1. Introduction

1.1. Classification of Poorly Soluble Drugs

1.1.1. The Biopharmaceutics Classification Scheme (BCS) 2

1.1.2. The Biopharmaceutics Drug Disposition Classification Scheme (BDDCS) 3

1.2. Intralumenal Events in the Context of Oral Absorption and Factors that Limit the Bioavailability of Orally Administered Drugs 4

1.2.1. Solubility, Dissolution, and Precipitation 6

1.2.2. Complexation, Degradation 9

1.2.3. Permeability Considerations 9

1.2.4. Site-Specific Absorption 10

1.2.5. Exotransport 10

1.2.6. First Pass Metabolism 10

1.3. Current Methods for Predicting the Permeability of Drugs 11

1.3.1. Jejunal Perfusion Experiments 11

1.3.2. In Vitro Techniques for Predicting the Intestinal Permeability of a Drug 12

1.3.2.1. Parallel Artificial Membrane Permeability Assay (PAMPA) 12

1.3.2.2. Surface Activity Profiling (SAP) 12

1.3.2.3. Estimation Using Physicochemical Drug Properties 13

1.3.2.4. Caco 2 Cell Assay 13

1.3.2.5. HT-29 Cell Assay 14

1.3.2.6. MDCK II Cell Assay 14

1.3.2.7. LLC-PK1 Cell Assay 14
1.4. Current Methods for Predicting the Release Characteristics of Drug Products

1.4.1. Compendial Dissolution Methods

1.4.1.1. Compendial Dissolution Media

1.4.1.2. Compendial Dissolution Apparatus

1.4.2. Biorelevant Dissolution Testing

1.5. Mathematical Description of Dissolution and Release

1.5.1. Fick's Diffusion Law and Noyes-Whitney Kinetics

1.5.2. Zero Order Dissolution Kinetics

1.5.3. First Order Dissolution Kinetics

1.5.4. Weibull Distribution

1.5.5. Higuchi Model

1.5.6. Korsmeyer-Peppas Kinetics

1.5.7. Dissolution Kinetics in Swellable, Erodible Matrices

1.6. Effect of Food on Drug Absorption

1.6.1. Physiological Changes in Response to Meal Ingestion

1.6.2. Possible Effects of Food on the Performance of a Drug or Drug Formulation

1.6.2.1. Gastric Conditions

1.6.2.2. Small Intestinal Conditions

1.6.2.3. Further Considerations for Food Effects

1.6.3. Prediction of Food Effects

1.6.3.1. BCS-Based Predictions

1.6.3.2. Dissolution Studies

1.6.3.3. Preclinical Studies

1.6.3.4. Combining Laboratory and Pharmacokinetic Data

1.7. Physiologically Based Pharmacokinetic (PBPK) Modeling

1.8. Aim of the Thesis and Issues Addressed in this Work
2. Results and Discussion


2.1.1. Establishing IVISIVC – Neutral Drugs

2.1.2. Establishing IVISIVC – Weakly Acidic Drugs

2.1.3. Establishing IVISIVC – Weakly Basic Drugs

2.1.3.1. Theoretical Models for Simulating Drug Precipitation

2.1.3.2. In Vitro Models for Simulating Drug Precipitation

2.1.4. What is the Benefit of Coupling Dissolution Results with PBPK Models? A Statement of How to Establish IVISIVC

2.2. PBPK Models to Predict the Pharmacokinetics of Poorly Soluble Drugs – A Guide to Appropriate Model Selection

2.2.1. From 2001 to Now – The Evolution of the STELLA® PBPK Model

2.2.2. A Comparison of the STELLA®-Based Model with Commercial PBPK Models: Advantages and Limitations

2.2.3. Which PBPK Model Covers My Situation Best?

2.2.4. Regulatory Applications of PBPK Modeling

3. Summary and Outlook

4. German Summary (Deutsche Zusammenfassung)

5. References

6. Publications

6.1. Publication List

6.1.1. Peer-Reviewed Papers

6.1.2. Review Articles

6.1.3. Book Chapter

6.1.4. Poster Presentations
6.2. Personal Contributions to Peer-Reviewed Papers and Book Chapter 121

6.3. Original Publications (Peer-Reviewed Papers and Book Chapter) 122
6.3.1. Biorelevant in Vitro Dissolution Testing of Products Containing Micronized or Nanosized Fenofibrate with a View to Predicting Plasma Profiles 122
6.3.2. Predicting the Oral Absorption of a Poorly Soluble, Poorly Permeable Weak Base using Biorelevant Dissolution and Transfer Model Tests Coupled with a Physiologically Based Pharmacokinetic Model 130
6.3.3. Utilizing in Vitro and PBPK Tools to Link ADME Characteristics to Plasma Profiles: Case Example Nifedipine Immediate Release Formulation 142

7. Curriculum Vitae 195

8. Academic Teachers 201