen zu erreichen, wurde die Temperatur für 5 Minuten bei 70 °C gehalten. Anschließend wurde die Temperatur bis zur Elution der letzten Substanz aus dem verwendeten Gasstandard mit 8 °C pro Minute auf 200 °C gesteigert. Danach erfolgte zum Ausheizen der Säule eine Temperatursteigerung von 25 °C pro Minute auf 240 °C und ein anschließendes Halten der Temperatur für 4 Minuten. Für die Isomeren m- und p-Xylol sowie für o-Xylol und 1,1,2,2-Tetrachlorethan konnte keine Trennung erreicht werden. Sie konnten jedoch aufgrund unterschiedlicher Massenspektren anhand der verschiedenen Ionenspuren voneinander unterschieden werden. Abbildung 4.8 zeigt das Chromatogramm der 44 flüchtigen Substanzen, die nach Auftrennung durch die erste analytische Säule massenspektrometrisch erfasst wurden. Die Zuordnung der Peaks zu den einzelnen Substanzen findet sich in Tabelle 4.4.
Abbildung 4.8: Chromatogramm von 44 flüchtigen Substanzen auf Säule 1 mit dem optimierten Temperaturprogramm.

Tabelle 4.4: Zuordnung der Substanzen zu den Peaks in den Chromatogrammen in Abb. 4.8

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Substanz</th>
<th>Nr.</th>
<th>Substanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>Kein Analyt</td>
<td>23</td>
<td>Trichlorethen</td>
</tr>
<tr>
<td>1</td>
<td>Sulfurylfluorid</td>
<td>24</td>
<td>cis-1,3-Dichlor-1-propen</td>
</tr>
<tr>
<td>2</td>
<td>Phosphorwasserstoff</td>
<td>25</td>
<td>trans-1,3-Dichlor-1-propen</td>
</tr>
<tr>
<td>3</td>
<td>Dichlordifluormethan</td>
<td>26</td>
<td>1,1,2-Trichlorethan</td>
</tr>
<tr>
<td>4</td>
<td>Chlormethan</td>
<td>27</td>
<td>Toluol</td>
</tr>
<tr>
<td>5</td>
<td>1,2-Dichlor-1,1,2,2-tetrafluorethan</td>
<td>28</td>
<td>Trichlorinitromethan</td>
</tr>
<tr>
<td>6</td>
<td>Chlorethen</td>
<td>29</td>
<td>1,2-Dibrommethan</td>
</tr>
<tr>
<td>7</td>
<td>Brommethan</td>
<td>30</td>
<td>Tetrachlorethen</td>
</tr>
<tr>
<td>8</td>
<td>Chlorethan</td>
<td>31</td>
<td>Chlorbenzol</td>
</tr>
<tr>
<td>9</td>
<td>Trichlorfluormethan</td>
<td>32</td>
<td>Ethylbenzol</td>
</tr>
<tr>
<td>10</td>
<td>Iodmethan</td>
<td>33</td>
<td>m-Xylol</td>
</tr>
<tr>
<td>11</td>
<td>1,1-Dichlorethen</td>
<td>34</td>
<td>p-Xylol</td>
</tr>
<tr>
<td>12</td>
<td>Dichlormethan</td>
<td>35</td>
<td>Styrol</td>
</tr>
<tr>
<td>13</td>
<td>1,1,2-Trichlor-1,2,2-trifluorethan</td>
<td>36</td>
<td>1,1,2,2-Tetrachlorethan</td>
</tr>
<tr>
<td>14</td>
<td>Schwefelkohlenstoff</td>
<td>37</td>
<td>o-Xylol</td>
</tr>
<tr>
<td>15</td>
<td>1,1-Dichlorethen</td>
<td>38</td>
<td>1,3,5-Trimethylbenzol</td>
</tr>
<tr>
<td>16</td>
<td>cis-1,2-Dichlorethen</td>
<td>39</td>
<td>1,2,4-Trimethylbenzol</td>
</tr>
<tr>
<td>17</td>
<td>Trichlormethan</td>
<td>40</td>
<td>1,3-Dichlorbenzol</td>
</tr>
<tr>
<td>18</td>
<td>1,2-Dichlorethen</td>
<td>41</td>
<td>1,4-Dichlorbenzol</td>
</tr>
<tr>
<td>19</td>
<td>1,1,1-Trichlorethan</td>
<td>42</td>
<td>1,2-Dichlorbenzol</td>
</tr>
<tr>
<td>20</td>
<td>BenzoI</td>
<td>43</td>
<td>1,2,4-Trichlorbenzol</td>
</tr>
<tr>
<td>21</td>
<td>Tetrachlormethan</td>
<td>44</td>
<td>Hexachlor-1,3-butadien</td>
</tr>
<tr>
<td>22</td>
<td>1,2-Dichlorpropan</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.1.3.3 Ermittlung der Säulenschaltzeiten

Um die Säulenschaltzeiten zu ermitteln wurde eine Probe mit 0,350 mg/m³ Phosphorwasserstoff und 0,420 mg/m³ Sulfurylfluorid mit dem für die erste Säule ermittelten Temperaturprogramm (siehe Abschnitt 4.1.3.2) ohne Schaltung zur zweiten Säule gemessen. Dabei wurde das Massenspektrometer im SIM-Modus des mit den Ionen 31, 33, 34 für Phosphorwasserstoff (Abbildung 4.9A) und den Ionen 67, 83, 102 für Sulfurylfluorid (Abbildung 4.9B) betrieben. Aus dem resultierenden Chromatogrammen konnten die notwendigen Schaltzeiten für Phosphorwasserstoff und Sulfurylfluorid von 2,20-2,35 abgeleitet werden (Einrahmungen in Abbildung 4.9). Die Schaltzeiten wurden mit 2,00-2,60 Minuten etwas großzügiger gewählt, um Schwankungen in der Retentionszeit und größeren Peakbreiten bei höheren Konzentrationen vorzubeugen.

Abbildung 4.9: Ermittlung der Schaltzeit für den Transfer von Phosphorwasserstoff (A) und Sulfurylfluorid (B) von Säule 1 auf Säule 2.
4.1.4 Auftrennung der Analyten in der zweiten chromatographischen Dimension

Das Eluat der Säule in der zweiten Dimension (Säule 2 in Abb. 4.2) wurde mit einem flammenphotometrischen Detektor (FPD) erfasst. Der FPD detektiert, je nach eingesetztem Filter, schwefelhaltige oder phosphorhaltige Verbindungen. Im Falle des Filters für Phosphor werden jedoch auch Schwefelverbindungen in geringem Maße detektiert. Phosphorwasserstoff und Sulfuryldifluorid werden auf der ersten Säule nicht getrennt, so dass beide über die zweite Säule zum Flammenphotometer gelangen. Mit einem FPD ist keine eindeutige Identifizierung der Analyten und gegebenenfalls Unterscheidung überlagernder Peaks aufgrund unterschiedlicher Ionen möglich, wie es das Massenspektrometer erlaubt. Die Zuordnung der Substanzen kann nur über die Retentionszeit erfolgen und die Quantifizierung ist nur für Peaks isolierter Substanzen möglich. Daher stellte die vollständige Trennung von Phosphorwasserstoff und Sulfuryldifluorid das Hauptkriterium bei der Säulenwahl dar. Drei verschiedene Säulen wurden zu diesem Zwecke getestet:

1. Varian, CP-PoraPLOT, 10 m (+2,5 m Partikelfalle), 0,32 mm i.d., 10 µm Filmdicke
2. Agilent, GS-GASPRO, 30 m, 0,32 mm i.d., Filmdicke nicht angegeben
3. Varian, CP-PoraPLOT 25 m (+2,5 m Partikelfalle), 0,32 mm i.d., 10 µm Filmdicke

Abbildung 4.10: Vergleich verschiedener PLOT-Säulen bei der Auftrennung von Sulfurylfluorid und Phosphorwasserstoff. A: GS-Gas Pro (3 mg/m³ PH₃ & 210 mg/m³ SO₂F₂), B: CP-Pora-PLOT Q 12 m (0,070 mg/m³ PH₃ & 210 mg/m³ SO₂F₂), C: CP-PoraPLOT Q 25 m (0,070 mg/m³ PH₃ & 210 mg/m³ SO₂F₂).
4.1.5 **Optimierte gaschromatographische Methode im Überblick**

Die optimierten gaschromatographischen Parameter sind in Tabelle 4.5 zusammengefasst. Abbildung 4.11 zeigt das Chromatogramm einer Probe, die mit der optimierten chromatographischen Methode gemessen wurde. Die Zuordnung der Peaks zu den einzelnen Substanzen ist der Tabelle 4.6 zu entnehmen.

<table>
<thead>
<tr>
<th>GC-Parameter</th>
<th>Gewählte Einstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Säule 1</td>
<td>HP-1MS, 30 m, 0,25 mm i.d., 1 µm Film</td>
</tr>
<tr>
<td>Säule 2</td>
<td>CP-PoraPLOT 25 m, 0,32 mm i.d., 10 µm Film</td>
</tr>
<tr>
<td>Effektiver Innendurchmesser Säule 2</td>
<td>0,223 mm</td>
</tr>
<tr>
<td>Eingangsdruck (konstant)</td>
<td>347 kPa</td>
</tr>
<tr>
<td>Schaltungsdruck (konstant)</td>
<td>275 kPa</td>
</tr>
<tr>
<td>Anfangsfluss Säule 1bzw. 2</td>
<td>3 mL/min, 4 mL/min</td>
</tr>
<tr>
<td>Trägergas</td>
<td>Helium</td>
</tr>
<tr>
<td>Temperaturprogramm</td>
<td>35 °C für 4 min, 9 °C/min bis 70 °C, 70°C für 5 min, 8 °C/min bis 200 °C, 25 °C/min bis 240 °C, 240°C für 4 min</td>
</tr>
<tr>
<td>Schaltzeit zu Säule 2</td>
<td>2-2,6 min</td>
</tr>
</tbody>
</table>

Tabelle 4.6: Zuordnung der Substanzen zu den Peaks in Abb. 4.10

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Substanz</th>
<th>Nr.</th>
<th>Substanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dichlordifluormethan</td>
<td>22</td>
<td>cis-1,3-Dichlor-1-propen</td>
</tr>
<tr>
<td>2</td>
<td>Chlormethan</td>
<td>23</td>
<td>trans-1,3-Dichlor-1-propen</td>
</tr>
<tr>
<td>3</td>
<td>1,2-Dichlor-1,1,2,2-tetrafluorethan</td>
<td>24</td>
<td>1,1,2-Trichlorethan</td>
</tr>
<tr>
<td>4</td>
<td>Chlorethen</td>
<td>25</td>
<td>Toluol</td>
</tr>
<tr>
<td>5</td>
<td>Brommethan</td>
<td>26</td>
<td>Trichlornitromethan</td>
</tr>
<tr>
<td>6</td>
<td>Chlorethen</td>
<td>27</td>
<td>1,2-Dibromethan</td>
</tr>
<tr>
<td>7</td>
<td>Trichlortluormethan</td>
<td>28</td>
<td>Tetrachlorethen</td>
</tr>
<tr>
<td>8</td>
<td>Iodmethan</td>
<td>29</td>
<td>Chlorbenzol</td>
</tr>
<tr>
<td>9</td>
<td>1,1-Dichlorethen</td>
<td>30</td>
<td>Ethylbenzol</td>
</tr>
<tr>
<td>10</td>
<td>Dichormethan</td>
<td>31</td>
<td>m-Xylol</td>
</tr>
<tr>
<td>11</td>
<td>1,1,2-Trichlor-1,2,2-trifluorethan</td>
<td>32</td>
<td>p-Xylol</td>
</tr>
<tr>
<td>12</td>
<td>Schwefelkohlenstoff</td>
<td>33</td>
<td>Styrol</td>
</tr>
<tr>
<td>13</td>
<td>1,1-Dichlorethan</td>
<td>34</td>
<td>1,1,2,2-Tetrachlorethan</td>
</tr>
<tr>
<td>14</td>
<td>cis-1,2-Dichlorethen</td>
<td>35</td>
<td>o-Xylol</td>
</tr>
<tr>
<td>15</td>
<td>Trichlormethan</td>
<td>36</td>
<td>1,3,5-Trimethylbenzol</td>
</tr>
<tr>
<td>16</td>
<td>1,2-Dichlorethan</td>
<td>37</td>
<td>1,2,4-Trimethylbenzol</td>
</tr>
<tr>
<td>17</td>
<td>1,1,1-Trichlorethan</td>
<td>38</td>
<td>1,3-Dichlorbenzol</td>
</tr>
<tr>
<td>18</td>
<td>Benol</td>
<td>39</td>
<td>1,4-Dichlorbenzol</td>
</tr>
<tr>
<td>19</td>
<td>Tetrachlormethan</td>
<td>40</td>
<td>1,2-Dichlorbenzol</td>
</tr>
<tr>
<td>20</td>
<td>1,2-Dichlorpropan</td>
<td>41</td>
<td>1,2,4-Trichlorbenzol</td>
</tr>
<tr>
<td>21</td>
<td>Trichlorethen</td>
<td>42</td>
<td>Hexachlor-1,3-butadien</td>
</tr>
</tbody>
</table>
4.2 Thermodesorption

4.2.1 Aufbau der Thermodesorptionseinheit

4.2.2 Auswahl der Kühlfalle

Es wurden drei verschiedene Kühlfallen getestet, die für das verwendete Thermodesorptionssystem kommerziell erhältlich sind. Alle getesteten Kühlfallen wurden von Markes International (Markes International Ltd., Llantrisant, UK) erworben. Die genaue Zusammensetzung (Füllgewicht der Adsorbentien, genaue Adsorbensbezeichnung, etwa Porengröße der Molekularsiebe) wird vom Hersteller nicht angegeben. Die genaue Bezeichnung, kommerzieller Verwendungszweck und die enthaltenen Adsorbentien der getesteten Kühlfallen sind in Tabelle 4.7 zusammengestellt.

Tabelle 4.7: Beschreibung der getesteten Kühlfallen

<table>
<thead>
<tr>
<th>Kühlfalle</th>
<th>Vom Hersteller angegebener Verwendungszweck</th>
<th>Adsorbens-Materialien</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-T15ATA</td>
<td>Luftschadstoffe</td>
<td>Graphitisierter Ruß (Carbon black) Kohlenstoffmolekularsieb</td>
</tr>
<tr>
<td>U-T14H2S</td>
<td>Schwefelwasserstoff</td>
<td>Quarzwolle Graphitisierter Kohlenstoff Silicagel</td>
</tr>
<tr>
<td>U-T5O3F</td>
<td>Ozonbildner</td>
<td>Porous Polymer Graphitisierter Ruß (Carbon black) Kohlenstoffmolekularsieb</td>
</tr>
</tbody>
</table>

Eine Probe mit jeweils 0,330 mg/m³ Benzol und 0,350 mg/m³ Dichlormethan als Modellsubstanzen für flüchtige organische Substanzen sowie 0,210 mg/m³ Phosphorwasserstoff wurde bei gleichbleibenden Parametereinstellungen mit den drei verschiedenen Kühlfallen analysiert. Die Peakflächen der resultierenden Chromatogramme wurden miteinander verglichen, um die Effizienz der Kühlfallen zu vergleichen. In Abbildung 4.13 sind die Peakflächen der Testsubstanzen, normiert auf die Peakflächen der Kühlfalle U-T14H2S nebeneinander dargestellt.
4.2.3 Optimierung der Methodenparameter

Der Thermodesorptionsprozess besteht aus einer Reihe von Parametern, welche Einfluss auf die Messung haben. Jeder einzelne dieser Parameter wurde auf seine Wirkung hin untersucht. Dazu wurde jeweils ein Parameter bei Konstanthaltung der übrigen Parameter variiert, während eine Standardprobe mit je 0,330 mg/m³ Benzol und 0,350 mg/m³ Dichlormethan und 0,210 mg/m³ Phosphorwasserstoff gemessen wurde. Eine möglichst große Peakfläche bei möglichst symmetrischen und schmalen Peaks wurde als Kriterium für die optimalen Einstellungen gewählt. Die Parameter wurden zunächst anhand der Kühlfalle U-T15ATA optimiert, da die weiteren Kühlfallen noch nicht zur Verfügung standen. Für die Kühlfalle U-T14H2S, die als optimale Kühlfalle ermittelt wurde (siehe Abschnitt 4.2.2), wurde die von der Kühlfalle selbst abhängende kritische Größe Durchbruchvolumen anschließend zusätzlich bestimmt.

4.2.3.1 Probenvolumen

worden, so dass keine weiteren Analyten von der Kühlfalle zurückgehalten werden können. Eingestellt werden kann das Probenvolumen durch Strömungsgeschwindigkeit (siehe Abschnitt 4.2.3.2) und Dauer des Adsorptionsschrittes. Das optimale Probenvolumen wurde nach Festlegung der Strömungsgeschwindigkeit durch Variation der Adsorptionsdauer ermittelt und wurde für die optimierte Methode so gewählt, dass das Durchbruchvolumen um etwa 30 % unterschritten wurde.

4.2.3.2 Flussrate während der Probenahme

Methodenentwicklung

4.2.3.3 Vorspülvolumen

Das Vorspülen (Prepurge) dient der Vertreibung der vorhergegangenen Probe aus den Gasleitungen, die zur Kühlfalle führen, um eine Verfälschung des Messergebnisses durch Kontaminationen von vorherigen Proben oder durch Verdünnung zu verhindern. Der Probenstrom während des Vorspülens ist immer gleich dem Strom während des Adsorptionsschrittes, so dass das Vorspülvolumen nur durch die Dauer des Vorspülens variiert werden kann. Es wurden zwei Vorspülvolumina verglichen, 20 und 50 mL. Abbildung 4.15A zeigt eine geringfügige Erhöhung der Peakflächen der Testsubstanzen Phosphorwasserstoff (PH\textsubscript{3}), Benzol und Dichlormethan (DCM) beim höheren Vorspülvolumen, so dass dieses gewählt wurde.

4.2.3.4 Temperatur der Transferleitung zum GC

4.2.3.5 **Spülung der Kühlfläche**

Um Feuchtigkeit und möglichst viel Sauerstoff von der Kühlfläche zu entfernen, muss diese nach dem Adsorptionsschritt mit Trägergas gespült werden. Dazu strömt das Trägergas in der gleichen Richtung wie zuvor die Probe durch die Kühlfläche. Dauer und Flussrate des Spülvorgangs wurden so gewählt, dass die Empfehlungen des Geräteherstellers und Kühlfallenanbieters (Markes International), zur Entfernung von Sauerstoff mindestens 50 mL Spülvolumen einzusetzen, eingehalten wurden. Die Kühlfläche wurde für 5 Minuten mit 15 mL/min gespült, woraus sich ein Spülvolumen von 75 mL ergab. Diese Einstellungen wurden nicht weiter variiert.

4.2.3.6 **Kühlfallentemperatur während der Adsorption**

Die Temperatur der Kühlfläche während des Adsorptionsschritttes konnte in einem Bereich von -10 °C bis 50 °C gewählt werden. Es wurden drei verschiedene Temperaturen getestet, -10, 0 und 10 °C. Wie in Abbildung 4.16A zu erkennen ist, ist der Einfluss der Temperatur für Phosphorwasserstoff am größten und die niedrigste Temperatur führte zu den größten Peakflächen. Daher wurde für die Methode eine Kühlfallentemperatur von -10 °C während des Adsorptionsschritttes gewählt.
4.2.3.7 Kühlfallentemperatur während der Desorption

4.2.3.8 Dauer der Desorption

Die Dauer des Desorptionsschrittes ist entscheidend für die Vollständigkeit der Desorption, die gewünscht ist, um eine Kontamination der Kühlfalle zu vermeiden. Es wurden 4 Minuten Desorptionsdauer gewählt und nicht weiter variert. Durch anschließende Leermessungen durch Desorption der Kühlfalle ohne vorherige Probenahme wurde sichergestellt, dass die Dauer der Desorption ausreichend war und keine Analyten auf der Kühlfalle verblieben.
4.2.3.9 *Split-Fluss während der Desorption*

Während des Desorptionsschrittes kann zusätzlich zum Trägergasstrom, der zum Gaschromatographen führt und gleich dem Trägergasfluss der GC-Methode ist, ein zusätzlicher Trägergasstrom eingesetzt werden, dessen Anteil hinter der Kühlfalle verworfen wird. Dies führt zwar zu einem Verlust an Analyten, jedoch auch zu einem erheblich schnelleren Transfer der Analyten von der Kühlfalle zur Transferleitung und damit zu schmaleren chromatographischen Peaks. Es wurde der kleinste mögliche Split-Fluss von 5 mL/min eingestellt.

4.2.3.10 *Durchbruchvolumen der ausgewählten Kühlfalle*

Wie zu Beginn von Abschnitt 4.2.3 erläutert, wurde das Durchbruchvolumen als von der Kühlfalle abhängige Größe für die nachträglich ermittelte, optimale Kühlfalle bestimmt. Aus Abbildung 4.17 geht hervor, dass das Durchbruchvolumen zwischen 7,5 und 10 mL erreicht wird. Für die optimierte Thermodesorptionsmethode wurden 5 mL als Probenvolumen gewählt, so dass das Durchbruchvolumen um etwa 30 % unterschritten wurde.

![Abbildung 4.17: Durchbruchvolumen der Kühlfalle U-T14H2S](image-url)
4.2.4 Optimierte Thermodesorptionsmethode im Überblick

Die optimierten Einstellungen für die Thermodesorption sind zusammengefasst in Tabelle 4.8 dargestellt.

Tabelle 4.8: Optimierte Methodenparameter für die Thermodesorption

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Gewählte Einstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kühlfalle</td>
<td>U-T14H2S</td>
</tr>
<tr>
<td>Vorspülvolumen</td>
<td>50 mL: 10 min, 5 mL/min</td>
</tr>
<tr>
<td>Probenvolumen</td>
<td>5 mL: 1 min, 5 mL/min</td>
</tr>
<tr>
<td>Kühlfallentemperatur bei Adsorption</td>
<td>-10 °C</td>
</tr>
<tr>
<td>Spülung der Kühlfalle</td>
<td>75 mL: 15 mL/min für 5 min</td>
</tr>
<tr>
<td>Kühlfallentemperatur bei Desorption</td>
<td>290 °C</td>
</tr>
<tr>
<td>Dauer der Desorptionstemperatur</td>
<td>4 min</td>
</tr>
<tr>
<td>Split-Fluss während Desorption</td>
<td>5 mL/min</td>
</tr>
<tr>
<td>Temperatur der Transferleitung</td>
<td>108 °C</td>
</tr>
</tbody>
</table>

4.2.5 Spätere Änderungen der Thermodesorptionsmethode

randomisierten Proben. In Abschnitt 5.6 wird, anschließend an die ausführlich beschriebene Validierung der ursprünglichen Methode, die notwendige zusätzliche Validierung für die modifizierte Methode zusammengefasst.

4.3 Flammenphotometrie

Tabelle 4.9: Einstellungen des Flammenphotometers

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Gewählte Einstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wellenlängenfilter</td>
<td>Phosphor, 526 nm</td>
</tr>
<tr>
<td>Temperatur</td>
<td>250 °C</td>
</tr>
<tr>
<td>Synthetische Luft</td>
<td>100 mL/min</td>
</tr>
<tr>
<td>Wasserstoff</td>
<td>75 mL/min</td>
</tr>
<tr>
<td>Makeup Gas</td>
<td>He, 15 mL/min</td>
</tr>
</tbody>
</table>
4.4 Massenspektrometrie

4.4.1 Optimierung der Scan-Methode

Für die Optimierung der Scan-Methode zum Screening der Probe wurde ein enger Massenbereich von 47 bis 250 m/z gewählt, in dem die meisten Massen der zu erwartenden Substanzen lagen, während die Massen von Sauerstoff, Kohlenstoffdioxid, Stickstoff und Argon ausgeschaltet wurden. Die genannten Luftbestandteile hätten zu großen Peaks geführt und das Massenspektrometer stärker als nötig belastet. Die Scan-Geschwindigkeit wurde auf \(n = 4 \) (entsprechend 391 amu/s) gesetzt, so dass bei diesem Massenbereich eine Anzahl von 12 Datenpunkten auf einen chromatographischen Peak entfielen, für den eine durchschnittliche Breite von sechs Sekunden zugrunde gelegt wurde. Diese Einstellungen entsprachen den Empfehlungen für eine gut integrierbare Peakform im Einklang mit rauscharmen Massenspektren für eine eindeutige Identifizierung der Substanz\(^\text{[25, 77]}\).

\[
(\text{Gl} \, 4.3) \quad \frac{\text{scans}}{s_{\text{Scan only}}} = \frac{391 \text{ amu/s}}{203 \text{ amu}} = 2 \text{ scans/s} \cong 12 \text{ scans/peak (6s)}
\]

Gleichung 4.3: Berechnung der Datenpunkte pro Peak bei den gewählten Einstellungen im Scan-Modus des Massenspektrometers bei 6 Sekunden Peakbreite.

4.4.2 Erstellung der SIM-Methode

Für die ausgewählten Zielsubstanzen, die sich in vorangegangenen Studien an Containerluftproben als besonders interessant erwiesen haben, wurde eine SIM-Methode erstellt. Dazu wurden die betreffenden Substanzen im Scan-Modus analysiert und nach Auswertung des Chromatogramms und der Massenspektren entsprechende SIM-Gruppen definiert. Die dwell time wurde für alle Ionen auf 200 ms gesetzt, so dass sich bei einer zugrunde gelegten Peakbreite von 6 s und einer Ionenzahl von 4 oder 2 Ionen pro SIM-Gruppe gemäß Gleichung 4.4 eine Anzahl von 8 beziehungsweise 15 Datenpunkten pro Peak ergab. Tabelle 4.10 gibt eine Übersicht über die Ionen und Zeitfenster der SIM-Gruppen und den zugehörigen Zielsubstanzen.

\[
(\text{Gl} \, 4.4) \quad \frac{\text{scans}}{s_{\text{SIMonly}}} = \frac{1000 \text{ ms}}{200 \text{ ms} \times 4(2)} = 1,25 \quad (2,5)\text{scans/s} \cong 8(15)\text{scans/peak(6s)}
\]

Gleichung 4.4: Berechnung der Datenpunkte pro Peak bei den gewählten Einstellungen im SIM-Modus des Massenspektrometers bei 6 Sekunden Peakbreite.
Tabelle 4.10: SIM-Gruppen mit Zielsubstanzen, Ionen und Zeitfenster

<table>
<thead>
<tr>
<th>Zeitfenster ([t_\text{r}, \text{in min}])</th>
<th>Zielsubstanzen</th>
<th>Ionen ([m/z])</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>Brommethan</td>
<td>94,0; 96,0</td>
</tr>
<tr>
<td>4-4,75</td>
<td>Iodmethan, Dichlormethan</td>
<td>126,8; 141,9; 83,9; 49,0;</td>
</tr>
<tr>
<td>4,75-7,2</td>
<td>Schwefelkohlenstoff</td>
<td>75,9; 78,0</td>
</tr>
<tr>
<td>7,2-8,1</td>
<td>1,2-Dichlorethan</td>
<td>62,0; 64,0</td>
</tr>
<tr>
<td>8,1-8,8</td>
<td>Benzol, Tetrachlormethan</td>
<td>77,0; 78,0; 116,9; 118,0</td>
</tr>
<tr>
<td>8,8-12,4</td>
<td>1,2-Dichlorpropan</td>
<td>63,0; 76,0</td>
</tr>
<tr>
<td>12,4-16,9</td>
<td>Toluol, Trichlornitromethan</td>
<td>65,0; 91,0; 116,9; 118,8</td>
</tr>
<tr>
<td>16,9-23,1</td>
<td>Ethylbenzol</td>
<td>91,0; 106,0</td>
</tr>
</tbody>
</table>

\(t_\text{r} = \text{Retentionzeit; Dwell time je 200 ms}\)

4.4.3 Synchronisierung von SIM- und Scanmodus

Das verwendete Massenspektrometer und die zugehörige Software (Agilent MS 5975C und Agilent MSD Productivity Chemstation) boten die Möglichkeit, SIM- und Scan-Modus zu synchronisieren, so dass beide Spektren während eines einzigen GC-Laufes aufgenommen werden konnten. Qualitäts- und Intensitätsverluste bei Spektren und Chromatogrammen sind dabei vernachlässigbar, wenn zu analysierender Massenbereich, Scangeschwindigkeit und Ionenschwellzeiten so gewählt werden, dass in beiden Modi genügend Datenpunkte pro Peak aufgenommen werden[^25]. Die Anzahl der Datenpunkte pro Peak ist im synchronisierten SIM/Scan-Modus durch Gleichung 4.5 vorgegeben. Dabei entspricht ein so genannter Cycle je einem SIM- und einem Scan-Datenpunkt. Der Faktor 1,05 im Nenner von Gleichung 4.5 berücksichtigt den Messzeitverlust, der durch das Umschalten zwischen SIM- und Scan-Modus entsteht.

\[
\text{(Gl.4.5) cycles/peak} = \frac{\text{peak width at base [s]}}{\left(\frac{1}{s_{\text{Scan only}}} + \frac{1}{s_{\text{SIM only}}}\right) \times 1,05}
\]

Gleichung 4.5: Formel zur Berechnung der massenspektrometrischen Datenpunkte pro GC-Peak im synchronisierten SIM/Scan-Modus.
Zur Berechnung der für die Methodenoptimierung benötigten Einstellungen wurden die Gleichungen 4.6-4.8 eingesetzt und Peakbreiten von 6 Sekunden zugrunde gelegt. Die Scan-Geschwindigkeit und die Ionenschwellzeiten wurden so gesetzt, dass sich im synchronisierten Modus etwa 10 Datenpunkte pro chromatographischen Peak ergaben (Gleichung 4.8). Um dies zu berechnen, mussten vorab die Datenpunkte pro Peak berechnet werden, die sich in den nicht synchronisierten Modi Scan (Gleichung 4.6) und SIM (Gleichung 4.7) ergeben.

\[(\text{Gl 4.6}) \frac{\text{scans}}{s_{\text{Scan only}}} = \frac{781 \, \text{amu/s}}{203 \, \text{amu}} = 3,8 \, \text{scans/s} \equiv 23 \, \text{scans/peak (6s)} \]

\[(\text{Gl 4.7}) \frac{\text{scans}}{s_{\text{SIM only}}} = \frac{1000 \, \text{ms}}{100 \, \text{ms} \times 4(2)} = 2,5 (5) \, \text{scans/s} \equiv 15 (30) \, \text{scans/peak (6s)} \]

\[(\text{Gl 4.8}) \frac{\text{cycles}^*/\text{peak}_{\text{SIM/Scan}}}{s_{\text{peakSIM/scan}}} = \frac{6 \, \text{s}}{\left(\frac{1}{3.8} + \frac{1}{2.5(5)}\right) \times 1.05} = 9(12) \]

Gleichungen 4.6-4.8: Berechnung der resultierenden Datenpunkte (Scans bzw. Cycles) pro Peak bei 6 Sekunden Peakbreite in den nicht synchronisierten Modi Scan (4.6) und SIM (4.7) sowie im synchronisierten SIM/Scan-Modus (4.8).

Abbildung 4.18 zeigt einen Vergleich zwischen reinem SIM-Modus (Chromatogramm) bzw. reinem Scan-Modus (Massenspektrum) und kombiniertem SIM/Scan-Modus und verdeutlicht den vernachlässigbaren Qualitätsverlust. Abbildung 4.18A zeigt das Massenspektrum von Brommethan im reinen Scan-Modus. Dazu ergab sich im Nist-Datenbankabgleich eine Übereinstimmung von 97 %. Abbildung 4.18B zeigt das Massenspektrum von Brommethan im synchronisierten SIM/Scan-Modus. Die Übereinstimmung mit der Nist-Datenbank von 98 % zeigt, dass kein Qualitätsverlust gegenüber dem reinen Scan-Modus aufgetreten ist. Die Abbildungen der Brommethanpeaks der Massen 96 (Abb. 4.18C) und 94 (Abb. 4.18D) im reinen SIM-Modus (rote Darstellung) und im SIM/Scan-Modus (schwarze Darstellung) des Massenspektrometers zeigen, dass Peakform und Menge der Datenpunkte pro Peak fast identisch sind. Es ist kein Qualitätsverlust durch die Synchronisierung der Modi aufgetreten.

Tabelle 4.11 zeigt die optimierten Parameter für das Massenspektrometer (synchronisierte SIM/Scan-Methode).

Tabelle 4.11: Optimierte Parameter für den massenspektrometrischen Detektor

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Optimierte Einstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ionisierungsenergie</td>
<td>70 eV</td>
</tr>
<tr>
<td>Massenbereich</td>
<td>47-250 amu</td>
</tr>
<tr>
<td>Temperatur des Quadrupol</td>
<td>200 °C</td>
</tr>
<tr>
<td>Temperatur der Ionenquelle</td>
<td>250 °C</td>
</tr>
<tr>
<td>Scan-Geschwindigkeit</td>
<td>n=3; 781 amu/sec</td>
</tr>
<tr>
<td>Ion dwell time im SIM-Modus</td>
<td>100 msec</td>
</tr>
<tr>
<td>Anzahl Ionen pro SIM-Gruppe</td>
<td>2-4*</td>
</tr>
</tbody>
</table>

*Siehe Tabelle 4.10 für die Beschreibung der SIM-Gruppen
Nach Abschluss der Methodenentwicklung wurde die Methode für die Zielsubstanzen validiert, um die Anwendbarkeit und Gültigkeit der Methode zu überprüfen. Im Rahmen der Validierung wurden die Verfahrenskenngrößen Nachweis- und Bestimmungsgrenzen, lineare Arbeitsbereiche, Wiederfindungsraten, Blindwerte und Präzision untersucht. Im Folgenden sind die einzelnen Parameter, die Durchführung zur Bestimmung dieser Parameter und die resultierenden Ergebnisse im Einzelnen dargestellt.

