Contents

Preface XV
List of Contributors XVII

1 Introduction 1
Raju Thomas, Christophe Sinturel, Sabu Thomas, and Elham Mostafa El Akiaby
1.1 Epoxy Resin – Introduction 1
1.2 Cure Reactions 1
1.3 Curing Agents 2
1.3.1 Catalytic Cure 3
1.3.2 Co-reactive Cure 3
1.3.2.1 Primary and Secondary Amines 3
1.3.2.2 Mercaptans 5
1.3.2.3 Isocyanates 5
1.3.2.4 Carboxylic Acids 5
1.3.2.5 Acid Anhydrides 5
1.4 Different Curing Methods 7
1.4.1 Thermal Curing 7
1.4.2 Microwave Curing 8
1.4.3 Radiation Curing 10
1.4.3.1 Electron Beam Curing 10
1.4.3.2 Gamma Ray Irradiation 11
1.5 Curing of Epoxy Resins: Structure–Property Relationship 12
1.6 Toughening of Epoxy Resin 13
1.6.1 Different Toughening Agents 13
1.6.1.1 Liquid Elastomers for Toughening Epoxy Matrices 13
1.6.1.2 Rigid Crystalline Polymers 14
1.6.1.3 Hygrothermal Toughening Agents 14
1.6.1.4 Core–Shell Particles 14
1.6.1.5 Nanoparticles for Epoxy Toughening 15
1.6.1.6 Thermoplastic Modification of Epoxy Resin 15
1.6.1.7 Block Copolymers as Modifiers for Epoxy Resin 16
1.7 Rubber-Modified Epoxy Resin: Factors Influencing Toughening 16
Contents

1.7.1 Concentration Effects 16
1.7.2 Particle Size and Distribution of Rubber 16
1.7.3 Effect of Temperature 17
1.7.4 Effect of Rubber 17
1.7.5 Interfacial Adhesion 18
1.8 Toughening Mechanisms in Elastomer-Modified Epoxy Resins 18
1.8.1 Particle Deformation 18
1.8.2 Shear Yielding 19
1.8.3 Crazing 20
1.8.4 Simultaneous Shear Yielding and Crazing 21
1.8.5 Crack Pinning 22
1.8.6 Cavitation and Rumpling 22
1.9 Quantitative Assessment of Toughening Mechanisms 23
1.10 Introduction of Chapters 24
References 25

2 Liquid Rubbers as Toughening Agents 31

Hanieh Kargarzadeh, Ishak Ahmad, and Ibrahim Abdullah

2.1 Introduction 31
2.2 Toughening of Thermoset Resins 31
2.3 Fracture Behavior of Rubber-Toughened Thermosets 32
2.4 Natural Rubbers 35
2.4.1 Preparation Method of LNR 36
2.4.1.1 Oxidation in the Presence of Redox System 36
2.4.1.2 Oxidation by Photochemical Method 37
2.4.1.3 Oxidation at High Temperatures and High Pressures 38
2.4.1.4 Oxidation by Cleavage Reagent Specific to Double Bonds 38
2.4.1.5 Metathesis Degradation 40
2.5 Liquid-Toughening Rubber in Thermoset Resins 43
2.6 Concluding Remarks 49
References 50

