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Abstract 

The objective of the present doctoral thesis was to investigate the occurrence, distribution, 

and behaviour of six hydrophilic ethers: ethyl tert-butyl ether (ETBE), 1,4-dioxane, ethylene 

glycol dimethyl ether (monoglyme), diethylene glycol dimethyl ether (diglyme), triethylene 

glycol dimethyl ether (triglyme), and tetraethylene glycol dimethyl ether (tetraglyme) in surface-, 

waste-, ground- and drinking water samples. Solid phase extraction and gas 

chromatography/mass spectrometry were used to analyze the six hydrophilic ethers. Altogether 

more than 150 surface water samples, almost 100 of each groundwater and wastewater samples, 

and 10 raw and drinking water samples were analyzed during the research project.  

 Initially, the method was validated in order to simultaneously determine the analytes of 

interest in various aquatic environments. A solid phase extraction method that uses coconut 

charcoal (Resprep
®
 activated coconut charcoal, Restek) or carbon molecular sieve material 

(Supelclean
TM

 Envi-Carb
TM

 Plus, Supelco) for analyte absorption were found suitable for 

determination of ETBE, 1,4-dioxane, and glymes in surface-, drinking-, ground- and wastewater 

samples. Precision and accuracy of both methods was demonstrated for all analytes of interest. 

The recovery of target compounds from the ultrapure water spiked at 1.0 µg L
−1

 was between 

86.8 % and 98.2 %, with relative standard deviation below 6 %. The samples spiked at 10.0 µg 

L
−1

 gave slightly higher recovery of 90.6 % to 112.2 % with a relative standard deviation below 

3.4 % for each analyte. Detection and quantification limits in ultrapure water and surface waters 

were furthermore established. The limit of quantitation (LOQ) in ultrapure water ranged between 

0.024 µg L
−1

 to 0.057 µg L
−1

 using Restek cartridges, and 0.030 µg L
−1

 to 0.069 µg L
−1

 using 

Supelco cartridges. In the surface water samples the calculated LOQ was 0.032 µg L
−1

 to 0.067µg 

L
−1

 using coconut charcoal material and 0.032 µg L
−1

 to 0.052 µg L
−1

 using the carbon molecular 

sieve material. Moreover, stability of the unpreserved and preserved water samples as well as the 

extracts was determined. Preservation of samples with sodium bisulfate (at 1 gram per Liter) 

resulted in much better stability of the ethers in water samples. Subsequently, 27 samples 

obtained from seven surface water bodies in Germany (Rivers Rhine, Lippe, Main, Oder, Rur, 

Schwarzbach and Wesel-Datteln Canal) were analyzed for the six hydrophilic ethers. ETBE was 

present in only two surface waters (Rhine River and Wesel-Datteln Canal) with concentrations 

close to the LOQ (up to 0.065 µg L
−1

). 1,4-Dioxane was detected in all of the water samples at 

concentrations reaching 1.93 µg L
–1

. Monoglyme was identified only in the Main and Rhine 
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Rivers at the maximum concentration of 0.114 µg L
–1 

and 0.427 µg L
–1

, respectively. Very high 

concentrations (up to 1.73 µg L
−1

) of diglyme, triglyme, and tetraglyme were detected in the 

samples from the Oder River. These glymes were also detected in the Rhine River; however the 

concentrations did not exceed 0.200 µg L
–1

. Furthermore, tetraglyme was detected in the Main 

River at an average concentration of 0.409 µg L
–1

 (n = 6) and in one sample from the Rur River 

at 0.192 µg L
–1

. 