5.1 Nachweisgrenzen und Bestimmungsgrenzen

Bei der Nachweisgrenze handelt es sich um die dem kritischen Wert der Messgröße äquivalenten Konzentration, ab der ein Analysenverfahren das Nichtvorhandensein eines bestimmten Analyten mit einer vorgegebenen Irrtumswahrscheinlichkeit α (z.B. $\alpha = 5\%$) erkennt. Die Wahrscheinlichkeit, dass der Analyt dennoch enthalten ist, liegt dann bei $\beta = 50\%$. Vereinfacht bedeutet dies, dass bei Messung einer Probe, die den Analyten nicht enthält, in 5 % der Fälle ein positiver Messwert ermittelt wird, während bei Vorhandensein des Analyten in Höhe der Nachweisgrenze bei 50 % der Messungen ein Messsignal erhalten wird. Die Bestimmungsgrenze ist der Konzentrationswert, ab dem ein Analysenverfahren Konzentrationen mit einer zuvor definierten maximalen relativen Ergebnisunsicherheit ermittelt. Um die Bestimmungsgrenze zu ermitteln, muss die Ergebnisunsicherheit der Methode bestimmt werden und in Bezug zur geforderten maximalen Ergebnisunsicherheit gesetzt werden.$^{[78]}$

5. Methodenvalidierung
Für die vorliegende Arbeit wurden die Nachweis- und Bestimmungsgrenzen gemäß den Gleichungen 5.1 und 5.2 aus Kalibriergeraden Nachweisgrenzen naher Konzentrationen der einzelnen Substanzen berechnet.

\[(Gl \ 5.1) \ NG = s_{x_0} \cdot t_{f,\alpha} \cdot \sqrt{\frac{1}{N_a} + \frac{1}{N_c} + \frac{\bar{x}^2}{Q_x}}\]

\[(Gl \ 5.2) \ BG = k \cdot s_{x_0} \cdot t_{f,\alpha} \cdot \sqrt{\frac{1}{N_a} + \frac{1}{N_c} + \frac{(k \cdot NG - \bar{x})^2}{Q_x}}\]

\(NG = \) Nachweisgrenze
\(BG = \) Bestimmungsgrenze
\(s_{x_0} = \) Standardabweichung
\(t_{f,\alpha} = \) Faktor der \(t\)-Verteilung
\(N_a = \) Anzahl der Messungen
\(N_c = \) Anzahl der Kalibratoren
\(\bar{x} = \) Mittelwert der Konzentration
\(Q_x = \) Quadratsumme der Standardabweichungen
\(x = \) Konzentration

Gleichungen 5.1 und 5.2: Gleichungen zur Berechnung von Nachweis- und Bestimmungsgrenzen. \(k=3, t_{f,\alpha} = t_{8,1}\%\)

Die ermittelten Nachweis- und Bestimmungsgrenzen für jede Zielsubstanz sind in Tabelle 5.1 aufgeführt. Die Nachweisgrenzen liegen zwischen 0,001 mg/m³ und 0,027 mg/m³ und die Bestimmungsgrenzen zwischen 0,003 mg/m³ und 0,082 mg/m³ und damit weit unterhalb der in Abschnitt 6.3 formulierten Grenzwerte für die Konzentrationen in Containerluftproben. Somit ist eine genügende Empfindlichkeit der Methode für den Zweck der vorliegenden Arbeit gewährleistet.
Tabelle 5.1: Nachweis- und Bestimmungsgrenzen der Zielsubstanzen

<table>
<thead>
<tr>
<th>Zielsubstanz</th>
<th>Nachweisgrenze [mg/m³]</th>
<th>Bestimmungsgrenze [mg/m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphorwasserstoff</td>
<td>0,001</td>
<td>0,003</td>
</tr>
<tr>
<td>Dichlormethan</td>
<td>0,007</td>
<td>0,025</td>
</tr>
<tr>
<td>Brommethan</td>
<td>0,012</td>
<td>0,036</td>
</tr>
<tr>
<td>Schwefelkohlenstoff</td>
<td>0,006</td>
<td>0,016</td>
</tr>
<tr>
<td>1,2-Dichlorethan</td>
<td>0,004</td>
<td>0,012</td>
</tr>
<tr>
<td>1,2-Dichlorpropan</td>
<td>0,014</td>
<td>0,033</td>
</tr>
<tr>
<td>Toluol</td>
<td>0,008</td>
<td>0,023</td>
</tr>
<tr>
<td>Benzol</td>
<td>0,007</td>
<td>0,020</td>
</tr>
<tr>
<td>Ethylbenzol</td>
<td>0,013</td>
<td>0,049</td>
</tr>
<tr>
<td>Trichlornitromethan</td>
<td>0,027</td>
<td>0,082</td>
</tr>
<tr>
<td>Tetrachlormethan</td>
<td>0,013</td>
<td>0,032</td>
</tr>
<tr>
<td>Iodmethan</td>
<td>0,012</td>
<td>0,035</td>
</tr>
</tbody>
</table>

5.2 Arbeitsbereiche

Als Arbeitsbereich einer analytischen Methode ist der Konzentrationsbereich definiert, in dem die Methode gültige beziehungsweise statistisch abgesicherte Ergebnisse liefert. Zumeist wird hier ein Bereich gewählt, in dem die Messsignale linear auf die Konzentrationserhöhung des Analyten ansprechen. Als unteres Arbeitsbereichsende wurde in der vorliegenden Arbeit die Bestimmungsgrenze gewählt. Die obere Arbeitsbereichsgrenze wurde durch den höchsten verfügbaren Referenzstandard zur Bestimmung der Wiederfindung oder durch das Ende des linearen Bereiches der Kalibriergerade vorgegeben (siehe Tabelle 5.2) und durch das Erstellen von Kalibriergeraden überprüft. Dabei wurden als niedrigste Kalibratoren Konzentrationen von 0,017 bis 0,082 mg/m³. Als höchste Kalibratoren wurden Konzentrationen von 3,43 bis 7,55 mg/m³ für alle Substanzen außer Phosphorwasserstoff und 0,53 mg/m³ für Phosphorwasserstoff gewählt. Die Kalibriergeraden sind in Abbildung 5.1 dargestellt. Die linearen Messbereiche und die Korrelationskoeffizienten der einzelnen Substanzen können Tabelle 5.2 entnommen werden. Für alle Substanzen waren gute Linearitäten mit Korrelationskoeffizienten von $R^2 = 0,994-0,999$ gegeben. Ethylbenzol und Trichlornitromethan zeigten mit Korrelationskoeffizienten von $R^2 = 0,968$ und 0,988 etwas schlechtere Linearitäten als die übrigen Substanzen, wurden aber als ausreichend akzeptiert.
Tabelle 5.2: Arbeitsbereiche für die 12 Zielsubstanzen

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Grenze u [mg/m³]</th>
<th>Grenze o [mg/m³]</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphorwasserstoff</td>
<td>0,003</td>
<td>0,53</td>
<td>0,999</td>
</tr>
<tr>
<td>Dichlormethan</td>
<td>0,025</td>
<td>3,76</td>
<td>0,997</td>
</tr>
<tr>
<td>Brommethan</td>
<td>0,036</td>
<td>4,35</td>
<td>0,998</td>
</tr>
<tr>
<td>Schwefelkohlenstoff</td>
<td>0,016</td>
<td>3,43</td>
<td>0,997</td>
</tr>
<tr>
<td>1,2-Dichlorethan</td>
<td>0,012</td>
<td>4,48</td>
<td>0,998</td>
</tr>
<tr>
<td>1,2-Dichlorpropan</td>
<td>0,033</td>
<td>5,04</td>
<td>0,994</td>
</tr>
<tr>
<td>Toluol</td>
<td>0,023</td>
<td>4,16</td>
<td>0,997</td>
</tr>
<tr>
<td>Benzol</td>
<td>0,020</td>
<td>3,54</td>
<td>0,998</td>
</tr>
<tr>
<td>Ethylbenzol</td>
<td>0,049</td>
<td>4,72</td>
<td>0,968</td>
</tr>
<tr>
<td>Trichlorinitromethan</td>
<td>0,082</td>
<td>7,55</td>
<td>0,988</td>
</tr>
<tr>
<td>Tetrachlormethan</td>
<td>0,032</td>
<td>6,90</td>
<td>0,999</td>
</tr>
<tr>
<td>Iodomethan</td>
<td>0,035</td>
<td>6,44</td>
<td>0,995</td>
</tr>
</tbody>
</table>

Grenze u = untere Arbeitsbereichsgrenze; Grenze o = obere Arbeitsbereichsgrenze; R² = Korrelationskoeffizient
Abbildung 5.1: Kalibriergeraden über den linearen Arbeitsbereich der 12 Zielsubstanzen
5.3 Blindwerte

Zur Ermittlung, ob eine Kontamination der Kühlfläche auftritt, wurden zunächst zwei Proben definierter Konzentrationen (0,32-0,68 bzw. 0,070 mg/m³ und 3,20-6,80 bzw. 0,49 mg/m³ für flüchtige organische Substanzen bzw. Phosphorwasserstoff) gemessen. Anschließend an jede der beiden Messungen wurde eine Messung ohne Anreicherungsschritt durchgeführt, wobei in der Thermodesorption lediglich die Desorption der Kühlfläche stattfand. Die Ergebnisse sind in Abbildung 5.2 in Form der Scan- (5.2A, D), SIM- (5.2B, E) und FPD- (5.2C, F) Chromatogramme der Messungen ohne Probenahme nach dem niedriger konzentrierten Standard (5.2A, B, C) und dem höher konzentrierten Standard (5.2D, E, F) dargestellt.

Abbildung 5.2: Scan- (A, D), SIM- (B, E) und FPD- (C, F) Chromatogramme der Messungen ohne Probenahme nach 0,32-0,68 (0,070) mg/m³ (A, B, C) und 3,20-6,80 (0,49) mg/m³ (D, E, F).
Wie aus Abbildung 5.2 hervorgeht, bleiben nach Proben mit Konzentrationen im Bereich der oberen Messbereichsgrenze (3,20-6,80 mg/m³) für einige der organischen Zielsubstanzen Kontaminationen auf der Kühlfälle zurück. Diese sind nur im SIM-Modus des Massenspektrometers detektierbar (Abb. 5.2E), liegen aber für alle Substanzen unterhalb der gemäß Abschnitt 5.1 ermittelten Nachweisgrenzen (Tabelle 5.3).

Tabelle 5.3: Blindwerte nach 0,49 mg/m³ (Phosphorwasserstoff) und 3,20-6,80 mg/m³ (andere Zielsubstanzen) auf der Kühlfälle

<table>
<thead>
<tr>
<th>Substanz (c vorangegangener Probe in mg/m³)</th>
<th>Blindwertkonzentration [mg/m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphorwasserstoff (0,4)</td>
<td>< NG</td>
</tr>
<tr>
<td>Dichlormethan (3,50)</td>
<td>< NG</td>
</tr>
<tr>
<td>Brommethan (3,90)</td>
<td>< NG</td>
</tr>
<tr>
<td>Schwefelkohlenstoff (3,20)</td>
<td>< NG</td>
</tr>
<tr>
<td>1,2-Dichlorethan (4,10)</td>
<td>< NG</td>
</tr>
<tr>
<td>1,2-Dichlorpropan (4,70)</td>
<td>< NG</td>
</tr>
<tr>
<td>Toluol (3,80)</td>
<td>< NG</td>
</tr>
<tr>
<td>Benzol (3,30)</td>
<td>< NG</td>
</tr>
<tr>
<td>Ethylbenzol (4,40)</td>
<td>< NG</td>
</tr>
<tr>
<td>Trichlornitromethan (6,80)</td>
<td>< NG</td>
</tr>
<tr>
<td>Tetrachlormethan (6,40)</td>
<td>< NG</td>
</tr>
<tr>
<td>Iodmethan (5,90)</td>
<td>< NG</td>
</tr>
</tbody>
</table>

Tabelle 5.4: Blindwerte der Probenbeutel

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Blindwertkonzentration [mg/m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphorwasserstoff</td>
<td>< NG</td>
</tr>
<tr>
<td>Dichlormethan</td>
<td>< BG</td>
</tr>
<tr>
<td>Brommethan</td>
<td>< BG</td>
</tr>
<tr>
<td>Schwefelkohlenstoff</td>
<td>< BG</td>
</tr>
<tr>
<td>1,2-Dichlorethan</td>
<td>< BG</td>
</tr>
<tr>
<td>1,2-Dichlorpropan</td>
<td>< NG</td>
</tr>
<tr>
<td>Toluol</td>
<td>< BG</td>
</tr>
<tr>
<td>Benzol</td>
<td>< BG</td>
</tr>
<tr>
<td>Ethylbenzol</td>
<td>< NG</td>
</tr>
<tr>
<td>Trichlornitromethan</td>
<td>< NG</td>
</tr>
<tr>
<td>Tetrachlormethan</td>
<td>< BG</td>
</tr>
<tr>
<td>Iodmethan</td>
<td>< BG</td>
</tr>
</tbody>
</table>

Um festzustellen, wie stark die Zuleitungswege in der Thermodesorptionseinheit zu Blindwerten beitragen, wurde Raumluft aus dem Labor gemessen, jeweils nachdem keine belastete Probe, nachdem eine Standardprobe mit 0,32-0,68 mg/m³ (Phosphorwasserstoff 0,070 mg/m³) und nachdem eine Standardprobe mit 3,20-6,80 mg/m³ (Phosphorwasserstoff 0,42 mg/m³) gemessen worden war. Die Ergebnisse sind in Tabelle 5.5 dargestellt. Hier zeigten sich bei den Messungen, die nach Proben mit Konzentrationen im oberen Messbereich durchgeführt wurden, die höchsten Blindwerte. Für 1,2-Dichlorethan, Toluol und Ethylbenzol sind hier quantifizierbare Kontaminationen von 0,029, 0,042 und 0,057 mg/m³ ermittelt worden. Für 1,2-Dichlorethan konnte bereits im Anschluss an eine Probe mit 0,41 mg/m³ eine quantifizierbare Konzentration von 0,012 mg/m³ gemessen werden.
Um die Ergebnisse der Containerluftmessungen auf die Hintergrundbelastung der Luft beziehen zu können, wurden Umgebungsluftproben mit dem in Abschnitt 6.1 beschriebenen Probenahmeverfahren gesammelt und gemessen. In Tabelle 5.6 sind die Ergebnisse dieser Messungen aufgeführt. Alle Werte lagen unterhalb der ermittelten Nachweis- oder Bestimmungsgrenzen.

Tabelle 5.6: Blindwerte aus den Probenahmen für alle Zielsubstanzen.

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Umgebungsluft mit Pumpe</th>
<th>Umgebungsluft mit Pumpe, Schlauch und Lanze</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[mg/m³]</td>
<td>[mg/m³]</td>
</tr>
<tr>
<td>Phosphorwasserstoff</td>
<td>< NG</td>
<td>< NG</td>
</tr>
<tr>
<td>Dichlormethan</td>
<td>< NG</td>
<td>< NG</td>
</tr>
<tr>
<td>Brommethan</td>
<td>< NG</td>
<td>< NG</td>
</tr>
<tr>
<td>Schwefelkohlenstoff</td>
<td>< BG</td>
<td>< BG</td>
</tr>
<tr>
<td>1,2-Dichlorethan</td>
<td>< NG, 0,012</td>
<td>< NG, 0,029</td>
</tr>
<tr>
<td>1,2-Dichlorpropan</td>
<td>< NG, 0,012</td>
<td>< NG, 0,029</td>
</tr>
<tr>
<td>Toluol</td>
<td>< BG, 0,042</td>
<td>< BG, 0,042</td>
</tr>
<tr>
<td>Benzol</td>
<td>< BG</td>
<td>< BG</td>
</tr>
<tr>
<td>Ethybenzol</td>
<td>< NG, 0,057</td>
<td>< NG</td>
</tr>
<tr>
<td>Trichlornitromethan</td>
<td>< NG</td>
<td>< NG</td>
</tr>
<tr>
<td>Tetrachlormethan</td>
<td>< NG</td>
<td>< NG</td>
</tr>
<tr>
<td>Iodmethan</td>
<td>< NG</td>
<td>< NG</td>
</tr>
</tbody>
</table>

Tabelle 5.5: Messung von Raumluft nach der Messung von unterschiedlich belasteten Proben

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Blindwert [mg/m³] nach unbelasteter Probe</th>
<th>Blindwert [mg/m³] nach Probe mit 0,32-0,68 (0,070) mg/m³</th>
<th>Blindwert [mg/m³] nach Probe mit 3,20-6,80 (0,42) mg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphorwasserstoff</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
</tr>
<tr>
<td>Dichlormethan</td>
<td><NG</td>
<td><BG</td>
<td><BG</td>
</tr>
<tr>
<td>Brommethan</td>
<td><NG</td>
<td><NG</td>
<td><BG</td>
</tr>
<tr>
<td>Schwefelkohlenstoff</td>
<td><NG</td>
<td><BG</td>
<td><BG</td>
</tr>
<tr>
<td>1,2-Dichlorethan</td>
<td><NG, 0,012</td>
<td><NG, 0,029</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorpropan</td>
<td><NG, 0,012</td>
<td><NG, 0,029</td>
<td></td>
</tr>
<tr>
<td>Toluol</td>
<td><BG, 0,042</td>
<td><BG, 0,042</td>
<td></td>
</tr>
<tr>
<td>Benzol</td>
<td><BG</td>
<td><BG</td>
<td></td>
</tr>
<tr>
<td>Ethybenzol</td>
<td><NG, 0,057</td>
<td><NG</td>
<td></td>
</tr>
<tr>
<td>Trichlornitromethan</td>
<td><NG</td>
<td><NG</td>
<td></td>
</tr>
<tr>
<td>Tetrachlormethan</td>
<td><NG</td>
<td><NG</td>
<td></td>
</tr>
<tr>
<td>Iodmethan</td>
<td><NG</td>
<td><NG</td>
<td></td>
</tr>
</tbody>
</table>

5.4 Wiederfindung

5.4.1 Wiederfindungsraten der Messmethode

Die Wiederfindung wurde für die organischen Substanzen an zwei Stellen des linearen Messbereiches durch Messung zertifizierter Gasgemische von etwa 0,32-0,70 mg/m³ beziehungsweise etwa 3,20-6,80 mg/m³ je Substanz bestimmt. Die Wiederfindung von Phosphorwasserstoff wurde bestimmt, indem zwei Verdünnungen eines hochkonzentrierten Prüfgases (70,5 mg/m³ Phosphorwasserstoff in Stickstoff, Linde Spezialgase) mit einem speziellen Messgerät für Phosphorwasserstoff (Bandmonitor SPM von Honeywell) analysiert wurden und die so ermittelten Konzentrationen von 0,14 und 0,38 mg/m³ als Vergleichskonzentrationen herangezogen wurden. Für Iodomethan und Schwefelkohlenstoff stand nur ein Standardgas sehr hoher Konzentration zur Verfügung. Für diese beiden Substanzen wurde die Wiederfindung bestimmt, indem Kalibriergeraden aus dem Standardgas gemessen
wurden und für selbst hergestellte Standards aus Flüssigkeiten (siehe Abschnitt 11.2 im experimentellen Teil) die Wiederfindung bestimmt wurde. Für Trichlornitromethan stand kein Gas zur Verfügung, so dass die Wiederfindung für diese Substanz nicht ermittelt werden konnte. Die Ergebnisse der Wiederfindungstests sind in Tabelle 5.7 zusammengefasst. Mit Werten zwischen 93 und 101 % für alle Substanzen außer Brommethan und Iodomethan liegen die Wiederfindungen für die niedrigere Konzentration in einem sehr guten Bereich. Ebenso mit 96 bis 106 % für alle Substanzen außer Toluol und Ethylbenzol bei der höherer Konzentration. Die Wiederfindungsraten von 87 % und 83 % bei der Wiederfindung von Iodomethan und Brommethan in der niedriger konzentrierten Probe und 113 % für Toluol in der höher konzentrierten Probe sind etwas schlechter als bei den übrigen Substanzen, liegen aber noch in einem akzeptablen Bereich. Die Wiederfindungsraten von 138 % bei der höheren Konzentration von Ethylbenzol ist sehr hoch. Da während der Beprobung selektiver Container das höher konzentrierte Prüfgas nicht zur Verfügung stand, wurden die höher konzentrierten Proben für eine zweite Messung so verdünnt, dass sie die Konzentrationen maximal im Bereich des geringer konzentrierten Prüfgases lagen, für welches die Wiederfindungsraten von Ethylbenzol mit 97 % ebenfalls gut war.

Tabelle 5.7: Ergebnisse der Wiederfindungsbestimmung

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Prüfgas [mg/m³]</th>
<th>Wiederfindung [%]</th>
<th>Prüfgas [mg/m³]</th>
<th>Wiederfindung [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphorwasserstoff</td>
<td>0,14</td>
<td>100</td>
<td>0,38</td>
<td>98</td>
</tr>
<tr>
<td>Dichlormethan</td>
<td>0,39</td>
<td>100</td>
<td>3,67</td>
<td>101</td>
</tr>
<tr>
<td>Brommethan</td>
<td>0,40</td>
<td>87</td>
<td>4,11</td>
<td>105</td>
</tr>
<tr>
<td>Schwefelkohlenstoff</td>
<td>0,32</td>
<td>101</td>
<td>2,50</td>
<td>100</td>
</tr>
<tr>
<td>1,2-Dichlorethan</td>
<td>0,45</td>
<td>99</td>
<td>4,27</td>
<td>106</td>
</tr>
<tr>
<td>1,2-Dichlorpropan</td>
<td>0,52</td>
<td>96</td>
<td>4,89</td>
<td>106</td>
</tr>
<tr>
<td>Toluol</td>
<td>0,42</td>
<td>95</td>
<td>3,95</td>
<td>113</td>
</tr>
<tr>
<td>Benzol</td>
<td>0,36</td>
<td>93</td>
<td>3,38</td>
<td>105</td>
</tr>
<tr>
<td>Ethylbenzol</td>
<td>0,49</td>
<td>97</td>
<td>4,63</td>
<td>138</td>
</tr>
<tr>
<td>Trichlornitromethan</td>
<td>(^1)</td>
<td>(^1)</td>
<td>(^1)</td>
<td>(^1)</td>
</tr>
<tr>
<td>Tetrachlormethan</td>
<td>0,70</td>
<td>99</td>
<td>6,39</td>
<td>103</td>
</tr>
<tr>
<td>Iodomethan</td>
<td>0,60</td>
<td>83</td>
<td>4,51</td>
<td>96</td>
</tr>
</tbody>
</table>

\(^1\) Kein Prüfgas verfügbar
5.4.2 Wiederfindung des analytischen Verfahrens

Um die Wiederfindung des analytischen Verfahrens zu testen, wurde eine Standardprobe in einem 12 L-Probenbeutel hergestellt und die genaue Konzentration durch eine Messung ermittelt. Anschließend wurde die Probe aus dem 12 L-Probenbeutel mit dem in Abschnitt 6.1 beschriebenen Probenahmeverfahren nacheinander in zwei 1 L-Probenbeutel gesammelt. Die anschließende Messung und Auswertung der so gewonnenen Proben ergab die in Tabelle 5.8 aufgeführten Wiederfindungsraten des gesamten analytischen Verfahrens für die Zielsubstanzen. Sie liegen zwischen 90 und 98 % beziehungsweise bei 71 und 84 % für Ethylbenzol respektive Toluol. Die schlechtere Wiederfindung der zuletzt genannten Substanzen sind wahrscheinlich auf ihre, im Vergleich zu den übrigen Zielsubstanzen, höheren Siedepunkte und niedrigere Flüchtigkeiten zurückzuführen, die während der Probenahme zu Adsorption an Wandungen führen können. Dafür spricht auch, dass diese beiden Substanzen die größten Blindwerte aufweisen, wenn eine belastete Probe vorausgeht (siehe Tabelle 5.5).

Tabelle 5.8: Wiederfindung des analytischen Verfahrens

<table>
<thead>
<tr>
<th>Substanz</th>
<th>A [mg/m³]</th>
<th>B1 [mg/m³]</th>
<th>B2 [mg/m³]</th>
<th>Mittlere Wiederfindung [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphorwasserstoff</td>
<td>0,11</td>
<td>0,10</td>
<td>0,11</td>
<td>96</td>
</tr>
<tr>
<td>Dichlormethan</td>
<td>0,33</td>
<td>0,31</td>
<td>0,31</td>
<td>94</td>
</tr>
<tr>
<td>Brommethan</td>
<td>0,32</td>
<td>0,30</td>
<td>0,31</td>
<td>95</td>
</tr>
<tr>
<td>Schwefelkohlenstoff</td>
<td>0,30</td>
<td>0,28</td>
<td>0,29</td>
<td>95</td>
</tr>
<tr>
<td>1,2-Dichlorethan</td>
<td>0,39</td>
<td>0,36</td>
<td>0,36</td>
<td>92</td>
</tr>
<tr>
<td>1,2-Dichlorpropan</td>
<td>0,43</td>
<td>0,39</td>
<td>0,40</td>
<td>92</td>
</tr>
<tr>
<td>Toluol</td>
<td>0,34</td>
<td>0,29</td>
<td>0,28</td>
<td>84</td>
</tr>
<tr>
<td>Benzol</td>
<td>0,30</td>
<td>0,27</td>
<td>0,28</td>
<td>92</td>
</tr>
<tr>
<td>Ethylbenzol</td>
<td>0,40</td>
<td>0,30</td>
<td>0,27</td>
<td>71</td>
</tr>
<tr>
<td>Trichlornitromethan</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tetrachlormethan</td>
<td>0,61</td>
<td>0,56</td>
<td>0,58</td>
<td>93</td>
</tr>
<tr>
<td>Iodmethan</td>
<td>0,57</td>
<td>0,54</td>
<td>0,54</td>
<td>95</td>
</tr>
</tbody>
</table>

5.4.3 Wiederfindung bei Verdünnung von höher konzentrierten Proben

Mit dem für die Messung von Containerinnenluft entwickelten Analyseverfahren sollten Konzentrationen von Begasungsmitteln und Industriechemikalien vom unteren µg/m³-Bereich bis in den höheren mg/m³-Bereich erfasst werden. Bei Proben mit Konzentrationen oberhalb des festgelegten Arbeitsbereiches wurde die Probe nach Verdünnung ein zweites Mal gemessen und die Auswertung für die betreffende Substanz anhand dieser Messung vorgenommen.

Zur Bestimmung der Genauigkeit der Verdünnung von Proben wurde ein Prüfgas oder eine Standardprobe hoher Konzentration verdünnt. Dazu wurde für die Zielsubstanzen Brommethan, Dichlormethan, 1,2-Dichlorethan, Benzol, Tetrachlormethan, 1,2-Dichlorpropan, Toluol und Ethylbenzol ein zertifiziertes Standardgas (Scott TO-14A Calibration Mix) mit Konzentrationen der Zielsubstanzen von etwa 3,4 bis 6,4 mg/m³ verdünnt, indem es zunächst aus der Gasflasche in einen Probenbeutel gefüllt wurde und dann mit einer Jumbospritze jeweils 100 mL dieses Gases in einen Probenbeutel mit je 900 mL Stickstoff gegeben wurden. Diese verdünnte Probe wurde dann gemessen und quantifiziert. Für Iodmethan und Schwefelkohlenstoff wurden Standardproben höherer Konzentrationen hergestellt und gemessen und das Ergebnis als Ausgangskonzentration dokumentiert. Anschließend wurde die Probe, wie für den zertifizierten Standard beschrieben, verdünnt und erneut gemessen, um die Wiederfindung nach Verdünnung zu bestimmen. Für Phosphorwasserstoff wurde ein Prüfgas von 70,5 mg/m³ verdünnt, indem in einen Probenbeutel mit 1 Liter Stickstoff mittels gasdichter Milliliterspritze 2 mL des Prüfgases gegeben wurden. Drei gleiche Verdünnungen wurden jeweils auf die beschriebene Weise hergestellt und anschließend gemessen. Die genauen Ausgangskonzentrationen sind in Tabelle 5.9 wiedergegeben. Die mittlere Wiederfindung ergab sich durch Gegenüberstellung der ermittelten Konzentrationen und dem für die Verdünnung berechneten Konzentrationen. Die Ergebnisse dieses Tests sind in Tabelle 5.9 zusammengefasst. Daraus lässt sich ablesen, dass es zu Verlusten zwischen 0 und 15 % kommen kann. Die größten Verluste wurden für Brommethan (15 %) und Iodmethan (11 %) beobachtet. Diese Werte wurden jedoch als akzeptabel eingestuft.
Tabelle 5.9: Wiederfindung nach Verdünnung von Proben

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Ausgangs-Konzentration [mg/m³]</th>
<th>Soll-Konzentration¹ [mg/m³]</th>
<th>Ermittelte Konzentration² [mg/m³]</th>
<th>WF [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brommethan</td>
<td>4,11</td>
<td>0,41</td>
<td>0,35</td>
<td>85</td>
</tr>
<tr>
<td>Dichlormethan</td>
<td>3,67</td>
<td>0,37</td>
<td>0,34</td>
<td>92</td>
</tr>
<tr>
<td>1,2-Dichlorethan</td>
<td>4,27</td>
<td>0,43</td>
<td>0,41</td>
<td>95</td>
</tr>
<tr>
<td>Benzol</td>
<td>3,38</td>
<td>0,34</td>
<td>0,32</td>
<td>94</td>
</tr>
<tr>
<td>Tetrachlormethan</td>
<td>6,39</td>
<td>0,64</td>
<td>0,62</td>
<td>97</td>
</tr>
<tr>
<td>1,2-Dichlorpropan</td>
<td>4,89</td>
<td>0,49</td>
<td>0,46</td>
<td>94</td>
</tr>
<tr>
<td>Toluol</td>
<td>3,95</td>
<td>0,40</td>
<td>0,39</td>
<td>98</td>
</tr>
<tr>
<td>Ethylbenzol</td>
<td>4,63</td>
<td>0,46</td>
<td>0,45</td>
<td>98</td>
</tr>
<tr>
<td>Phosphorwasserstoff</td>
<td>70,5</td>
<td>0,14</td>
<td>0,13</td>
<td>93</td>
</tr>
<tr>
<td>Schwefelkohlenstoff</td>
<td>2,51</td>
<td>0,25</td>
<td>0,25</td>
<td>100</td>
</tr>
<tr>
<td>Iodomethan</td>
<td>4,51</td>
<td>0,45</td>
<td>0,40</td>
<td>89</td>
</tr>
<tr>
<td>Trichlornitromethan</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

¹Für die Verdünnung berechnete Konzentration; ²Gemittelte Messergebnisse von drei Verdünnungen

5.5 Präzision

5.5.1 Messpräzision

Die Messpräzision wurde für zwei Konzentrationen des linearen Analysenbereiches ermittelt, indem für jede Zielsubstanz außer Phosphorwasserstoff und Trichlornitromethan eine Probe von etwa 0,04-0,05 mg/m³ und etwa 3,5-8 mg/m³ und für Phosphorwasserstoff von etwa 0,06 bzw. etwa 0,4 mg/m³ sowie für Trichlornitromethan von etwa 0,5 und 8 mg/m³ je dreimal gemessen wurde und die prozentuale Standardabweichung der Messwerte berechnet wurde, die in Tabelle 5.10 für die einzelnen Substanzen aufgeführt ist.

Tabelle 5.10: Messpräzision von je zwei verschiedenen Konzentrationen der Zielsubstanzen.

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Messung 1 [mg/m³]</th>
<th>Messung 2 [mg/m³]</th>
<th>Messung 3 [mg/m³]</th>
<th>Standardabweichung [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphorwasserstoff</td>
<td>0,064</td>
<td>0,064</td>
<td>0,061</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>0,38</td>
<td>0,40</td>
<td>0,37</td>
<td>4</td>
</tr>
<tr>
<td>Dichlormethan</td>
<td>0,042</td>
<td>0,046</td>
<td>0,042</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>3,64</td>
<td>3,57</td>
<td>3,55</td>
<td>1</td>
</tr>
<tr>
<td>Brommethyl</td>
<td>0,051</td>
<td>0,047</td>
<td>0,047</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>4,25</td>
<td>4,24</td>
<td>4,00</td>
<td>3</td>
</tr>
<tr>
<td>Schwefelkohlenstoff</td>
<td>0,044</td>
<td>0,044</td>
<td>0,041</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3,33</td>
<td>3,22</td>
<td>3,25</td>
<td>2</td>
</tr>
<tr>
<td>1,2-Dichlorethan</td>
<td>0,049</td>
<td>0,049</td>
<td>0,049</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4,43</td>
<td>4,32</td>
<td>4,37</td>
<td>1</td>
</tr>
<tr>
<td>1,2-Dichlorpropan</td>
<td>0,056</td>
<td>0,056</td>
<td>0,056</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4,97</td>
<td>4,88</td>
<td>4,91</td>
<td>1</td>
</tr>
<tr>
<td>Toluol</td>
<td>0,054</td>
<td>0,054</td>
<td>0,054</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4,23</td>
<td>4,32</td>
<td>4,30</td>
<td>1</td>
</tr>
<tr>
<td>Benzol</td>
<td>0,42</td>
<td>0,042</td>
<td>0,039</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3,47</td>
<td>3,44</td>
<td>3,41</td>
<td>1</td>
</tr>
<tr>
<td>Ethylbenzol</td>
<td>0,057</td>
<td>0,062</td>
<td>0,062</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>5,11</td>
<td>5,60</td>
<td>5,80</td>
<td>6</td>
</tr>
<tr>
<td>Trichlornitromethan</td>
<td>0,46</td>
<td>0,51</td>
<td>0,49</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>7,77</td>
<td>8,14</td>
<td>8,26</td>
<td>3</td>
</tr>
<tr>
<td>Tetrachlormethan</td>
<td>0,077</td>
<td>0,077</td>
<td>0,070</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6,78</td>
<td>6,53</td>
<td>6,63</td>
<td>2</td>
</tr>
<tr>
<td>Iodmethan</td>
<td>0,041</td>
<td>0,047</td>
<td>0,041</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>6,15</td>
<td>6,17</td>
<td>5,92</td>
<td>2</td>
</tr>
</tbody>
</table>
5.5.2 Methodenpräzision

Die Wiederholgenauigkeit des Verdünnungsschrittes wurde als Teil der Methodenpräzision ermittelt. Dazu wurde die Verdünnung, wie in Abschnitt 5.4.3 beschrieben, durchgeführt. Die Ergebnisse der drei verdünnten Proben und die resultierende prozentuale Standardabweichung sind in Tabelle 5.11 wiedergegeben.

Tabelle 5.11: Präzision der Verdünnung von höher konzentrierten Proben

<table>
<thead>
<tr>
<th>Probe</th>
<th>1 [mg/m³]</th>
<th>2 [mg/m³]</th>
<th>3 [mg/m³]</th>
<th>Stdabw. [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brommethan</td>
<td>0,34</td>
<td>0,35</td>
<td>0,35</td>
<td>2</td>
</tr>
<tr>
<td>Dichlormethan</td>
<td>0,34</td>
<td>0,34</td>
<td>0,35</td>
<td>2</td>
</tr>
<tr>
<td>1,2-Dichlorethan</td>
<td>0,40</td>
<td>0,41</td>
<td>0,42</td>
<td>2</td>
</tr>
<tr>
<td>Benzol</td>
<td>0,31</td>
<td>0,32</td>
<td>0,32</td>
<td>2</td>
</tr>
<tr>
<td>Tetrachlormethan</td>
<td>0,61</td>
<td>0,62</td>
<td>0,63</td>
<td>2</td>
</tr>
<tr>
<td>1,2-Dichlorpropan</td>
<td>0,45</td>
<td>0,46</td>
<td>0,47</td>
<td>2</td>
</tr>
<tr>
<td>Toluol</td>
<td>0,37</td>
<td>0,39</td>
<td>0,39</td>
<td>3</td>
</tr>
<tr>
<td>Ethylbenzol</td>
<td>0,41</td>
<td>0,44</td>
<td>0,49</td>
<td>9</td>
</tr>
<tr>
<td>Phosphorwasserstoff</td>
<td>0,13</td>
<td>0,13</td>
<td>0,14</td>
<td>4</td>
</tr>
<tr>
<td>Schwefelkohlenstoff</td>
<td>0,25</td>
<td>0,24</td>
<td>0,25</td>
<td>2</td>
</tr>
<tr>
<td>Iodmethan</td>
<td>0,47</td>
<td>0,36</td>
<td>0,37</td>
<td>15</td>
</tr>
</tbody>
</table>

Stdabw. = Standardabweichung

Anhand der Standardabweichung der Messergebnisse, lässt sich eine gute Reproduzierbarkeit der Verdünnung für alle Substanzen außer Ethylbenzol und Iodmethan erkennen. Die Standardabweichungen liegen zwischen 2 und 4 % und liegen damit im Bereich der Messpräzision. Lediglich Ethylbenzol (9 %) und Iodmethan (15 %) weisen etwas höhere Standardabweichungen auf.

5.6 Zusätzliche Validierung nach Abwandlung der Methode

In Abschnitt 4.2.5 wurde die Modifizierung der Methode für die Messung der randomisierten Containerluftproben beschrieben. Um zu gewährleisten, dass auch nach den entsprechenden Änderungen eine gute Qualität der Messungen gegeben ist, wurden zusätzliche Validierungsexperimente durchgeführt, deren Ergebnisse hier dargestellt werden.

In Tabelle 5.12 sind die Nachweisgrenzen aufgeführt, die gemäß den Gleichungen für die modifizierte Methode 5.1 und 5.2 bestimmt wurden. Die Nachweisgrenzen lagen zwischen 0,001 und 0,020 mg/m³ und die Bestimmungsgrenzen zwischen 0,006 und 0,057 mg/m³. Damit wird auch die Empfindlichkeit der modifizierten
Methodenvalidierung

Die Methode den Anforderungen der Arbeit gerecht. Die meisten Nachweis- und Bestimmungsgrenzen weichen nur wenig von denen der ursprünglichen Methode ab (vergleiche Tabelle 5.1). Für einige Substanzen sind die Nachweis- und Bestimmungsgrenzen sogar niedriger als zuvor, obwohl durch den höheren Split-Fluss bei der Probenaufgabe weniger Substanz zum Detektor gelangt. Durch den höheren Split-Fluss werden allerdings auch schmalere und damit höhere Peaks begünstigt, da die Desorption von der Kühlfalle und der Transfer auf die gaschromatographische Säule schneller sind und damit die Banden von Beginn der Trennung an schmaler sind. Da die Nachweisgrenzen weniger durch die Peakfläche sondern viel mehr durch die Peakhöhe limitiert sind, kann sich die geringere Substanzmenge durch die beschriebenen Faktoren teilweise ausgleichen. Darüber hinaus ist im Rahmen der Routinewartung auch eine neue Kühlfalle eingesetzt worden. Diese war zwar baugleich mit der vorigen, jedoch ist nicht auszuschließen, dass Schwankungen bei der Produktion der Kühlfalle sich auf deren Effizienz auswirken. Einzig für Schwefelkohlenstoff sind mit 0,013 und 0,035 mg/m³ die Nachweis- und die Bestimmungsgrenze signifikant höher als zuvor.

