Contents

Preface — v

1. **Elementary particles and fields** — 1
 1.1 Conventions and notations — 1
 1.2 Particles and interactions — 2
 1.3 Quantum electrodynamics — 9
 1.4 Quantum chromodynamics — 13
 1.5 Bethe–Salpeter equation — 16
 1.6 Effective interactions — 18
 1.6.1 Preliminaries — 18
 1.6.2 The model NJL — 20

2. **The standard model** — 27
 2.1 The electro-weak theory — 27
 2.1.1 Feynman rules for the electro-weak interaction — 40
 2.1.2 Higgs scalar search — 43
 2.2 Status of the standard model — 44
 2.3 Properties of nonrenormalizable equations, instructive example — 49

3. **Bogoliubov compensation** — 57
 3.1 Origin of the approach — 57
 3.2 Application to QFT — 58
 3.3 A spontaneous generation of the Nambu–Jona-Lasinio interaction — 60
 3.4 Justification of the model choice — 66
 3.5 Compensation equation in a six-dimensional scalar model — 67
 3.6 Bethe–Salpeter equation and zero excitation — 76
 3.7 Compensation equation for scalar field mass — 77
 3.8 Estimate of nonlinearity influence — 79
 3.9 Conclusions of simple scalar model — 81
 3.10 Appendix — 83

4. **Three-gluon effective interaction** — 86
 4.1 Compensation equation — 86
 4.2 Running coupling — 93
 4.3 The gluon condensate — 97
 4.4 The glueball — 99
 4.5 Conclusion — 101
Contents

5 **Nambu–Jona-Lasinio effective interaction** — 102
5.1 **Introduction** — 102
5.2 **Effective NJL interaction** — 102
5.3 **Scalar and pseudo-scalar states** — 109
5.4 **Spontaneous breaking of the chiral symmetry** — 114
5.5 **Pion mass and the quark condensate** — 116
5.6 **Numerical results and discussion** — 119
5.7 **Vector mesons** — 125
5.7.1 **Compensation equations for effective form-factors** — 126
5.7.2 **Wave functions of vector states** — 132
5.7.3 **Results and discussion** — 138
5.8 **Necessary formulae** — 139

6 **Three-boson interaction** — 141
6.1 **Compensation equation for anomalous three-boson interaction** — 142
6.2 **Effective strong interaction in the weak gauge sector** — 151
6.3 **Scalar bound state of two \(W \)-s** — 153
6.4 **Muon g-2** — 161

7 **Possible four-fermion interaction of heavy quarks** — 167
7.1 **Four-fermion interaction of heavy quarks** — 167
7.2 **Doublet bound state \(\bar{\psi}_L T_R \)** — 170
7.3 **Stability problem** — 174
7.4 **Possible effects of the heavy quarks interaction** — 176

8 **Overall conclusion** — 179
8.1 **Short review of achievements of the compensation approach** — 179
8.2 **Examples of additional relations in the compensation approach** — 186
8.3 **Weinberg mixing angle and the fine structure constant** — 196
8.4 **Expectations** — 201
8.5 **A possible effective interaction in the general relativity** — 204
8.6 **Appendix** — 209

Bibliography — 219

Index — 224