  Four sampling campaigns were conducted at the Oderbruch polder between October 2009 

and May 2012, in order to study the behavior of the hydrophilic ethers and organophosphates 

during riverbank filtration and in the anoxic aquifer. Moreover the suitability of these target 

compounds was assessed for their use as groundwater organic tracers. At the time of each 

sampling campaign, concentrations of triglyme and tetraglyme in the Oder River were between 

20–185 ng L
–1

 (n = 4) and 273–1576 ng L
–1 

(n = 4). Monoglyme, diglyme, and 1,4-dioxane were  

analyzed only during the two last sampling campaigns. At that time, the concentration of diglyme 

in Oder River was 65–94 ng L
-1

 (n = 2) and 1,4-dioxane 1610–3290 ng L
–1

 (n = 2). In the 

drainage ditch, following bank filtration, concentrations of ethers ranged between 1090 ng L
–1 

and 1467 ng L
–1 

for 1,4-dioxane, 23ng L
–1

 and 41 ng L
–1

 for diglyme,
 
37 ng L

–1
 and 149 ng L

–1
 

for triglyme, and 496 ng L
–1

  and 1403 ng L
–1

 for tetraglyme. In the anoxic aquifer, 1,4-dioxane 

showed the greatest persistence during the groundwater passage. At the distance of 1150 m from 

the river and an estimated groundwater age of 41.9 years, a concentration above 200 ng L
−1

 was 

detected. A positive correlation was found for the inorganic tracer chloride (Cl
−
) with 1,4-dioxane 

and tetraglyme. Similarities in the behavior of Cl
−
 and the organic compound suggested that 1,4-

dioxane and tetraglyme are controlled by the same hydraulic process and therefore can be used as 

additional tracers to study the dynamics of the groundwater system. These results show that high 

concentrations of ethers are present in the surface water and are not removed during bank 

filtration processes. Moreover, the hydrophilic ethers persist in the anoxic aquifer and little or no 

degradation is expected, supporting, their possible application as organic tracers. 

A separate sampling project was conducted for 1,4-dioxane that focused primarily on its 

fate in the aquatic environment. This study provided missing information on the extent of water 

pollution with 1,4-dioxane is Germany. Numerous waste-, surface-, ground- and drinking water 

samples were collected in order to determine the persistence of 1,4-dioxane in the aquatic 

environment. The occurrence of 1,4-dioxane was determined in wastewater samples from four 
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municipal sewage treatment plants (STP). The influent and effluent samples were collected 

during weekly campaigns. The average influent concentrations in all four plants ranged from 262 

± 32 ng L
−1

 to 834 ± 480 ng L
−1

, whereas the average effluents concentrations were between 267 

± 35 ng L
−1

 and 62,260 ± 36,000 ng L
−1

. The source of increased 1,4-dioxane concentrations in 

one of the effluents was identified to originate from impurities in the methanol used in the 

postanoxic denitrification process. Spatial and temporal distribution of 1,4-dioxane in the river 

Main, Rhine, and Oder was also examined. Concentrations reaching 2,200 ng L
−1

 in the Oder 

River, and 860 ng L
−1

 in both Main and Rhine River were detected. The average load during the 

sampling was estimated to be 6.5 kg d
−1

 in the Main, 34.1 kg d
−1

 in the Oder, and 134.5 kg d
−1

 in 

the Rhine River. In all of the sampled rivers, concentrations of 1,4-dioxane increased with 

distance from the mouth of the river and were found to negatively correlate with the discharge of 

the river. In order to determine if 1,4-dioxane can reach drinking water supplies, samples from a 

Rhine River bank filtration site and potable water from two drinking water production facilities 

were analyzed for the presence of 1,4-dioxane in the raw water and finished potable water. The 

raw water (following bank filtration) contained 650 ng L
−1

 to 670 ng L
−1

 of 1,4-dioxane, whereas 

the concentration in the finished drinking water fell only to 600 ng L
−1

 and 490 ng L
−1

, 

respectively.  