Tabelle 5.12: Nachweis- und Bestimmungsgrenzen mit der gemäß Abschnitt 4.2.5 modifizierten Methode

<table>
<thead>
<tr>
<th>Zielsubstanz</th>
<th>Nachweisgrenze [mg/m³]</th>
<th>Bestimmungsgrenze [mg/m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphorwasserstoff</td>
<td>0,001</td>
<td>0,006</td>
</tr>
<tr>
<td>Dichlormethan</td>
<td>0,004</td>
<td>0,011</td>
</tr>
<tr>
<td>Brommethan</td>
<td>0,004</td>
<td>0,008</td>
</tr>
<tr>
<td>Schwefelkohlenstoff</td>
<td>0,013</td>
<td>0,035</td>
</tr>
<tr>
<td>1,2-Dichlorethan</td>
<td>0,004</td>
<td>0,012</td>
</tr>
<tr>
<td>1,2-Dichlorpropan</td>
<td>0,009</td>
<td>0,033</td>
</tr>
<tr>
<td>Toluol</td>
<td>0,008</td>
<td>0,015</td>
</tr>
<tr>
<td>Benzol</td>
<td>0,003</td>
<td>0,013</td>
</tr>
<tr>
<td>Ethylbenzol</td>
<td>0,018</td>
<td>0,057</td>
</tr>
<tr>
<td>Trichlornitromethan</td>
<td>0,020</td>
<td>0,055</td>
</tr>
<tr>
<td>Tetrachlormethan</td>
<td>0,006</td>
<td>0,013</td>
</tr>
<tr>
<td>Iodomethan</td>
<td>0,012</td>
<td>0,024</td>
</tr>
</tbody>
</table>
Die Arbeitsbereiche bleiben für die meisten Substanzen dieselben. In Tabelle 5.13 sind die oberen und unteren Arbeitsbereichsgrenzen für die einzelnen Substanzen sowie die Korrelationskoeffizienten der Kalibriergeraden zusammengefasst. In der folgenden Abbildung 5.3 sind die Kalibriergeraden der modifizierten Methode für alle Zielsubstanzen grafisch dargestellt. Auch hier sind die Linearitäten mit Werten der Korrelationskoeffizienten von $R^2 = 0,999$ bis $0,992$ sehr gut und unterschieden sich kaum von denen der ursprünglichen Methode. Lediglich Ethylbenzol weist mit $R^2 = 0,985$, wie auch bei der ursprünglichen Methode, eine etwas schlechtere Linearität auf. Die leicht veränderten oberen Arbeitsbereichsgrenzen resultieren aus der Umstellung von der Verwendung flüssiger Standards auf Verwendung eines Standardgases für die Substanzen Dichlormethan, Brommethan, Schwefelkohlenstoff, 1,2-Dichlorethan, 1,2-Dichlorpropan und Tetrachlormethan, wodurch aufgrund veränderter Volumina der Standards auch andere Substanzen betroffen waren. Die genaue Durchführung der Herstellung der Standards wird im experimentellen Teil (Abschnitt 11.2) eingehend beschrieben.

Tabelle 5.13: Arbeitsbereiche für die 12 Zielsubstanzen

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Grenze u [mg/m³]</th>
<th>Grenze o [mg/m³]</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphorwasserstoff</td>
<td>0,006</td>
<td>0,49</td>
<td>0,999</td>
</tr>
<tr>
<td>Dichlormethan</td>
<td>0,011</td>
<td>3,53</td>
<td>0,999</td>
</tr>
<tr>
<td>Brommethan</td>
<td>0,008</td>
<td>4,01</td>
<td>0,999</td>
</tr>
<tr>
<td>Schwefelkohlenstoff</td>
<td>0,035</td>
<td>3,02</td>
<td>0,999</td>
</tr>
<tr>
<td>1,2-Dichlorethan</td>
<td>0,012</td>
<td>4,25</td>
<td>0,999</td>
</tr>
<tr>
<td>1,2-Dichlorpropan</td>
<td>0,033</td>
<td>4,95</td>
<td>0,998</td>
</tr>
<tr>
<td>Toluol</td>
<td>0,015</td>
<td>3,84</td>
<td>0,992</td>
</tr>
<tr>
<td>Benzol</td>
<td>0,013</td>
<td>3,27</td>
<td>0,995</td>
</tr>
<tr>
<td>Ethylbenzol</td>
<td>0,057</td>
<td>4,43</td>
<td>0,985</td>
</tr>
<tr>
<td>Trichlornitromethan</td>
<td>0,055</td>
<td>6,82</td>
<td>0,998</td>
</tr>
<tr>
<td>Tetrachlormethan</td>
<td>0,013</td>
<td>6,33</td>
<td>0,999</td>
</tr>
<tr>
<td>Iodmethan</td>
<td>0,024</td>
<td>5,97</td>
<td>0,999</td>
</tr>
</tbody>
</table>

Grenze u = untere Arbeitsbereichsgrenze; Grenze o = obere Arbeitsbereichsgrenze; R^2 = Korrelationskoeffizient
Abbildung 5.3: Kalibriergeraden der modifizierten Methode für die Messung randomisierter Containerluftproben
Die Wiederfindung wurde, wie in Abschnitt 5.4 beschrieben, ermittelt und die Ergebnisse wurden in Tabelle 5.14 zusammengefasst. Hier zeigen sich ebenfalls ähnliche Werte wie bei der ursprünglichen Methode. Für einige Substanzen ist die Wiederfindung etwas besser als zuvor. Dies trifft vor allem für Brommethan in der niedrigeren Konzentration (jetzt 95, zuvor 87 %) und für Toluol und Ethylbenzol in der höheren Konzentration zu (zuvor 113 % für Toluol und 138 % für Ethylbenzol, jetzt 104 und 102 %). Die Wiederfindung von Ethylbenzol in der niedrigeren Konzentration ist etwas schlechter als vorher (89 statt 97 %).

Tabelle 5.14: Wiederfindung der modifizierten Methode für die Messung randomisierter Proben

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Prüfgas [mg/m³]</th>
<th>Wiederfindung [%]</th>
<th>Prüfgas [mg/m³]</th>
<th>Wiederfindung [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphorwasserstoff</td>
<td>0.070</td>
<td>102</td>
<td>0.41</td>
<td>108</td>
</tr>
<tr>
<td>Dichlormethan</td>
<td>0.39</td>
<td>91</td>
<td>3.67</td>
<td>93</td>
</tr>
<tr>
<td>Brommethan</td>
<td>0.47</td>
<td>95</td>
<td>4.11</td>
<td>98</td>
</tr>
<tr>
<td>Schwefelkohlenstoff</td>
<td>0.32</td>
<td>81</td>
<td>3.15</td>
<td>90</td>
</tr>
<tr>
<td>1,2-Dichlorethan</td>
<td>0.45</td>
<td>95</td>
<td>4.27</td>
<td>98</td>
</tr>
<tr>
<td>1,2-Dichlorpropan</td>
<td>0.52</td>
<td>95</td>
<td>4.89</td>
<td>96</td>
</tr>
<tr>
<td>Toluol</td>
<td>0.42</td>
<td>97</td>
<td>3.95</td>
<td>104</td>
</tr>
<tr>
<td>Benzol</td>
<td>0.36</td>
<td>92</td>
<td>3.38</td>
<td>94</td>
</tr>
<tr>
<td>Ethylbenzol</td>
<td>0.49</td>
<td>89</td>
<td>4.63</td>
<td>102</td>
</tr>
<tr>
<td>Trichlornitromethan</td>
<td>.1</td>
<td>.1</td>
<td>.1</td>
<td>.1</td>
</tr>
<tr>
<td>Tetrachlormethan</td>
<td>0.70</td>
<td>95</td>
<td>6.39</td>
<td>97</td>
</tr>
<tr>
<td>Iodmethan</td>
<td>0.60</td>
<td>81</td>
<td>5.97</td>
<td>105</td>
</tr>
</tbody>
</table>

\(^{1}\text{kein Prüfgas verfügbar}\)

Die Messpräzision wurde, wie in Abschnitt 5.5.1 beschrieben, ermittelt und die Ergebnisse sind in Tabelle 5.15 zusammengefasst. Hier zeigen sich im Vergleich zu den übrigen Validierungsparametern, die für die modifizierte Methode bestimmt wurden, etwas mehr abweichende Werte. Die Standardabweichung der Messungen ist am unteren Arbeitsbereichsende für vier Substanzen (Schwefelkohlenstoff, 1,2-Dichlorethan, 1,2-Dichlorpropan, Toluol und Benzol) deutlich höher, als bei der ursprünglichen Methode. Die Differenz beträgt zwischen 5 und 13 % zur ursprünglichen Methode (siehe Tabelle 5.10). Hier zeigt sich, dass durch die, durch den höheren Split-Fluss bedingten, geringeren Substanzmengen bei kleineren Schwankungen höhere prozentuale Abweichungen entstehen können. Die Standardabweichungen liegen aber mit Werten von 4 bis 15 % an der unteren Messbereichsgrenze noch in einem akzeptablen Rahmen und sind mit Werten von
0 bis 5 % an der oberen Messbereichsgrenze sogar für einige Substanzen geringfügig besser als bei der ursprünglichen Methode.

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Messung 1 [mg/m³]</th>
<th>Messung 2 [mg/m³]</th>
<th>Messung 3 [mg/m³]</th>
<th>Standardabweichung [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphorwasserstoff</td>
<td>0,014</td>
<td>0,013</td>
<td>0,013</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>0,42</td>
<td>0,43</td>
<td>0,42</td>
<td>1</td>
</tr>
<tr>
<td>Dichlormethan</td>
<td>0,039</td>
<td>0,035</td>
<td>0,035</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>3,25</td>
<td>3,28</td>
<td>3,20</td>
<td>1</td>
</tr>
<tr>
<td>Brommethan</td>
<td>0,047</td>
<td>0,047</td>
<td>0,043</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>3,95</td>
<td>3,93</td>
<td>3,93</td>
<td>0</td>
</tr>
<tr>
<td>Schwefelkohlenstoff</td>
<td>0,035</td>
<td>0,032</td>
<td>0,029</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2,79</td>
<td>2,82</td>
<td>2,76</td>
<td>1</td>
</tr>
<tr>
<td>1,2-Dichlorethan</td>
<td>0,045</td>
<td>0,049</td>
<td>0,041</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>4,10</td>
<td>4,19</td>
<td>4,05</td>
<td>2</td>
</tr>
<tr>
<td>1,2-Dichlorpropan</td>
<td>0,052</td>
<td>0,056</td>
<td>0,047</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>4,69</td>
<td>4,79</td>
<td>4,63</td>
<td>2</td>
</tr>
<tr>
<td>Toluol</td>
<td>0,054</td>
<td>0,050</td>
<td>0,042</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>4,01</td>
<td>4,12</td>
<td>4,02</td>
<td>2</td>
</tr>
<tr>
<td>Benzol</td>
<td>0,039</td>
<td>0,033</td>
<td>0,029</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>3,38</td>
<td>3,37</td>
<td>3,29</td>
<td>1</td>
</tr>
<tr>
<td>Ethylbenzol</td>
<td>0,049</td>
<td>0,049</td>
<td>0,044</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>4,60</td>
<td>4,90</td>
<td>5,09</td>
<td>5</td>
</tr>
<tr>
<td>Trichlornitromethan</td>
<td>0,055</td>
<td>0,061</td>
<td>0,055</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>6,97</td>
<td>7,10</td>
<td>7,10</td>
<td>1</td>
</tr>
<tr>
<td>Tetrachlormethan</td>
<td>0,070</td>
<td>0,070</td>
<td>0,064</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6,38</td>
<td>6,39</td>
<td>6,17</td>
<td>2</td>
</tr>
<tr>
<td>Iodomethan</td>
<td>0,065</td>
<td>0,059</td>
<td>0,053</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>5,74</td>
<td>5,83</td>
<td>5,66</td>
<td>1</td>
</tr>
</tbody>
</table>

Insgesamt ergab auch die Validierung der modifizierten Methode eine gute Qualität der Messungen und konnte die Gültigkeit der Methode für den Einsatz bei der Messung von Containerluftproben belegen.
6 Containerluftproben

Mit der im Rahmen dieser Arbeit etablierten und validierten Methode wurden verschiedene Containerluftproben untersucht. Zum einen wurden selektive und zum anderen zufällig ausgewählte, also randomisierte Proben untersucht.

6.1 Probenahmeverfahren

6.2 Messung der Proben

6.3 Bewertungskriterien bei der späteren Betrachtung der Ergebnisse

Tabelle 6.1: Zur Bewertung der Ergebnisse herangezogene Grenz- und Richtwerte

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Grenz-/Richtwert [mg/m³]</th>
<th>Quelle Grenz-/Richtwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brommethan</td>
<td>1,98</td>
<td>TRGS 512</td>
</tr>
<tr>
<td>Iodomethan</td>
<td>1,77</td>
<td>AfA</td>
</tr>
<tr>
<td>Dichlormethan</td>
<td>260</td>
<td>TRGS 900</td>
</tr>
<tr>
<td>Schwefelkohlenstoff</td>
<td>30</td>
<td>TRGS 900</td>
</tr>
<tr>
<td>1,2-Dichlorethan</td>
<td>0,082</td>
<td>AfA</td>
</tr>
<tr>
<td>Benzol</td>
<td>0,325</td>
<td>AfA</td>
</tr>
<tr>
<td>Tetrachlormethan</td>
<td>3,2</td>
<td>TRGS 900</td>
</tr>
<tr>
<td>1,2-Dichlorpropan</td>
<td>352</td>
<td>AfA</td>
</tr>
<tr>
<td>Toluol</td>
<td>190</td>
<td>TRGS 900</td>
</tr>
<tr>
<td>Trichlornitromethan</td>
<td>0,68</td>
<td>TRGS 900</td>
</tr>
<tr>
<td>Ethylbenzol</td>
<td>440</td>
<td>TRGS 900</td>
</tr>
<tr>
<td>Phosphorwasserstoff</td>
<td>0,014</td>
<td>TRGS 512</td>
</tr>
</tbody>
</table>

Quellen: TRGS 512 Begasungen[14], AfA = Richtwerte für karzinogene Stoffe in Frachtcontainerluft des Amt für Arbeitsschutz[80, 81], TRGS 900 Arbeitsplatzgrenzwerte[82].

80
6.4 Selektive Containerluftproben

6.4.1 Probenbeschaffung

6.4.2 Selektion der Container

6.4.3 Ergebnisse

Tabelle 6.2: Ergebnisse der selektiven Containerluftproben in mg/m³

<table>
<thead>
<tr>
<th>Nr</th>
<th>W</th>
<th>B</th>
<th>C</th>
<th>E</th>
<th>F</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
</tr>
</tbody>
</table>

Nr = Probenummer, PH₃ = Phosphorwasserstoff, EB = Ethylbenzol, TCNM = Trichlornitromethan, Tol = Toluol, DCP = 1,2-Dichlorpropan, CCl₄ = Tetrachlormethan, Benz = Benzol, DCE = 1,2-Dichlorethan, CS₂ = Schwefelkohlenstoff, DCM = Dichlormethan, IMe = Iodmethan, BrMe = Brommethan, W = Warenguppe, B = Baumaterial, C = Chemieprodukte, E = Elektroartikel, F = Fahrzeuge/Teile, L = Lebensmittel, M = Möbel, NG = Nachweigrenze, BG = Bestimmungsgrenze
<table>
<thead>
<tr>
<th>Nr</th>
<th>PH3</th>
<th>EB</th>
<th>Tol</th>
<th>DCP</th>
<th>Benz</th>
<th>CCl4</th>
<th>CS2</th>
<th>DCE</th>
<th>DCM</th>
<th>IMe</th>
<th>BrMe</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td><NG</td>
<td>16,8</td>
<td><NG</td>
<td>7,72</td>
<td><NG</td>
<td>0,088</td>
<td><NG</td>
<td>0,053</td>
<td>2,26</td>
<td><NG</td>
<td>0,084</td>
<td><NG</td>
</tr>
<tr>
<td>29</td>
<td><NG</td>
<td>7,72</td>
<td>3,34</td>
<td>0,50</td>
<td><NG</td>
<td>0,072</td>
<td><NG</td>
<td>0,016</td>
<td>2,69</td>
<td><NG</td>
<td>0,041</td>
<td>0,23</td>
</tr>
<tr>
<td>30</td>
<td><NG</td>
<td>3,34</td>
<td>0,69</td>
<td><NG</td>
<td>0,016</td>
<td><NG</td>
<td>0,012</td>
<td><NG</td>
<td>0,004</td>
<td>0,041</td>
<td><NG</td>
<td>0,041</td>
</tr>
<tr>
<td>31</td>
<td><NG</td>
<td>0,69</td>
<td>0,18</td>
<td><NG</td>
<td>0,11</td>
<td><NG</td>
<td>0,15</td>
<td><NG</td>
<td>0,054</td>
<td><NG</td>
<td>0,024</td>
<td><NG</td>
</tr>
<tr>
<td>32</td>
<td><NG</td>
<td>0,18</td>
<td>0,11</td>
<td><NG</td>
<td>0,078</td>
<td><NG</td>
<td>0,17</td>
<td><NG</td>
<td>0,008</td>
<td><NG</td>
<td>0,019</td>
<td><BG</td>
</tr>
<tr>
<td>33</td>
<td><NG</td>
<td>0,11</td>
<td>0,17</td>
<td><NG</td>
<td>0,037</td>
<td><NG</td>
<td>0,19</td>
<td><NG</td>
<td>0,029</td>
<td><NG</td>
<td>0,046</td>
<td><NG</td>
</tr>
<tr>
<td>34</td>
<td><NG</td>
<td>0,17</td>
<td>0,19</td>
<td><NG</td>
<td>0,014</td>
<td><NG</td>
<td>0,019</td>
<td><NG</td>
<td>0,054</td>
<td><NG</td>
<td>0,046</td>
<td><NG</td>
</tr>
<tr>
<td>35</td>
<td><NG</td>
<td>0,19</td>
<td>0,19</td>
<td><NG</td>
<td>0,021</td>
<td><NG</td>
<td>0,022</td>
<td><NG</td>
<td>0,024</td>
<td><NG</td>
<td>0,002</td>
<td><NG</td>
</tr>
<tr>
<td>36</td>
<td><NG</td>
<td>0,19</td>
<td>0,021</td>
<td><NG</td>
<td>0,024</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
</tr>
<tr>
<td>37</td>
<td><NG</td>
<td>0,021</td>
<td>0,032</td>
<td><NG</td>
<td>0,024</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
</tr>
<tr>
<td>38</td>
<td><NG</td>
<td>0,024</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
</tr>
<tr>
<td>39</td>
<td><NG</td>
<td>0,032</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
</tr>
<tr>
<td>40</td>
<td><NG</td>
<td>0,032</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
</tr>
<tr>
<td>41</td>
<td><NG</td>
<td>0,032</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
</tr>
<tr>
<td>42</td>
<td><NG</td>
<td>0,032</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
</tr>
<tr>
<td>43</td>
<td><NG</td>
<td>0,032</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
</tr>
<tr>
<td>44</td>
<td><NG</td>
<td>0,032</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
</tr>
<tr>
<td>45</td>
<td><NG</td>
<td>0,032</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
</tr>
<tr>
<td>46</td>
<td><NG</td>
<td>0,032</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
</tr>
<tr>
<td>47</td>
<td><NG</td>
<td>0,032</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
</tr>
<tr>
<td>48</td>
<td><NG</td>
<td>0,032</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
</tr>
<tr>
<td>49</td>
<td><NG</td>
<td>0,032</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
</tr>
<tr>
<td>50</td>
<td><NG</td>
<td>0,032</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
</tr>
<tr>
<td>51</td>
<td><NG</td>
<td>0,032</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
</tr>
<tr>
<td>52</td>
<td><NG</td>
<td>0,032</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
</tr>
<tr>
<td>53</td>
<td><NG</td>
<td>0,032</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
<td>0,032</td>
<td><NG</td>
</tr>
</tbody>
</table>

Nr = Probenummer, PH3 = Phosphorwasserstoff, EB = Ethylbenzol, TCNM = Trichlormethan, Tol = Toluol, DCP = 1,2-Dichlorpropan, CCl4 = Tetrachlormethan, Benz = Benzol, DCE = 1,2-Dichlorethan, CS2 = Schwefelkohlenstoff, DCM = Dichlormethan, IMe= Iodmethan, BrMe = Brommethan, W = Warengruppe, M = Möbel, N = Naturprodukte, Sch = Schuhe, T = Textilien, NG = Nachweisgrenze, BG = Bestimmungsgrenze
6.5 Randomisierte Containerluftproben

6.5.1 Probenbeschaffung

6.5.2 Beschreibung der Randomisierung

6.5.3 Ergebnisse

<table>
<thead>
<tr>
<th>Nr.</th>
<th>PH3</th>
<th>EB</th>
<th>TCNM</th>
<th>Tol</th>
<th>DCP</th>
<th>CC14</th>
<th>Benz</th>
<th>DCE</th>
<th>CS2</th>
<th>DCM</th>
<th>IMe</th>
<th>BrMe</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><NG</td>
<td><BG</td>
<td><NG</td>
<td>1,34</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td>0,021</td>
<td><NG</td>
<td>0,008</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td><NG</td>
<td><BG</td>
<td><NG</td>
<td>0,084</td>
<td>0,019</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td>0,025</td>
<td><NG</td>
<td>0,008</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td><NG</td>
<td><BG</td>
<td><NG</td>
<td>0,027</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td><NG</td>
<td><BG</td>
<td><NG</td>
<td>0,046</td>
<td><BG</td>
<td><NG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td><NG</td>
<td><BG</td>
<td><NG</td>
<td>0,034</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><NG</td>
<td><NG</td>
<td>A</td>
</tr>
<tr>
<td>6</td>
<td><NG</td>
<td><BG</td>
<td><NG</td>
<td>0,057</td>
<td><BG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td>A</td>
</tr>
<tr>
<td>7</td>
<td><NG</td>
<td>0,066</td>
<td><NG</td>
<td>0,084</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td>A</td>
</tr>
<tr>
<td>8</td>
<td><NG</td>
<td>5,12</td>
<td><NG</td>
<td>0,96</td>
<td><BG</td>
<td><BG</td>
<td>0,16</td>
<td>0,29</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td>A</td>
</tr>
<tr>
<td>9</td>
<td><NG</td>
<td><BG</td>
<td><NG</td>
<td>0,080</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><NG</td>
<td>0,008</td>
<td>A</td>
</tr>
<tr>
<td>10</td>
<td><NG</td>
<td><BG</td>
<td><NG</td>
<td>0,042</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td>A</td>
</tr>
<tr>
<td>11</td>
<td><NG</td>
<td>0,12</td>
<td><NG</td>
<td>0,42</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td>A</td>
</tr>
<tr>
<td>12</td>
<td><BG</td>
<td>0,075</td>
<td><NG</td>
<td>0,12</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td>A</td>
</tr>
<tr>
<td>13</td>
<td><NG</td>
<td><BG</td>
<td><NG</td>
<td>0,12</td>
<td><NG</td>
<td><BG</td>
<td>0,062</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td>A</td>
</tr>
<tr>
<td>14</td>
<td><NG</td>
<td><BG</td>
<td><NG</td>
<td>0,042</td>
<td><NG</td>
<td><NG</td>
<td>0,026</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td>A</td>
</tr>
<tr>
<td>15</td>
<td><NG</td>
<td><BG</td>
<td><NG</td>
<td>0,034</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td>A</td>
</tr>
<tr>
<td>16</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><NG</td>
<td>0,079</td>
<td>B</td>
</tr>
<tr>
<td>17</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td>1,34</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td>B</td>
</tr>
<tr>
<td>18</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td>1,16</td>
<td><BG</td>
<td><BG</td>
<td>0,086</td>
<td>0,073</td>
<td><BG</td>
<td><NG</td>
<td><BG</td>
<td><BG</td>
<td>B</td>
</tr>
<tr>
<td>19</td>
<td><BG</td>
<td><NG</td>
<td><NG</td>
<td>0,84</td>
<td><BG</td>
<td><BG</td>
<td>0,058</td>
<td>0,048</td>
<td><BG</td>
<td><NG</td>
<td><BG</td>
<td><BG</td>
<td>B</td>
</tr>
<tr>
<td>20</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td>0,65</td>
<td><BG</td>
<td><BG</td>
<td>0,049</td>
<td>0,048</td>
<td><BG</td>
<td><NG</td>
<td><BG</td>
<td><BG</td>
<td>B</td>
</tr>
<tr>
<td>21</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td>2,30</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td>B</td>
</tr>
<tr>
<td>22</td>
<td><NG</td>
<td><BG</td>
<td><NG</td>
<td>0,050</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td>B</td>
</tr>
<tr>
<td>23</td>
<td><NG</td>
<td><BG</td>
<td><NG</td>
<td>0,98</td>
<td><BG</td>
<td><BG</td>
<td>0,016</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td>C</td>
</tr>
<tr>
<td>24</td>
<td><NG</td>
<td>0,11</td>
<td><NG</td>
<td>0,59</td>
<td><NG</td>
<td><BG</td>
<td>0,026</td>
<td>0,033</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td>C</td>
</tr>
<tr>
<td>25</td>
<td><NG</td>
<td>0,25</td>
<td><NG</td>
<td>0,31</td>
<td><NG</td>
<td><BG</td>
<td>0,036</td>
<td>0,058</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td>C</td>
</tr>
<tr>
<td>26</td>
<td><NG</td>
<td><BG</td>
<td><NG</td>
<td>0,12</td>
<td><NG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td>C</td>
</tr>
<tr>
<td>27</td>
<td><NG</td>
<td><BG</td>
<td><NG</td>
<td>0,10</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td>C</td>
</tr>
<tr>
<td>28</td>
<td><NG</td>
<td>0,19</td>
<td><NG</td>
<td>0,080</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td>C</td>
</tr>
<tr>
<td>29</td>
<td><NG</td>
<td><BG</td>
<td><NG</td>
<td>0,084</td>
<td><BG</td>
<td><BG</td>
<td>0,013</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td>0,042</td>
<td><NG</td>
<td><BG</td>
</tr>
<tr>
<td>30</td>
<td><BG</td>
<td><BG</td>
<td><NG</td>
<td>0,092</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><BG</td>
<td>C</td>
</tr>
</tbody>
</table>

Nachweisgrenze, BG = Bestimmungsgrenze, W = Warengruppe, A = Andere, B = Baumaterial, C = Chemieprodukte, NG = Nichtgemessen, PH3 = Phosphorwasserstoff, EB = Ethylenazin, TCNM = Trichlormethan, Tol = Toluol, DCP = 1,2-Dichlorethan, CS2 = Schwefeldioxid, CC14 = Tetrachlorkohlenstoff, DCM = Dichlormethan, IMe = Isopropylalkohol
Fortsetzung Tabelle 6.3: Ergebnisse der randomisierten Containerluftproben in mg/m³

<table>
<thead>
<tr>
<th>Nr</th>
<th>PH3</th>
<th>EB</th>
<th>Tol</th>
<th>CCl4</th>
<th>DCE</th>
<th>DCP</th>
<th>CS2</th>
<th>BrMe</th>
<th>IMe</th>
<th>DCM</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td><NG</td>
<td><BG</td>
<td><BG</td>
<td>0,46</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
</tr>
<tr>
<td>32</td>
<td>2,18</td>
<td><NG</td>
<td>0,073</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><BG</td>
</tr>
<tr>
<td>33</td>
<td><NG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
</tr>
<tr>
<td>34</td>
<td><NG</td>
<td><BG</td>
<td><BG</td>
<td>0,12</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
</tr>
<tr>
<td>35</td>
<td>0,008</td>
<td><BG</td>
<td>0,53</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
</tr>
<tr>
<td>36</td>
<td><NG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
</tr>
<tr>
<td>37</td>
<td>0,46</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
</tr>
<tr>
<td>38</td>
<td><NG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
</tr>
<tr>
<td>39</td>
<td><NG</td>
<td><BG</td>
<td><BG</td>
<td>1,14</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
</tr>
<tr>
<td>40</td>
<td><NG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
</tr>
<tr>
<td>41</td>
<td>1,15</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
</tr>
<tr>
<td>42</td>
<td><NG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
</tr>
<tr>
<td>43</td>
<td><NG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
</tr>
<tr>
<td>44</td>
<td>0,085</td>
<td><BG</td>
<td>0,17</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
</tr>
<tr>
<td>45</td>
<td><NG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
</tr>
<tr>
<td>46</td>
<td><NG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
</tr>
<tr>
<td>47</td>
<td><NG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
</tr>
<tr>
<td>48</td>
<td><NG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
</tr>
<tr>
<td>49</td>
<td><NG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
</tr>
<tr>
<td>50</td>
<td><NG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
</tr>
<tr>
<td>51</td>
<td><NG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
</tr>
<tr>
<td>52</td>
<td><NG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
</tr>
<tr>
<td>53</td>
<td><NG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
</tr>
<tr>
<td>54</td>
<td>0,073</td>
<td><BG</td>
<td>0,21</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
</tr>
<tr>
<td>55</td>
<td><NG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
</tr>
<tr>
<td>56</td>
<td><NG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
</tr>
<tr>
<td>57</td>
<td>0,01</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
</tr>
<tr>
<td>58</td>
<td><NG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
</tr>
<tr>
<td>59</td>
<td><NG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
</tr>
<tr>
<td>60</td>
<td><NG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
</tr>
</tbody>
</table>

Nr = Probenummer, PH3 = Phosphorwasserstoff, EB = Ethylenbencol, TCNM = Trichlornitromethan, Tol = Toluol, DCP = 1,2-Dichloropropan, CCl4 = Tetrachlormethan, Benz = Benzol, DCE = 1,2-Dichlorethan, CS2 = Schwefelkohlenstoff, DCM = Dichlormethan, IMe= Iodmethan, BrMe = Brommethan, W = Warengruppe, C = Chemieprodukte, E = Elektroartikel, F = Fahrzeuge und Teile, L = Lebensmittel, NG = Nachweisgrenze, BG = Bestimmungsgrenze
Fortsetzung Tabelle 6.3: Ergebnisse der randomisierten Containerluftproben in mg/m³

<table>
<thead>
<tr>
<th>Nr</th>
<th>PH3</th>
<th>EB</th>
<th>Tol</th>
<th>ToI</th>
<th>TCNM</th>
<th>DCP</th>
<th>DCE</th>
<th>Benz</th>
<th>CS2</th>
<th>DCM</th>
<th>IMe</th>
<th>BrMe</th>
<th>W</th>
<th>DCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td><NG</td>
</tr>
<tr>
<td>62</td>
<td><NG</td>
</tr>
<tr>
<td>63</td>
<td><NG</td>
</tr>
<tr>
<td>64</td>
<td><NG</td>
</tr>
<tr>
<td>65</td>
<td><NG</td>
</tr>
<tr>
<td>66</td>
<td><NG</td>
</tr>
<tr>
<td>67</td>
<td><NG</td>
</tr>
<tr>
<td>68</td>
<td><NG</td>
</tr>
<tr>
<td>69</td>
<td><NG</td>
</tr>
<tr>
<td>70</td>
<td><NG</td>
</tr>
<tr>
<td>71</td>
<td><NG</td>
</tr>
<tr>
<td>72</td>
<td><NG</td>
</tr>
<tr>
<td>73</td>
<td><NG</td>
</tr>
<tr>
<td>74</td>
<td><NG</td>
</tr>
<tr>
<td>75</td>
<td><NG</td>
</tr>
<tr>
<td>76</td>
<td><NG</td>
</tr>
<tr>
<td>77</td>
<td><NG</td>
</tr>
<tr>
<td>78</td>
<td><NG</td>
</tr>
<tr>
<td>79</td>
<td><NG</td>
</tr>
<tr>
<td>80</td>
<td><NG</td>
</tr>
<tr>
<td>81</td>
<td><NG</td>
</tr>
<tr>
<td>82</td>
<td><NG</td>
</tr>
<tr>
<td>83</td>
<td><NG</td>
</tr>
<tr>
<td>84</td>
<td><NG</td>
</tr>
<tr>
<td>85</td>
<td><NG</td>
</tr>
<tr>
<td>86</td>
<td><NG</td>
</tr>
<tr>
<td>87</td>
<td><NG</td>
</tr>
<tr>
<td>88</td>
<td><NG</td>
</tr>
<tr>
<td>89</td>
<td><NG</td>
</tr>
<tr>
<td>90</td>
<td><NG</td>
</tr>
</tbody>
</table>

Nr = Probenummer, PH3 = Phosphorwasserstoff, EB = Ethylbenzol, TCNM = Trichlornitromethan, Tol = Toluol, DCP = 1,2-Dichlorpropan, CCl4 = Tetrachlormethan, Benz = Benzol, DCE = 1,2-Dichlorethen, CS2 = Schwefelkohlenstoff, DCM = Dichlormethan, Ime= Iodomethan, BrMe = Brommethan, W = Warengruppe, L = Lebensmittel, M = Möbel, NG = Nachweisgrenze, BG = Bestimmungsgrenze
<table>
<thead>
<tr>
<th>Nr.</th>
<th>PH3</th>
<th>EB</th>
<th>TCNM</th>
<th>Tol</th>
<th>DCP</th>
<th>CCl4</th>
<th>Benz</th>
<th>DCE</th>
<th>CS2</th>
<th>DCM</th>
<th>IMe</th>
<th>BrMe</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>91</td>
<td><NG</td>
<td><BG</td>
<td><NG</td>
<td>12,8</td>
<td><BG</td>
<td>0,36</td>
<td>0,29</td>
<td>0,48</td>
<td>0,14</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td>M</td>
</tr>
<tr>
<td>92</td>
<td><NG</td>
<td>0,23</td>
<td><NG</td>
<td>0,054</td>
<td><NG</td>
<td><NG</td>
<td>0,023</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td>M</td>
</tr>
<tr>
<td>93</td>
<td><NG</td>
<td>1,95</td>
<td><NG</td>
<td>1,36</td>
<td><BG</td>
<td>0,026</td>
<td><BG</td>
<td><BG</td>
<td>0,014</td>
<td><NG</td>
<td><NG</td>
<td><BG</td>
<td>M</td>
</tr>
<tr>
<td>94</td>
<td><NG</td>
<td><BG</td>
<td><NG</td>
<td>0,034</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><BG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td>M</td>
</tr>
<tr>
<td>95</td>
<td><NG</td>
<td><BG</td>
<td><NG</td>
<td>0,088</td>
<td><NG</td>
<td><NG</td>
<td><BG</td>
<td><NG</td>
<td>0,041</td>
<td><BG</td>
<td><NG</td>
<td>0,008</td>
<td>M</td>
</tr>
<tr>
<td>96</td>
<td><NG</td>
<td>0,079</td>
<td><NG</td>
<td>0,077</td>
<td><NG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td>M</td>
</tr>
<tr>
<td>97</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td>0,580</td>
<td><NG</td>
<td><NG</td>
<td>0,330</td>
<td>2,43</td>
<td><BG</td>
<td>27,5</td>
<td><NG</td>
<td><NG</td>
<td>M</td>
</tr>
<tr>
<td>98</td>
<td><NG</td>
<td>0,27</td>
<td><NG</td>
<td>0,10</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td>M</td>
</tr>
<tr>
<td>99</td>
<td><NG</td>
<td>0,15</td>
<td><NG</td>
<td>0,20</td>
<td><NG</td>
<td><BG</td>
<td><NG</td>
<td>0,060</td>
<td><BG</td>
<td><NG</td>
<td><NG</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td><NG</td>
<td>2,47</td>
<td><NG</td>
<td>23,8</td>
<td><BG</td>
<td><NG</td>
<td><NG</td>
<td>0,78</td>
<td><NG</td>
<td><NG</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td><BG</td>
<td>0,19</td>
<td><NG</td>
<td>2,87</td>
<td><BG</td>
<td><NG</td>
<td>0,18</td>
<td>0,078</td>
<td>0,038</td>
<td>0,014</td>
<td><NG</td>
<td><NG</td>
<td>M</td>
</tr>
<tr>
<td>102</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td>0,057</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td>N</td>
</tr>
<tr>
<td>103</td>
<td><NG</td>
<td><BG</td>
<td><NG</td>
<td>0,031</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td>N</td>
</tr>
<tr>
<td>104</td>
<td><NG</td>
<td>0,075</td>
<td><NG</td>
<td>0,046</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td>N</td>
</tr>
<tr>
<td>105</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td>0,019</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td>N</td>
</tr>
<tr>
<td>106</td>
<td><NG</td>
<td>0,54</td>
<td><NG</td>
<td>0,20</td>
<td><NG</td>
<td><BG</td>
<td>0,013</td>
<td>0,049</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td>0,054</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><BG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td>N</td>
</tr>
<tr>
<td>108</td>
<td><NG</td>
<td><BG</td>
<td><NG</td>
<td>0,15</td>
<td>0,014</td>
<td><BG</td>
<td>0,013</td>
<td>0,037</td>
<td><BG</td>
<td>0,018</td>
<td><NG</td>
<td>0,008</td>
<td>N</td>
</tr>
<tr>
<td>109</td>
<td><NG</td>
<td><BG</td>
<td><NG</td>
<td>0,042</td>
<td><BG</td>
<td>0,013</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td>N</td>
</tr>
<tr>
<td>110</td>
<td><NG</td>
<td><BG</td>
<td><NG</td>
<td>0,031</td>
<td><BG</td>
<td>0,013</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td>N</td>
</tr>
<tr>
<td>111</td>
<td><NG</td>
<td>0,10</td>
<td><NG</td>
<td>0,10</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><BG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td>N</td>
</tr>
<tr>
<td>112</td>
<td><NG</td>
<td><BG</td>
<td><NG</td>
<td>0,40</td>
<td>0,014</td>
<td><BG</td>
<td>0,033</td>
<td><BG</td>
<td>0,22</td>
<td><NG</td>
<td>0,099</td>
<td>SG</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td><NG</td>
<td><BG</td>
<td><NG</td>
<td>4,79</td>
<td><NG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><NG</td>
<td><NG</td>
<td>SG</td>
</tr>
<tr>
<td>114</td>
<td><NG</td>
<td>0,30</td>
<td><NG</td>
<td>0,31</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td>0,37</td>
<td><NG</td>
<td>0,008</td>
<td>SG</td>
</tr>
<tr>
<td>115</td>
<td><NG</td>
<td><BG</td>
<td><NG</td>
<td>0,31</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td>SG</td>
</tr>
<tr>
<td>116</td>
<td><NG</td>
<td>0,66</td>
<td><NG</td>
<td>5,90</td>
<td><NG</td>
<td>0,190</td>
<td>0,420</td>
<td>14,3</td>
<td><BG</td>
<td>2,72</td>
<td><NG</td>
<td><NG</td>
<td>SG</td>
</tr>
<tr>
<td>117</td>
<td><NG</td>
<td>0,64</td>
<td><NG</td>
<td>3,04</td>
<td>0,033</td>
<td>0,026</td>
<td>0,052</td>
<td>0,12</td>
<td><BG</td>
<td>0,021</td>
<td><NG</td>
<td><NG</td>
<td>SG</td>
</tr>
<tr>
<td>118</td>
<td><NG</td>
<td>0,42</td>
<td><NG</td>
<td>1,79</td>
<td><BG</td>
<td>0,30</td>
<td>0,053</td>
<td><BG</td>
<td>0,81</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td>SG</td>
</tr>
<tr>
<td>119</td>
<td><NG</td>
<td><BG</td>
<td><NG</td>
<td>0,073</td>
<td><NG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><BG</td>
<td><NG</td>
<td><NG</td>
<td>SG</td>
</tr>
<tr>
<td>120</td>
<td><NG</td>
<td><BG</td>
<td><NG</td>
<td>0,57</td>
<td><NG</td>
<td><BG</td>
<td><BG</td>
<td><NG</td>
<td>0,044</td>
<td>0,014</td>
<td><NG</td>
<td><NG</td>
<td>SG</td>
</tr>
</tbody>
</table>

