Contents

Nomenclature XI

1. Introduction 1
 1.1. Morphing Aircraft Definition and Overview 1
 1.2. Morphing Benefit Assessment 3
 1.3. Motivation and Research Objectives 5
 1.4. Structure of the Thesis 6

2. Morphing Aircraft Research 9
 2.1. Morphing System Concepts 9
 2.1.1. Structure Concepts 10
 2.1.2. Actuation Strategies 16
 2.1.3. Exemplary Morphing Systems and Integration 18
 2.2. Functional Correlations of Morphing Wing Aircraft 23
 2.3. Existing Benefit Assessment Methods 25

3. Morphing Assessment Framework 29
 3.1. Requirements and Criteria 29
 3.1.1. General Requirements 29
 3.1.2. Specific Requirements 30
 3.2. Framework Architecture 32
 3.3. Modelling of Morphing Aircraft 33
 3.3.1. Geometry 35
 3.3.2. Weight and Balance 37
 3.3.3. Aerodynamics 38
 3.3.4. Structure and Loads 47
 3.3.5. Propulsion 49
 3.3.6. Methods to Incorporate Numerical Modelling 49
 3.4. Morphing Concept Penalties 54
 3.5. Simulation of Morphing Aircraft 58
 3.5.1. Mission 59
 3.5.2. Flight Mechanics and Performance 61
 3.5.3. Optimisation 62
 3.6. Net Benefit and Efficiency Assessment 64
 3.6.1. Evaluation of Fundamental References 65
 3.6.2. Evaluation of Morphing Concepts 66
 3.6.3. Net Benefit and Derivation of Strategic Design Decisions 66

VII
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.2. Single Flight State Optimisation</td>
<td>152</td>
</tr>
<tr>
<td>B.3. Long-Range Mission Optimisation</td>
<td>155</td>
</tr>
<tr>
<td>B.4. Minimum-Time Mission Optimisation</td>
<td>156</td>
</tr>
<tr>
<td>B.5. Multi-Objective Mission Optimisation</td>
<td>157</td>
</tr>
<tr>
<td>C. Exemplary Aerodynamic Characteristics and Impact of Weight Penalties</td>
<td>159</td>
</tr>
</tbody>
</table>