During the final project, investigations of the source identification of high glyme 

concentrations in the Oder River were carried out. During four sampling campaigns between 

January, 2012 and April, 2013, 50 samples from the Oder River in the Oderbruch region and 

Poland were collected. During the first two samplings in the Oderbruch polder, glymes were 

detected at concentration reaching 0.07 µg L
-1

 (diglyme), 0.54 µg L
−1

 (triglyme) and 1.73 µg L
−1

 

(tetraglyme) in the Oder River. The extensive sampling campaign of the Oder River (about 500 

km) in Poland helped to identify the area of possible glyme entry into the river. During that 

sampling the maximum concentrations of triglyme and tetraglyme were 0.46 µg L
−1 

and 2.21 µg 

L
−1

, respectively. A closer investigation of the identified area of pollution, helped to determine 

the possible sources of glymes in the Oder River. Hence, the final sampling focused on the 

Kaczawa River, a left tributary of the Oder River and Czarna Woda, a left tributary of Kaczawa 

River. Moreover, samples from an industrial wastewater treatment plant were collected. Samples 

from Czarna Woda stream and Kaczawa River contained even higher concentrations of diglyme, 

triglyme, and tetraglyme, reaching 5.18 µg L
−1

, 12.87 µg L
−1

 and 80.81 µg L
−1

, respectively. 

Finally, three water samples from a wastewater treatment plant receiving influents from a copper 
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smelter were analyzed. Diglyme, triglyme, and tetraglyme were present at an average 

concentration of 569 µg L
−1

, 4300 µg L
−1

, and 65900 µg L
−1

, respectively in the wastewater.  

Further research helped to identify the source of the glymes in the wastewater. The gas 

desulfurization process – Solinox implemented in the nearby copper smelter uses glymes as 

physical absorption medium for sulfur dioxide.  

Results of this doctoral research provide important information about the occurrence, 

distribution, and behavior of hydrophilic ethers: 1,4-dioxane, monoglyme, diglyme, triglyme, and 

tetraglyme in the aquatic environment. A method capable of analyzing a wide range of ether 

compounds: from a volatile ETBE to a high molecular weight tetraglyme was validated. 1,4-

Dioxane and tetraglyme were found to be applicable as organic tracers, since they are not easily 

attenuated during bank filtration and the anoxic groundwater passage. The extent of water 

pollution with 1,4-dioxane was shown in waste-, surface-, ground-, and drinking waters. One 

source of extremely high concentrations of 1,4-dioxane in a municipal sewage treatment plant 

applying postanoxic denitrification was identified, however more information is needed on the 

entry of 1,4-dioxane into surface waters. Moreover, 1,4-dioxane was present in drinking water 

samples from river bank filtration, which demonstrates its persistence in the aquatic environment 

and its low degradation potential during bank filtration and subsequent water treatment. 

Furthermore, this was the first study that focused primarily on identifying sources of glymes in 

surface waters. Glymes find a widespread use in industrial sectors, hence establishing their origin 

in the surface water is difficult (as with 1,4-dioxane). In this work, a gas desulphurization process 

was identified to be a dominating source of glyme pollution in the Oder River.  

 

Keywords: 1,4-dioxane; glymes; bank filtration; drinking water; surface water; GC/MS; solid 

phase extraction 
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Zusammenfassung 

Im Fokus der vorliegenden Dissertationsschrift stehen die sechs hydrophilen Ether:  

Ethyl-tert-butylether (ETBE), 1,4-Dioxan, Ethylenglycol-dimethylether (Monoglyme), 

Diethylenglycol-dimethylether (Diglyme), Triethylenglycol-dimethylether (Triglyme), und 

Tetraethylenglycol-dimethylether (Tetraglyme). ETBE ist ein Additiv für Vergaserkraftstoffe, 

das in vielen Ländern als Antiklopfmittel zum Einsatz kommt (z.B. Ersatz für MTBE). Des 

Weiteren verbessert ETBE die Verbrennung des Kraftstoffs, so dass die Emissionen von 

Kohlenwasserstoffen und Kohlenmonoxid durch die Kraftfahrzeuge verringert werden. 1,4-

Dioxan wird größtenteils als Lösungsmittel bei der Produktion von Klebstoff, Abbeizmitteln, 

