Table of Contents

Preface —— v

1 Introduction: Envisioning Semantic Information Spaces —— 1

Part A Propaedeutics – Organizing, Representing, and Exploring Knowledge

2 Indexing and Knowledge Organization —— 15

2.1 Knowledge Organization Systems as Indexing Languages —— 15

2.1.1 Building Elements: Entities and Terms —— 16

2.1.2 Structural Elements: Intrasystem Relations —— 21

2.1.3 Result Elements: Indexates —— 27

2.2 Standards and Frameworks —— 30

2.2.1 ISO 25964: Thesauri and Interoperability with other Vocabularies —— 30

2.2.2 Functional Requirements for Subject Authority Data (FRSAD) —— 31

3 Semantic Technologies for Knowledge Representation —— 33

3.1 Web-based Representation Languages —— 33

3.1.1 XML —— 34

3.1.2 RDF/RDFS —— 37

3.1.3 OWL —— 42

3.2 Application-based Representation Languages —— 49

3.2.1 XTM —— 50

3.2.2 SKOS —— 57

4 Information Retrieval and Knowledge Exploration —— 61

4.1 Information Retrieval Essentials —— 61

4.1.1 Exact Match Paradigm —— 62

4.1.2 Partial Match Paradigm —— 64

4.2 Measuring Effectiveness in Information Retrieval —— 65

4.3 From Retrieving to Exploring —— 68

4.3.1 String-based Retrieval Processes —— 71

4.3.2 Conceptual Retrieval Process —— 73

4.3.3 Conceptual Exploration Processes —— 74

4.3.4 Topical Exploration Processes —— 78

4.4 From Homogeneous to Heterogeneous Information Spaces —— 80
Part B Status quo – Handling Heterogeneity in Indexing and Retrieval

5 Approaches to Handle Heterogeneity — 87
5.1 Citation Pearl Growing — 87
5.2 Modeling Multilingual Indexing Languages — 89
5.3 Establishing Semantic Interoperability between Indexing Languages — 90
5.3.1 Structural Models — 91
5.3.2 Mapping Levels — 93
5.3.3 Vocabulary Linking Projects — 96

6 Problems with Establishing Semantic Interoperability — 105
6.1 Conceptual Interoperability between Entities of Indexing Languages — 107
6.1.1 Focused and Comprehensive Mapping — 108
6.1.2 Conceptual Identity and Semantic Congruence — 112
6.2 Equivalent Intersystem Relationships — 118
6.2.1 Intersystem Relations Compared to Intrasystem Relations — 119
6.2.2 Interoperability and Search Tactics — 121
6.2.3 Specified Intersystem Relationships — 132
6.2.4 Conceptual Interoperability between Indexing Results — 134
6.2.5 Directedness of Intersystem Relationships — 137

Part C Vision – Ontology-based Indexing and Retrieval

7 Formalization in Indexing Languages — 147
7.1 Introduction and Objectives — 147
7.2 Common Characteristics and Differences between Indexing Languages and Formal Knowledge Representation — 151
7.3 Prerequisites for an Ontology-based Indexing — 156
7.3.1 Semantic Relations and Inferred Document Sets — 158
7.3.2 Facets and Inferences — 167

8 Typification of Semantic Relations — 181
8.1 Inventories of Typed relations — 182
8.2 Typed Relations and their Benefit for Indexing and Retrieval — 188
8.3 Examples of the Benefit of Typed Relations for the Retrieval Process — 194
Part D Appendices

Systematic Glossary — 265
Abbreviations — 271
List of figures — 273
List of tables — 277
References — 279
Index — 289