3 Nanostructured Epoxy Composites 53

Yuan Meng and Xinghong Zhang

3.1 Introduction 53
3.2 Preparation Methods of the Nanostructured Epoxy Thermoset 54
3.3 Morphology of the Nanostructured Epoxy Thermoset 56
3.3.1 Parameters Controlling the Morphologies 56
3.3.1.1 Blends Composition 56
3.3.1.2 The Choice of Curing Agent 58
3.3.1.3 Topological Architecture of the Copolymer 59
3.4 Microphase Separation Mechanism 60
3.4.1 Self-Assembly Mechanism 61
3.4.2 Reaction-Induced Microphase Separation Mechanism 63
3.5 Mechanical and Thermal Properties 65
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5.1</td>
<td>Fracture Toughness</td>
<td>65</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Glass Transition Temperature</td>
<td>67</td>
</tr>
<tr>
<td>3.6</td>
<td>Conclusions and Outlooks</td>
<td>67</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>4</td>
<td>Manufacture of Epoxy Resin/Liquid Rubber Blends</td>
<td>73</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>73</td>
</tr>
<tr>
<td>4.2</td>
<td>Comparison of Hardeners</td>
<td>74</td>
</tr>
<tr>
<td>4.3</td>
<td>Rubber-Toughened Epoxy Resins</td>
<td>77</td>
</tr>
<tr>
<td>4.4</td>
<td>Cure Reaction Analysis</td>
<td>79</td>
</tr>
<tr>
<td>4.5</td>
<td>Conclusions</td>
<td>79</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>Cure and Cure Kinetics of Epoxy-Rubber Systems</td>
<td>83</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>83</td>
</tr>
<tr>
<td>5.2</td>
<td>Cure Analysis</td>
<td>83</td>
</tr>
<tr>
<td>5.3</td>
<td>Curing Kinetics</td>
<td>84</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Kinetics Analysis</td>
<td>85</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Autocatalytic Model</td>
<td>85</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Activation Energies</td>
<td>86</td>
</tr>
<tr>
<td>5.3.3.1</td>
<td>Dynamic Kinetics Methods</td>
<td>86</td>
</tr>
<tr>
<td>5.3.3.2</td>
<td>Isothermal Methods</td>
<td>87</td>
</tr>
<tr>
<td>5.4</td>
<td>Diffusion Factor</td>
<td>88</td>
</tr>
<tr>
<td>5.5</td>
<td>Differential Scanning Calorimetry</td>
<td>88</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Dynamic DSC</td>
<td>89</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Isothermal DSC</td>
<td>90</td>
</tr>
<tr>
<td>5.6</td>
<td>FTIR Spectroscopy</td>
<td>92</td>
</tr>
<tr>
<td>5.7</td>
<td>Dielectric Spectroscopy Thermal Method</td>
<td>94</td>
</tr>
<tr>
<td>5.8</td>
<td>Pressure--Volume--Temperature (PVT) Method</td>
<td>96</td>
</tr>
<tr>
<td>5.9</td>
<td>Dynamic Mechanical Analysis (DMA) and Rheological Methods</td>
<td>97</td>
</tr>
<tr>
<td>5.10</td>
<td>Conclusions</td>
<td>101</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td></td>
<td>101</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>101</td>
</tr>
<tr>
<td>6</td>
<td>Theoretical Modeling of the Curing Process</td>
<td>105</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>105</td>
</tr>
<tr>
<td>6.2</td>
<td>Modeling of the Curing Kinetics</td>
<td>106</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Mechanistic Approach</td>
<td>107</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Phenomenological Models Describing the Reaction</td>
<td>109</td>
</tr>
<tr>
<td>6.2.2.1</td>
<td>nth-Order Model</td>
<td>109</td>
</tr>
<tr>
<td>6.2.2.2</td>
<td>Autocatalytic Model</td>
<td>113</td>
</tr>
<tr>
<td>6.2.2.3</td>
<td>Kamal and Sourour Model</td>
<td>115</td>
</tr>
<tr>
<td>6.2.2.4</td>
<td>Bailleul Model</td>
<td>117</td>
</tr>
</tbody>
</table>
6.2.3 Rheological Models 118
 6.2.3.1 Gel Time Model 118
 6.2.3.2 Viscosity Model 118
6.2.4 Effect of Vitrification (T_g) on the Reaction Rate 119
6.3 Applications of the Empirical Models 120
6.4 Conclusion 122
References 123

7 Phase-Separation Mechanism in Epoxy Resin/Rubber Blends 127
 Vattikuti Lakshmana Rao and Bejoy Francis
 7.1 Introduction 127
 7.2 Thermodynamics of Phase Separation 128
 7.2.1 Nucleation and Growth Mechanism 130
 7.2.2 Spinodal Decomposition 130
 7.3 Phase Separation in Uncured Epoxy Resin/Liquid Rubber Blends 131
 7.4 Phase-Separation Mechanism in Cured Blends 133
 7.5 Conclusion 144
References 144

8 Morphology Analysis by Microscopy Techniques and Light Scattering 147
 Daohong Zhang, Junheng Zhang, and Aiqing Zhang
 8.1 Introduction 147
 8.2 Developments of Morphology Analysis in Rubber-Modified Epoxies 147
 8.2.1 Optical Microscopy (OM) 148
 8.2.2 Scanning Electron Microscopy (SEM) 150
 8.2.3 Atomic Force Microscopy (AFM) 153
 8.2.4 Transmission Electron Microscopy (TEM) 155
 8.2.5 Small-Angle Light Scattering (SALS) 159
 8.3 Different Types of Morphologies 160
 8.3.1 Phase-Separation Morphology of Epoxy/Rubbers Blends 160
 8.3.2 Morphology of Hybrids 161
 8.3.3 Homogeneous Morphology 163
 8.4 Morphology of Toughening and Reinforcing Effects 165
 8.4.1 Conventional Additives 165
 8.4.2 Hyperbranched Polymers 167
 8.5 Conclusions 171
Acknowledgments 172
References 172