Fortsetzung Tabelle 6.3: Ergebnisse der randomisierten Containerluftproben in mg/m³.
<table>
<thead>
<tr>
<th>Nr</th>
<th>PH3</th>
<th>BrMe</th>
<th>IMe</th>
<th>DCM</th>
<th>CS2</th>
<th>DCE</th>
<th>Benz</th>
<th>CCl4</th>
<th>DCP</th>
<th>Tol</th>
<th>TCNM</th>
<th>EB</th>
<th>Nr</th>
</tr>
</thead>
<tbody>
<tr>
<td>121</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td>1.31</td>
<td>5.78</td>
<td>3.33</td>
<td><BG</td>
<td>122</td>
</tr>
<tr>
<td>122</td>
<td><NG</td>
<td>9.12</td>
<td><BG</td>
<td>123</td>
</tr>
<tr>
<td>123</td>
<td><NG</td>
<td>0.33</td>
<td><NG</td>
<td>124</td>
</tr>
<tr>
<td>124</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td><NG</td>
<td>5.78</td>
<td>0.97</td>
<td><NG</td>
<td>125</td>
</tr>
<tr>
<td>125</td>
<td><NG</td>
<td>0.93</td>
<td><NG</td>
<td>126</td>
</tr>
<tr>
<td>126</td>
<td><NG</td>
<td>0.94</td>
<td><NG</td>
<td>127</td>
</tr>
<tr>
<td>127</td>
<td><NG</td>
<td>128</td>
</tr>
<tr>
<td>128</td>
<td><NG</td>
<td>129</td>
</tr>
<tr>
<td>129</td>
<td><NG</td>
<td>130</td>
</tr>
<tr>
<td>130</td>
<td><NG</td>
<td>131</td>
</tr>
<tr>
<td>131</td>
<td><NG</td>
<td>132</td>
</tr>
<tr>
<td>132</td>
<td><NG</td>
<td>133</td>
</tr>
<tr>
<td>133</td>
<td><NG</td>
<td>134</td>
</tr>
<tr>
<td>134</td>
<td><NG</td>
<td>135</td>
</tr>
<tr>
<td>135</td>
<td><NG</td>
<td>136</td>
</tr>
<tr>
<td>136</td>
<td><NG</td>
<td>137</td>
</tr>
<tr>
<td>137</td>
<td><NG</td>
<td>138</td>
</tr>
<tr>
<td>138</td>
<td><NG</td>
<td>139</td>
</tr>
<tr>
<td>139</td>
<td><NG</td>
<td>140</td>
</tr>
<tr>
<td>140</td>
<td><NG</td>
<td>141</td>
</tr>
<tr>
<td>141</td>
<td><NG</td>
<td>142</td>
</tr>
<tr>
<td>142</td>
<td><NG</td>
<td>143</td>
</tr>
<tr>
<td>143</td>
<td><NG</td>
<td>144</td>
</tr>
<tr>
<td>144</td>
<td><NG</td>
<td>145</td>
</tr>
<tr>
<td>145</td>
<td><NG</td>
<td>146</td>
</tr>
<tr>
<td>146</td>
<td><NG</td>
<td>147</td>
</tr>
<tr>
<td>147</td>
<td><NG</td>
<td>148</td>
</tr>
<tr>
<td>148</td>
<td><NG</td>
<td>149</td>
</tr>
<tr>
<td>149</td>
<td><NG</td>
<td>150</td>
</tr>
</tbody>
</table>

Nr = Probenummer, PH3 = Phosphorwasserstoff, EB = Ethylbenzol, TCNM = Trichlornitromethan, Tol = Toluol, DCP = 1,2-Dichlorpropan, CCl4 = Tetrachlormethan, Benz = Benzol, DCE = 1,2-Dichlorethan, CS2 = Schwefelkohlenstoff, DCM = Dichlormethan, IMe= Iodmethan, BrMe = Brommethan, W = Warenguppe, SG = Sammelgut, Sch = Schuhe, T = Textilien, NG = Nachweisgrenze, BG = Bestimmungsgrenze
6.6 Betrachtung und Diskussion der Ergebnisse für die Containerluftproben

6.6.1 Gesamtbelastung

Die Häufigkeit der Belastung der selektiven Container mit den einzelnen Substanzen ist in Abbildung 6.2A graphisch dargestellt. Die zugrunde gelegten Grenzwerte wurden bei vier Substanzen überschritten, und zwar bei Phosphorwasserstoff, 1,2-Dichlorethan, Benzo1 und Toluol bei 17, 34, 17 und 4 % der untersuchten Container. Im Falle von Phosphorwasserstoff lag außer bei einem Container jeder belastete Container auch oberhalb des Grenzwertes von 0,014 mg/m³ gemäß TRGS 512 Begasung.

Unter Berücksichtigung, dass für einige Container auch bei mehreren Substanzen der Grenzwert überschritten wurde, waren 24 der selektiven Container (45 %) stark belastet, wovon in sechs Fällen für je zwei Substanzen der Grenzwert überschritten wurde und in zwei Fällen für je drei Substanzen der Grenzwert überschritten wurde: Fünf Container waren mit Benzo1 und 1,2-Dichlorethan über dem Grenzwert belastet (Tabelle 6.2, Probennummern 29, 40, 42, 47 und 49). Bei zweiContainern lagen die
Konzentrationen von 1,2-Dichlorethan und Phosphorwasserstoff oberhalb der Grenzwerte (Tabelle 6.2, Proben 17 und 23). Bei einem Container waren die Grenzwerte von Benzol, Toluol und 1,2-Dichlorethan überschritten (Tabelle 6.2, Probe 43) und bei einem Container, die Grenzwerte von Benzol, 1,2-Dichlorethan und Phosphorwasserstoff (Tabelle 6.2, Probe 13).

Alle untersuchten, selektiven Container waren mit Toluol kontaminiert. Ohne Berücksichtigung der Höhe der ermittelten Konzentrationen ergab sich bezüglich der Häufigkeit, mit der die Substanzen in den Containeratmosphären gefunden wurden, die absteigende prozentuale Reihenfolge: Toluol (100), Ethylenbenzol (81), Benzol (79), 1,2-Dichlorethan (72), Schwefelkohlenstoff (43), Dichlormethan (34), 1,2-Dichlorpropan (21), Phosphorwasserstoff (17), Brommethan (4), Tetrachlormethan (4), Trichlornitromethan (4), Iodmethan (2 %).

Abbildung 6.2B zeigt die Häufigkeit der Belastung der randomisierten Container mit den einzelnen Substanzen. Hier wurden die Grenzwerte ebenfalls bei vier Substanzen überschritten. Diese waren Brommethan, Schwefelkohlenstoff, 1,2-Dichlorethan und Benzol mit 1, 1, 9 und 8 % der untersuchten Container.

Unter Berücksichtigung, dass auch für einige der randomisierten Container bei mehreren Substanzen der Grenzwert überschritten wurde, waren 23 der randomisierten Container (15 %) stark belastet, wobei in sechs Fällen für je zwei Substanzen der Grenzwert überschritten wurde: Fünf Container waren mit 1,2-Dichlorethan und Benzol über Grenzwert belastet (Tabelle 6.3, Probenummer 86, 91, 97, 116 und 130) und einer mit 1,2-Dichlorethan und Schwefelkohlenstoff (Tabelle 6.3, Probe 133).

In der prozentual absteigenden Reihenfolge des Auftretens der Substanzen, ohne Berücksichtigung der Stärke der Belastung, lag auch bei den randomisierten Container n Toluol mit 98 % vorne, gefolgt von Benzol (45), Dichlormethan (41), Ethylenbenzol (34), 1,2-Dichlorethan (22), Brommethan (21), Schwefelkohlenstoff (17), 1,2-Dichlorpropan (11), Tetrachlormethan (7), Phosphorwasserstoff (2) und Iodmethan (1 %). Trichlornitromethan wurde in keiner der Proben nachgewiesen.

Die selektiven Container sind aufgrund einer durch orientierende Messung oder aufgrund von Anzeichen einer vorliegenden Belastung, wie verklebten Lüftungsschlitzten beprobt worden. Obwohl hier das Augenmerk auf Phosphorwasserstoff gerichtet war, könnten Anzeichen wie verklebte Druckausgleichsschlitze auch Indikatoren für andere Begasungsmittel sein oder durch verminderten Luftaustausch höhere Schadstoffkonzentrationen im Innern des Containers begünstigen. Daher ist die insgesamt höhere Belastung im Vergleich zu den randomisierten Proben nicht überraschend. Darüber hinaus herrschten aber auch während der Beprobung der selektiven Container mit durchschnittlich 18 °C deutlich höhere Temperaturen als bei der Beprobung der randomisierten mit 4 °C, wodurch die Emission von Schad-
stoffen aus den Waren in die Containerluft während der selektiven Beprobung begünstigt war.

Insbesondere für Benzol und 1,2-Dichlorethan sind Grenzwertüberschreitungen beobachtet worden, sowohl bei den randomisierten, als auch bei den selectiven Containern. Um die Gegenüberstellung von selektiven und randomisierten Containern richtig bewerten zu können, ist ein Überblick über die Konzentrationen notwendig, die jeweils bei den kontaminierten Proben aufgetreten sind. In den Abbildungen 6.3 und 6.4 sind die Konzentrationsprofile für alle Substanzen dargestellt, bei denen vier und mehr Container in der jeweiligen Gruppe belastet waren (Anzahl berücksichtigter Proben jeweils in Klammern). Die Boxplots in den Abbildungen 6.3 und 6.4 zeigen Maximal- und Minimalkonzentration an sowie die Häufigkeitsverteilung der Konzentrationen. Links und rechts von der Box liegen jeweils 25 % der Werte und innerhalb der Box liegen 50 % der Werte, wobei die Senkrechte innerhalb der Box den Median markiert.

Auffällig war die höhere Anzahl mit Brommethan kontaminiert er randomisierter Container im Vergleich zu den selektiven Proben. Es handelt sich dabei allerdings in den meisten Fällen um geringe Konzentrationswerte: Wie aus dem Konzentrationsprofil in Abbildung 6.4 hervorgeht, liegen mehr als 75 % der positiven Werte zwischen 0,008 und 0,021 mg/m³. Allerdings wurde bei den randomisierten Proben auch ein Container gefunden, der den Grenzwert von 1,98 mg/m³ überschritt, während bei den selektiven Containern keiner der zwei positiven Proben (Probe 9 und Probe 38 in Tabelle 6.2) eine solch hohe Konzentration aufwies (0,036 mg/m³ und 0,38 mg/m³). In den letzten Jahren wurde eine Abnahme der Brommethanbelastung von Containern in den Häfen Hamburg und Rotterdam festgestellt. Dabei nahm der Anteil der Belastung oberhalb 0,020 mg/m³ Brommethan von 2006 bis 2008 von 20 über 13 (2007) auf 5 % der untersuchten Container ab. Zum Vergleich mit diesen Zahlen werden im Folgenden die Ergebnisse der randomisierten Proben herangezogen. In der vorliegenden Studie liegt der Anteil der Container mit Konzentrationen oberhalb 0,020 mg/m³ Brommethan bei 5 %, wodurch der in der Literatur beschriebene abnehmende Trend hier nicht fortgesetzt wird. Allerdings wurde in derselben Studie eine Abnahme der Brommethanbelastung oberhalb des so genannten Community Exposure Levels (CEL) von 0,20 mg/m³ von 2006 bis 2008 von 13 über 6 auf 3 % der untersuchten Container festgestellt. In der vorliegenden Studie ist nur 1 % der Container mit Brommethankonzentrationen oberhalb 0,20 mg/m³ belastet, so dass sich hier der abnehmende Trend aus der Studie fortsetzt. In der zitierten Veröffentlichung wurde ein amerikanischer Grenzwert des OEHHA von 3,90 mg/m³ für Brommethan zugrunde gelegt, der in den angegebenen Zeiträumen bei 6 (2006), 4 (2007) und 1 % (2008) der untersuchten Container überschritten wurde. In der vorliegenden Studie überschritt ebenfalls 1 % der Container diese Konzentration, so dass hier keine weitere Reduktion der Belastung verzeichnet werden konnte.

Die in der zitierten Arbeit erwähnten CEL-Werte fassen Referenzwerte (Chronic Reference Exposure Levels (CREL) und Minimal Risk Levels (MRL)) der amerikanischen Institutionen Office of Environmental Health Hazard Assessment (OEHHA) und Agency for Toxic Substances and Disease Registry (ATSDR) zusammen.
Abbildung 6.3: Konzentrationsverteilungen bei belasteten (>BG<GW) und stark belasteten (>GW), selektiv beprobten Containern (Anzahl betreffender Proben in Klammern).

Abbildung 6.4: Konzentrationsverteilung bei belasteten (>BG<GW) und stark belasteten (>GW), zufällig beprobten Containern (Anzahl betreffender Proben in Klammern).
Im Falle von Dichlormethan waren mit 41 % mehr randomisierte Container belastet als selektive (34%). Die mittlere Verteilung der Konzentrationen war jedoch ähnlich zwischen den Gruppen (selektive: 50 % zwischen 0,032 und 0,26 mg/m³, Median 0,048 mg/m³; randomisierte: 50 % zwischen 0,014 und 0,27 mg/m³, Median 0,025 mg/m³). Auch die Maximalkonzentration war bei den selektiven mit 20,3 mg/m³ ähnlich wie bei den randomisierten (27,5 mg/m³). Ras et al. haben in Stadt- und Industriegebieten maximale Dichlormethankonzentrationen von 5,4 µg/m³ und 39 µg/m³ gefunden[86]. Etwa die Hälfte der in der vorliegenden Arbeit ermittelten positiven Werte lag in diesem Bereich, so dass nicht ausgeschlossen werden kann, dass hier nicht die Waren selbst, sondern andere Quellen wie Abgasemissionen eine Ursache sind. Die teilweise sehr viel höheren Konzentrationen sind dadurch jedoch nicht erklärbar und müssen als Emissionen aus den Waren gedeutet werden. In der Studie der Containerbelastungen 2006 bis 2008 in Hamburg und Rotterdam wurde ein abnehmender Trend der Belastung mit Dichlormethan festgestellt: Die Container mit Konzentrationen oberhalb von 0,018 mg/m³ nahmen von 51 über 49 auf 33 % der untersuchten Container ab[33]. In der vorliegenden Arbeit sind 25 % der untersuchten, randomisierten Containerproben mit Konzentrationen oberhalb 0,018 mg/m³ Dichlormethan belastet, was den Trend fortzusetzen scheint. In der zitierten Arbeit wurde jedoch auch eine Abnahme der Container festgestellt, die mit Dichlormethan in Konzentrationen oberhalb des CEL von 0,40 mg/m³ belastet waren (von 2006 bis 2008 von 16 auf 5 %). Eine Fortsetzung dieses Trends ist in der aktuellen Studie nicht zu verzeichnen (8 % der randomisierten Container waren mit Dichlormethan Oberhalb von 0,40 mg/m³ belastet).

Für Schwefelkohlenstoff, 1,2-Dichlorethan, Benzol und Toluol waren die Häufigkeiten der Belastung bei den randomisierten Proben niedriger als bei den selektiven Proben. Während dabei für 1,2-Dichlorethan die maximalen Konzentrationen bei den randomisierten Proben mit etwa 29 mg/m³ ähnlich hoch waren wie bei den selektiven, ist für Schwefelkohlenstoff bei den randomisierten mit etwa 33 mg/m³ eine erheblich höhere Maximalkonzentration aufgetreten als bei den selektiven Proben (0,37 mg/m³). Auch insgesamt waren die ermittelten Konzentrationen für Schwefelkohlenstoff bei den selektiven Proben geringer (50 % der Werte zwischen 0,022 und 0,065 mg/m³, Median 0,041 mg/m³) als bei den zufälligen Proben (50 % der Werte zwischen 0,048 und 0,44 mg/m³, Median 0,086 mg/m³). Bei 1,2-Dichlorethan sind neben der maximalen Konzentration auch die Mediankonzentrationen mit 0,062 mg/m³ gleich, die mittlere Konzentrationsverteilung bei den selektiven etwas geringer (0,021-0,21 mg/m³) als bei den randomisierten Proben (50 % zwischen 0,045 und 0,29 mg/m³). Ras et al. fanden maximale Konzentrationen von 0,7 µg/m³ und 42,4 µg/m³ in Stadtgebieten und Industriegebieten[86]. Mehr als 50 % der in der vorliegenden Arbeit ermittelten Konzentrationen lagen oberhalb des maximalen Luftwertes, den Ras et al in Industriegebieten fanden. Für 1,2-Dichlorethan wurde in den Jahren 2006 bis 2008 ein Anstieg der belasteten Container beobachtet[33] und zwar von 42 auf 59 % (Konzentrationen Oberhalb von 0,021 mg/m³), 13 auf 20 %
(Konzentrationen oberhalb von 0,40 mg/m³ (CEL[84])) und von 6 über 5 auf 7 % für Konzentrationen oberhalb 4,0 mg/m³ (amerikanischer Grenzwert[87]). Die in dieser Arbeit ermittelten Ergebnisse zeigen dagegen, bezogen auf die eben genannten Konzentrationen, niedrigere Anteile belasteter Container auf (22, 5 und 3 % der Container lagen oberhalb 0,021 mg/m³, 0,40 mg/m³ und 4,0 mg/m³).

Für Benzol waren bei den randomisierten Proben nicht nur weniger belastet als bei den selektiven, auch die Konzentrationen waren im Durchschnitt geringer: 50 % der Konzentrationswerte lagen zwischen 0,016 und 0,10 mg/m³ (Median 0,026 mg/m³), während bei den selektiven 50 % der positiven Werte zwischen 0,052 mg/m³ und 0,24 mg/m³ lagen (Median 0,10 mg/m³). Allerdings lag die maximale Benzolkonzentration bei den randomisierten Proben mit 22,6 mg/m³ deutlich über dem Wert bei den selektiven Proben (8,55 mg/m³). Im Vergleich mit den maximalen Konzentrationen, die Ras et al. in Luft von Industriegebieten (14 µg/m³) und Innenstadtgebieten (16,6 µg/m³) fanden, sind die in den Container gefundenen Konzentrationen also häufig deutlich höher. Kuntasal et al. haben an einer Tankstelle Benzolkonzentrationen von 27,5 µg/m³ gemessen[88], entsprechend dem Median der positiven Benzolkonzentrationen bei den randomisierten Proben der vorliegenden Arbeit. Es ist nicht auszuschließen, dass solche Konzentrationen aus Fahrzeugemissionen von beispielsweise Gabelstaplern stammen, die bei der Beladung von Containern eingesetzt werden. Auch die Lastkraftwagen, welche die Container transportieren, könnten zu solchen Konzentrationen beitragen. Die teilweise extrem hohen Benzolkonzentrationen in den Containern gefunden wurden, können so jedoch nicht erklärt werden.

Für Toluol sind die Konzentrationen bei den randomisierten Proben ebenfalls kleiner als bei den selektiven. So liegen bei ersteren die mittleren 50 % der Konzentrationswerte zwischen 0,075 und 0,79 mg/m³ (Median 0,18 mg/m³) und bei letzteren die mittleren 50 % der Konzentrationen zwischen 0,43 mg/m³ und 4,22 mg/m³ (Median 1,08 mg/m³). Auch die maximale Toluolkonzentration von 153 mg/m³ lag bei den randomisierten deutlich unter den selektiven Container (1,000 mg/m³). Es zeigt sich in den Abbildungen 6.2 bis 6.4, dass Toluol nicht nur in beiden Containergruppen am häufigsten von allen Substanzen vorkam, sondern auch mit den höchsten Konzentrationen vertreten war. 25 % der ermittelten Toluolkonzentrationen lagen oberhalb von 0,79 mg/m³ (randomisierte Container) und 4,22 mg/m³ (selective Container). Im Vergleich mit Studien, die zur Belastung der Luft in Städten und Industriegebieten durchgeführt wurden, wird deutlich, dass in den Container vielfach erhöhte Werte vorliegen. So haben Ras et al. maximale Werte von 150,6 µg/m³ an verkehrsstarken Innenstadtpunkten gefunden[86], die noch unterhalb des Medianwertes der in den randomisierten Container gefundenen Toluolkonzentrationen lagen (0,18 mg/m³). Für Toluol wurden von der Ad-hoc-Arbeitsgruppe der Innenraumlufthygiene-Kommission des Umweltbundesamtes zwei Richtwerte RW I und RW II festgelegt, die für Innenräume gelten, die nicht dem Geltungsbereich der Gefahrstoffverordnung unterliegen, also Wohnräume, aber auch
Arbeitsplätze, an denen nicht mit Gefahrstoffen umgegangen wird\[^{89, 90}\]. RW I stellt dabei eine Konzentration dar, die auch bei lebenslanger Exposition als unbedenklich gilt. Für Toluol ist der RW I mit 0,3 mg/m\(^3\) angegeben. Dieser Wert wird von 41 \% der untersuchten, randomisierten Container überschritten. Allerdings geht der RW I von einer Einzelstoffbelastung aus, die im Falle der Containerluftproben nicht gegeben ist. RW II stellt einen Konzentrationswert dar, bei dem unverzügliches Handeln geboten ist, da bei dieser Konzentration, besonders für sensible Personen, bei Daueraufenthalt in den Räumen eine gesundheitliche Gefährdung gegeben kann\[^{89}\]. Für Toluol ist der RW II mit 3 mg/m\(^3\). 12 \% der randomisierten Container überschritten diese Konzentration. Allerdings sind diese Werte nicht rechtsverbindlich. Für Dichlormethan wurden ebenfalls RW I und II festgelegt, und zwar mit 0,2 mg/m\(^3\) und 2 mg/m\(^3\), die bei 12 bzw. 2 \% der randomisierten Container überschritten wurden.

Nur eine vergleichsweise kleine Anzahl Container wies Konzentrationen von Tetrachlormethan auf. Dies waren 2 Container beziehungsweise 4 \% der selektiven Proben mit Konzentrationen von 0,058 und 0,096 mg/m\(^3\) (keine Boxplot-Darstellung in Abbildung 6.3) und 11 Container (7 \%) bei den zufälligen Proben. Davon wiesen bei den zufälligen Proben 50 \% Konzentrationen zwischen 0,023 und 0,13 mg/m\(^3\) Tetrachlormethan auf, der Median lag bei 0,026 mg/m\(^3\) und die maximale Konzentration betrug 1,92 mg/m\(^3\). Alle ermittelten Konzentrationswerte lagen oberhalb von Werten, die in Innenstadt- und Industriegebieten gefunden wurden (2,3 µg/m\(^3\) und 5,5 µg/m\(^3\))\[^{86}\].

Für Ethylbenzol wurden bei den randomisierten Proben prozentual weniger als halb so viele (n=51, entsprechend 34 \%) positiv nachgewiesen als bei den selektiven Proben (n = 43, entsprechend 81 \%), und die Maximalkonzentration war bei den selektiven Container mit 46,6 mg/m\(^3\) deutlich höher als bei den zufälligen Container (5,12 mg/m\(^3\)). Die mittlere Konzentrationsverteilung war dabei jedoch bei den selektiven ähnlich (50 \% zwischen 0,086 und 0,35 mg/m\(^3\), Median 0,18 mg/m\(^3\)) wie bei den randomisierten (50 \% zwischen 0,079 und 0,42 mg/m\(^3\), Median 0,19 mg/m\(^3\)). Damit lagen mindestens 75 \% der in den Containern ermittelten Konzentrationen deutlich oberhalb von Luftwerten aus Industriegebieten, die von Ras et al. ermittelt wurden (65,5 µg/m\(^3\))\[^{86}\].

Die mit 1,2-Dichlorpropan belasteten Container waren bei den randomisierten anteilig weniger (11 \%) als bei den selektiven (21 \%). Auch die Konzentrationsbereiche bei diesen Containern unterschieden sich stark. So lagen bei den selektiven Containern 75 \% der Konzentrationen zwischen 0,042 und 1,68 mg/m\(^3\), die maximale Konzentration bei 179 mg/m\(^3\) und bei den zufälligen 75 \% der Konzentrationen zwischen 0,014 und 0,047 mg/m\(^3\), die maximale Konzentration betrug 2,35 mg/m\(^3\). Auch für 1,2-Dichlorpropan lagen die in dieser Arbeit ermittelten Konzentrationen oberhalb der von Ras et al. in Industriegebieten ermittelten von 0,6 µg/m\(^3\)\[^{86}\].
Für Iodmethan und Trichlornitromethan sind nur vereinzelte Container mit positiven Werten aufgetreten, daher sind in den Abbildungen 6.3 und 6.4 keine Boxplot-Darstellungen für diese beiden Substanzen enthalten. Bei den randomisierten Proben handelte es sich um nur eine, die eine Konzentration von 0,024 mg/m³ Iodmethan aufwies, und bei den selektiven Containern um eine Probe mit einer Konzentration von 0,041 mg/m³ Iodmethan. Trichlornitromethan wurde nur bei den selektiven Containern in zwei Proben nachgewiesen, und zwar mit Konzentrationen von 0,082 und 0,21 mg/m³.

Die gesamte und anteilige Anzahl der mit Phosphorwasserstoff kontaminierten, randomisierten Proben war viel geringer (3 Container, entsprechend 2 %) als bei den selektiven Proben (9 Container, entsprechend 17 %). Dies ist sicherlich darauf zurückzuführen, dass bei den randomisierten Containern nicht gezielt nach Phosphorwasserstoffbelastungen gesucht wurde. Alle ermittelten Konzentrationen der drei positiven, randomisierten Proben lagen mit 0,008 mg/m³, 0,007 mg/m³ und 0,010 mg/m³ dabei auch beim bzw. unterhalb des Grenzwertes (Tabelle 6.3, Probennummern 38, 54 und 57). Bei den selektiven Containern lagen die Konzentrationen zwischen 0,051 mg/m³ und 9,73 mg/m³. Diese Proben sollen im folgenden Abschnitt 6.6.2 genauer betrachtet und diskutiert werden.

Zusammenfassend ergeben sich für die zu Beginn aufgeworfenen Fragen zur Gesamtbelastung aus den Ergebnissen der untersuchten Container folgende Anhaltspunkte: Anhand der randomisierten Proben zeichnet sich ab, dass Toluol, Ethylbenzol und Dichlormethan häufiger vorkommen als andere Substanzen und Iodmethan und Trichlornitromethan seltener auftreten. Auch Phosphorwasserstoff kommt weniger häufig vor, wenn die Gesamtheit der zufälligen Container betrachtet wird, bei Selektion nach verdächtigen Containern finden sich jedoch viele Container, die mit hohen Phosphorwasserstoffkonzentrationen belastet sind. Für 1,2-Dichlorethan und Benzol wurden die Grenzwerte am häufigsten überschritten, und zwar sowohl bei selektiven als auch bei zufällig ausgewählten Proben. Grenzwerte wurden außerdem für Brommethan, Schwefelkohlenstoff und Toluol überschritten. Die meisten Substanzen zeigten sehr große Konzentrationsbereiche, von nicht nachweisbar bis in den mehrstelligen mg/m³-Bereich. Insgesamt waren 15 % der zufälligen Proben hinsichtlich Grenzwertüberschreitungen so belastet, dass sie ein Risiko am Arbeitsplatz Container darstellten, wobei auch multiple Grenzwertüberschreitungen vorkamen. Bei den selektiven Containern waren 45 % über Grenzwert belastet gleichfalls mit teilweise Grenzwertüberschreitungen durch mehrere Substanzen.
6.6.2 Mit Phosphorwasserstoff belastete Container

Alle selektiven Container, die mit Phosphorwasserstoff belastet waren, hatten Lebensmittel geladen, und es war auch jeweils der Grenzwert von 0,014 mg/m³ überschritten. Dabei reichten die Konzentrationen von 0,051 bis 9,73 mg/m³. Bei den randomisierten Containern waren 2 von 3 Containern, die mit Phosphorwasserstoff belastet waren, Lebensmittelcontainer, und der dritte Container hatte Elektronikartikel geladen. Wie bereits im vorigen Kapitel 6.6.1 beschrieben, kamen bei den randomisierten Containern Konzentrationen am bzw. unterhalb des Grenzwertes vor. In Abbildung 6.5 sind die einzelnen Ergebnisse der Phosphorwasserstoffkonzentrationen für die belasteten Container aufgeführt. Dabei sind den einzelnen Proben die konkreten Warenbezeichnungen zugeordnet. Für zwei Proben war keine konkretere Bezeichnung angegeben, so dass sie mit „Lebensmittel“ bezeichnet wurden.

Abbildung 6.5: Phosphorwasserstoffkonzentrationen in belasteten Containern, Probennummern jeweils in Klammern (s=selektiv, siehe Tabelle 6.2; r=randomisiert, siehe Tabelle 6.3)
Bei den folgenden mit Phosphorwasserstoff belasteten Containern wurden verklebte Druckausgleichsschlitze registriert: s23, s21, s19, s17 und s13. Warnlabel waren bei fünf der Container vorhanden, und zwar ebenfalls bei s23, s21, s17 und s13 sowie bei s20. Bei aktiven Begasungen mit Phosphorwasserstoff werden Konzentrationen von etwa 5,5 g/m³ angewendet10. Die in den untersuchten Containern gefundenen Konzentrationen lagen deutlich unter diesen Werten. Dies kann an länger zurückliegendem Begasungsbeginn, zum Beispiel vor einem mehrwöchigen Seetransport, liegen, bei dem die eingesetzten Phosphide erschöpft und die Konzentrationen abgesunken sind. Es ist aber auch möglich, dass die Konzentrationen durch nachträgliche Emissionen aus den zuvor begasten Waren entstanden sind. Einzelne Untersuchungen zum Emissionsverhalten verschiedener Lebensmittel nach der Begasung mit Phosphorwasserstoff werden in Kapitel 8 dargestellt.

Abbildung 6.6 soll einen Eindruck darüber vermitteln, ob eine Belastung von Phosphorwasserstoff mit weiteren Schadstoffbelastungen einhergeht. Die Proben sind von oben nach unten mit steigender Phosphorwasserstoffkonzentration (rote Spalte) aufgetragen. Die übrigen Substanzen sind in den Spalten rechts daneben aufgeführt, wobei graue Felder unterschrittene Nachweis- und Bestimmungsgrenzen markieren und gelbe Felder den Nachweis der betreffenden Substanz hervorheben, wobei die Konzentration als Wert in mg/m³ eingetragen ist. Trichlornitromethan ist nicht aufgeführt, da keine der Proben damit belastet war.
<table>
<thead>
<tr>
<th>Containerluftproben</th>
</tr>
</thead>
</table>

Abbildung 6.6: Darstellung der Ergebnisse der Zielsubstanzen in mg/m³ in Proben mit Phosphorwasserstoff; Probennummern s=selektiv, Tabelle 6.2; r=randomisiert, Tabelle 6.3.

<table>
<thead>
<tr>
<th>Containerluftproben</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Probe</th>
<th>54r</th>
<th>38r</th>
<th>57r</th>
<th>13s</th>
<th>23s</th>
<th>21s</th>
<th>12s</th>
<th>24s</th>
<th>14s</th>
<th>20s</th>
<th>17s</th>
</tr>
</thead>
<tbody>
<tr>
<td>EB</td>
<td></td>
</tr>
<tr>
<td>Tol</td>
<td>0,43</td>
<td>1,14</td>
<td>0,073</td>
<td>16,2</td>
<td>0,14</td>
<td>0,76</td>
<td>0,12</td>
<td>0,22</td>
<td>0,20</td>
<td>2,31</td>
<td>0,12</td>
</tr>
<tr>
<td>DCP</td>
<td></td>
</tr>
<tr>
<td>CCl₄</td>
<td></td>
</tr>
<tr>
<td>Benz</td>
<td></td>
</tr>
<tr>
<td>DCE</td>
<td></td>
</tr>
<tr>
<td>CS₂</td>
<td></td>
</tr>
<tr>
<td>DCM</td>
<td></td>
</tr>
<tr>
<td>IMe</td>
<td></td>
</tr>
<tr>
<td>BrMe</td>
<td></td>
</tr>
<tr>
<td>PH₃</td>
<td>0,007</td>
<td>0,008</td>
<td>0,01</td>
<td>0,051</td>
<td>0,24</td>
<td>0,30</td>
<td>0,46</td>
<td>0,54</td>
<td>0,62</td>
<td>0,95</td>
<td>4,74</td>
</tr>
</tbody>
</table>

Abbildung 6.6: Darstellung der Ergebnisse der Zielsubstanzen in mg/m³ in Proben mit Phosphorwasserstoff; Probennummern s=selektiv, Tabelle 6.2; r=randomisiert, Tabelle 6.3.
Die Belastung mit verschiedenen anderen Zielsubstanzen scheint mit steigender Phosphorwasserstoffkonzentration abzunehmen, da in den mit 0,007 bis 0,30 mg/m³ Phosphorwasserstoff 4-8 weiteren Zielsubstanzen gefunden wurden und bei den Proben mit Phosphorwasserstoffkonzentrationen von 0,46 bis 4,74 mg/m³ nur Toluol (Tol) bzw. in einem Fall Toluol und Benzol (Benz) gemessen wurde. Allerdings ist die Probe mit der höchsten Phosphorwasserstoffkonzentration wieder mit acht weiteren Zielsubstanzen belastet. Es ist auch zu berücksichtigen, dass die Proben mit den drei kleinsten Phosphorwasserstoffkonzentrationen zu den randomisierten Proben gehörten, die mit der nach Abschnitt 4.2.5 modifizierten Methode gemessen wurde, die für die Substanzen Brommethan (BrMe), Iodmethan (lMe), Dichlormethan (DCM), Benzol, Tetrachlormethan (CCl₄) und Toluol etwas empfindlicher war als die ursprüngliche Methode, die für die selektiven Proben eingesetzt wurde (siehe auch Abschnitt 5.6). Daher würden die Messwerte für Brommethan und Iodmethan bei den Proben 54r, 38r und 37r wegfallen, genauso wie die Werte von Dichlormethan bei den Proben 54r und 38r und der Wert für Benzol bei Probe 38r, wenn mit der gleichen Methode wie bei den selektiven Proben gemessen worden wäre. Die Zahlen für diese Werte sind in Abbildung 6.6 in grüner Schrift gehalten. Eine Tendenz für zu- oder abnehmende Belastung mit anderen Zielsubstanzen bei steigender Konzentration von Phosphorwasserstoff kann daher aus den Ergebnissen nicht entnommen werden.