Farbstoffen, Entfettern, Gewebereinigern, Papier, Elektronik, aber auch bei vielen anderen 

Erzeugnissen verwendet (Sei et al., 2010). Es entsteht auch als unerwünschtes Nebenprodukt in 

industriellen Fertigungen, wie z.B. bei der Synthese von Polyester oder bei der Herstellung von 

Tensiden (Sei et al., 2010; Black et al., 2001). Glycoldimethylether (Glymes) sind gesättigte 

Polyether und werden üblicherweise als Reaktionslösungsmittel in der Pharmaindustrie 

verwendet, sowie bei der Herstellung von Spezialchemikalien. Zusätzlich sind Glymes in vielen 

fertigungstechnischen Produkten, wie z.B. in Druckfarben, Lackfarben, Beschichtungen, 

Klebstoffen, Batterien und Bremsflüssigkeiten, enthalten (U.S. Environmental Protection 

Agency, 2011). Die höhermolekularen Glymes, wie z.B. Tetraglyme, kommen auch als 

physikalische Absorptionslösungsmittel für die Entfernung von SO2 und H2S aus Abgasen, z.B. 

im sogenannten Solinox-Prozess, zum Einsatz. Die derzeitigen Produktionsvolumina, sowie die 

Verwendungen von den oben genannten Analyten, sind innerhalb Europas nicht bekannt. Bis 

1995 wurde 1,4-Dioxan meist als Stabilisator für 1,1,1-Trichlorethan (1,1,1-TCE) genutzt. Da 

sich jedoch herausgestellt hat, dass 1,1,1-TCE die Ozonschicht angreift, wurde die Substanz mit 

dem „Montreal Protocol“ strenger reguliert (Doherty, 2000). Im Jahr 1997 lag das 

Produktionsvolumen von 1,4-Dioxan bei 2.000 – 2.500 Tonnen (European Commission, 2002). 

Gemäß der „Organization for Economic Cooperation and Development“ und der „European 

Chemical Substances Information System“ übersteigt die jährliche Produktion von Monoglyme 

und Diglyme 1.000 Tonnen pro Jahr in mindestens einem der EU-Mitgliedsstaaten (European 

Chemicals Agency, 2011a, 2011b). Im Jahre 2002 hat die „Oxygenated Solvent Producer 

Association“ Produktionszahlen von Triglyme von insgesamt über 1.000 Tonnen in Europa 

ermittelt (European Chemicals Agency, 2011c). In den letzten Jahren ist die Frage nach der 
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allgegenwärtigen Präsenz von 1,4-Dioxan in der Umwelt gestiegen und auch das Interesse an 

damit verbundenen gesundheitsschädlichen Auswirkungen. Die „United States Environmental 

Protection Agency“(U.S. EPA) und die „International Agency for Research on Cancer“ haben 

1,4-Dioxan als „Probable Human Carcinogen“ (B2) eingestuft. Monoglyme, Diglyme und 

Triglyme wiesen klar auf Fortpflanzungs- und Entwicklungsstörungen bei Versuchstieren hin 

(Hardin, 1983; George et al., 1987; Schwetz et al., 1992; ECETOC, 2005). Wenn Menschen 

diesen Glymes ausgesetzt sind, könnte dies auch zur Unfruchtbarkeit und zu Schäden bei 

Schwangerschaften führen (EPA, 2011). 

Die in dieser Studie betrachteten Ether haben eine moderate bis hohe Wasserlöslichkeit 

und besitzen Henry-Koeffizienten zwischen 1,04×10
−14 

bis 1,64×10
−3

 atm×m
3
×mol

−1
 

(Tetraglyme und entsprechend ETBE) und gewährleisten somit eine geringe Volatilität aus 

wässrigen Lösungen. Basierend auf dem n-Octanol-Wasser-Verteilungskoeffizienten (log Pow = 

−1.03 bis 1.92) haben sie ein vernachlässigbares Potential zur Bioakkumulation. Der relativ hohe 

Dampfdruck (< 0.01 bis 124 mm Hg) ermöglicht eine schnelle Verdampfung aus trockenen 

Böden. Aufgrund ihrer physikochemischen Eigenschaften belasten die Substanzen insbesondere 

die aquatische Umwelt und implizieren dadurch eine schwierige Entfernung aus dem Wasser. 