9 Pressure–Volume–Temperature (PVT) Analysis 179
 Didier Delaunay, Nicolas Boyard, and Vincent Sobotka
 9.1 Introduction 179
10
Rheology of Rubber-Toughened Structural Epoxy
Resin Systems 193
Richard A. Pethrick
10.1
Introduction 193
10.2
Epoxy Resin Chemistry 194
10.2.1
Basic Epoxy Chemical Reactions 195
10.2.2
Kinetics of Cure 196
10.2.3
Epoxy Reactivity 198
10.3
Modeling of the Cure Process 198
10.4
Rheological Implication of Differences in Reactivity 201
10.4.1
Modeling Rheological Behavior 202
10.4.2
Connection between Rheology and Cure 203
10.5
Rheological Studies of Cure 206
10.6
Toughened Epoxy Resins 209
10.6.1
Carboxy-Terminated Butadiene Acrylonitrile (CTBN) 210
10.6.2
Polyethersulfone (PES) 211
10.6.3
Nano Clay Toughening of Epoxy Resins 213
10.6.4
Toughening with Nano Carbon and Silica Nano Particles 213
10.6.5
Plasticization 213
10.7
Concluding Comments 214
Acknowledgments 214
References 214

11
Viscoelastic Measurements and Properties of Rubber-Modified Epoxy
Epoxy 219
Yingfeng Yu
11.1
Introduction 219
11.1.1
State Transitions from Liquid to Solid 220
11.1.2
Viscoelasticity of Cured Materials 222
11.2
Viscoelastic Behavior Below and Near Gel Point 224
11.2.1
Liquid-Rubber-Modified Epoxy 224
11.2.2
Core–Shell Rubber-Modified Epoxy 224
11.2.3
Ternary Systems with Fillers 228
11.3
Viscoelasticity of Cured Materials 228
11.3.1
Dynamic Mechanical Study 228
11.3.2
Dielectric Measurement 231
11.4
Other Remarks 233
11.5
Conclusion 234
References 234
12 Light, X-ray, and Neutron Scattering Techniques for Miscibility and Phase Behavior Studies in Polymer Blends 239

Chikkakuntappa Ranganathaiah

12.1 Introduction 239
12.2 Brief Theoretical Considerations of Scattering 240
12.3 Light Scattering Experiment 242
12.4 X-ray Scattering 251
12.5 Neutron Scattering 261
12.5.1 Small-Angle Neutron Scattering (SANS) 261
12.6 Conclusions and Future Outlook 267

Acknowledgments 267
References 267

13 Mechanical Properties 271

Shinu Koshy

13.1 Introduction 271
13.2 Morphology and Mechanical Properties of Rubber-Modified Epoxies 272
13.2.1 Influence of Rubber Concentration 273
13.2.2 Influence of Initial Cure Temperature 276
13.2.3 Influence of Curing Agent 278
13.2.4 Influence of Acrylonitrile Content 279
13.2.5 Influence of Strain Rate 280
13.2.6 Kerner Equation 281
13.3 Fracture Toughness 281
13.3.1 Effect of Concentration on Fracture Toughness 282
13.3.2 Effect of Strain Rate on Fracture Toughness 284
13.3.3 Effect of Curing Agent on Fracture Toughness 285
13.4 Conclusion 285

References 286

14 Thermal Properties 289

Vincent Sobotka, Didier Delaunay, Nicolas Boyard, Sabu Thomas, and Poornima Vijayan P.

14.1 Specific Heat 289
14.2 Thermal Conductivity 292
14.2.1 Main Methods of Characterization 292
14.2.1.1 Thermal Steady-State Methods 292
14.2.1.2 Thermal Transient Methods 293
14.2.2 Classical Model to Describe Thermal Conductivity as a Function of Temperature and Degree of Cure 296
14.3 Thermogravimetric Analysis of Rubber/Epoxy Systems 297
14.4 Kinetic Study from TGA 300

References 301
15 Dielectric Properties of Elastomeric Modified Epoxies 305
Yerrapragada Venkata Lakshmi Ravi Kumar, Swayampakula Kalyani, and Nidamarthy Vasantha Kumar Dutt

15.1 Introduction 305
15.2 Dielectric Study in Rubber/Epoxy Systems 306
 15.2.1 Dielectric Constant (ε) 306
 15.2.2 Volume Resistivity (VR) 308
 15.2.3 Conductivity (σ) 310
 15.2.4 Combined Studies on Dielectric Constant, Volume Resistivity, and Conductivity 311
15.3 Summary 312
References 312