Auffällig sind die mehrfachen Belastung bei 3 von 4 Reiscontainern (13s, 23s und 21s) und des Gewürze transportierenden Containers (17s) mit 4-8 Substanzen neben Phosphorwasserstoff. Bei den Containern 13s und 23s und 17s war dabei der Grenzwert für 1,2-Dichlorethan (DCE) überschritten, bei 13s mit 1,30 mg/m³ in erheblichem Maße, wobei bei dieser Probe auch der Grenzwert für Benzol mit 8,55 mg/m³ stark überschritten wurde. Toluol war in allen mit Phosphorwasserstoff belasteten Containern enthalten, wobei sich die Konzentrationsverteilung aber nicht von der durchschnittlichen Verteilung bei den selektiven Lebensmittelcontainern abhob, wie durch die Boxplots im Diagramm von Abbildung 6.7 dargestellt ist. Die Lebensmittelcontainer, die nicht mit Phosphorwasserstoff belastet waren, wiesen höhere Minimalkonzentrationen und geringere Maximalkonzentrationen an Toluol auf, lagen aber innerhalb des gleichen Konzentrationsbereiches wie die übrigen Lebensmittelcontainer. Insgesamt waren die Toluolkonzentrationen bei den Lebensmittel transportierenden, selektiven Proben geringer als in allen selektiven Containern zusammen, wie ebenfalls aus Abbildung 6.7 hervorgeht.
Für die zu Beginn von Kapitel 6.6 gestellten Fragen zur Phosphorwasserstoffbelastung ergaben sich folgende Hinweise aus den hier dargestellten Ergebnissen: Wenn eine Phosphorwasserstoffbelastung vorliegt, wird häufig auch der Grenzwert von 0,014 mg/m³ gemäß TRGS 512 Begasung überschritten und es werden Konzentrationen bis fast in den zweistelligen mg/m³-Bereich hinein festgestellt. Phosphorwasserstoff wurde fast ausschließlich in Lebensmittel transportierenden Containern gefunden, lediglich ein Container mit Elektroartikeln wies eine Phosphorwasserstoffkonzentration von 0,008 mg/m³ auf. Ein Hinweis auf einen Zusammenhang mit einer der anderen Zielsubstanzen im Sinne einer Co-Belastung geht aus den Ergebnissen nicht hervor.
6.6.3 Korrelationen der Schadstoffbelastung mit Warengruppen

Die Gruppe der anderen Waren umfasste 15 Container, deren Belastung in Abbildung 6.8 graphisch dargestellt ist. Sieben der 12 Zielsubstanzen wurden in den Proben dieser Gruppe gefunden. Eine Grenzwertüberschreitung lag dabei bei einem Container für 1,2-Dichlorethan mit 0,29 mg/m³ vor. Die höchste Konzentration wies Ethylbenzol bei einem Container mit 5,12 mg/m³ auf.

Abbildung 6.8: Graphische Darstellung der Ergebnisse für Container mit anderen Waren.
Sieben der untersuchten Container waren mit Baumaterialien beladen, womit diese nach den Schuhen die kleinste Warengruppe darstellten. Zu den Baumaterialien wurden unter Anderem Fliesen und Schrauben gerechnet. Abbildung 6.9 zeigt die Ergebnisse für diese Container. Nur fünf der untersuchten Substanzen wurden in den entsprechenden Proben nachgewiesen. In keiner anderen Warengruppe außer den Chemikalien wurden so wenige der Zielsubstanzen gefunden. Eine der Proben wies eine 1,2-Dichlorethan-Konzentration von 0,086 mg/m³ knapp oberhalb des Grenzwertes von 0,082 mg/m³ auf. Die anderen Substanzen zeigten maximale Konzentrationen von 0,079 (Brommethan), 0,011 (Dichlormethan), 0,073 (Schwefelkohlenstoff) und 2,30 mg/m³ (Toluol) auf (Abbildung 6.9B).

Da die Auswirkung von Baustoffemissionen auf die Gesundheit das öffentliche Bewusstsein erreicht hat, werden mittlerweile hohe Anforderungen an die Schadstofffreiheit gestellt. Dies könnte eine Erklärung für die geringere Belastung in dieser Gruppe gegenüber einigen anderen Warengruppen erklären. Da viel Baustoffe auf Holzpaletten transportiert werden, die gemäß ISPM 15 gegen die Verbreitung von Schad- und Fremdorganismen behandelt werden müssen, ist eine Belastung mit Begasungsmitteln in Frachtcontainern dieser Warengruppe jedoch nicht auszuschließen.

Abbildung 6.9: Graphische Darstellung der Ergebnisse für Container mit Baumaterialien (n=7).
Unter der Warengruppe Chemikalien sind neben Chemikalien auch Grund- und Rohstoffe, wie zum Beispiel Kunststoffgranulat, für die verarbeitende Industrie zusammengefasst. 10 Container wurden dieser Gruppe zugeordnet. In Abbildung 6.10 sind die Ergebnisse graphisch dargestellt. Hier sind, wie bei den Baumaterialien, nur fünf der 12 Zielsubstanzen nachgewiesen worden. Davon war bei keiner Substanz der zugrunde gelegte Grenzwert überschritten (Abb. 6.10A). Die Substanzen Dichlormethan, 1,2-Dichlorethan und Benzol wiesen maximale Konzentrationen von 0,042 mg/m³, 0,058 mg/m³ und 0,036 mg/m³ auf, Toluol und Ethylbenzol Konzentrationen von 0,98 mg/m³ beziehungsweise 2,18 mg/m³ (siehe Abb. 6.10B).

Abbildung 6.10: Graphische Darstellung der Ergebnisse für Container mit Chemikalien (n=10).
Elektroartikel, darunter fielen Geräte wie Fernseher und Netzteile, wurden von acht der beprobten Container transportiert. In Abbildung 6.11 sind die Ergebnisse für diese Container dargestellt. Sechs der Zielsubstanzen konnten in diesen Containern nachgewiesen werden, wobei keiner der zugrunde gelegten Grenzwerte überschritten wurde (Abbildung 6.11A). Zwei Container wiesen Konzentrationen von je 0,008 mg/m³ Brommethan auf und einer eine Phosphorwasserstoffkonzentration von 0,008 mg/m³. Maximale Konzentrationen lagen bei 0,90 mg/m³ Dichlormethan, 0,039 mg/m³ Benzol, 1,80 mg/m³ Toluol und 1,15 mg/m³ Ethylbenzol.

Beim Elektroartikeln wurde neben den Lebensmitteln als einzige ein Container mit Phosphorwasserstoffbelastung ermittelt. Die Konzentration lag mit 0,008 mg/m³ unterhalb des Grenzwertes. Die Warenbezeichnung des Containerinhaltes lautete Elektrobausteine. Phosphorwasserstoff wird in der Elektrotechnik bei der Dotierung von Halbleitern eingesetzt. Chughtai et al. haben bei der Untersuchung von Halbleitern Emissionen von Phosphorwasserstoff nachgewiesen\[91\]. Dabei traten Konzentrationen von 1,1 ng/mL, entsprechend 1,1 mg/m³ auf, wobei es sich allerdings um Luft aus einem Beutel handelte, der die Halbleiterplatten enthielt, so dass die ermittelten Konzentrationen unter nicht definierten Bedingungen entstanden. Dennoch ist dies ein Hinweis darauf, dass auch in einem Container, der Halbleiterbauteile transportiert, erhöhte Konzentrationen an Phosphorwasserstoff entstehen könnten. Ob im vorliegenden Falle die transportierten Elektrobausteine solche Halbleiterelemente enthielten ist jedoch nicht bekannt.

Abbildung 6.11: Graphische Darstellung der Ergebnisse für Container mit Elektroartikeln (n=8).
Unter die Gruppe Fahrzeuge/Teile fielen alle motorisierten und nicht motorisierten Fahrzeuge und deren Bauteile sowie auch Reifen. In Abbildung 6.12 wird die Schadstoffbelastung für die 12 Container dargestellt, die Waren aus dieser Gruppe transportierten. Neun der zwölf Zielsubstanzen wurden nachgewiesen, wobei mit 0,49 mg/m³ einmal für 1,2-Dichlorethan und mit 0,78 mg/m³, 1,20 mg/m³ und 3,90 mg/m³ dreimal für Benzol die Grenzwerte überschritten wurden. Die maximalen Konzentrationen lagen für die übrigen Substanzen bei 0,063 mg/m³ (Brommethan), 0,042 mg/m³ (Dichlormethan), 0,98 mg/m³ (Schwefelkohlenstoff), 1,92 mg/m³ (Tetrachlormethan), 0,042 mg/m³ (1,2-Dichlorpropan), 30,6 mg/m³ (Toluol), und 1,41 mg/m³ (Ethylbenzol).

Abbildung 6.12: Graphische Darstellung der Ergebnisse für Container mit Fahrzeugen und Fahrzeugteilen (n=12).
Lebensmittel wurden von 19 der zufällig untersuchten Container transportiert. In Abbildung 6.13 ist das Ergebnis für diese Warengruppe dargestellt. In der Gruppe der Lebensmittelcontainer wurden alle Zielsubstanzen außer Trichlornitromethan gefunden. In keiner anderen Warengruppe wurden so viele verschiedene Substanzen gefunden. In dieser Gruppe ist als einzige mit 4,35 mg/m³ der Grenzwert von Brommethan bei einem Container überschritten worden. Weitere Grenzwerte wurden nicht überschritten (Abb. 6.13A). Es traten maximale Konzentrationen von 0,024 mg/m³ (Iodmethan), 0,81 mg/m³ (Dichlormethan), 0,038 mg/m³ (Schwefelkohlenstoff), 0,058 mg/m³ (1,2-Dichlorethan), 0,13 mg/m³ (Benzol), 0,032 mg/m³ (Tetrachlormethan), 0,019 mg/m³ (1,2-Dichlorpropan), 0,51 mg/m³ (Toluol) sowie 0,35 mg/m³ (Ethylbenzol) und 0,010 mg/m³ (Phosphorwasserstoff) auf. Die Toluolkonzentrationen sind damit im Vergleich zu anderen Warengruppen geringer.

Die Möbel und Haushaltsgegenstände transportierenden Container bildeten die größte Gruppe bei Sortierung nach Warenart (n=30). Bei der Betrachtung der Ergebnisse für diese Container in Abbildung 6.14A fällt zunächst wieder die Überschreitung der zugrunde gelegten Grenzwerte für 1,2-Dichlorethan und Benzol bei jeweils sechs der Container auf. Insgesamt wurden 8 der zwölf Zielsubstanzen bei dieser Warenguppe nachgewiesen. Abbildung 6.14B stellt die Konzentrationsverteilung der Substanzen und Container dar, für die eine quantifizierbare Belastung ermittelt wurde. Für 1,2-Dichlorethan und Benzol wurden die Grenzwerte zum Teil stark überschritten, wobei Maxima von 6,82 und 22,6 mg/m³ auftraten. Für Dichlormethan, Toluol und Ethylenzol traten ähnlich hohe Konzentrationen auf, und zwar mit bis zu 27,5 mg/m³, 23,8 mg/m³ und 2,47 mg/m³. Bei den übrigen Substanzen traten folgende Maxima auf: Brommethan 0,008 mg/m³, Schwefelkohlenstoff 0,75 mg/m³, 1,2-Dichlorpropan 0,18 mg/m³.

Abbildung 6.14: Graphische Darstellung der Ergebnisse für Container mit Möbeln und Haushaltsgegenständen (n=30).

[Diagramm A: Anteil Container mit Möbeln und Haushaltsgegenständen [%]
Diagramm B: Konzentration [mg/m³] der Substanzen]
Naturprodukte, wie Holz oder Tabak waren von 10 der untersuchten Container geladen. Abbildung 6.15 stellt die Belastung dieser Container mit den Zielsubstanzen dar. Aus Abbildung 6.15A geht hervor, dass sieben der Zielsubstanzen gefunden wurden, jedoch kein Grenzwert überschritten wurde. Abbildung 6.15B zeigt, dass die aufgetretenen Konzentrationen im Vergleich zu anderen Warengruppen gering sind. Dies fällt besonders für Toluol auf, das hier eine maximale Konzentration von 0,20 mg/m³ aufwies. Die ermittelten Maxima für die übrigen Substanzen waren bei Brommethan 0,008 mg/m³, bei Dichlormethan 0,046 mg/m³, bei 1,2-Dichlorethan 0,049 mg/m³, bei Benzo1 0,013 mg/m³, bei 1,2-Dichlorpropan 0,014 mg/m³ und bei Ethylbenzol 0,54 mg/m³.

Die geringere Belastung mit Industriechemikalien bei Naturprodukten ist zu vermuten gewesen. Aufgrund der Empfindlichkeit natürlicher Materialien für den Befall mit Schadorganismen wären auch erhöhte Konzentrationen von Begassungsmitteln denkbar gewesen, diese wurden aber bei den vorliegenden Containern nicht, beziehungsweise nur in geringen Konzentrationen ermittelt (0,008 mg/m³ Brommethan bei 3 Containern).

Abbildung 6.15: Graphische Darstellung der Ergebnisse für Container mit Naturprodukten (n=10).
17 der untersuchten Container hatten Sammelgut geladen. Dabei handelte es sich um Container, die mehrere Partien verschiedener Ware geladen hatten. Container mit Sammelgut sind häufig und sind an dieser Stelle nicht mit der Kategorie „andere Waren“ zu verwechseln. Abbildung 6.16A zeigt, dass neun der Zielsubstanzen in dieser Warengruppe gefunden wurden, wobei mit 0,12 und 14,3 mg/m³ 1,2-Dichlorethan und 0,36 und 0,42 mg/m³ Benzol die Grenzwerte in jeweils 2 Fällen überschritten wurden. 1,2-Dichlorethan stellte damit auch die Substanz mit der höchsten Konzentration in dieser Gruppe dar. Die maximalen Konzentrationen der übrigen Substanzen waren 1,52 (Brommethan), 2,72 (Dichlormethan), 1,08 (Schwefelkohlenstoff), 0,19 (Tetrachlormethan), 0,033 (1,2-Dichlorpropan), 9,12 (Toluol) sowie 0,84 mg/m³ (Ethylbenzol).

Da keine Informationen zu den genauen Warenbezeichnungen bei den Containern mit Sammelgut vorlagen und die Zusammenstellung der Waren komplex sein kann, lässt sich die Belastung der Container nicht auf Attribute der Waren zurückführen. Sowohl Industriechemikalien als auch Begasungsmittel wurden hier nachgewiesen.

Abbildung 6.16: Graphische Darstellung der Ergebnisse für Container mit Sammelgut (n=17).
Die kleinste Gruppe der randomisiert beprobten Container machten solche aus, die Schuhe geladen hatten (n=4). Aus Abbildung 6.17A geht hervor, dass sieben der Zielsubstanzen in den Proben präsent waren, wobei für 1,2-Dichlorethan und Benzol die Grenzwerte überschritten wurden. Im Falle von 1,2-Dichlorethan handelte es sich dabei mit etwa 4 und 29 mg/m³ um erhebliche Überschreitungen, wie die Konzentrationsverteilung in Abbildung 6.17B zeigt. Der Grenzwert von Benzol wurde mit 0,49 mg/m³ einmal überschritten. Außerdem traten in dieser Gruppe die beiden höchsten Toluolkonzentrationen auf (153 mg/m³ und 49,8 mg/m³), die bei den randomisierten Proben ermittelt wurden. Bei 1,2-Dichlorpropan fielen auch die randomisierten Proben mit den höchsten Konzentrationen (1,08 und 2,35 mg/m³) in die Gruppe der Schuhcontainer. Die übrigen Substanzen wurden mit maximalen Konzentrationen von 0,012 mg/m³ (Brommethan), 0,49 mg/m³ (Dichlormethan) und 0,45 mg/m³ (Tetrachlormethan) gefunden.

Bei der Produktion von Schuhen werden eine Reihe von Klebstoffen und Kunststoffen eingesetzt, die eine Emission von Schadstoffen verursachen können. Das könnte die starke Belastung der Container mit hohen Konzentrationen an Industriechemikalien erklären.

Abbildung 6.17: Graphische Darstellung der Ergebnisse für Container mit Schuhen (n=4).
Insgesamt 18 der zufällig ausgewählten Container hatten Textilien geladen. Abbildung 6.18A zeigt, dass neun der Zielsubstanzen gefunden wurden und davon für Schwefelkohlenstoff, 1,2-Dichlorethan und Benzol die jeweiligen Grenzwerte mit 32,8, 0,26 und 0,39 mg/m³ bei je einem Container überschritten wurden. Damit wies Schwefelkohlenstoff nach Toluol (44,1 mg/m³) die zweithöchste Konzentration in der Gruppe auf. Bei den übrigen Substanzen waren 0,075 (Brommethan), 0,66 (Dichlormethan), 0,026 (Tetrachlormethan), 0,23 (1,2-Dichlorpropan) und 0,79 mg/m³ (Ethylbenzol) die Maximalkonzentrationen.

Textilien werden sowohl aus Kunst- als auch aus Naturfasern gefertigt. Außerdem kommen auch hier teilweise Klebstoffe zum Einsatz, gerade im Bereich der so genannten Accessoires, wie beispielsweise Gürteln. Erhöhte Konzentrationen an Industriechemikalien oder auch Begasungsmitteln sind daher auch bei dieser Warenguppe erklärbar.

Abbildung 6.18: Graphische Darstellung der Ergebnisse für Container mit Textilien (n=18).

Insgesamt ist die Belastung der Container verschiedener Warenguppen unterschiedlich ausgefallen. Die Warengruppenguppen waren mit 4 bis 30 Containern sehr klein, so dass eine aussagekräftige statistische Auswertung und eine Generalisierung der aus den Ergebnissen ableitbaren Aussagen nicht möglich sind. Eine Tendenz lässt sich jedoch erkennen. Als stärker belastet erscheinen die Warenguppen Möbel, Schuhe, Textilien, Sammelgut und Fahrzeuge/Teile mit

6.6.4 Zusätzliche Substanzen in Containerluftproben

Containerluftproben

Im vorliegenden Fall des in Abbildung 6.19A dargestellten Chromatogramms der Luftprobe aus einem Container mit Luftmatratzen (Probe 86, Tabelle 6.3), konnten neben den Zielsubstanzen 1,2-Dichloroethan, Benzol, Toluol und Ethylbenzol noch vier weitere Substanzen identifiziert werden: Aceton (2-Propanon), 2-Methyl-2-propanol, Ethylacetat (Ethylethanoat) und Butylethanoat. Bei diesen Substanzen handelt es sich wahrscheinlich um Industriechemikalien wie Lösungsmittel, die aus dem Produktionsprozess der Luftmatratzen stammen und in die Containerluft abgegeben wurden. Weitere Peaks im Chromatogramm zeigen weitere Substanzen an, die jedoch nicht identifiziert werden konnten, da die vorgeschlagenen Vergleichsspektren und die zugehörigen Retentionsindices nicht oder nicht eindeutig mit den ermittelten übereinstimmten.

Containerluftproben

Tabelle 6.4: Identifizierung von zusätzlichen Substanzen in Probe 86 (Tab. 6.3) aus Abb. 6.19A

<table>
<thead>
<tr>
<th>Peak</th>
<th>Substanz</th>
<th>NIST-match [%]</th>
<th>RI</th>
<th>RI Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aceton</td>
<td>12,7</td>
<td>460¹</td>
<td>459[94]</td>
</tr>
<tr>
<td>2</td>
<td>2-Methyl-2-propanol</td>
<td>14,5</td>
<td>509</td>
<td>500[95]</td>
</tr>
<tr>
<td>3</td>
<td>Ethylacetat</td>
<td>16,6</td>
<td>600</td>
<td>603[96]</td>
</tr>
<tr>
<td>4</td>
<td>Butylethanoat</td>
<td>77,9</td>
<td>796</td>
<td>798[97]</td>
</tr>
</tbody>
</table>

Tabelle 6.5: Identifizierung von zusätzlichen Substanzen in Probe 70 (Tab. 6.3) aus Abb. 6.19B

<table>
<thead>
<tr>
<th>Peak</th>
<th>Substanz</th>
<th>NIST-match [%]</th>
<th>RI</th>
<th>RI Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dimethylsulfid</td>
<td>3,15</td>
<td>507</td>
<td>512[98]</td>
</tr>
<tr>
<td>2</td>
<td>cis-1-Ethyl-3-methylcyclohexan</td>
<td>16,8</td>
<td>891</td>
<td>894[99]</td>
</tr>
</tbody>
</table>

In Abbildung 6.20 sind Chromatogramme von selektiv beprobten Containern abgebildet. Abbildung 6.20A zeigt das Chromatogramm der Luftprobe aus einem mit Gewürzen beladenen Container, der auch mit Phosphorwasserstoff belastet war (9,73 mg/m³, Probe 17 aus Tabelle 6.2). Hier waren neben weiteren sieben Zielsubstanzen noch andere Substanzen vorhanden, von denen vier identifiziert werden konnten. Dabei handelte es sich um Chlormethan, Aceton, 2-Methylpropanal und Trichlorethen (Tabelle 6.6). Für die Peaks mit den Nummern 5 und 6 wurden verschiedene Terpene vorgeschlagen. Es konnte aber keine eindeutige Zuordnung getroffen werden, da keiner der Vorschläge zu den ermittelten Retentionsindices passte. Während die übrigen Substanzen eher als Industriechemikalien eingestuft werden können, handelt es sich bei Terpenen meist um natürliche Verbindungen, die in diesem Fall aus den Gewürzen selbst stammen können. In Abbildung 6.20B ist das Chromatogramm einer Luftprobe aus einem Container, der Schmuckkästchen transportierte, dargestellt (Probe 32 in Tabelle 6.2). Neben Toluol in hoher Konzentration (58,9 mg/m³) und fünf weiteren Zielsubstanzen konnten zwölf zusätzliche Substanzen identifiziert werden. Dabei handelte es sich um Aceton, 2-Butanon, 2-Methylhexan, 2,3-Dimethylpentan, 3-Methylhexan, Methyl-2-methylpropanoat, Methylcyclohexan, Ethylcyclohexan, cis-1,3-Dimethylcyclohexan, Ethylcyclohexan, p-Xylol und (1R)-α-Pinen (Tabelle 6.7). Es war eine große Anzahl weiterer Substanzen enthalten, wie aus den Peaks in Abb. 6.20B hervorgeht, jedoch konnten die zugehörigen Substanzen nicht identifiziert werden, da sie zum Teil coeluierten oder die Peaks zu klein und die Spektren nicht eindeutig waren. Auch hier handelt es sich mit Ausnahme von (1R)-α-Pinen wahrscheinlich um Industriechemikalien.

¹Aufgrund von Änderungen wie Säulenkürzungen im Zuge von Wartungsarbeiten oder Variation des Splitflusses bei der Methodenmodifikation gemäß Abschnitt 4.2.5, varierten die Retentionszeiten leicht. Da die Alkanreihe zur Bestimmung der Retentionsindices nur einmal aufgenommen wurde, variierten die Retentionsindices für Aceton zwischen den gezeigten Proben leicht.
Abbildung 6.20: Chromatogramme zweier selektiver Containerluftproben. A: Container mit Gewürzen, B: Container mit Schmuckkästchen. DCM = Dichlormethan, CS$_2$ = Schwefelkohlenstoff, DCE = 1,2-Dichlorethan, B = Benzol, CCl$_4$ = Tetrachlormethan, DCP* = 1,2-Dichlorpropan (Peak nur im SIM-Chromatogramm sichtbar), T = Toluol, E = Ethyl-benzol. Zusätzliche Peaks (rote Zahlen) siehe Tabellen 6.6 und 6.7.
Containerluftproben

Tabelle 6.6: Identifizierung von zusätzlichen Substanzen in Probe 17 (Tab. 6.2) aus Abb. 6.20A

<table>
<thead>
<tr>
<th>Peak</th>
<th>Substanz</th>
<th>NIST-match [%]</th>
<th>RI</th>
<th>RI Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chlormethan</td>
<td>96,9</td>
<td>335</td>
<td>332</td>
</tr>
<tr>
<td>2</td>
<td>Aceton</td>
<td>47</td>
<td>459</td>
<td>459</td>
</tr>
<tr>
<td>3</td>
<td>2-Methylpropanal</td>
<td>4,96</td>
<td>532</td>
<td>538</td>
</tr>
<tr>
<td>4</td>
<td>Trichlorethen</td>
<td>75,3</td>
<td>676</td>
<td>680</td>
</tr>
<tr>
<td>5</td>
<td>Terpen 1</td>
<td>-</td>
<td>892</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Terpen 2</td>
<td>-</td>
<td>897</td>
<td>-</td>
</tr>
</tbody>
</table>

1Siehe Fußnote auf Seite 118

Tabelle 6.7: Identifizierung von zusätzlichen Substanzen in Probe 32 (Tab. 6.2) aus Abb. 6.20B

<table>
<thead>
<tr>
<th>Peak</th>
<th>Substanz</th>
<th>NIST-match [%]</th>
<th>RI</th>
<th>RI Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aceton</td>
<td>65,7</td>
<td>463</td>
<td>459</td>
</tr>
<tr>
<td>2</td>
<td>2-Butanen</td>
<td>69,9</td>
<td>569</td>
<td>569</td>
</tr>
<tr>
<td>3</td>
<td>2-Methylhexan</td>
<td>33,1</td>
<td>657</td>
<td>658</td>
</tr>
<tr>
<td>4</td>
<td>2,3-Dimethylpentan</td>
<td>34,1</td>
<td>659</td>
<td>661</td>
</tr>
<tr>
<td>5</td>
<td>3-Methylhexan</td>
<td>76,8</td>
<td>666</td>
<td>672</td>
</tr>
<tr>
<td>6</td>
<td>Methyl-2-methylpropenoat</td>
<td>93,7</td>
<td>686</td>
<td>696</td>
</tr>
<tr>
<td>7</td>
<td>Methylcyclohexan</td>
<td>55,1</td>
<td>713</td>
<td>714</td>
</tr>
<tr>
<td>8</td>
<td>Ethylcyclopentan</td>
<td>38,0</td>
<td>723</td>
<td>727</td>
</tr>
<tr>
<td>9</td>
<td>cis-1,3-Dimethylcyclohexan</td>
<td>19,2</td>
<td>769</td>
<td>768</td>
</tr>
<tr>
<td>10</td>
<td>Ethylcyclohexan</td>
<td>95,5</td>
<td>822</td>
<td>825</td>
</tr>
<tr>
<td>11</td>
<td>p-Xylol</td>
<td>30,6</td>
<td>845</td>
<td>849</td>
</tr>
<tr>
<td>12</td>
<td>(1R)-α-Pinen</td>
<td>13,3</td>
<td>898</td>
<td>-</td>
</tr>
</tbody>
</table>

1Siehe Fußnote auf Seite 118

7.1 Durchführung und Ablauf der Begasung

7.1.1 Beschreibung des Begasungsplatzes

7.1.2 Durchführung der Begasung

Bei dem Inhalt des zu begasenden Containers handelte es sich um Pistazienkerne, die in Kartons verpackt waren. Der 20 ft-Container war nicht vollständig ausgefüllt. Schätzungsweise wurde die Hälfte des Containervolumens von der Ware eingenommen. Vor Beginn der Begasung wurden die Druckausgleichsschlitzte des Containers mit Gewebeband abgeklebt (siehe Abb. 7.2A). In den Container wurde außerdem eine Luftreinigungsanlage eingebracht, die nach der Einwirkzeit des Begasungsmittels zeitgesteuert beginnen sollte, die Containerinnenluft mit 300 m³/h durch einen Aktivkohlefilter zu pumpen, um das Begasungsmittel zu entfernen (Abb. 7.2B).

Die Begasung mit Phosphorwasserstoff wurde mit Phosphidplatten (Abb. 7.3) durchgeführt. Es wurden 3 Phosphidplatten verwendet. Die Platten wurden in den Container gelegt, der daraufhin verschlossen und gemäß TRGS 512 mit einem Warnhinweis versehen wurde (Abb. 7.4).

Abbildung 7.4: Warnhinweis gemäß TRGS 512, dass der Container unter Begasung steht.
Die in dem Container befindliche Luftreinigungsanlage war zeitlich so programmiert, dass 60 Stunden nach Beginn der Begasung, also nach Einbringen der Phosphidplatten und Verschließen des Containers, eine sechsständige Filterung der Luft im Container begann. Nach Angaben des Begasungspersonals wird der Container in der Regel direkt im Anschluss an die Luftreinigung geöffnet. Im Rahmen der hier beschriebenen Begasung kam es jedoch zu einer Differenz von 5 Stunden zwischen Beendigung der Luftreinigung und der Öffnung des Containers. 20 Minuten nach der Öffnung des Containers wurde durch einen Mitarbeiter der Begasungsfirma eine Messung mittels portablen Detektors „PAC“ (Dräger PAC 7000 für PH$_3$, elektrisch-chemischer Sensor) durchgeführt. Aufgrund der dabei festgestellten Konzentration von 3,5 mg/m3 wurde nach weiteren 10 Minuten eine zweite PAC-Messung durchgeführt, die eine Konzentration von 0,014 mg/m3 anzeigte und auf deren Basis der Container zur Entladung freigegeben wurde. Unverzüglich nach der Freimessung begannen Mitarbeiter der Lagerfirma, den Container zu entladen und die Ware in Lagerhallen unterzubringen.

7.2 Probenahmen

Tabelle 7.1: Übersicht über die zeitliche und örtliche Verteilung der Proben

<table>
<thead>
<tr>
<th>Messpunkt</th>
<th>Entfernung [m]</th>
<th>0,03</th>
<th>0,1</th>
<th>10</th>
<th>1</th>
<th>Innen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeitpunkt [h]*</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>a</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>28</td>
<td>b</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>52</td>
<td>c</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>60-66</td>
<td>Aktivität der Luftreinigungsanlage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>d</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>/</td>
<td>Öffnung des Containers durch die Begasungsfirma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71,1</td>
<td>e</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>71,5</td>
<td>f</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*Nach Begasungsbeginn, x = Probe, - = keine Probe

7.3 Ergebnisse

Die Proben wurden speziell auf das verwendete Begasungsmittel Phosphorwasserstoff untersucht. Eine quantitative Auswertung wurde daher nur für Phosphorwasserstoff durchgeführt. Die Ergebnisse der Messungen sind in Abbildung 7.6 und Tabelle 7.2 zusammengefasst. Außerhalb des Containers bei geschlossenem Container wurde in 10 von 16 Proben Phosphorwasserstoff nachgewiesen. Die Konzentrationen bewegten dabei sich zwischen 0,003 mg/m³ und 1,01 mg/m³. Die Konzentration direkt vor der Containertür (0,03 m Abstand) nahm über die Zeit zu, auch über den Zeitraum der Luftfilterung im Container hinaus (0,003 mg/m³, 0,013 mg/m³ und 0,024 mg/m³ bei 0, 28 und 52 Stunden nach Begasungsbeginn und 0,099 mg/m³ nach 71 Stunden bzw. 5 Stunden nach Ende der Luftfilterung). Beim Belüftungsschluss (0,1 m) und bei einem Meter Abstand im Abwind (1 m) konnte das Begasungsmittel zu Beginn der Begasung noch nicht nachgewiesen werden. Nach 28 Stunden wurden Konzentrationen von 0,086 mg/m³ (am Druckausgleichsschluss) und 0,056 mg/m³ (1 m im Abwind) nachgewiesen werden. 52 Stunden nach Begasungsbeginn hatten diese Konzentrationen dann auf 0,045 und 0,004 mg/m³ abgenommen. 71 h nach Begasungsbeginn, also nach der Luftfilterung im Container (60-66 Stunden nach Begasungsbeginn), war die
Konzentration in 1 m Entfernung im Abwind vom Container mit 0,040 mg/m³ wieder angestiegen, jedoch nicht so hoch wie 28 h nach Begasungsbeginn. Am Druckausgleichsschlitz war die letzte Probe (71 h nach Begasungsbeginn) etwas näher am Schlitz genommen worden als zuvor (0,01 m statt wie zuvor 0,1 m), wobei nicht ausgeschlossen werden kann, dass die Differenz einen Einfluss auf das Messergebnis hatte. Die Konzentration lag hier bei 1,01 mg/m³. An der Absperrgrenze des Begasungsplatzes bei 10 m Entfernung vom Container wurde das Begasungsmittel nicht nachgewiesen, während der Container geschlossen war. Unmittelbar vor Öffnung des Containers wurde aus dem Inneren des Containers eine Luftprobe entnommen, in der eine Konzentration von etwa 95,8 mg/m³ gemessen wurde. In den Proben, die anschließend an die Öffnung direkt vor dem Container genommen wurden, wurden 2,16 mg/m³ und 0,079 mg/m³ gemessen, und zwar 5 bzw. 30 Minuten nach Öffnung der Türen. In der Probe, die 30 Minuten nach Öffnung der Türen an der Absperrung des Begasungsplatzes gemessen wurde, wurden 0,027 mg/m³ Phosphorwasserstoff nachgewiesen.

Abbildung 7.6: Konzentrationsverlauf an den Messpunkten 1 bis 4 (außen) mit der Zeit. 1: Containertür, 2: Druckausgleichsschlitz, 3: Absperrung, 4: 1 m Entfernung vom Container.
Tabelle 7.2: Ergebnisse von Luftproben während der Begleitung einer Containerbegasung

<table>
<thead>
<tr>
<th>Zeitpunkt [h]</th>
<th>Temperatur [°C]</th>
<th>Relative Luftfeuchtigkeit [%]</th>
<th>PH₃-Konzentration [mg/m³]</th>
<th>Messpunkt [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11,7</td>
<td>78</td>
<td>0,003</td>
<td>1a</td>
</tr>
<tr>
<td>0</td>
<td>11,7</td>
<td>78</td>
<td><NG</td>
<td>4a</td>
</tr>
<tr>
<td>0</td>
<td>11,7</td>
<td>78</td>
<td><NG</td>
<td>3a</td>
</tr>
<tr>
<td>0</td>
<td>11,7</td>
<td>78</td>
<td><NG</td>
<td>2a</td>
</tr>
<tr>
<td>28</td>
<td>10,9</td>
<td>68</td>
<td>0,013</td>
<td>1b</td>
</tr>
<tr>
<td>28</td>
<td>10,9</td>
<td>68</td>
<td>0,056</td>
<td>4b</td>
</tr>
<tr>
<td>28</td>
<td>10,9</td>
<td>68</td>
<td><NG</td>
<td>3b</td>
</tr>
<tr>
<td>28</td>
<td>10,9</td>
<td>68</td>
<td>0,086</td>
<td>2b</td>
</tr>
<tr>
<td>52</td>
<td>14,9</td>
<td>46</td>
<td>0,024</td>
<td>1c</td>
</tr>
<tr>
<td>52</td>
<td>14,9</td>
<td>46</td>
<td>0,004</td>
<td>4c</td>
</tr>
<tr>
<td>52</td>
<td>14,9</td>
<td>46</td>
<td><NG</td>
<td>3c</td>
</tr>
<tr>
<td>52</td>
<td>14,9</td>
<td>46</td>
<td>0,045</td>
<td>2c</td>
</tr>
<tr>
<td>60-66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>4,3</td>
<td>84,4</td>
<td>0,099</td>
<td>1d</td>
</tr>
<tr>
<td>71</td>
<td>4,3</td>
<td>84,4</td>
<td>0,040</td>
<td>4d</td>
</tr>
<tr>
<td>71</td>
<td>4,3</td>
<td>84,4</td>
<td><NG</td>
<td>3d</td>
</tr>
<tr>
<td>71</td>
<td>4,3</td>
<td>84,4</td>
<td>1,01</td>
<td>2d</td>
</tr>
<tr>
<td>71</td>
<td>4,3</td>
<td>84,4</td>
<td>95,8</td>
<td>5d</td>
</tr>
<tr>
<td>71,1</td>
<td>4,3</td>
<td>84,4</td>
<td>2,16</td>
<td>1e</td>
</tr>
<tr>
<td>71,5</td>
<td>4,3</td>
<td>84,4</td>
<td>0,027</td>
<td>3f</td>
</tr>
<tr>
<td>71,5</td>
<td>4,3</td>
<td>84,4</td>
<td>0,079</td>
<td>1f</td>
</tr>
</tbody>
</table>

Beschreibung der Messpunkte:
1: Vor der Containertür, 2: Bei abgeklebtem Druckausgleichsschlitz, 3: An der Absperrgrenze des Begasungsplatzes gegenüber der Containertür, 4: 1m im Abwind des Containers je nach Windrichtung relativ zum Container (siehe Schemazeichnung in Abb. 8.5), 5: Im geschlossenen Container.