Dieses Problem erhöht die Wahrscheinlichkeit für eine mögliche Verunreinigung von 

Oberflächen- und Grundwasser.  

Keine der oben genannten Zielsubstanzen wurde in den europäischen Gewässern 

bezüglich ihrer Verbreitung umfangreich geprüft. Der Großteil der Forschungen war auf das 

Kraftstoffadditiv Methyl-tert-butylether (MTBE) fokussiert. Die Verbreitung von ETBE in der 

Umwelt wurde dagegen deutlich weniger erforscht und die Substanz wurde nur sporadisch im 

Wassersystem nachgewiesen, obwohl die Nutzung von ETBE in vielen europäischen Ländern 

weit verbreitet ist (Rosell et al., 2003; van Wezel et al., 2009; LUBW, 2010; Fayolle-Guichard et 

al., 2012; Stupp et al., 2012; IAWR, 2013). Zum Vorkommen von 1,4-Dioxan in Oberflächen-, 

Grund-, und Trinkwasser wurden ebenfalls nur wenige Informationen, vorwiegend aus den 

U.S.A. und Japan, veröffentlicht. In einem Auswertungsreport der europäischen Union wurden in 

den Niederlanden 0,5 µg l
−1

 1,4-Dioxan im Trinkwasser und zwischen 1 und 10 µg l
−1

 im 

Oberflächenwasser nachgewiesen (European Commission, 2002). 1,4-Dioxan ist auch ein 

Nebenprodukt bei der Herstellung von Kosmetika. Aus diesem Grund hat das Chemische und 

Veterinäruntersuchungsamt von Karlsruhe und Freiburg mehrere Shampoos, Dusch- und 
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Schaumbäder getestet. Hier wurde eine Durchschnittskonzentration von 1,4-Dioxan zwischen 1 

und 2 ppm (mg kg
−1

) bestimmt. In Deutschland wurde 1988 der Grenzwert für 1,4-Dioxan in 

kosmetischen Fertigerzeugnissen auf 10 ppm festgelegt. Auch wenn die für Fertigerzeugnisse 

festgesetzten Grenzwerte bei den Untersuchungen erreicht worden sind, ist es das Ziel, die 

Menge an 1,4-Dioxan in Körperpflegeprodukten weiter zu reduzieren. Vakkuumstrippen wurde 

von der US EPA als ein Verfahren vorgeschlagen, bei dem man 1,4-Dioxan aus industriellen 

Abläufen entfernen kann. Glymes standen nur selten im Fokus der Umweltforschungen. 

Nachdem hohe Konzentrationen von Diglyme, Triglyme und Tetraglyme im Jahr 2005 im Rhein 

nachgewiesen worden waren, wurden in der Folgezeit die Konzentrationen im Rhein von der 

internationalen Arbeitsgemeinschaft der Wasserwerke im Rheineinzugsgebiet (IAWR) 

kontinuierlich überprüft. Dennoch wurde die ursprüngliche Quelle dieser Kontaminationen der 

Substanzen im Rhein nie genau belegt.  

Das Ziel dieser Dissertation ist es, die Wissenslücken im Bezug auf das Vorkommen, die 

Verteilungen und die Eintragsquellen von ETBE, 1,4-Dioxan und Glymes in ausgewählten 

europäischen Gewässern zu schließen. Im Rahmen der Dissertation sollten die folgenden Fragen 

geklärt werden: 

 Existiert eine Methode welche die gleichzeitige Bestimmung von den oben genannten 

Analyten ermöglicht und kann diese für verschiedene Wasserproben validiert werden? 