16 Spectroscopy Analysis of Micro/Nanostructured Epoxy/Rubber Blends 315
Xiaojiang Wang and Mark D. Soucek

16.1 Introduction 315
16.2 Fourier Transform Infrared (FTIR) and Raman Spectroscopy 316
 16.2.1 DGEBA Epoxy/Rubber Blends 316
 16.2.2 Other Epoxy/Rubber Blends 320
 16.2.3 FTIR Image and Raman Spectroscopy 322
16.3 Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) 323
 16.3.1 Acid-Terminated Rubber/DGEBA Epoxy Blends 323
 16.3.2 Hydroxyl-Terminated Rubber/DGEBA Epoxy Blends 326
 16.3.3 Neutral Rubber/DGEBA Epoxy Blends 329
 16.3.4 Other Type Epoxy/Rubber Blends 331
16.4 Other Spectroscopy 333
16.5 Summary 333
Abbreviations 334
References 334

17 Applications 339

17.1 Applications of Toughened Epoxy Resins 339
Richard A. Pethrick

17.1.1 Introduction 339
17.1.2 Aerospace Adhesive Applications 339
17.1.3 Rubber-Modified Resins 340
17.1.4 Composites 341
17.1.5 Epoxy Resin Modification 342
17.1.6 Thermoplastic Modification 343
17.1.7 Nanoparticle Modification 343
17.1.8 Other Areas of Application 343
17.2 Thermoset-Based Materials for Optical Applications Containing Azobenzene Choromophores 344

Luciana M. Sáiz, Antonela B. Orofino, María José Galante, and Patricia A. Oyanguren

17.2.1 Introduction 344
17.2.2 Synthesis and Optical Properties of Cross-linked Azo Polymers 345
17.2.2.1 Epoxy-Based Networks 345
17.2.2.2 Urethane-Based Networks 349
17.2.3 Photoaddressable Networks Containing Alkyl Compounds 354
17.2.4 Conclusions 358

References 360

18 Comparison of Epoxy/Rubber Blends with Other Toughening Strategies: Thermoplastic and Hyperbranched Modifiers 363

Gianluca Cicala

18.1 Epoxy/Thermoplastic Blends: Development and Properties 363
18.2 Epoxy/Hyperbranched Polymer Blends: Development and Properties 375
18.3 Novel Toughening Approaches for Liquid Molding Technologies 378
18.4 Rubbers as Tougheners: Comparison with Thermoplastics and Hyperbranched Modifiers 383
18.5 Conclusions 387

References 388

19 Reliability Testing 391

Marius Băzu and Titu Băjenescu

19.1 Introduction 391
19.2 Reliability Tests Used in Micro/Nanotechnologies 392
19.3 Behavior in Real Applications and Aging Studies of Epoxy/Rubber Blends 394
19.3.1 Epoxy/Rubber Blends Used in Packaging of Active Electronic Components 394
19.3.1.1 Molding Material 396
19.3.1.2 Adhesives 398
19.3.2 Epoxy Matrix Used in Nanocomposites 399
19.4 Conclusions 402

References 402

20 Failure Analysis 405

Marius Băzu and Titu Băjenescu

20.1 Introduction 405
20.2 Methods for Failure Analysis of Epoxy/Rubber Blends 405
20.3 Typical Failure Modes and Failure Mechanisms of Epoxy/Rubber Blends Used in Micro and Nanotechnologies 405
20.3.1 Mechanical Damages 409
20.3.1.1 Fracture 409
20.3.1.2 Creep 413
20.3.2 Ion Contamination 414
20.4 Self Healing 416
20.5 Conclusions 417
References 418

21 Life Cycle Assessment (LCA) of Epoxy-Based Materials 421
Jyotishkumar Parameswaranpillai and Dhanya Vijayan
21.1 Introduction to Life Cycle Assessment (LCA) 421
21.2 Significance of Life Cycle Assessment (LCA) 422
21.2.1 Goal and Scope Definition 422
21.2.2 Life Cycle Inventory Analysis 423
21.2.3 Life Cycle Impact Assessment 423
21.2.4 Life Cycle Result Interpretation 424
21.3 Life Cycle Analysis of Epoxy Systems 424
21.3.1 Life Cycle Analysis of Epoxy Resins Produced Based on Propylene and Glycerin 424
21.3.2 Life Cycle Analysis of Epoxy Resin Containing Carbon Nanotubes 426
21.3.3 Life Cycle Assessment of Wind Turbine Blade Materials 426
21.3.4 Life Cycle Assessment in Automotive Application 428
21.3.5 Life Cycle Assessment in Aerospace Application 429
21.3.6 Life Cycle Assessment of a Novel Hybrid Glass-Hemp/Thermoset Composite 429
21.3.7 Natural Fiber-Reinforced Epoxy Composites 430
21.4 Conclusion 430
References 431

Index 433