Luftreinigung im Container mittels Aktivkohlefilterung

71	4,3	84,4	0,099	1d	0,03
71	4,3	84,4	0,040	4d	1
71	4,3	84,4	<NG	3d	10
71	4,3	84,4	1,01	2d	0,01
71,1	4,3	84,4	95,8	5d	innen
71,5	4,3	84,4	2,16	1e	0,03
71,5	4,3	84,4	0,027	3f	10
71,5	4,3	84,4	0,079	1f	0,03
7.4 Diskussion der Ergebnisse

Die Ergebnisse der während der Begasung durchgeführten Messungen deuten zunächst an, dass während der Begasung ein Abstand von 10 m zur Abgrenzung des Begasungsplatzes ausreicht, da an der Grenze zum Begasungsplatz kein Phosphorwasserstoff nachgewiesen werden konnte. Nachdem der Container geöffnet worden war, konnte jedoch mit 0,027 mg/m³ eine Konzentration von etwa dem doppelten Grenzwert gemäß TRGS 512 an der Absperrung ermittelt werden. Es stellt sich daher die Frage, ob ein Abstand von 10 m ausreichend ist, denn Personen außerhalb des Begasungsplatzes sind ungeschützt.

Besonders hoch war die Phosphorwasserstoffkonzentration von etwa 95,8 mg/m³, die in der Probe ermittelt wurde, die unmittelbar vor der Öffnung des Containers aus dessen Innenluft genommen worden war. Die Luft sollte durch die Filteranlage im Container bereits gereinigt sein. Da das Ende der Luftreinigung bereits fünf Stunden zurücklag, könnte es sich um die nachträgliche Emission aus den Waren handeln. Da sich die für die Begasung verwendeten Phosphidplatten während und nach der Luftreinigung noch im Container befanden, kann es sich auch um nachträglich daraus entwickelten Phosphorwasserstoff gehandelt haben, wenn sich das enthaltene Phosphid nicht vollständig zu Phosphorwasserstoff umgesetzt hat.

In der Luftprobe, die bei der Freigabe des Containers genommen wurde, konnte durch die TD-2D-GC-MS/FPD-Messung mit 0,079 mg/m³ noch eine Konzentration oberhalb des Grenzwertes nachgewiesen werden. Das Sensorgerät hatte nur eine Konzentration von 0,014 mg/m³ angezeigt, worauf die Freigabe des Containers beruhte. Ob die Differenz der vor Ort gemessenen Konzentration zum Messwert der im Labor gemessenen Probe am verwendeten Messgerät lag, an dessen Handhabung oder einem nicht einzuschätzenden Parameter, wie z.B. ungünstiger Luftströmungen, kann und soll an dieser Stelle nicht erörtert werden. Allerdings sollte dieser Aspekt in zukünftigen Studien systematisch untersucht werden.

Die Ware wurde unmittelbar nach der Freimessung des Containers in Lagerhallen untergebracht. Ob hier durch nachträgliche Emissionen aus der Ware bedenkliche Konzentrationen entstanden sind, konnte im Rahmen der Studie nicht untersucht werden. Einzelne Untersuchungen zum Emissionsverhalten begaster Lebensmittel werden in Kapitel 8 präsentiert.

Es liegen kaum Untersuchungen vor, die sich mit der Emission von Phosphorwasserstoff aus begasten Räumen, wie Containern befassen. Zwei Studien zu dieser Thematik wurden veröffentlicht und sollen hier erwähnt werden:

Pavageau et al. haben 2003 eine Studie veröffentlicht, bei der Emissionen während und nach der Begasung eines Tabak-Lagerraumes mit Phosphorwasserstoff untersucht wurden[28]. Dabei wurden während der Begasung in einem Abstand von 5 m von dem geschlossenen, begasten Raum Konzentrationen von 1,8 ng/m³ bis
9,2 ng/m³ ermittelt. In der Lagerhalle wurden nach der Begasung und einer 12-stündigen Belüftung im Laufe von 2 Tagen Konzentrationen von 5,6 bis 2,677 ng/m³ gemessen. Dabei nahm die Konzentration mit der Zeit ab. Allerdings wird aus der Beschreibung der genannten Studie nicht klar, ob der Tabak während dieser Zeit in dem Lagerraum verblieb oder entfernt wurde. Die in dieser Studie ermittelten Konzentrationen lagen um eine Größenordnung unterhalb der Nachweisgrenze der vorliegenden Arbeit und spiegeln damit nicht die im Rahmen der Containerbegasung und der Begasungsexperimente gesammelten Erfahrungen wider.

Im Rahmen einer Studie des Niederländischen Instituts für Gesundheit und Umwelt (Rijksinstituut voor Volksgezondheid en Milieu, RIVM) und des Ministeriums für Wohnungswesen, Raumordnung und Umweltschutz (Ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieu, VROM) wurden Emissionen im Umkreis um Container untersucht, die im Anschluss an eine Begasung mit Phosphorwasserstoff zum Auslüften geöffnet wurden[111]. Unmittelbar vor der Öffnung der Container lagen die Konzentrationen darin zwischen 2,82 und 360 mg/m³. Nach dem Öffnen der Container konnte das Begasungsmittel in Abständen zwischen 5 und 20 m von den Containern nicht nachgewiesen werden. Für die Messungen wurde dabei eine Nachweigrenze von etwa 0,020-0,030 mg/m³ angegeben. In der vorliegenden Arbeit konnte dagegen während der Belüftung des Containers im Abstand von 10 m noch eine Konzentration von 0,023 mg/m³ nachgewiesen werden. Möglicherweise lagen bei den zitierten Messungen ähnliche Konzentrationen vor, wie bei den Proben der vorliegenden Arbeit, konnten aber aufgrund der höheren Nachweigrenze nicht erfasst werden. Da sowohl die Niederländische Studie als auch die Studien der vorliegenden Arbeit nur einzelne Experimente beinhalten und Wind- und Wetterbedingungen einen Einfluss auf die Verteilung von Emissionen haben, können keine allgemeingültigen Aussagen abgeleitet werden. Dennoch zeigen die Ergebnisse der vorliegenden Studie, dass weitere Untersuchungen notwendig sind, um unter anderem zu überprüfen, ob ein Sicherheitsabstand von 10 m für Begasungsplätze ausreichend ist.
8 Begasungsexperimente

8.1 Auswahl der zu begasenden Lebensmittel

8.2 Durchführung der Experimente

8.2.1 Durchführung der Begasung

wurden dem Begasungsmittel in dieser Form für einen Zeitraum von 66,5 bis 144 Stunden ausgesetzt. Anschließend wurde der Folienschlauch zerschnitten und die Lebensmittel auf dem Uhrglas entnommen.

8.2.2 Ausgasung der zuvor begasten Lebensmittel

8.2.3 Beprobung der Luft aus den Probenkammern und Messung der Proben

8.3 Ergebnisse

8.3.1 Erdnüsse

Wie aus den Tabellen 8.1 und 8.2 hervorgeht, nahm die Emission aus den Proben über einen Zeitraum von vier bis fünf Tagen so weit ab, dass kein Phosphorwasserstoff mehr in den Probenkammern nachgewiesen werden konnte. Dabei lagen die Konzentrationen nach den jeweils ersten 24 Stunden in der Probenkammer bei 0,058 mg/m³ und 0,14 mg/m³.

Tabelle 8.1: Ergebnisse der ersten experimentellen Begasung und Ausgasung von Erdnüssen

<table>
<thead>
<tr>
<th>Menge des begasten Lebensmittels [g]</th>
<th>Begasungsdauer [h]</th>
<th>Konzentration PH₃ [mg/m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>72</td>
<td>67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beprobungszeitpunkt [h nach Begasungsende]</th>
<th>Verweildauer in der Probenkammer [h]</th>
<th>Phosphorwasserstoff in der Probenkammer [mg/m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>20</td>
<td>0,058</td>
</tr>
<tr>
<td>44</td>
<td>24</td>
<td>0,013</td>
</tr>
<tr>
<td>71</td>
<td>27</td>
<td>0,004</td>
</tr>
<tr>
<td>93</td>
<td>22</td>
<td><NG</td>
</tr>
</tbody>
</table>

Tabelle 8.2: Ergebnisse der zweiten experimentellen Begasung und Ausgasung von Erdnüssen

<table>
<thead>
<tr>
<th>Menge des begasten Lebensmittels [g]</th>
<th>Begasungsdauer [h]</th>
<th>Konzentration PH₃ [mg/m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>70</td>
<td>71</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beprobungszeitpunkt [h nach Begasungsende]</th>
<th>Verweildauer in der Probenkammer [h]</th>
<th>Phosphorwasserstoff in der Probenkammer [mg/m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>24</td>
<td>0,14</td>
</tr>
<tr>
<td>48</td>
<td>24</td>
<td>0,024</td>
</tr>
<tr>
<td>72</td>
<td>24</td>
<td>0,008</td>
</tr>
<tr>
<td>96</td>
<td>24</td>
<td>0,003</td>
</tr>
<tr>
<td>122</td>
<td>26</td>
<td>< NG</td>
</tr>
</tbody>
</table>

(Gl. 8.1) \[c (\text{PH}_3) \ [\text{mg/m}^3] = 0,152 \ [\text{mg/m}^3] \times e^{-0,0523 \ [1/h] \times t \ [h]} \]

und für das in Tabelle 8.2 aufgeführte Experiment (rechte Kurve in Abb. 8.3A):

(Gl. 8.2) \[c (\text{PH}_3) \ [\text{mg/m}^3] = 0,396 \ [\text{mg/m}^3] \times e^{-0,0526 \ [1/h] \times t \ [h]} \]

Die Gleichungen passen zum Geschwindigkeitsgesetz erster Ordnung (Gl. 8.3), wie sie vereinfacht für eine Desorption angenommen werden kann\[^{112}\]. Darin ist \([A]\) die Konzentration zum Zeitpunkt \(t\) und \([A]_0\) die Ausgangskonzentration zum Zeitpunkt \(t = 0\) und \(k\) die Geschwindigkeitskonstante. Durch Auftragung des logarithmierten Quotienten von Konzentration und Ausgangskonzentration gegen die Zeit wird bei Reaktionen erster Ordnung eine Gerade erhalten, deren Steigung den Wert der Geschwindigkeitskonstante wiedergibt. Für die beiden Experimente ergeben sich daraus fast übereinstimmende Geschwindigkeitskonstanten von \(k = -0,0526 \text{ h}^{-1}\) und \(-0,0523 \text{ h}^{-1}\) (Abbildung 8.3B).

(Gl. 8.3) \[[A] = [A]_0 \times e^{-k \times t} \]

Abbildung 8.3: Darstellung der Phosphorwasserstoffemissionen aus begasten Erdnüssen (A) und Bestimmung der Geschwindigkeitskonstanten durch logarithmische Auftragung (B).
Unter der Annahme, dass die Desorption einem Geschwindigkeitsgesetz erster Ordnung folgt, kann die Halbwertszeit der Desorption aus den experimentell gewonnenen Daten berechnet werden, indem die experimentell ermittelte Geschwindigkeitskonstante k in Gleichung 8.4 eingesetzt wird:

\[
 t_{1/2} = \frac{\ln 2}{k}
\]

(Gl.8.4)

Gleichung 8.4 ergibt sich durch Auflösen von Gleichung 8.1 und Einsetzen von $t_{1/2}$ als Zeitpunkt:

\[
 k \cdot t_{1/2} = -\ln \left(\frac{\left[A \right]_0}{\left[A \right]} \right) = -\ln \left(\frac{1}{2} \right) = \ln 2 \quad \Rightarrow
 t_{1/2} = \frac{\ln 2}{k}
\]

(Gl.8.5)

Wie aus Gleichung 8.4 hervorgeht, ist die Halbwertszeit unabhängig von der Ausgangskonzentration. Aus beiden Experimenten der Erdnüsse ergibt sich damit gemäß Gleichung 8.5 Halbwertszeiten von etwa 13 Stunden.

\[
 t_{1/2} = \frac{\ln 2}{0,0523} = 13,3 \quad ; \quad t_{1/2} = \frac{\ln 2}{0,0526} = 13,2
\]

Bei zwei weiteren Begasungen von Erdnüssen, wurden die Erdnüsse anschließend für 24 und 72 Stunden unter einem Laborabzug positioniert, bevor sie zur Ausgasung in die Probenkammer gestellt wurden. Dabei simuliert die Abzug durch den permanenten Luftaustausch eine aktive Belüftung.

Bei einer Belüftungszeit von 24 Stunden wurden bei der anschließenden Ausgasung in der Probenkammer noch 0,035 mg/m³ Phosphorwasserstoff gemessen (Tab. 8.3). Bei dem Experiment, bei dem die Erdnüsse anschließend an die Begasung für eine Dauer von 72 Stunden belüftet wurden, konnte anschließend keine Emission des Begasungsmittels aus den Erdnüssen in der Probenkammer mehr nachgewiesen werden (siehe Tabelle 8.4).

Tabelle 8.3: Ergebnisse der experimentellen Begasung und Ausgasung von Erdnüssen mit Belüftung nach dem Begasungsschritt

Menge des begasten Lebensmittels [g]	250
Begassungsdauer [h]	72,5*
Konzentration PH₃ [mg/m³]	71
Beprobungszeitpunkt [h nach Belüftungsende]	22
Verweildauer in der Probenkammer [h]	22
Phosphorwasserstoff in der Probenkammer [mg/m³]	0,035

*Anschließend an die Begasung 24 h Belüftung vor der Ausgasung in der Probenkammer
Begasungsexperimente

Tabelle 8.4: Ergebnisse der experimentellen Begasung und Ausgasung von Erdnüssen mit Belüftung nach dem Begasungsschritt

Menge des begasten Lebensmittels [g]	300
Begasungsdauer [h]	144*
Konzentration PH$_3$ [mg/m3]	71

<table>
<thead>
<tr>
<th>Beprobungszeitpunkt [h nach Belüftungsende]</th>
<th>Verweildauer in der Probenkammer [h]</th>
<th>Phosphorwasserstoff in der Probenkammer [mg/m3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>27</td>
<td><NG</td>
</tr>
</tbody>
</table>

*Anschließend an die Begasung 72 h Belüftung vor der Ausgasung in der Probenkammer

Tabelle 8.5: Ergebnisse der experimentellen Begasung von Erdnüssen mit SO$_2$F$_2$

Menge des begasten Lebensmittels [g]	210
Begasungsdauer [h]	70
Konzentration SO$_2$F$_2$ [mg/m3]	209

<table>
<thead>
<tr>
<th>Beprobungszeitpunkt [h nach Begasungsende]</th>
<th>Verweildauer in der Probenkammer [h]</th>
<th>Sulfurylfluorid in der Probenkammer [mg/m3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>24</td>
<td>0,14</td>
</tr>
<tr>
<td>48</td>
<td>24</td>
<td>0,008</td>
</tr>
<tr>
<td>72</td>
<td>24</td>
<td><NG</td>
</tr>
</tbody>
</table>

8.3.2 Reis

Die Versuchsbedingungen und Ergebnisse der experimentellen Begasungen von Reis sind in den Tabelle 8.6 und 8.7 aufgeführt. Es wurden nach den jeweils ersten Ausgasungsphasen Konzentrationen von 0,007 und 0,006 mg/m3 Phosphorwasserstoff in den Probenkammern nachgewiesen. Bereits die zweite Emissionsprobe lag jeweils unterhalb der Nachweisgrenze. Ob hier die Abnahme der Emission einen ähnlichen Verlauf zeigt wie bei den Erdnüssen, kann daher aus dem Experiment nicht abgelesen werden.
Tabelle 8.6: Ergebnisse der ersten experimentellen Begasung und Ausgasung von Reis

<table>
<thead>
<tr>
<th>Menge des zu begasenden Lebensmittels [g]</th>
<th>Begasungsdauer [h]</th>
<th>Konzentration PH₃ [mg/m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>66,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>71</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beprobungszeitpunkt [h nach Begasungsende]</th>
<th>Verweildauer in der Probenkammer [h]</th>
<th>Phosphorwasserstoff in der Probenkammer [mg/m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>24</td>
<td>0,007</td>
</tr>
<tr>
<td>49</td>
<td>25</td>
<td><NG</td>
</tr>
</tbody>
</table>

Tabelle 8.7: Ergebnisse der zweiten experimentellen Begasung und Ausgasung von Reis

<table>
<thead>
<tr>
<th>Menge des zu begasenden Lebensmittels [g]</th>
<th>Begasungsdauer [h]</th>
<th>Konzentration PH₃ [mg/m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>71</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beprobungszeitpunkt [h nach Begasungsende]</th>
<th>Verweildauer in der Probenkammer [h]</th>
<th>Phosphorwasserstoff in der Probenkammer [mg/m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>25</td>
<td>0,006</td>
</tr>
<tr>
<td>49</td>
<td>24</td>
<td><NG</td>
</tr>
</tbody>
</table>

8.3.3 Pistazienkerne

In Tabelle 8.8 ist das Begasungsexperiment mit Pistazienkernen zusammengefasst. Hier konnten nur 0,004 mg/m³ Phosphorwasserstoff nach der ersten Emissionsphase in der Probenkammer festgestellt werden. In der zweiten Emissionsprobe wurde die Nachweisgrenze von Phosphorwasserstoff bereits unterschritten.

Tabelle 8.8: Ergebnisse der experimentellen Begasung und Ausgasung von Pistazienkernen

<table>
<thead>
<tr>
<th>Menge des zu begasenden Lebensmittels [g]</th>
<th>Begasungsdauer [h]</th>
<th>Konzentration PH₃ [mg/m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>262</td>
</tr>
<tr>
<td></td>
<td></td>
<td>67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>71</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beprobungszeitpunkt [h nach Begasungsende]</th>
<th>Verweildauer in der Probenkammer [h]</th>
<th>Phosphorwasserstoff in der Probenkammer [mg/m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>24</td>
<td>0,004</td>
</tr>
<tr>
<td>50</td>
<td>26</td>
<td><NG</td>
</tr>
</tbody>
</table>
Begasungsexperimente

8.3.4 Rosinen

Die Versuchsbedingungen und Ergebnisse der zwei Begasungsexperimente von Sultaninen sind in den Tabellen 8.9 und 8.10 dargestellt. In der Probenkammer konnte jeweils nur nach der ersten Ausgasung eine Konzentration von 0,001 mg/m³ Phosphorwasserstoff nachgewiesen werden und somit nicht festgestellt werden, ob die Emission mit einer ähnlichen Funktion wie bei den Erdnüssen abnimmt.

Tabelle 8.9: Ergebnisse der ersten experimentellen Begasung und Ausgasung von Sultaninen

Menge des zu begasenden Lebensmittels [g]	277	
Begasungsdauer [h]	72	
Konzentration PH₃ [mg/m³]	71	
Beprobungszeitpunkt [h nach Begasungsende]	Verweildauer in der Probenkammer [h]	Phosphorwasserstoff in der Probenkammer [mg/m³]
24	24	0,001
48	24	<NG

Tabelle 8.10: Ergebnisse der zweiten experimentellen Begasung und Ausgasung von Sultaninen

Menge des zu begasenden Lebensmittels [g]	279	
Begasungsdauer [h]	71	
Konzentration PH₃ [mg/m³]	71	
Beprobungszeitpunkt [h nach Begasungsende]	Verweildauer in der Probenkammer [h]	Phosphorwasserstoff in der Probenkammer [mg/m³]
24	24	0,001
48	24	<NG
8.3.5 Zusätzliche Substanzen

Tabelle 8.11: Identifizierung der Peaks im Chromatogramm aus Abbildung 8.4A und 8.4B

<table>
<thead>
<tr>
<th>Peak</th>
<th>Substanz</th>
<th>NIST-match [%]</th>
<th>RI</th>
<th>RI Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aceton</td>
<td>453 (^1)</td>
<td>459 (^3)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2-Methylbutan</td>
<td>66,9</td>
<td>489 (^2)</td>
<td>484 (^1)</td>
</tr>
<tr>
<td>3</td>
<td>3-Methylbutanal</td>
<td>72,9</td>
<td>622 (^1)</td>
<td>629 (^4)</td>
</tr>
<tr>
<td>4</td>
<td>2-Methylbutanal</td>
<td>34,2</td>
<td>631 (^1)</td>
<td>634 (^3)</td>
</tr>
<tr>
<td>5</td>
<td>1-Methyl-(1H)-Pyrrol</td>
<td>79,0</td>
<td>705 (^1)</td>
<td>715 (^4)</td>
</tr>
<tr>
<td>6</td>
<td>Dimethyldisulfid</td>
<td>80,8</td>
<td>713 (^1)</td>
<td>723 (^3)</td>
</tr>
<tr>
<td>7</td>
<td>Hexamethylcyclotrisiloxan</td>
<td>93,8</td>
<td>792 (^1)</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Abgleich mit selbst aufgenommenem Spektrum, siehe Anhang A7. \(^2\) Siehe Fußnote Seite 118. \(^3\) Originalliteratur zu den Retentionsindices. \(^4\) kein RI in der Literatur verfügbar.
Abbildung 8.4: Chromatogramme einer Probe der Emission von Erdnüssen. A,B: Massenspektrometer im Scan-Modus C: Flammenphotometer
Bei den Emissionsproben der Pistazien fiel ein großer Peak im Scan-Chromatogramm auf (Abbildung 8.5A). Dabei handelte es sich um Chlormethan, das anhand des Massenspektrums über die NIST-Spektrendatenbank identifiziert werden konnte (Abbildung 8.5B). Da Chlormethan nicht zu den Zielsubstanzen gehörte, wurde speziell für dieses Experiment eine Standardkurve aufgenommen, die in Anhang A6 der Arbeit dokumentiert ist. Dadurch konnte die Konzentration in der Probenkammer auf 0,8 bis 1 mg/m³ geschätzt werden. Diese Konzentration war auch in der zweiten Emissionsprobe vorhanden. Die Pistazienkerne mussten also schon zuvor mit der Substanz belastet gewesen sein und sie kontinuierlich abgeben. Es gibt Pflanzen, beispielsweise Kartoffelknollen, und Schimmelpilze die natürlicherweise Chlormethan produzieren[^44^-^116^-^118]. Bei Kartoffelknollen fanden Harper et al. 1999[^117], dass bis zu 650 ng Chlormethan pro Gramm Kartoffelknolle und Tag emittiert werden. Die im vorliegenden Experiment gefundenen Konzentrationen machen umgerechnet etwa 30 ng Chlormethan pro Gramm Pistazien und Tag aus, was verglichen mit den Kartoffeln in einem natürlichen Bereich liegen könnte. Allerdings konnte in der Literatur kein Hinweis auf natürliche Chlormethanemissionen aus Pistazien gefunden werden. Es kann daher nicht ausgeschlossen werden, dass Chlormethan als Pestizid oder in Form eines anderen Hilfsmittels für die Produktion der untersuchten Pistazien angewendet wurde.

Abbildung 8.5: Identifizierung von Chlormethan in einer Emissionsprobe von Pistazien
8.4 Diskussion der Ergebnisse

Tabelle 8.12: Übersicht über übliche Dosierung, Einwirkzeit und Wartezeit für Begasungen mit Phosphorwasserstoff bei verschiedenen Lebensmittelgruppen

<table>
<thead>
<tr>
<th>Lebensmittelgruppe</th>
<th>Dosierung PH₃</th>
<th>Einwirkzeit [h]</th>
<th>Wartezeit [Tage]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Getreide</td>
<td>5.500 mg/m³</td>
<td>60</td>
<td>0 (Getreide)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 (Mais)</td>
</tr>
<tr>
<td>Kakaobohnen</td>
<td>5.500 mg/m³</td>
<td>60</td>
<td>7</td>
</tr>
<tr>
<td>Trockenobst</td>
<td>5.500 mg/m³</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>Schalenobst (Nüsse)</td>
<td>5.500 mg/m³</td>
<td>60</td>
<td>42 (Schalenobst)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60 (Pistazien)</td>
</tr>
<tr>
<td>Tee</td>
<td>5.500 mg/m³</td>
<td>60</td>
<td>3</td>
</tr>
</tbody>
</table>

Quelle: Pflanzenschutzmittel-Verzeichnis, Präparat DEGESCH-Plates [10]

Es konnten im Rahmen der Experimente bei allen Lebensmitteln nachträgliche Emissionen von Phosphorwasserstoff festgestellt werden. Diese bewegten sich, außer im Falle der Erdnüsse im Bereich von 0,001 bis 0,007 mg/m³, bei den Erdnüssen wurden Konzentrationen von 0,058 und 0,14 mg/m³ nach den jeweils ersten 24 Stunden in den Probenkammern gemessen. Es liegt die Vermutung nahe, dass auch die Emissionen aus begasten Lebensmitteln nach einer realen Begasung

Begasungsexperimente

<table>
<thead>
<tr>
<th>Lebensmittel</th>
<th>Sorption [%] nach Reddy et al.[120]</th>
<th>PH$_3$-Konzentration [mg/m3] in der Probenkammer1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erdnüsse2</td>
<td>58,0</td>
<td>0,14</td>
</tr>
<tr>
<td>Reis</td>
<td>18,3</td>
<td>0,007</td>
</tr>
<tr>
<td>Pistazien</td>
<td>70,4</td>
<td>0,004</td>
</tr>
<tr>
<td>Rosinen</td>
<td>19,4</td>
<td>0,001</td>
</tr>
</tbody>
</table>

1Konzentration nach dem ersten Tag in der Probenkammer, 2Die im Versuch verwendeten Erdnüsse waren geschält und geröstet, in der Literatur nur geschält.

9 Zusammenfassung

Durch die Untersuchungen, die mittels der in dieser Arbeit entwickelten und validierten Methode durchgeführt wurden, konnte gezeigt werden, dass die Gefahren durch die Verwendung von Phosphorwasserstoff als Begasungsmittel noch unzureichend bekannt sind und auf diesem Gebiet noch viel zukünftige Forschung zu leisten sein wird.
10 Summary

The increase in globalization during the past decades resulted in an increase in the freight traffic which is strongly characterized by freight container shipment. To avoid the spreading of alien species as well as the deterioration of products, phytosanitary measures are carried out. These are heat treatment or the fumigation with pesticides of goods, dunnage, and other packing materials. As there are only few mandatory international regulations for the labeling of fumigated freight containers and the violation of existing regulations is neither monitored nor punished, hazardous situations were often reported when fumigated import containers were opened. When personnel of logistic companies or controlling bodies like inspectorates or customs officers enter such containers for unpacking or controlling activities they might be exposed to high concentrations of toxic gases. Besides containers that are still under fumigation, already ventilated containers or containers that carry goods which emit high levels of residual chemicals from their production process may pose a risk.

In the past methyl bromide has often been used as a fumigant for freight containers. As the use of methyl bromide has been restricted by the Montreal-Protocol and will be banned in future, the increased use of other fumigants as a replacement is likely. A very popular fumigant is hydrogen phosphide due to its easy handling and low costs. The effectiveness of hydrogen phosphide as a replacement for methyl bromide is already being investigated systematically. But also the use of substances that have not been used as fumigants before is likely. To assess possible hazards for employees handling freight containers, suitable analytical methods are needed. Up to now, a reliable and viable method for the analysis of phosphine along other fumigants and industrial chemicals in air was lacking.

Within the frame of the present work an analytical method for the sensitive detection and quantitation of phosphine simultaneously with volatile organic substances has been developed. For this purpose a thermal desorption system was coupled to a gas chromatograph equipped with two columns, a column switch, a mass spectrometric, and a flame photometric detector. The analytes were enriched by the thermal desorption system and injected to the first column which separated phosphine from the volatile organic compounds and the least from each other. The first column eluted to the column switch which led the volatile organic substances directly to the mass spectrometric detector. Phosphine was instead led to a second column eluting to the flame photometric detector which could very sensitively detect this substance. The method was optimized and validated for a set of 12 target compounds. Additionally a synchronized collection of SIM- and Scan-Data by the mass spectrometer was employed to allow the simultaneous quantitation of target compounds and screening of the samples for non-target substances.

Different aspects of the hazards emerging from the use of phosphine as a fumigant were investigated applying the before developed and validated method. First, air samples from imported freight containers were investigated. Taking into account
multiple contaminations with different target analytes within single containers, a total of 15 % of randomly investigated and 45 % of selectively investigated containers exceeded limit values of one or more substances. When classifying the randomly investigated containers, differences between commodity groups, regarding the contamination with the target analytes, could be shown. Furthermore, the results of the container investigations showed, among other findings, that the occurrence of phosphine in freight containers is often accompanied by heavy violations of the limit value for phosphine fumigations of 0,014 mg/m³ according to the German TRGS 512 Fumigations. In most of these cases no warning label was attached to the container. Based on the mass spectrometric scan chromatograms it could be observed that in addition to the target analytes further substances are often present in freight container air and that the composition of the air samples can be very complex.

Subsequently air samples from the surroundings of an actively phosphine fumigated container were investigated. Thereby, elevated concentrations of the fumigant were found in the vicinity of the container. At the border of the fumigation place, that should have acted as a safety distance to the fumigated container, a concentration of almost twice the TRGS 512-limit value for phosphine was detected.

To get an impression of the emissions of phosphine from fumigated foods, corresponding fumigation experiments were conducted in the laboratory. The foods were put in test chambers after the experimental fumigation. When analyzing air samples from the test chambers, phosphine could be detected in most cases although the concentrations that had been applied for the experimental fumigations were much lower than under real conditions. These findings indicate that analyses for the gas-free certification of ventilated containers and warehouses after fumigation might not be sufficient for workplace safety as subsequent emissions of phosphine in enclosed spaces might again lead to elevated concentrations.

The investigations carried out applying the method that was developed and validated in the course of this work, showed that the hazards resulting from the application of phosphine as a fumigant are still not fully understood so that future research has to be done on this topic.
11 Experimenteller Teil

11.1 Instrumentelle Ausstattung

11.1.1 Gaschromatograph

GC-Typ: Agilent GC 6890N

Software: Enhanced Chemstation, MSD Chemstation D.03.00.611, Agilent Technologies, Santa Clara, Kalifornien, USA.

Trägergas: He 5.0

Für die zur Messung der Proben verwendeten Säulen und Einstellungen siehe Kapitel 4, Tabelle 4.5.

11.1.2 Massenspektrometer

MS-Typ: Agilent 5975C VL MSD, Quadrupol Massenspektrometer mit EI-Ionenquelle. Agilent Technologies, Santa Clara, Kalifornien, USA.

Für die Probenmessungen verwendeten Einstellungen siehe Kapitel 4, Tabelle 4.11.

11.1.3 Flammenphotometrischer Detektor

FPD-Typ: Agilent G3348B FPD, Agilent Technologies, Santa Clara, Kalifornien, USA.

Für die Probenmessungen verwendeten Einstellungen siehe Kapitel 4, Tabelle 4.9.

11.1.4 Thermodesorptionseinheit

TD-Typ: Unity Series 1 Thermodesorber, Markes International, Llantrisant, UK.

Autosampler: Airserver Series 1, 3 Kanäle und Airserver Series 1, 8 Kanäle, beide Markes International, Markes International, Llantrisant, UK.