 Wie hoch sind die Konzentrationen der untersuchten Ether in den bedeutenden 

Fließgewässern in Deutschland und Polen? 

 Können ETBE, 1,4-Dioxan und Glymes in anoxischem Grundwasser, welches durch 

Infiltration von Flusswasser geprägt ist, nachgewiesen werden?  

 Sind die untersuchten hydrophilen Ether als organische Tracer nutzbar?  

 Wie ist die räumliche und zeitliche Verteilung von 1,4-Dioxan in bedeutenden Flüssen 

Deutschlands und Polens?  

 Wie hoch ist die Durchschnittsbelastung von 1,4-Dioxan in den untersuchten 

Fließgewässern? 

 Kann 1,4-Dioxan in den regionalen Abwasserreinigungsanlagen nachgewiesen werden, 

und kann es wieder aus dem Wasser abgebaut werden?  

 Können Eintragsquellen von 1,4-Dioxan in kommunalen Kläranlagen identifiziert 

werden? 
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 Kann ein Abbau von 1,4-Dioxan während der Uferfiltration und bei der 

Trinkwasseraufbereitung festgestellt werden? 

 Wie ist die räumliche Verteilung von Diglyme, Triglyme und Tetraglyme in der Oder? 

 Lassen sich Punktquellen für Glymes in Fließgewässern identifizieren? 

 

Am Anfang des Forschungsprojekts wurde die Methode für die simultane Bestimmung der 

genannten Analyten in wässrigen Proben validiert. Für Oberflächen-, Trink-, Grund-, und 

Abwasserproben ist eine Festphasenextraktion verwendet worden, bei der Kokosnussholzkohle 

(Resprep
®
 activated coconut charcoal, Restek) oder „Carbon Molecular Sieve Material“ 

(Supelclean
TM

 ENVI-Carb
TM

 Plus, Supelco) zum Einsatz kamen. Um die Analyten im Nano- und 

Mikrogrammbereich pro Liter zu quantifizieren, wurden Standards und Proben mit 

Gaschromatographie gekoppelt an Massenspektrometrie im SIM-Modus (SIM = selected ion 

monitoring) unter Verwendung der jeweils relevanten Massenspur analysiert. Die 

Bestimmungsgrenzen (Limit of quantitation-LOQ) für ETBE, 1,4-Dioxan, Monoglyme, Diglyme, 

Triglyme und Tetraglyme in verschiedenen Wassermatrizen wurden für beide Methoden 

berechnet. Die Methode, bei der Restek Kartuschen und 500 ml jeder Wasserprobe eingesetzt 

werden, hat die folgenden Bestimmungsobergrenzen für ETBE, 1,4-Dioxan, Monoglyme, 

Diglyme, Triglyme und Tetraglyme: 0,044 µg l
− 1

, 0,034 µg l
−1

, 0,024 µg l
−1

, 0,047 µg l
−1

, 0,055 

µg l
−1

, 0,057 µg l
−1 

in Reinstwasser und 0,067µg l
−1

, 0,052µg l
−1

, 0,032 µg l
−1

, 0,044 µg l
−1

, 0,035 

µg l
−1

, 0,041 µg l
−1

 entsprechend in Oberflächenwasser. Die Methode mit den Kartuschen 

Supelclean
TM

 ENVI-Carb
TM

 Plus ergaben LOQs von 0,034 µg l
−1

 für 1,4-Dioxan, 0,030 µg l
−1

 für 

Monoglyme, 0,067 µg l
−1

 für Diglyme, 0,069 µg l
−1

 für Triglyme und 0,067 µg l
−1

 für Tetraglyme 

in Reinstwasser. Die LOQs für 1,4-Dioxan, Monoglyme, Diglyme, Triglyme und Tetraglyme in 

Oberflächenwasser wurden entsprechend mit 0,052 µg l
−1

, 0,035 µg l
−1

, 0,032 µg l
−1

, 0,044 µg 

l
−1

, und 0,047 µg l
−1

 berechnet.  