Für die zur Probenmessung verwendete Kühlfalle und Einstellungen, siehe Kapitel 4, Tabelle 4.8.
11.2 Herstellung von Kalibrierstandards

11.2.1 Vorverdünnung für flüssige Substanzen

Tabelle 11.1: Volumina für die Vorverdünnung und resultierende Konzentration

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Volumen Flüssigkeit [µL]</th>
<th>Konzentration in der Vv [mg/m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzol</td>
<td>3,7</td>
<td>3.290</td>
</tr>
<tr>
<td>1,2-Dichlorethan</td>
<td>3,3</td>
<td>4.160</td>
</tr>
<tr>
<td>Dichlormethan</td>
<td>2,6</td>
<td>3.490</td>
</tr>
<tr>
<td>1,2-Dichlorpropan</td>
<td>4,0</td>
<td>4.690</td>
</tr>
<tr>
<td>Ethylbenzol</td>
<td>5,0</td>
<td>4.390</td>
</tr>
<tr>
<td>Iodmethan</td>
<td>2,6</td>
<td>5.990</td>
</tr>
<tr>
<td>Schwefelkohlenstoff</td>
<td>2,5</td>
<td>3.170</td>
</tr>
<tr>
<td>Tetrachlormethan</td>
<td>4,0</td>
<td>6.420</td>
</tr>
<tr>
<td>Toluol</td>
<td>4,4</td>
<td>3.870</td>
</tr>
<tr>
<td>Trichlornitromethan</td>
<td>4,1</td>
<td>6.870</td>
</tr>
</tbody>
</table>

Vv = Vorverdünnung

11.2.2 Gasförmige Substanzen

Gasförmige Substanzen standen in hohen Konzentrationen in Gasflaschen zur Verfügung. Aus den jeweiligen Gasflaschen wurden die Substanzen in Probenbeutel gefüllt um daraus mittels gasdichter Spritzen Verdünnungen herzustellen, wie im nächsten Abschnitt beschrieben wird. Zunächst wurde für alle in Tabelle 11.1 aufgeführten Substanzen eine Vorverdünnung aus Flüssigstandards hergestellt. Später wurde für die folgenden Substanzen ein hochkonzentrierter, gasförmiger Misch-Standard eingesetzt („TOX-Gas“, Konzentration jeweils in Klammern, Volumengas: Stickstoff) Brommehan (4040 mg/m³), Iodmethan (6020 mg/m³), Dichlormethan (3560 mg/m³), Schwefelkohlenstoff (3040 mg/m³), 1,2-Dichlorethan (4250 mg/m³), Tetrachlormethan (6420 mg/m³) und 1,2-Dichlorpropan (4990 mg/m³). Die Vorverdünnung wurde dann nur noch für Benzol, Toluol und Ethylbenzol eingesetzt. Für Brommehan wurde ein gasförmiger Standard von 198 mg/m³ in eingesetzt, bevor die Gasmischung zur Verfügung stand. Für Phosphorwasserstoff wurde ein Standardgas von 67,0 bzw. 70,5 mg/m³ eingesetzt (die Flaschen wurden ausgetauscht, als das Prüfzertifikat für die erste Flasche abgelaufen war). Für Sulfurylfluorid wurde ein Prüfgas der Konzentration 210 mg/m³ verwendet.
11.2.3 Kalibrierstandards

Tabelle 11.2: Konzentrationen der Kalibrierstandards

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Resultierende Standardkonzentrationen in mg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vol. Stickstoff 5.0 [L]</td>
</tr>
<tr>
<td>Brommethan</td>
<td>0,040</td>
</tr>
<tr>
<td>Iodmethan</td>
<td>0,060</td>
</tr>
<tr>
<td>Dichlormethan</td>
<td>0,036</td>
</tr>
<tr>
<td>Schwefelkohlenstoff</td>
<td>0,032</td>
</tr>
<tr>
<td>1,2-Dichlorethan</td>
<td>0,042</td>
</tr>
<tr>
<td>Benzol</td>
<td>0,033</td>
</tr>
<tr>
<td>Tetrachlormethan</td>
<td>0,064</td>
</tr>
<tr>
<td>1,2-Dichlorpropan</td>
<td>0,049</td>
</tr>
<tr>
<td>Toluol</td>
<td>0,039</td>
</tr>
<tr>
<td>Trichlornitromethan</td>
<td>0,059</td>
</tr>
<tr>
<td>Ethylbenzol</td>
<td>0,044</td>
</tr>
<tr>
<td>Phosphorwasserstoff</td>
<td>0,070</td>
</tr>
</tbody>
</table>
11.3 Verwendete Chemikalien

Abbildung 11.1: Piktogramme nach GHS und ihre Codierung

<table>
<thead>
<tr>
<th>GHS 01</th>
<th>GHS 02</th>
<th>GHS 03</th>
<th>GHS 04</th>
<th>GHS 05</th>
<th>GHS 06</th>
<th>GHS 07</th>
<th>GHS 08</th>
<th>GHS 09</th>
</tr>
</thead>
</table>

Tabelle 11.3: Verwendete Chemikalien

Aceton
- CAS-Nr.: 67-64-1
- GHS-Piktogramm: GHS 02, GHS 07
- H-Sätze: H252-H319-H336
- EUH-Sätze: EUH066
- P-Sätze: P210-P233-P305+P351+P338

Entzündbare Flüssigkeiten, Kat. 2; Augenreizung, Kat. 2; Spezifische Zielorgan-Toxizität (einmalige Exposition), Kat. 3

Benzol
- CAS-Nr.: 71-43-2
- GHS-Piktogramm: GHS 02, GHS 07, GHS 08
- P-Sätze: P201-P210-P308+P313-P301+P310-P305+P351+P338-P302+P352

Entzündbare Flüssigkeiten, Kat. 2; Karzinogenität, Kat. 1A; Keimzellmutagenität, Kat. 1B; Spezifische Zielorgan-Toxizität (wiederholte Exposition), Kat. 1; Aspirationsgefahren, Kat. 1; Augenreizung, Kat. 2; Reizwirkung auf die Haut, Kat. 2

Brommethan, 198 mg/m³ in Stickstoff, verdichtetes Gas
- CAS-Nr.: 74-83-9
- GHS-Piktogramm: GHS 04, GHS 06, GHS 08, GHS 09
- P-Sätze: P201-P273-P281-P301+P310-P305+P351+P338-P311

Gase unter Druck; Keimzellmutagenität, Kat. 2; Akute Toxizität, Kat. 3; Verschlucken; Akute Toxizität, Kat. 3; Einatmen; Spezifische Zielorgan-Toxizität (wiederholte Exposition), Kat. 2; Reizwirkung auf die Haut, Kat. 2; Augenreizung, Kat. 2; Spezifische Zielorgan-Toxizität (einmalige Exposition), Kat. 3; Gewässergefährdend, Akut Kat. 1; Die Ozonschicht schädigend, Kat. 1

Chlorbenzol
- CAS-Nr.: 108-90-7
- GHS-Piktogramm: GHS 02, GHS 07, GHS 09
- H-Sätze: H226-H332-H411
- P-Sätze: P273

Entzündbare Flüssigkeiten, Kat. 3; Akute Toxizität, Kat. 4, Einatmen; Gewässergefährdend, Chronisch Kat. 2

Chlorethen
- CAS-Nr.: 75-01-4
- GHS-Piktogramm: GHS 02, GHS 04, GHS 08
- P-Sätze: P201-P210-P308+P313-P410+P403

Gase unter Druck; Entzündbare Gase, Kat. 1; Karzinogenität, Kat. 1A

Chlormethan
- CAS-Nr.: 74-87-3
- GHS-Piktogramm: GHS 02, GHS 04, GHS 08
- H-Sätze: H220, H280, H351, H373
- P-Sätze: P210, P281, P410+P403

Entzündbare Gase, Kat. 1; Gase unter Druck; Karzinogenität, Kat. 2; Spezifische Zielorgan-Toxizität (wiederholte Exposition), Kat. 2
Fortsetzung Tabelle 11.3: Verwendete Chemikalien

<table>
<thead>
<tr>
<th>1,2-Dibromethan¹</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS-Nr.</td>
<td>106-93-4</td>
</tr>
<tr>
<td>GHS-Piktogramm</td>
<td>GHS 06, GHS 08, GHS 09</td>
</tr>
<tr>
<td>P-Sätze</td>
<td>P201-P273-P309+P310</td>
</tr>
<tr>
<td>Akute Toxizität, Kat. 3, Verschlucken; Akute Toxizität, Kat. 3, Hautkontakt; Akute Toxizität, Kat. 3, Einatmen; Karzinogenität, Kat. 1B; Reizwirkung auf die Haut, Kat. 2; Augenreizung, Kat. 2; Spezifische Zielorgan-Toxizität (einmalige Exposition), Kat. 3; Gewässergefährdend, Chronisch Kat. 2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1,2-Dichlorbenzol¹</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS-Nr.</td>
<td>95-50-1</td>
</tr>
<tr>
<td>GHS-Piktogramm</td>
<td>GHS 07, GHS 09</td>
</tr>
<tr>
<td>H-Sätze</td>
<td>H302-H315-H319-H335-H410</td>
</tr>
<tr>
<td>P-Sätze</td>
<td>P261-P273-P305+P351+P338-P501</td>
</tr>
<tr>
<td>Akute Toxizität, Kat. 4, Verschlucken; Reizwirkung auf die Haut, Kat. 2; Augenreizung, Kat. 2; Spezifische Zielorgan-Toxizität (einmalige Exposition), Kat. 3; Gewässergefährdend, Akut Kat. 1; Gewässergefährdend, Chronisch Kat. 1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1,3-Dichlorbenzol¹</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS-Nr.</td>
<td>541-73-1</td>
</tr>
<tr>
<td>GHS-Piktogramm</td>
<td>GHS 07, GHS 09</td>
</tr>
<tr>
<td>H-Sätze</td>
<td>H280-H411</td>
</tr>
<tr>
<td>P-Sätze</td>
<td>P264-P270-P273-P301+P312-P330-P501</td>
</tr>
<tr>
<td>Akute Toxizität, Kat. 4, Verschlucken; Gewässergefährdend, Chronisch Kat. 2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dichlordifluormethan¹</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS-Nr.</td>
<td>75-71-8</td>
</tr>
<tr>
<td>GHS-Piktogramm</td>
<td>GHS 04, GHS 07</td>
</tr>
<tr>
<td>H-Sätze</td>
<td>H280-H420</td>
</tr>
<tr>
<td>P-Sätze</td>
<td>P410+P403</td>
</tr>
<tr>
<td>Gase unter Druck, verflüssigtes Gas; Die Ozonschicht schädigend, Kat. 1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1,1-Dichlorethan¹</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS-Nr.</td>
<td>75-34-3</td>
</tr>
<tr>
<td>GHS-Piktogramm</td>
<td>GHS 02, GHS 07</td>
</tr>
<tr>
<td>H-Sätze</td>
<td>H225-H302-H319-H335-H412</td>
</tr>
<tr>
<td>P-Sätze</td>
<td>P201-P210-P302+P352-P304-P340-P305+P351+P338-P308-P313</td>
</tr>
<tr>
<td>Entzündbare Flüssigkeiten, Kat. 2; Akute Toxizität, Kat. 4, Verschlucken; Augenreizung, Kat. 2; Spezifische Zielorgan-Toxizität (einmalige Exposition), Kat. 3; Gewässergefährdend, Chronisch Kat. 3; Mindesteinstufung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1,2-Dichlorethan¹</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS-Nr.</td>
<td>107-06-2</td>
</tr>
<tr>
<td>GHS-Piktogramm</td>
<td>GHS 02, GHS 07, GHS 08</td>
</tr>
<tr>
<td>P-Sätze</td>
<td>P201-P210-P302+P352-P304-P340-P305+P351+P338-P308-P313</td>
</tr>
<tr>
<td>Entzündbare Flüssigkeiten, Kat. 2; Karzinogenität, Kat. 1B; Akute Toxizität, Kat. 4, Verschlucken; Augenreizung, Kat. 2; Spezifische Zielorgan-Toxizität (einmalige Exposition), Kat. 3; Reizwirkung auf die Haut, Kat. 2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1,1-Dichlorehlen¹</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS-Nr.</td>
<td>75-35-4</td>
</tr>
<tr>
<td>GHS-Piktogramm</td>
<td>GHS 02, GHS 06, GHS 08</td>
</tr>
<tr>
<td>H-Sätze</td>
<td>H224-H301-H351-H332</td>
</tr>
<tr>
<td>P-Sätze</td>
<td>P210-P241-P301+P310-P303+P361+P353-P405-P501</td>
</tr>
<tr>
<td>Entzündbare Flüssigkeiten, Kat. 1; Akute Toxizität, Kat. 3, Verschlucken; Karzinogenität, Kat. 2; Akute Toxizität, Kat. 4, Einatmen</td>
<td></td>
</tr>
</tbody>
</table>
Fortsetzung Tabelle 11.3: Verwendete Chemikalien

<table>
<thead>
<tr>
<th>Verwendete Chemikalien</th>
<th>CAS-Nr.</th>
<th>GHS-Piktogramm</th>
<th>H-Sätze</th>
<th>P-Sätze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dichlormethan</td>
<td>78-09-2</td>
<td>GHS 08</td>
<td>H 351</td>
<td>P281-P308+313</td>
</tr>
<tr>
<td>1,2-Dichlorpropan</td>
<td>78-87-5</td>
<td>GHS 02, GHS 07</td>
<td>H225-H302-H332</td>
<td>P210</td>
</tr>
<tr>
<td>1,2-Dichlor-1,1,2,2-tetrafluorethan</td>
<td>76-14-2</td>
<td>GHS 04</td>
<td>H280-H420</td>
<td>P410+P403</td>
</tr>
<tr>
<td>Ethylbenzol</td>
<td>100-41-4</td>
<td>GHS 04</td>
<td>P210</td>
<td></td>
</tr>
<tr>
<td>Helium, verdichtetes Gas (Betriebsgas)</td>
<td>7440-59-7</td>
<td>GHS 04</td>
<td>H280</td>
<td>P403</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Karzinogenität, Kat. 2</th>
<th>Entzündbare Flüssigkeiten, Kat. 2; Akute Toxizität, Kat. 4, Verschlucken; Akute Toxizität, Kat. 4, Einatmen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karzinogenität, Kat. 2</td>
<td>Reproduktionstoizität, Kat. 2; Reizwirkung auf die Haut, Kat. 2; Augenreizung, Kat. 2; Gewässegefährdend, Akut Kat. 1; Gewässegefährdend, Chronisch Kat. 1</td>
</tr>
</tbody>
</table>

* Mindesteinstufung
Fortsetzung Tabelle 11.3: Verwendete Chemikalien

<table>
<thead>
<tr>
<th>Verwendete Chemikalien</th>
<th>CAS-Nr.</th>
<th>GHS-Piktogramm</th>
<th>H-Sätze</th>
<th>P-Sätze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iodomethan</td>
<td>74-88-4</td>
<td>GHS 06, GHS 08</td>
<td>H351-H312-H331-H301-H335-H315</td>
<td>P261-P280-P301+P310-P311</td>
</tr>
<tr>
<td>Phosphorwasserstoff, 70 mg/m³ in Stickstoff, verdichtetes Gas</td>
<td>7803-51-2</td>
<td>GHS 06; GHS 02; GHS 05; GHS 04, GHS 09</td>
<td>H330-H220-H314-H280-H400</td>
<td>P260-P280-P210-P273-P304+P340-P303+P361+P353-P305+P351+P338-P315-P377-P381-P405-P403</td>
</tr>
<tr>
<td>Schwefelkohlenstoff</td>
<td>75-15-0</td>
<td>GHS 02,GHS 07, GHS 08</td>
<td>H225-H315-H319-H361fd-H372</td>
<td>P233-P260-P280-P302+P352-P305+P351+P338-P403+P235</td>
</tr>
<tr>
<td>Stickstoff, verdichtetes Gas (Betriebsgas)</td>
<td>7727-37-9</td>
<td>GHS 04</td>
<td>H280</td>
<td>P403</td>
</tr>
<tr>
<td>Styrol</td>
<td>100-42-5</td>
<td>GHS 02, GHS 07</td>
<td>H226-H332-H319-H315</td>
<td>P260-P210-P302+P352-P305+P351+P338</td>
</tr>
<tr>
<td>Sulfurylfuorid, 210 mg/m³ in Stickstoff, verdichtetes Gas</td>
<td>2699-79-8</td>
<td>GHS 04, GHS 06, GHS 08, GHS 09</td>
<td>H331-H373-H400</td>
<td>P260-P261-P271-P273-P304+P340-P311-P314-P321-P391-P403+P233-P405-P501</td>
</tr>
<tr>
<td>Synthetische Luft, verdichtetes Gas (Betriebsgas)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Karzinogenität, Kat. 2; Akute Toxizität, Kat. 4, Hautkontakt; Akute Toxizität, Kat. 3, Einatmen; Akute Toxizität, Kat. 3, Verschlucken; Spezifische Zielorgan-Toxizität (einfache Exposition), Kat. 3; Reizwirkung auf die Haut, Kat. 2; * Mindesteinstufung

* Entzündbare Gase, Kat. 1; Gase unter Druck, verflüssigtes Gas; Akute Toxizität, Kat. 1, Einatmen; Ätzwirkung auf die Haut, Kat. 1B; Gewässergefährdend, Akut Kat. 1

* Schwefelkohlenstoff

* Phosphorwasserstoff

* Styrol

* Sulfurylfuorid

* Synthetische Luft
Fortsetzung Tabelle 11.3: Verwendete Chemikalien

<table>
<thead>
<tr>
<th>1,1,2,2-Tetrachlorethan¹</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS-Nr.</td>
<td>79-34-5</td>
</tr>
<tr>
<td>GHS-Piktogramm</td>
<td>GHS 06, GHS 09</td>
</tr>
<tr>
<td>H-Sätze</td>
<td>H330-H310-H411</td>
</tr>
<tr>
<td>P-Sätze</td>
<td>P260-P273-P280-P284-P302+P350-P310</td>
</tr>
<tr>
<td>Akute Toxizität, Kat. 2, Einatmen *; Akute Toxizität, Kat. 1, Hautkontakt; Gewässergefährdend, Chronisch Kat. 2; * Mindesteinstufung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tetrachlorethen¹</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS-Nr.</td>
<td>127-18-4</td>
</tr>
<tr>
<td>GHS-Piktogramm</td>
<td>GHS 08, GHS 09</td>
</tr>
<tr>
<td>H-Sätze</td>
<td>H351-H411</td>
</tr>
<tr>
<td>P-Sätze</td>
<td>P273-P281</td>
</tr>
<tr>
<td>Karzinogenität, Kat. 2; Gewässergefährdend, Chronisch Kat. 2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tetrachlorormethan¹,³</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS-Nr.</td>
<td>56-23-5</td>
</tr>
<tr>
<td>GHS-Piktogramm</td>
<td>GHS 06, GHS 08</td>
</tr>
<tr>
<td>H-Sätze</td>
<td>H301+H311+H331, H351, H372, H412, H420</td>
</tr>
<tr>
<td>P-Sätze</td>
<td>P273, P280, P302+P352, P304+P340, P309+P310</td>
</tr>
<tr>
<td>Akute Toxizität, Kat. 3, Einatmen; Akute Toxizität, Kat. 3, Hautkontakt; Akute Toxizität, Kat. 3, Verschlucken, Karzinogenität, Kat. 2, Spezifische Zielorgan-Toxizität (wiederholte Exposition), Kat.1, Gewässergefährdend, Chronisch Kat. 3, Die Ozonschicht schädigend, Kat. 1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Toluol¹,³</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS-Nr.</td>
<td>108-88-3</td>
</tr>
<tr>
<td>GHS-Piktogramm</td>
<td>GHS 02, GHS 07, GHS 08</td>
</tr>
<tr>
<td>P-Sätze</td>
<td>P210-P301+P310-P331-P302+P352</td>
</tr>
<tr>
<td>Entzündbare Flüssigkeiten, Kat. 2; Reproduktionstoxizität, Kat. 2; Aspirationsgefahr, Kat. 1; Spezifische Zielorgan-Toxizität (wiederholte Exposition), Kat. 2; Reizwirkung auf die Haut, Kat. 2; Spezifische Zielorgan-Toxizität (einmalige Exposition), Kat. 3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1,2,4-Trichlorbenzol¹</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS-Nr.</td>
<td>120-82-1</td>
</tr>
<tr>
<td>GHS-Piktogramm</td>
<td>GHS 07, GHS 09</td>
</tr>
<tr>
<td>H-Sätze</td>
<td>H302-H315-H410</td>
</tr>
<tr>
<td>P-Sätze</td>
<td>P273-P302+P352</td>
</tr>
<tr>
<td>Akute Toxizität, Kat. 4, Verschlucken; Reizwirkung auf die Haut, Kat. 2; Gewässergefährdend, Akut Kat. 1; Gewässergefährdend, Chronisch Kat. 1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1,1,1-Trichlorethan¹</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS-Nr.</td>
<td>71-55-6</td>
</tr>
<tr>
<td>GHS-Piktogramm</td>
<td>GHS 07</td>
</tr>
<tr>
<td>H-Sätze</td>
<td>H332-H420</td>
</tr>
<tr>
<td>P-Sätze</td>
<td>P273-P501</td>
</tr>
<tr>
<td>Akute Toxizität, Kat. 4, Einatmen; Die Ozonschicht schädigend, Kat. 1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1,1,2-Trichlorethan¹</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS-Nr.</td>
<td>79-00-5</td>
</tr>
<tr>
<td>GHS-Piktogramm</td>
<td>GHS 07, GHS 08</td>
</tr>
<tr>
<td>H-Sätze</td>
<td>H302-H312-H332-H351</td>
</tr>
<tr>
<td>P-Sätze</td>
<td>P280</td>
</tr>
<tr>
<td>EUH-Sätze</td>
<td>EUH066</td>
</tr>
<tr>
<td>Akute Toxizität, Kat. 4, Verschlucken; Akute Toxizität, Kat. 4, Hautkontakt; Akute Toxizität, Kat. 4, Einatmen; Karzinogenität, Kat. 2</td>
<td></td>
</tr>
</tbody>
</table>
Fortsetzung Tabelle 11.3: Verwendete Chemikalien

<table>
<thead>
<tr>
<th>Chemikalien</th>
<th>CAS-Nr.</th>
<th>GHS-Piktogramm</th>
<th>H-Sätze</th>
<th>P-Sätze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karzinogenität, Kat. 1B; Keimzellmutagenität, Kat. 2; Augenreizung, Kat. 2; Reizwirkung auf die Haut, Kat. 2; Spezifische Zielorgan-Toxizität (einmalige Exposition), Kat. 3; Gewässergefährdend, Chronisch Kat. 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichlorfluormethan</td>
<td>75-69-4</td>
<td>GHS 07</td>
<td>H312-H420</td>
<td>P273-P280-P501</td>
</tr>
<tr>
<td>Trichlormethan</td>
<td>67-66-3</td>
<td>GHS 07</td>
<td>H351-H302-H373-H315</td>
<td>P302+P352-P314</td>
</tr>
<tr>
<td>Karzinogenität, Kat. 2; Akute Toxizität, Kat. 4, Verschlucken; Reizwirkung auf die Haut, Kat. 2; Spezifische Zielorgan-Toxizität (wiederholte Exposition), Kat. 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akute Toxizität, Kat. 2, Einatmen *; Akute Toxizität, Kat. 4, Verschlucken *; Augenreizung, Kat. 2; Spezifische Zielorgan-Toxizität (einmalige Exposition), Kat. 3; Reizwirkung auf die Haut, Kat. 2; * Mindesteinstufung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichlor-1,2,2-trifluorethan</td>
<td>76-13-1</td>
<td>GHS 07, GHS 09</td>
<td>H411-H420</td>
<td>P273</td>
</tr>
<tr>
<td>Gewässergefährdend, Chronisch Kat. 2; Die Ozonschicht schädigend, Kat. 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2,4-Trimethylbenzol</td>
<td>95-63-6</td>
<td>GHS 02, GHS 07, GHS 09</td>
<td>H226-H332-H319-H335-H315-H411</td>
<td>P210-P243-P280-P261-P302+P352-P305+P351+P338-P273-PP391</td>
</tr>
<tr>
<td>Entzündbare Flüssigkeiten, Kat. 3; Akute Toxizität, Kat. 4, Einatmen; Augenreizung, Kat. 2; Spezifische Zielorgan-Toxizität (einmalige Exposition), Kat. 3; Reizwirkung auf die Haut, Kat. 2; Gewässergefährdend, Chronisch Kat. 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3,5-Trimethylbenzol</td>
<td>108-67-8</td>
<td>GHS 02, GHS 07, GHS 09</td>
<td>H226-H335-H411</td>
<td>P210-P243-P280-P261-P273-P391</td>
</tr>
<tr>
<td>Entzündbare Flüssigkeiten, Kat. 3; Spezifische Zielorgan-Toxizität (einmalige Exposition), Kat. 3; Gewässergefährdend, Chronisch Kat. 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fortsetzung Tabelle 11.3: Verwendete Chemikalien

<table>
<thead>
<tr>
<th>Wasserstoff, verdichtetes Gas (Betriebsgas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS-Nr. 1333-74-0</td>
</tr>
<tr>
<td>GHS-Piktogramm GHS 02, GHS 04</td>
</tr>
<tr>
<td>H-Sätze H220-H280</td>
</tr>
<tr>
<td>P-Sätze P210-P377-P381-P403</td>
</tr>
</tbody>
</table>

Entzündbare Gase, Kat. 1; Gase unter Druck, verdichtetes Gas

<table>
<thead>
<tr>
<th>m-Xylol*</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS-Nr. 108-38-3</td>
</tr>
<tr>
<td>GHS-Piktogramm GHS 02, GHS 07</td>
</tr>
<tr>
<td>H-Sätze H226-H332-H312-H315</td>
</tr>
<tr>
<td>P-Sätze P302+352</td>
</tr>
</tbody>
</table>

Entzündbare Flüssigkeiten, Kat. 3; Akute Toxizität, Kat. 4, Einatmen; Akute Toxizität, Kat. 4, Hautkontakt; Reizwirkung auf die Haut, Kat. 2

<table>
<thead>
<tr>
<th>o-Xylol*</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS-Nr. 95-47-6</td>
</tr>
<tr>
<td>GHS-Piktogramm GHS 02, GHS 07</td>
</tr>
<tr>
<td>H-Sätze H226-H312+H332-H315</td>
</tr>
<tr>
<td>P-Sätze P210-P302+P352</td>
</tr>
</tbody>
</table>

Entzündbare Flüssigkeiten, Kat. 3; Akute Toxizität, Kat. 4, Einatmen; Akute Toxizität, Kat. 4, Hautkontakt; Reizwirkung auf die Haut, Kat. 2

<table>
<thead>
<tr>
<th>p-Xylol*</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS-Nr. 106-42-3</td>
</tr>
<tr>
<td>GHS-Piktogramm GHS 02, GHS 07</td>
</tr>
<tr>
<td>H-Sätze H226-H312+H332-H315</td>
</tr>
<tr>
<td>P-Sätze P210-P302+P352</td>
</tr>
</tbody>
</table>

Entzündbare Flüssigkeiten, Kat. 3; Akute Toxizität, Kat. 4, Einatmen; Akute Toxizität, Kat. 4, Hautkontakt; Reizwirkung auf die Haut, Kat. 2

<table>
<thead>
<tr>
<th>cis-1,2-Dichlorethen*</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS-Nr. 156-59-2</td>
</tr>
<tr>
<td>GHS-Piktogramm GHS 02, GHS 07</td>
</tr>
<tr>
<td>H-Sätze H225-H332-H412</td>
</tr>
<tr>
<td>P-Sätze P210-P273</td>
</tr>
</tbody>
</table>

Entzündbare Flüssigkeiten, Kat. 2; Akute Toxizität, Kat. 4, Einatmen *; Gewässergefährdend, Chronisch Kat. 3; * Mindesteinstufung

<table>
<thead>
<tr>
<th>Chlorethan*</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS-Nr. 75-00-3</td>
</tr>
<tr>
<td>GHS-Piktogramm GHS 02, GHS 04, GHS 08</td>
</tr>
<tr>
<td>H-Sätze H220-H280-H351-H412</td>
</tr>
<tr>
<td>P-Sätze P201-P210-P273-P281-P308+P313-P403+P233</td>
</tr>
</tbody>
</table>

Entzündbare Gase, Kat. 1; Gase unter Druck, verflüssigtes Gas; Karzinogenität, Kat. 2; Gewässergefährdend, Chronisch Kat. 3

<table>
<thead>
<tr>
<th>1,4-Dichlorbenzol*</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS-Nr. 106-46-7</td>
</tr>
<tr>
<td>GHS-Piktogramm GHS 08, GHS 08, GHS09</td>
</tr>
<tr>
<td>H-Sätze H351-H319-H410</td>
</tr>
<tr>
<td>P-Sätze P273-P280-P281-P305+P351+P338-P405-P501</td>
</tr>
</tbody>
</table>

Karzinogenität, Kat. 2; Augenreizung, Kat. 2; Gewässergefährdend, Akut Kat. 1; Gewässergefährdend, Chronisch Kat. 1

*Bestandteil der Gasstandards TO14 Calibration Mix 39 Komponenten je 100 ppb und je 1 ppm.

Bestandteil eines Prüfgasgemisches von Linde Spezialgase, je Komponente 1000 ppm in Stickstoff.

Lag als Bestandteil des Prüfgases und als Flüssigkeit vor.

Einstufungen nach GHS gelten jeweils für die reinen Substanzen, Quelle: IFA-GESTIS Stoffdatenbank.[57]
12 Literaturverzeichnis

Recommendations on the safe use of pesticides in ships applicable to the fumigation of cargo transport units, International Maritime Organization, 2008.

[84] OEHHA Acute, 8-hour and Chronic Reference Exposure Level (REL)s, Office of Environmental Health Hazard Assessment, http://oehha.ca.gov/air/allrels.html.

[110] Bundes-Immissionsschutzgesetz (BlmSchG), **1974**.

Erfassungsbogen Team A/B

<table>
<thead>
<tr>
<th>Datum:</th>
<th>Uhrzeit:</th>
<th>CPA-Laufende Nr.:¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probennummer:²</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Auswahlkriterium:</td>
<td>Zufall [] Selektiv []</td>
<td></td>
</tr>
<tr>
<td>Containernummer:³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Containergröße:</td>
<td>20 ft [] 40 ft []</td>
<td></td>
</tr>
<tr>
<td>Lüftungsschlitze sichtbar verklebt?</td>
<td>Ja [] Nein []</td>
<td></td>
</tr>
<tr>
<td>Label?</td>
<td>Ja []</td>
<td>Nein []</td>
</tr>
<tr>
<td>Alte Labelreste?</td>
<td>Ja []</td>
<td>Nein []</td>
</tr>
<tr>
<td>Plombe?</td>
<td>Zoll³ [] Reederei⁵ []</td>
<td></td>
</tr>
</tbody>
</table>

Containerinhalt/Warenbezeichnung:

Versendungsland:

<table>
<thead>
<tr>
<th>Außentemperatur:</th>
<th>Rel. Luftfeuchte:</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>%</td>
</tr>
</tbody>
</table>

Fußnoten

¹ Die CPA-Laufende Nummer setzt sich wie folgt zusammen: TTMMJJJ-JXXX, wobei XXXX die laufende Zoll-Nummer des Tages darstellt. Die Nummer ist vom Fahrer des LKWs in Erfahrung zu bringen.

² Die Probennummer setzt sich wie folgt zusammen: AXX bzw. XX, wobei XX die laufende Probennummer darstellt.

³ Die Containernummer ist oben an der (meist) rechten Tür des Containers abzulesen. Dabei ist nur die obere Reihe der Nummer relevant. Dabei handelt es sich um 4 Buchstaben, 6 Ziffern und 1 Kontrollziffer. Die Kontrollziffer ist die letzte Ziffer, welche eingerahmt ist.

⁴ Die Zollplombe besteht aus einem grün-orange gestreiften Bändchen, welches durch ein Bleisiegel zusammengehalten wird. Eine Zollplombe bedeutet, dass der Container wahrscheinlich schon einmal geöffnet wurde.

ACHTUNG: Es können auch gleichzeitig eine Reederei- und eine Zollplombe vorhanden sein. Dies deutet darauf hin, dass der Container wahrscheinlich schon einmal geöffnet war.

ACHTUNG: Es gibt weitere Plombenarten. Bei Unsicherheit sind die Mitarbeiter des Zolls zu befragen.

Abbildung: Erfassungsbogen für Containerdaten der randomisierten Containerluftproben
Anhang

A2 Erhobene Daten bei der Beprobung der selektiven Container

Tabelle A2: Erhobene Daten bei der Beprobung Selektiver Container

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A010</td>
<td>Fliesen</td>
<td>B</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>19,8</td>
<td>61,3</td>
</tr>
<tr>
<td>2</td>
<td>A020</td>
<td>Baumaterial</td>
<td>B</td>
<td>Kanada</td>
<td>40</td>
<td>k.A</td>
<td>k.A</td>
<td>k.A</td>
<td>ZR</td>
<td>20,6</td>
<td>64,1</td>
</tr>
<tr>
<td>3</td>
<td>A082</td>
<td>Keramikfliesen</td>
<td>B</td>
<td>Türkei</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>16</td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>A005</td>
<td>Farbpigmente</td>
<td>C</td>
<td>Kanada</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>19,1</td>
<td>57,6</td>
</tr>
<tr>
<td>5</td>
<td>A076</td>
<td>PC-Gehäuse und Teile aus Blech</td>
<td>E</td>
<td>China</td>
<td>40</td>
<td>j</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>17,8</td>
<td>69,5</td>
</tr>
<tr>
<td>6</td>
<td>A019</td>
<td>Reifen</td>
<td>F/T</td>
<td>Südkorea</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>20</td>
<td>68</td>
</tr>
<tr>
<td>7</td>
<td>A034</td>
<td>Abgasschalldämpfer</td>
<td>F/T</td>
<td>Arabische Emirate</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>15</td>
<td>74</td>
</tr>
<tr>
<td>8</td>
<td>A037</td>
<td>Reifen</td>
<td>F/T</td>
<td>Indien</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>j</td>
<td>R</td>
<td>15,7</td>
<td>75,4</td>
</tr>
<tr>
<td>9</td>
<td>A024</td>
<td>Verdickungsstoff aus Guarsamen</td>
<td>L</td>
<td>Indien</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>20</td>
<td>62</td>
</tr>
<tr>
<td>10</td>
<td>A060</td>
<td>Mango Püree</td>
<td>L</td>
<td>Indien</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>16,8</td>
<td>75</td>
</tr>
<tr>
<td>11</td>
<td>A068</td>
<td>Fischdosen und Tee</td>
<td>L</td>
<td>Libanon</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>16</td>
<td>76</td>
</tr>
<tr>
<td>12</td>
<td>B316</td>
<td>Lebensmittel</td>
<td>L</td>
<td>Türkei</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>14,5</td>
<td>74</td>
</tr>
<tr>
<td>13</td>
<td>A029</td>
<td>Reis</td>
<td>L</td>
<td>Indien</td>
<td>20</td>
<td>j</td>
<td>j</td>
<td>k.A</td>
<td>k.A</td>
<td>21</td>
<td>61</td>
</tr>
<tr>
<td>14</td>
<td>A050</td>
<td>Erdnusskerne für Vögel</td>
<td>L</td>
<td>Argentinien</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>16</td>
<td>74</td>
</tr>
<tr>
<td>15</td>
<td>A051</td>
<td>Kaffee</td>
<td>L</td>
<td>Honduras</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>17</td>
<td>71</td>
</tr>
<tr>
<td>16</td>
<td>A074</td>
<td>Tee</td>
<td>L</td>
<td>Mozambique</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>16,9</td>
<td>72,5</td>
</tr>
<tr>
<td>17</td>
<td>A089</td>
<td>Gewürze</td>
<td>L</td>
<td>Ägypten</td>
<td>40</td>
<td>j</td>
<td>j</td>
<td>n</td>
<td>R</td>
<td>18</td>
<td>74</td>
</tr>
<tr>
<td>18</td>
<td>A091</td>
<td>Sonnenblumenkerne</td>
<td>L</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>18</td>
<td>74</td>
</tr>
<tr>
<td>19</td>
<td>A113</td>
<td>Reis</td>
<td>L</td>
<td>Thailand</td>
<td>20</td>
<td>j</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>16</td>
<td>70</td>
</tr>
<tr>
<td>20</td>
<td>A110</td>
<td>Sesam</td>
<td>L</td>
<td>Indien</td>
<td>20</td>
<td>n</td>
<td>j</td>
<td>j</td>
<td>R</td>
<td>15</td>
<td>70</td>
</tr>
<tr>
<td>21</td>
<td>A123</td>
<td>Reis</td>
<td>L</td>
<td>Thailand</td>
<td>20</td>
<td>j</td>
<td>j</td>
<td>n</td>
<td>ZR</td>
<td>16</td>
<td>78</td>
</tr>
<tr>
<td>22</td>
<td>A126</td>
<td>Sultaninen</td>
<td>L</td>
<td>Türkei</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>16,8</td>
<td>76,4</td>
</tr>
<tr>
<td>23</td>
<td>B243</td>
<td>Reis</td>
<td>L</td>
<td>Thailand</td>
<td>20</td>
<td>j</td>
<td>j</td>
<td>n</td>
<td>ZR</td>
<td>16,2</td>
<td>78,4</td>
</tr>
<tr>
<td>24</td>
<td>A156</td>
<td>Sultaninen</td>
<td>L</td>
<td>Türkei</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>14</td>
<td>74</td>
</tr>
<tr>
<td>25</td>
<td>A015</td>
<td>Sitzmöbel</td>
<td>M</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>19</td>
<td>68</td>
</tr>
<tr>
<td>26</td>
<td>A017</td>
<td>Rollstühle</td>
<td>M</td>
<td>China</td>
<td>40</td>
<td>j</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>19</td>
<td>68</td>
</tr>
<tr>
<td>27</td>
<td>A018</td>
<td>Lederesseln</td>
<td>M</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>20</td>
<td>68</td>
</tr>
<tr>
<td>28</td>
<td>A021</td>
<td>Kunststofflichterketten</td>
<td>M</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>j</td>
<td>R</td>
<td>21</td>
<td>64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A022</td>
<td>Toilettensitze - und deckel</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>21,5</td>
<td>58,2</td>
</tr>
<tr>
<td>A032</td>
<td>Sammelgut, Umzugs gut</td>
<td>USA</td>
<td>40</td>
<td>j</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>15,2</td>
<td>76,8</td>
</tr>
<tr>
<td>A033</td>
<td>Teppiche</td>
<td>Pakistan</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>k.A.</td>
<td>15</td>
<td>75</td>
</tr>
<tr>
<td>A035</td>
<td>Schmuckkästchen</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>j</td>
<td>n</td>
<td>R</td>
<td>15,6</td>
<td>75,5</td>
</tr>
<tr>
<td>A058</td>
<td>Bratpfannen</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>16,2</td>
<td>77,8</td>
</tr>
<tr>
<td>A061</td>
<td>Tassen</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>17</td>
<td>76</td>
</tr>
<tr>
<td>A071</td>
<td>Töpfe und Haushaltsartikel</td>
<td>China</td>
<td>40</td>
<td>j</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>16</td>
<td>74</td>
</tr>
<tr>
<td>A023</td>
<td>Steine</td>
<td>Brasilien</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>19</td>
<td>66</td>
</tr>
<tr>
<td>A043</td>
<td>Hibiskusblüten</td>
<td>Nigeria</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>20,9</td>
<td>55,8</td>
</tr>
<tr>
<td>A044</td>
<td>Aprikosenkerne</td>
<td>Usbekistan</td>
<td>k.A</td>
<td>k.A</td>
<td>k.A</td>
<td>k.A</td>
<td>k.A</td>
<td>14</td>
<td>75</td>
</tr>
<tr>
<td>A007</td>
<td>Schuhe</td>
<td>Schlesien</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>20,1</td>
<td>56</td>
</tr>
<tr>
<td>A026</td>
<td>Schuhe</td>
<td>China</td>
<td>40</td>
<td>k.A</td>
<td>k.A</td>
<td>k.A</td>
<td>k.A</td>
<td>21</td>
<td>61</td>
</tr>
<tr>
<td>A062</td>
<td>Schuhe</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>16,1</td>
<td>79,2</td>
</tr>
<tr>
<td>B207</td>
<td>Schuhe</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>17</td>
<td>57</td>
</tr>
<tr>
<td>A103</td>
<td>Schuhe</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>17</td>
<td>58</td>
</tr>
<tr>
<td>B267</td>
<td>Schuhe</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>17,4</td>
<td>61,1</td>
</tr>
<tr>
<td>B274</td>
<td>Schuhe</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>20</td>
<td>57</td>
</tr>
<tr>
<td>A001</td>
<td>Baumwollunterwäsche</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>j</td>
<td>k.A</td>
<td>ZR</td>
<td>16,8</td>
<td>67,1</td>
</tr>
<tr>
<td>A006</td>
<td>Hosen, Sweater</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>19,6</td>
<td>57,1</td>
</tr>
<tr>
<td>A009</td>
<td>Textilien</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>19,6</td>
<td>62,1</td>
</tr>
<tr>
<td>A030</td>
<td>Textilien</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>22</td>
<td>60</td>
</tr>
<tr>
<td>A031</td>
<td>Textilien</td>
<td>China</td>
<td>40</td>
<td>j</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>22</td>
<td>59</td>
</tr>
<tr>
<td>A070</td>
<td>Wolle</td>
<td>Uruguay</td>
<td>20</td>
<td>j</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>16</td>
<td>74</td>
</tr>
<tr>
<td>A080</td>
<td>Textilien</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>17</td>
<td>77</td>
</tr>
<tr>
<td>A081</td>
<td>Gewebe</td>
<td>Taiwan</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>16,5</td>
<td>79,4</td>
</tr>
</tbody>
</table>

k.A. = keine Angaben, ft = Fuß, [j/n] = ja/nein, M = Möbel, N = Naturprodukte, Sch = Schuhe, T = Textilien, Z = Zollplombe, R = Reedereiplombe, ZR = Zoll- und Reedereiplombe, Rel. Hum.= relative Luftfeuchtigkeit in der Umgebungsluft
A3 Beschreibung des Sensorgerätes zur Vorselektion von Containern

Für die Vorselektion der selektiv beprobten Container wurde der Gas Detektoren Sensor Array GDA-2 der Firma Airsense Analytics GmbH eingesetzt. Es handelt sich dabei um ein tragbares Gerät, das verschiedene Gasdetektorsysteme vereint. Diese sind: Ein Ionenmobilitätsspektrometer (IMS), eine Elektrochemische Zelle (EC), ein Photoionisationsdetektor (PID) und Metalloxidsensoren (MOS). Im Folgenden wird das jeweilige Prinzip der einzelnen Detektoreinheiten kurz beschrieben.