Zu Beginn der Untersuchung wurden 27 Proben von sieben verschiedenen Fließgewässern 

innerhalb Deutschlands genommen (Rhein, Lippe, Main, Oder, Rur, Schwarzbach und Wesel-

Datteln-Kanal), um darin die sechs hydrophilen Ether zu analysieren. ETBE konnte nur im Rhein 

und im Wesel-Datteln-Kanal mit Konzentrationen nahe der Bestimmungsgrenze (bis zu 0,065 µg 

l
−1

) gefunden werden. 1,4-Dioxan wurde mit Konzentrationen bis zu 1,93 µg l
–1

 in allen 

Wasserproben nachgewiesen. Monoglyme war nur im Main mit Konzentrationen bis zu 0,114 µg 

l
–1 

 und im Rhein mit bis zu 0,427 µg l
–1 

zu finden. Sehr hohe Konzentrationen (bis zu 1,73 µg 
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l
−1

) von Diglyme, Triglyme und Tetraglyme wurden in der Oder identifiziert. Darüber hinaus 

konnten diese Glymes auch im Rhein nachgewiesen werden, dort aber nur mit Konzentrationen 

bis zu 0,200 µg l
−1

. Tetraglyme ist auch im Main mit Durchschnittskonzentrationen von 0,409 µg 

l
−1

 (n=6) bestimmt worden und mit nur 0,192 µg l
−1

 in einer Probe der Rur.  

Vier Probenahmekampagnen wurden an der Oder und am Grundwasser des Oderbruchs 

zwischen Oktober 2009 und Mai 2012 vollzogen. Dort wurde das Vorkommen und Verhalten 

von hydrophilen Ethern und Phosphorsäureestern während der Uferfiltration und im Grundwasser 

untersucht, um ihre Eignung als organische Tracer zu überprüfen. Alle Proben der Oder zeigten 

Konzentrationen von Triglyme und Tetraglyme, die zwischen 20 bis 185 ng l
–1

 (n = 4) und 273 

bis 1576 ng l
–1 

(n = 4) lagen. Die anderen Ether wurden nur in den zwei letzten Probenahmen mit 

Konzentrationen von 65 bis 94 ng l
-1

 (n = 2) für Diglyme und von 1610 bis 3290 ng l
–1

 (n = 2) für 

1,4-Dioxan nachgewiesen. Im Entwässerungsgraben nach der Uferfiltration lagen die 

Konzentrationen bei 1,4-Dioxan zwischen 1090 ng l
–1

 und 1467 ng l
-1

, bei Monoglyme zwischen 

23 ng l
–1

 und 41 ng l
–1

, bei Triglyme zwischen 37 ng l
–1

 und 149 ng l
–1

 und bei Tetraglyme 

zwischen 496 ng l
–1

 und 1403 ng l
–1

. Im anoxischen Aquifer zeigte 1,4-Dioxan die größte 

Persistenz in der Grundwasserpassage. Bei einer Entfernung von 1150 m vom Fluss und einem 

geschätzten Alter des Grundwassers von 41,9 Jahren wurde noch eine Konzentration von über 

200 ng l
-1

 gefunden. Der anorganische Tracer Chlorid (Cl
−
 ) korrelierte positiv mit 1,4-Dioxan 

und Tetraglyme. Ein ähnliches Verhalten von Cl
−
 und organischen Substanzen deuten darauf hin, 

dass 1,4-Dioxan und Tetraglyme durch die gleichen hydraulischen Vorgänge beeinflusst werden 

und daher auch als zusätzliche Tracer zur Studie der Dynamik des Grundwassersystems benutzt 

werden können. Die Ergebnisse zeigen, dass hohe Konzentrationen von Ethern im 

Oberflächenwasser vorhanden sind und dass diese während der Uferfiltration nicht abgebaut 

werden. Des Weiteren werden die hydrophilen Ether im anoxischen Aquifer aufgrund ihrer 

geringen Octanol-Wasser-Verteilungskoeffzienten nicht retardiert, so dass sie ein hohes Potential 

für die Verwendung als organische Tracer aufweisen.  