Im Photoionisationsdetektor werden die Analyten mittels UV-Licht ionisiert, sofern ihre Ionisierungsenergie unter 10,6 eV liegt. Die so erzeugten Ionen entladen sich dann an einer Elektrode, wobei der dadurch generierte Strom proportional zur Konzentration der Analyten ist.

Metalloxidsensoren sind Halbleitergassensoren, deren elektrische Leitfähigkeit sich ändert, wenn sich die Besetzung ihrer Oberfläche ändert, also Luftmoleküle durch Analytmoleküle verdrängt werden. Das Ausmaß der Leitfähigkeitsänderung gibt Rückschluss auf die Konzentration des vorliegenden Analyten.

In die elektrochemische Zelle gelangen die Analyten aus der zu untersuchenden Luft über eine Membran. Der bei der elektrolytischen Reaktion fließende Strom wird gemessen und lässt Rückschlüsse auf die Konzentration des Analyten zu.

Im GDA-2 sind die genannten Techniken miteinander vereint und werden parallel von einer Pumpe mit der zu untersuchenden Luft versorgt. Für die einfache Handhabung zeigt ein Display für jeden Detektor eine Balkenanzeige, deren Ausschlag Informationen zur Belastung mit der entsprechenden Analytengruppe darstellt. Ist eine bedenkliche Konzentration erreicht, löst das Gerät Alarm aus.

Im Rahmen eines von Bundesministerium für Bildung und Forschung geförderten Verbundprojektes wird das Gerät derzeit unter Zuhilfenahme der im Rahmen dieser Arbeit entwickelten und validierten Methode als Referenzanalytik weiterentwickelt.
Erfassungsbogen OPTIMA laufende Messungen

Datum:	Uhrzeit:	CPA-Laufende Nr.:

Probennummer:	OPTIMA

Auswahlkriterium:	Zufall [] Selektiv []

Containernummer:

Containergröße:	20 ft [] 40 ft []

Lüftungsschlitze sichtbar verklebt?	Ja [] Nein []

Label?	Ja [] Nein []

Alte Labelreste?	Ja [] Nein []

Plombe?	Zoll [] Reederei []

Containerinhalt/Warenbezeichnung:

Versendungsland:

Außentemperatur:	°C	Rel. Luftfeuchte außen:	%

Innentemperatur:	°C	Rel. Luftfeuchte innen:	%

Fußnoten

1 Die Laufende Nummer setzt sich wie folgt zusammen: TTMMJJJJ-XXXX, wobei XXXX die laufende Zoll-Nummer von des Tages darstellt. Die Nummer ist vom Fahrer des LKWs in Erfahrung zu bringen.

2 Die Probennummer setzt sich wie folgt zusammen: OPTIMAXXXX bzw. XXXX, wobei XXXX die laufende Proben-Nummer darstellt.

3 Die Containernummer ist oben an der (meist) rechten Tür des Containers abzulesen. Dabei ist nur die obere Reihe der Nummer relevant. Dabei handelt es sich um 4 Buchstaben, 6 Ziffern und 1 Kontrollziffer. Die Kontrollziffer ist die letzte Ziffer, welche eingerahmt ist.

4 Die Zollplombe besteht aus einem grün-orange gestreiften Bändchen, welches durch ein Bleisiegel zusammengehalten wird. Eine Zollplombe bedeutet, dass der Container wahrscheinlich schon einmal geöffnet wurde.

ACHTUNG: Es können auch gleichzeitig eine Reederei- und eine Zollplombe vorhanden sein. Dies deutet darauf hin, dass der Container wahrscheinlich schon einmal geöffnet war.

ACHTUNG: Es gibt weitere Plombenarten. Bei Unsicherheit sind die Mitarbeiter des Zolls zu befragen.

Abbildung A4: Erfassungsbogen für Containerdaten der randomisierten Containerluftproben
A5 Erhobene Daten bei der Beprobung der randomisierten Container

Tabelle A5: Erhobene Daten bei Beprobung der randomisierten Container

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0060</td>
<td>Papiertüten</td>
<td>A</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>4,8</td>
<td>89,4</td>
</tr>
<tr>
<td>2</td>
<td>0079</td>
<td>Metallkisten</td>
<td>A</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>2</td>
<td>80,3</td>
</tr>
<tr>
<td>3</td>
<td>0083</td>
<td>Leergut</td>
<td>A</td>
<td>Singapur</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>1,3</td>
<td>78,9</td>
</tr>
<tr>
<td>4</td>
<td>0111</td>
<td>Metallteile</td>
<td>A</td>
<td>Arabische Emirate</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>J</td>
<td>Z</td>
<td>-6,6</td>
<td>82</td>
</tr>
<tr>
<td>5</td>
<td>0113</td>
<td>Toner</td>
<td>A</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>-5,3</td>
<td>73,8</td>
</tr>
<tr>
<td>6</td>
<td>0114</td>
<td>Rauchgas-kartuschen</td>
<td>A</td>
<td>Kanada</td>
<td>k.A.</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>-4,9</td>
<td>71,7</td>
</tr>
<tr>
<td>7</td>
<td>0127</td>
<td>Filterpapier</td>
<td>A</td>
<td>k.A.</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>5,5</td>
<td>86,1</td>
</tr>
<tr>
<td>8</td>
<td>0130</td>
<td>Schrott</td>
<td>A</td>
<td>Deutschland</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>5,6</td>
<td>88,6</td>
</tr>
<tr>
<td>9</td>
<td>0148</td>
<td>Trinkhalme</td>
<td>A</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>j</td>
<td>ZR</td>
<td>7,9</td>
<td>83,3</td>
</tr>
<tr>
<td>10</td>
<td>0191</td>
<td>Futtermittel</td>
<td>A</td>
<td>Argentinien</td>
<td>40</td>
<td>j</td>
<td>j</td>
<td>n</td>
<td>ZR</td>
<td>9,1</td>
<td>71,1</td>
</tr>
<tr>
<td>11</td>
<td>0200</td>
<td>Schmuckstiene</td>
<td>A</td>
<td>Brasilien</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>9</td>
<td>56,3</td>
</tr>
<tr>
<td>12</td>
<td>0206</td>
<td>leere Behälter</td>
<td>A</td>
<td>Russland</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>10,1</td>
<td>55,7</td>
</tr>
<tr>
<td>13</td>
<td>0138</td>
<td>Feuerwerkskörper</td>
<td>A</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>j</td>
<td>ZR</td>
<td>4,4</td>
<td>86,9</td>
</tr>
<tr>
<td>14</td>
<td>0161</td>
<td>Leere Bierläscher</td>
<td>A</td>
<td>Spanien</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>8,2</td>
<td>93,9</td>
</tr>
<tr>
<td>15</td>
<td>0080</td>
<td>Kunststoffartikel</td>
<td>A</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>1,1</td>
<td>82,3</td>
</tr>
<tr>
<td>16</td>
<td>0073</td>
<td>Fliesen</td>
<td>B</td>
<td>unbekannt</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>8,1</td>
<td>77,4</td>
</tr>
<tr>
<td>17</td>
<td>0091</td>
<td>Alübleche</td>
<td>B</td>
<td>Syrien</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>-2,3</td>
<td>60,6</td>
</tr>
<tr>
<td>18</td>
<td>0092</td>
<td>Fliesen</td>
<td>B</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>-1,8</td>
<td>59,2</td>
</tr>
<tr>
<td>19</td>
<td>0093</td>
<td>Schrauben</td>
<td>B</td>
<td>Vietnam</td>
<td>20</td>
<td>n</td>
<td>j</td>
<td>n</td>
<td>ZR</td>
<td>-1,9</td>
<td>58,7</td>
</tr>
<tr>
<td>20</td>
<td>0094</td>
<td>Schrauben</td>
<td>B</td>
<td>Vietnam</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>-1,8</td>
<td>58,7</td>
</tr>
<tr>
<td>21</td>
<td>0096</td>
<td>Aluprofile</td>
<td>B</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>-8,4</td>
<td>47,4</td>
</tr>
<tr>
<td>22</td>
<td>0115</td>
<td>Schrauben</td>
<td>B</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>-5</td>
<td>71,1</td>
</tr>
<tr>
<td>23</td>
<td>0124</td>
<td>Chemikalien</td>
<td>C</td>
<td>Indien</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>2,9</td>
<td>93,3</td>
</tr>
<tr>
<td>24</td>
<td>0125</td>
<td>Kunststoffgranulat</td>
<td>C</td>
<td>Südkorea</td>
<td>40</td>
<td>j</td>
<td>n</td>
<td>j</td>
<td>R</td>
<td>3,1</td>
<td>90,2</td>
</tr>
<tr>
<td>25</td>
<td>0135</td>
<td>Polivynlalkoh</td>
<td>C</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>Z</td>
<td>6,2</td>
<td>86,5</td>
</tr>
<tr>
<td>26</td>
<td>0143</td>
<td>Silikon</td>
<td>C</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>3,5</td>
<td>92</td>
</tr>
<tr>
<td>27</td>
<td>0158</td>
<td>Chemikalien</td>
<td>C</td>
<td>Polen</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>8,2</td>
<td>91,9</td>
</tr>
<tr>
<td>28</td>
<td>0163</td>
<td>Aktivkohle</td>
<td>C</td>
<td>k.A.</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>8,4</td>
<td>92,5</td>
</tr>
<tr>
<td>29</td>
<td>0186</td>
<td>Polycarbonat</td>
<td>C</td>
<td>China</td>
<td>20</td>
<td>k.v.</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>8,4</td>
<td>58,3</td>
</tr>
<tr>
<td>30</td>
<td>0187</td>
<td>Aluminium</td>
<td>C</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>8,2</td>
<td>59,1</td>
</tr>
</tbody>
</table>

k.A. = keine Angaben, ft = Fuß, [j/n] = ja/nein, A = Andere, B = Baumaterial, C = Chemikalien, ZR = Zoll- und Reedereiplombe, Rel. Hum. = relative Luftfeuchtigkeit in der Umgebungsluft
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>0188</td>
<td>Gummi</td>
<td>C</td>
<td>Malaysia</td>
<td>40</td>
<td>n</td>
<td>k.A.</td>
<td>k.A</td>
<td>R</td>
<td>9,2</td>
<td>68,9</td>
</tr>
<tr>
<td>32</td>
<td>0207</td>
<td>Chemiefaser</td>
<td>C</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>9</td>
<td>55,8</td>
</tr>
<tr>
<td>33</td>
<td>0061</td>
<td>Elektrogeräte</td>
<td>E</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>4,6</td>
<td>88,8</td>
</tr>
<tr>
<td>34</td>
<td>0084</td>
<td>Fernseher</td>
<td>E</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>k.A.</td>
<td>1,2</td>
<td>79,6</td>
</tr>
<tr>
<td>35</td>
<td>0104</td>
<td>Schaltanlagen</td>
<td>E</td>
<td>Deutschland</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>-7,8</td>
<td>56</td>
</tr>
<tr>
<td>36</td>
<td>0108</td>
<td>Elektronikartikel</td>
<td>E</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>J</td>
<td>R</td>
<td>-7,6</td>
<td>78,4</td>
</tr>
<tr>
<td>37</td>
<td>0109</td>
<td>Elektroartikel</td>
<td>E</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>-7,7</td>
<td>81,3</td>
</tr>
<tr>
<td>38</td>
<td>0173</td>
<td>Elektrobausteine</td>
<td>E</td>
<td>Malaysia</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>3,7</td>
<td>59,3</td>
</tr>
<tr>
<td>39</td>
<td>0179</td>
<td>Elektroteile</td>
<td>E</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>4,1</td>
<td>60,3</td>
</tr>
<tr>
<td>40</td>
<td>0204</td>
<td>Netzteile</td>
<td>E</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>9,9</td>
<td>57</td>
</tr>
<tr>
<td>41</td>
<td>0068</td>
<td>Pkw</td>
<td>F/T</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>10,4</td>
<td>72</td>
</tr>
<tr>
<td>42</td>
<td>0086</td>
<td>Maschinenteile</td>
<td>F/T</td>
<td>Philippinen</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>-1,5</td>
<td>64,3</td>
</tr>
<tr>
<td>43</td>
<td>0087</td>
<td>Maschinenteile</td>
<td>F/T</td>
<td>Deutschland</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>-2,7</td>
<td>66,9</td>
</tr>
<tr>
<td>44</td>
<td>0128</td>
<td>Reifen</td>
<td>F/T</td>
<td>Deutschland</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>5,6</td>
<td>88,7</td>
</tr>
<tr>
<td>45</td>
<td>0136</td>
<td>Rasnmäher</td>
<td>F/T</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>6,4</td>
<td>85,9</td>
</tr>
<tr>
<td>46</td>
<td>0159</td>
<td>Maschinenteile</td>
<td>F/T</td>
<td>Schweiz</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>8,3</td>
<td>93,6</td>
</tr>
<tr>
<td>47</td>
<td>0165</td>
<td>Fahrstuhl-Teile</td>
<td>F/T</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>8,5</td>
<td>94,2</td>
</tr>
<tr>
<td>48</td>
<td>0170</td>
<td>Alurahmen für Fahrräder</td>
<td>F/T</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>8,3</td>
<td>91,3</td>
</tr>
<tr>
<td>49</td>
<td>0181</td>
<td>Außenbordmotoren</td>
<td>F/T</td>
<td>China/Shanghai</td>
<td>40</td>
<td>j</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>7,4</td>
<td>68,9</td>
</tr>
<tr>
<td>50</td>
<td>0183</td>
<td>Autoteile</td>
<td>F/T</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>7,4</td>
<td>68,7</td>
</tr>
<tr>
<td>51</td>
<td>0190</td>
<td>Reifen</td>
<td>F/T</td>
<td>Thailand</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>9,1</td>
<td>71,5</td>
</tr>
<tr>
<td>52</td>
<td>0194</td>
<td>Maschinen</td>
<td>F/T</td>
<td>k.A.</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>9,3</td>
<td>71</td>
</tr>
<tr>
<td>53</td>
<td>0059</td>
<td>Lebensmittel</td>
<td>L</td>
<td>Vietnam</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>4,7</td>
<td>89,1</td>
</tr>
<tr>
<td>54</td>
<td>0065</td>
<td>Lebensmittel</td>
<td>L</td>
<td>Vietnam</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>5,2</td>
<td>86,5</td>
</tr>
<tr>
<td>55</td>
<td>0074</td>
<td>Cassiervera(Gewürze)</td>
<td>L</td>
<td>Unbekannt</td>
<td>20</td>
<td>J</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>8</td>
<td>79,6</td>
</tr>
<tr>
<td>56</td>
<td>0076</td>
<td>Mineralwasser</td>
<td>L</td>
<td>Türkei</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>7,7</td>
<td>80,5</td>
</tr>
<tr>
<td>57</td>
<td>0098</td>
<td>Sultaninen</td>
<td>L</td>
<td>Türkei</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>-6,8</td>
<td>72,7</td>
</tr>
<tr>
<td>58</td>
<td>0099</td>
<td>Sherry-sauce</td>
<td>L</td>
<td>Thailand</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>-6,8</td>
<td>73</td>
</tr>
<tr>
<td>59</td>
<td>0101</td>
<td>Orangen</td>
<td>L</td>
<td>Türkei</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>-7,6</td>
<td>55,1</td>
</tr>
<tr>
<td>60</td>
<td>0105</td>
<td>Mandarin</td>
<td>L</td>
<td>Türkei</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>-7,6</td>
<td>53</td>
</tr>
<tr>
<td>61</td>
<td>0107</td>
<td>Sojasauce</td>
<td>L</td>
<td>k.A.</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>-8,2</td>
<td>60,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>0117</td>
<td>Kaffee</td>
<td>L</td>
<td>Südamerika</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>Z</td>
<td>2,6</td>
<td>82,8</td>
</tr>
<tr>
<td>63</td>
<td>0118</td>
<td>Kaffee</td>
<td>L</td>
<td>Südamerika</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>Z</td>
<td>2,8</td>
<td>85,5</td>
</tr>
<tr>
<td>64</td>
<td>0134</td>
<td>Fruchtsäfte</td>
<td>L</td>
<td>Vietnam</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>6,1</td>
<td>87,4</td>
</tr>
<tr>
<td>65</td>
<td>0137</td>
<td>Tee</td>
<td>L</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>Z</td>
<td>4,2</td>
<td>k.A.</td>
</tr>
<tr>
<td>66</td>
<td>0160</td>
<td>Kaffeebohnen</td>
<td>L</td>
<td>k.A.</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>k.A.</td>
<td>8,4</td>
<td>93,7</td>
</tr>
<tr>
<td>67</td>
<td>0164</td>
<td>Sultaninen</td>
<td>L</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>8,3</td>
<td>93,5</td>
</tr>
<tr>
<td>68</td>
<td>0168</td>
<td>Lebensmittel</td>
<td>L</td>
<td>Vietnam</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>j</td>
<td>ZR</td>
<td>8,4</td>
<td>87,7</td>
</tr>
<tr>
<td>69</td>
<td>0172</td>
<td>Reis (Säcke)</td>
<td>L</td>
<td>Pakistan</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>3,4</td>
<td>52,6</td>
</tr>
<tr>
<td>70</td>
<td>0175</td>
<td>Getreide</td>
<td>L</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>3,8</td>
<td>60,8</td>
</tr>
<tr>
<td>71</td>
<td>0189</td>
<td>Zwiebeln</td>
<td>L</td>
<td>Dubai, VAE</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>9,5</td>
<td>69,5</td>
</tr>
<tr>
<td>72</td>
<td>0088</td>
<td>Müllbeutel</td>
<td>M</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>2,7</td>
<td>66,2</td>
</tr>
<tr>
<td>73</td>
<td>0067</td>
<td>Trampoline</td>
<td>M</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>4,8</td>
<td>79,1</td>
</tr>
<tr>
<td>74</td>
<td>0069</td>
<td>Rucksäcke</td>
<td>M</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>10</td>
<td>72,1</td>
</tr>
<tr>
<td>75</td>
<td>0070</td>
<td>Möbel</td>
<td>M</td>
<td>k.A.</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>8,8</td>
<td>74,2</td>
</tr>
<tr>
<td>76</td>
<td>0072</td>
<td>Luftmatratzen</td>
<td>M</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>9,1</td>
<td>74,2</td>
</tr>
<tr>
<td>77</td>
<td>0081</td>
<td>Fitnessgerät</td>
<td>M</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>1</td>
<td>80,8</td>
</tr>
<tr>
<td>78</td>
<td>0082</td>
<td>Sanitär-</td>
<td>M</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>j</td>
<td>R</td>
<td>1,1</td>
<td>80,2</td>
</tr>
<tr>
<td>79</td>
<td>0085</td>
<td>Metallmöbel</td>
<td>M</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>-2</td>
<td>80</td>
</tr>
<tr>
<td>80</td>
<td>0095</td>
<td>Möbel</td>
<td>M</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>-2</td>
<td>57,9</td>
</tr>
<tr>
<td>81</td>
<td>0097</td>
<td>Umzugsgut</td>
<td>M</td>
<td>USA</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>-6,8</td>
<td>57,1</td>
</tr>
<tr>
<td>82</td>
<td>0100</td>
<td>Dekorartikel</td>
<td>M</td>
<td>Singapur</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>-8,8</td>
<td>33,3</td>
</tr>
<tr>
<td>83</td>
<td>0110</td>
<td>Spiegel, Seifen-</td>
<td>M</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>j</td>
<td>R</td>
<td>-7,4</td>
<td>83,2</td>
</tr>
<tr>
<td>84</td>
<td>0122</td>
<td>Glastüren</td>
<td>M</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>2,8</td>
<td>93,1</td>
</tr>
<tr>
<td>85</td>
<td>0139</td>
<td>Möbel</td>
<td>M</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>2,9</td>
<td>91</td>
</tr>
<tr>
<td>86</td>
<td>0140</td>
<td>Luftmatratzen</td>
<td>M</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>3,3</td>
<td>88,6</td>
</tr>
<tr>
<td>87</td>
<td>0141</td>
<td>Weihnachtsdeko</td>
<td>M</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>3,4</td>
<td>90,3</td>
</tr>
<tr>
<td>88</td>
<td>0142</td>
<td>Stühle</td>
<td>M</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>3</td>
<td>93,5</td>
</tr>
<tr>
<td>89</td>
<td>0149</td>
<td>Holzschränke</td>
<td>M</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>7,9</td>
<td>85,6</td>
</tr>
</tbody>
</table>

k.A. = keine Angaben, ft = Fuß, [j/n] = ja/nein, L = Lebensmittel, M = Möbel, ZR = Zoll- und Reedereiplombe, Rel. Hum. = relative Luftfeuchtigkeit in der Umgebungsluft
Fortsetzung Tabelle A5: Erhobene Daten bei Beprobung der randomisierten Container

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>0151</td>
<td>Glaskeramik</td>
<td>M</td>
<td>Japan</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>j</td>
<td>R</td>
<td>8,5</td>
<td>84,7</td>
</tr>
<tr>
<td>91</td>
<td>0154</td>
<td>Sportgeräte</td>
<td>M</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>9,1</td>
<td>82,9</td>
</tr>
<tr>
<td>92</td>
<td>0157</td>
<td>Kindersitze</td>
<td>M</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>3,3</td>
<td>48</td>
</tr>
<tr>
<td>93</td>
<td>0162</td>
<td>Töpfe</td>
<td>M</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>8,4</td>
<td>93,8</td>
</tr>
<tr>
<td>94</td>
<td>0166</td>
<td>Polyestervorhänge</td>
<td>M</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>8,6</td>
<td>94,4</td>
</tr>
<tr>
<td>95</td>
<td>0171</td>
<td>Hygieneartikel</td>
<td>M</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>3,4</td>
<td>59</td>
</tr>
<tr>
<td>96</td>
<td>0178</td>
<td>Kochtöpfe</td>
<td>M</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>4</td>
<td>60,8</td>
</tr>
<tr>
<td>97</td>
<td>0184</td>
<td>Stühle</td>
<td>M</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>8,3</td>
<td>60,2</td>
</tr>
<tr>
<td>98</td>
<td>0195</td>
<td>Umzugsgeräte</td>
<td>M</td>
<td>Bolivien</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>9,7</td>
<td>70,4</td>
</tr>
<tr>
<td>99</td>
<td>0197</td>
<td>Dekomaterial</td>
<td>M</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>9,6</td>
<td>69,8</td>
</tr>
<tr>
<td>100</td>
<td>0199</td>
<td>Skateboards</td>
<td>M</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>8,2</td>
<td>56,7</td>
</tr>
<tr>
<td>101</td>
<td>0205</td>
<td>Hundekäfige</td>
<td>M</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>9,7</td>
<td>56,9</td>
</tr>
<tr>
<td>102</td>
<td>0058</td>
<td>Holzkohle</td>
<td>N</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>4,8</td>
<td>88,8</td>
</tr>
<tr>
<td>103</td>
<td>0063</td>
<td>Holz</td>
<td>N</td>
<td>Südamerika</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>4,7</td>
<td>88</td>
</tr>
<tr>
<td>104</td>
<td>0078</td>
<td>Körbe aus Rattan</td>
<td>N</td>
<td>Indonesien</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>ZR</td>
<td>3</td>
</tr>
<tr>
<td>105</td>
<td>0112</td>
<td>Hibiskusblüten</td>
<td>N</td>
<td>Saudi-Arabien</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>-5,7</td>
<td>77,6</td>
</tr>
<tr>
<td>106</td>
<td>0132</td>
<td>Holz</td>
<td>N</td>
<td>Brasilien</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>Z</td>
<td>5,7</td>
<td>87,5</td>
</tr>
<tr>
<td>107</td>
<td>0144</td>
<td>Tabak</td>
<td>N</td>
<td>Russland</td>
<td>40</td>
<td>j</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>3,1</td>
<td>93,6</td>
</tr>
<tr>
<td>108</td>
<td>0156</td>
<td>Rattanmöbel</td>
<td>N</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>10,8</td>
<td>83,3</td>
</tr>
<tr>
<td>109</td>
<td>0193</td>
<td>Jute</td>
<td>N</td>
<td>Bangladesch</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>9,2</td>
<td>71,4</td>
</tr>
<tr>
<td>110</td>
<td>0196</td>
<td>Grillkohle</td>
<td>N</td>
<td>Paraguay</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>9,6</td>
<td>69,9</td>
</tr>
<tr>
<td>111</td>
<td>0203</td>
<td>Schafsdärme</td>
<td>N</td>
<td>Syrien</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>9,6</td>
<td>56,2</td>
</tr>
<tr>
<td>112</td>
<td>0064</td>
<td>Sammelgut</td>
<td>SG</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>5,3</td>
<td>86</td>
</tr>
<tr>
<td>113</td>
<td>0066</td>
<td>Sammelgut</td>
<td>SG</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>5</td>
<td>84,8</td>
</tr>
<tr>
<td>114</td>
<td>0077</td>
<td>Sammelgut</td>
<td>SG</td>
<td>Vietnam</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>7,8</td>
<td>78,9</td>
</tr>
<tr>
<td>115</td>
<td>0126</td>
<td>Sammelgut</td>
<td>SG</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>3</td>
<td>91,8</td>
</tr>
<tr>
<td>116</td>
<td>0129</td>
<td>Sammelgut</td>
<td>SG</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>5,7</td>
<td>87,1</td>
</tr>
<tr>
<td>117</td>
<td>0131</td>
<td>Sammelgut</td>
<td>SG</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>5,9</td>
<td>86,8</td>
</tr>
<tr>
<td>118</td>
<td>0146</td>
<td>Sammelgut</td>
<td>SG</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>3,3</td>
<td>94,6</td>
</tr>
<tr>
<td>119</td>
<td>0147</td>
<td>Sammelgut</td>
<td>SG</td>
<td>USA</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>8,2</td>
<td>78,8</td>
</tr>
<tr>
<td>120</td>
<td>0150</td>
<td>Sammelgut</td>
<td>SG</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>8,9</td>
<td>83,9</td>
</tr>
<tr>
<td>121</td>
<td>0153</td>
<td>Sammelgut</td>
<td>SG</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>Z</td>
<td>9</td>
<td>83</td>
</tr>
</tbody>
</table>

k.A. = keine Angaben, ft = Fuß, [j/n] = ja/nein, M = Möbel, N = Naturprodukte, SG = Sammelgut, ZR = Zoll- und Reedereiplombe, Rel. Hum. = relative Luftfeuchtigkeit in der Umgebungsluft
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>122</td>
<td>0169</td>
<td>Sammelgut</td>
<td>SG</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>8,2</td>
<td>88,9</td>
</tr>
<tr>
<td>123</td>
<td>0174</td>
<td>Sammelgut</td>
<td>SG</td>
<td>Taiwan</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>3,8</td>
<td>60,9</td>
</tr>
<tr>
<td>124</td>
<td>0176</td>
<td>Sammelgut</td>
<td>SG</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>3,8</td>
<td>61,2</td>
</tr>
<tr>
<td>125</td>
<td>0177</td>
<td>Sammelgut</td>
<td>SG</td>
<td>Indien</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>3,6</td>
<td>61,6</td>
</tr>
<tr>
<td>126</td>
<td>0182</td>
<td>Sammelgut</td>
<td>SG</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>7,4</td>
<td>68,7</td>
</tr>
<tr>
<td>127</td>
<td>0201</td>
<td>Sammelgut</td>
<td>SG</td>
<td>Kanada</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>9,2</td>
<td>56,7</td>
</tr>
<tr>
<td>128</td>
<td>0202</td>
<td>Sammelgut</td>
<td>SG</td>
<td>Kanada</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>8,8</td>
<td>57,1</td>
</tr>
<tr>
<td>129</td>
<td>0075</td>
<td>Schuhe</td>
<td>Sch</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>7,8</td>
<td>79,8</td>
</tr>
<tr>
<td>130</td>
<td>0089</td>
<td>Schuhe</td>
<td>Sch</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>-2,6</td>
<td>65,5</td>
</tr>
<tr>
<td>131</td>
<td>0102</td>
<td>Schuhe</td>
<td>Sch</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>Z</td>
<td>-8</td>
<td>56,8</td>
</tr>
<tr>
<td>132</td>
<td>0145</td>
<td>Schuhe</td>
<td>Sch</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>k.A.</td>
<td>k.A.</td>
<td>R</td>
<td>3,3</td>
<td>94,4</td>
</tr>
<tr>
<td>133</td>
<td>0090</td>
<td>Latexhandschuhe</td>
<td>T</td>
<td>Malaysia</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>-2,2</td>
<td>63</td>
</tr>
<tr>
<td>134</td>
<td>0103</td>
<td>Handtaschen</td>
<td>T</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>-8,1</td>
<td>57,8</td>
</tr>
<tr>
<td>135</td>
<td>0062</td>
<td>Textilien</td>
<td>T</td>
<td>Deutschland</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>4,9</td>
<td>88,1</td>
</tr>
<tr>
<td>136</td>
<td>0071</td>
<td>Stoffe</td>
<td>T</td>
<td>unbekannt</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>8,6</td>
<td>74,5</td>
</tr>
<tr>
<td>137</td>
<td>0106</td>
<td>Textilien</td>
<td>T</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>-7,6</td>
<td>52,2</td>
</tr>
<tr>
<td>138</td>
<td>0116</td>
<td>Textilien</td>
<td>T</td>
<td>Marokko</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>-4,8</td>
<td>70,4</td>
</tr>
<tr>
<td>139</td>
<td>0119</td>
<td>Textilien</td>
<td>T</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>k.A.</td>
<td>3,1</td>
<td>86,3</td>
</tr>
<tr>
<td>140</td>
<td>0120</td>
<td>Textilien</td>
<td>T</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>j</td>
<td>R</td>
<td>4,7</td>
<td>88,9</td>
</tr>
<tr>
<td>141</td>
<td>0121</td>
<td>Textilien</td>
<td>T</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>4,7</td>
<td>88,9</td>
</tr>
<tr>
<td>142</td>
<td>0123</td>
<td>Sportbekleid.</td>
<td>T</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>2,7</td>
<td>93,5</td>
</tr>
<tr>
<td>143</td>
<td>0133</td>
<td>Textilien</td>
<td>T</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>j</td>
<td>ZR</td>
<td>6,1</td>
<td>87,1</td>
</tr>
<tr>
<td>144</td>
<td>0152</td>
<td>Textilien</td>
<td>T</td>
<td>Bangladesch</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>8,9</td>
<td>84,1</td>
</tr>
<tr>
<td>145</td>
<td>0155</td>
<td>Textilien</td>
<td>T</td>
<td>Vietnam</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>9</td>
<td>83,8</td>
</tr>
<tr>
<td>146</td>
<td>0167</td>
<td>Bettwäsche</td>
<td>T</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>8,8</td>
<td>93,4</td>
</tr>
<tr>
<td>147</td>
<td>0180</td>
<td>Stoffballen</td>
<td>T</td>
<td>Indien</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>k.A.</td>
<td>7,5</td>
<td>60,3</td>
</tr>
<tr>
<td>148</td>
<td>0185</td>
<td>Arb.handsch.</td>
<td>T</td>
<td>China</td>
<td>20</td>
<td>k.A.</td>
<td>n</td>
<td>n</td>
<td>R</td>
<td>8,3</td>
<td>57,6</td>
</tr>
<tr>
<td>149</td>
<td>0192</td>
<td>Textilien</td>
<td>T</td>
<td>China</td>
<td>40</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ZR</td>
<td>9,5</td>
<td>71</td>
</tr>
<tr>
<td>150</td>
<td>0198</td>
<td>Handschuhe</td>
<td>T</td>
<td>China</td>
<td>20</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>Z</td>
<td>9,4</td>
<td>47,9</td>
</tr>
</tbody>
</table>

k.A. = keine Angaben, ft = Fuß, [j/n] = ja/nein, SG = Sammelgut, Sch = Schuhe, T = Textilien, ZR = Zoll- und Reedereiplombe, Rel. Hum. = relative Luftfeuchtigkeit in der Umgebungsluft
A6 Kalibriergeraden für Chlormethan und Sulfurylfluorid

Abbildung A6: Standardkurven von Sulfurylfluorid (A) und Chlormethan (B).
A7 Massenspektren von Aceton

Abbildung A7: Massenspektren von Aceton in einer Emissionsprobe (A) und im Standard (B)
Wissenschaftliche Publikationen

Im Rahmen der vorliegenden Arbeit sind folgende Publikationen entstanden:

Peer review Artikel

Artikel in weiteren Fachzeitschriften

Vorträge auf wissenschaftlichen Tagungen
 S. Fahrenholtz, L. Budnik, X. Baur: „Verschiedene Messprinzipien zur Containerluftmessung“
 S. Fahrenholtz, L. Budnik, X. Baur: „Messung von Phosphin mittels Gaschromatographie“
 S. Fahrenholtz, L. Budnik, X. Baur: „Vorzüge der TD-GC-MS-Analytik“

Posterbeiträge zu wissenschaftlichen Tagungen
Eidesstattliche Erklärung

Hamburg, im September 2012
Danksagung

Bedanken möchte ich mich bei PD Dr. Lygia Budnik für die herzliche Aufnahme in ihre Arbeitsgruppe und die Überlassung des spannenden Themas sowie die Betreuung vor Ort im Labor des ZfAM.

Bei Prof. Dr. Heinrich Hühnerfuss bedanke ich mich ganz herzlich für die sehr gute fachliche Begleitung meiner Arbeit und die hilfreichen Gespräche, in denen ich Antworten auf viele Fragen gefunden habe.

PD Dr. Michael Steiger danke ich für die Übernahme der Betreuung und die Möglichkeit, diese Arbeit frei zu gestalten.

Prof. Dr. med. Xaver Baur danke ich für die Anstellung in seinem Institut und die Übertragung verantwortungsvoller Aufgaben in verschiedenen Projekten, die mit dieser Arbeit in Verbindung standen.

Dem BMBF danke ich für die Finanzierung der Forschungsprojekte DEGENA und OPTIMA, aus denen ein großer Teil der Ergebnisse dieser Arbeit hervorgegangen ist.

Stefan Kloth, Henry Vlcek, Giovanni Guida, Thommy Sornsakrin und Lilia Rosenstock danke ich für die Hilfe bei der Durchführung der Messkampagnen in Waltershof.

Kim Tieu, Susann Finger und Thorsten Stahl danke ich für die Hilfestellung bei allen praktischen Fragen zu Gaschromatographie und Massenspektrometrie und die Hilfestellung bei den ersten Gehversuchen mit der entsprechenden Hard- und Software.

Allen meinen Kollegen am ZfAM danke ich für die das wunderbare Arbeitsklima und die helfenden Hände bei kleineren und größeren Problemen.

Stefan Kloth danke ich für die vielen Double feature Coffee times und unsere wunderbare und lustige Bürogemeinschaft, die dank seines grünen Daumens immer geblüht hat.

Ein ganz großes Dankeschön geht an Dr. Stephanie Selke, die mir eine sehr gute Freundin geworden ist. Mit ihren immer ehrlichen Kommentaren, ihrer konstruktiven Kritik und aufmunternden Worten sowie gründlichen Korrekturen hat sie mich beim Verfassen dieser Arbeit sehr unterstützt.

Meinem Freund Daniel danke ich dafür, dass er immer für mich da ist und ich bei ihm Kraft für die vielen Stunden im Labor schöpfen konnte.