In einem weiteren Teilprojekt wurde das Vorkommen von 1,4-Dioxan in der aquatischen 

Umwelt untersucht. Diese Studie sollte fehlende Informationen bezüglich der Verunreinigung 

verschiedener Kompartimente der aquatischen Umwelt mit 1,4-Dioxan in Deutschland liefern. 

Dazu wurden insgesamt über 220 Proben von Grund-, Trink-, Ab- und Oberflächenwasser 

gesammelt, um genauere Informationen über die vermeintliche Persistenz von 1,4-Dioxan in der 
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aquatischen Umwelt zu gewinnen. 1,4-Dioxan wurde in den Zu- und Abläufen von vier 

Kläranlagen in stark schwankenden Konzentrationen nachgewiesen. Die Zu- und Abläufe der 

Kläranlagen wurden in vier jeweils wöchentlichen Probenahmekampagnen beprobt. Die 

Mittelwerte der Konzentrationen der Zulaufproben der vier Kläranlagen lagen zwischen 262 ± 32 

ng l
−1

 und 834 ± 480 ng l
−1

, wohingegen die Mittelwerte der Konzentrationen in den 

Ablaufproben zwischen 267 ± 35 ng l
−1

 und 62,260 ± 36,000 ng l
−1

 lagen. Als Quelle für die stark 

erhöhte 1,4-Dioxan-Konzentration im Ablauf einer Kläranlage wurde verunreinigtes Methanol 

identifiziert, welches in der nachgeschalteten Denitrifikation dieser Kläranlagen als 

Kohlenstoffquelle für die Denitrifikanten zum Einsatz kam. Weiterhin wurde die räumliche und 

zeitliche Verbreitung von 1,4-Dioxan im Rhein, Main und in der Oder untersucht. Es wurden 

Konzentrationen bis zu 2200 ng l
−1

 in der Oder und bis zu 860 ng l
−1

 im Rhein und im Main 

bestimmt. In allen Flüssen ist die Konzentration von 1,4-Dioxan bei jeder Probenahme 

flussabwärts in Richtung Mündung tendenziell gestiegen. Bei der zweiwöchigen Untersuchung 

an der Rheingütestation Worms wurde festgestellt, dass die Konzentrationen von 1,4-Dioxan 

negativ mit der Abflussmenge des Flusses korrelieren. Die Studien an Rhein, Oder und Main 

ergaben eine Durchschnittsfracht an 1,4-Dioxan von 134,5 kg d
−1

, 34,1 kg d
−1

, und 6,5 kg d
−1

. 

Zusätzlich wurden auch Uferfiltrations- und Trinkwasserproben von zwei Trinkwasseranlagen 

auf 1,4-Dioxan getestet. Das Rohwasser enthielt 650 ng l
−1

 bis 670 ng l
−1

 1,4-Dioxan, 

wohingegen die Konzentrationen im Trinkwasser nur auf 600 ng l
−1

 in der ersten und auf 490 ng 

l
−1

 in der zweiten Anlage zurückgingen.  

Zum Abschluss wurde noch nach der Quelle für die hohen Konzentrationen der Glymes in 

der Oder gesucht. Dazu wurden vier Probenahmekampagnen in der Region im Bereich des 

Oderbruchs und in Polen durchgeführt. Die ersten zwei Probenahmen ergaben Konzentrationen 

von Glymes in der Region um den Oderbruch von 0,07 µg l
-1

 (Diglyme), 0,54 µg l
−1

 (Triglyme) 

und 1,73 µg l
−1

 (Tetraglyme). Die anschließenden ausgiebigen Probenentnahmen an der Oder in 

Polen konnten zunächst den Eintrittsbereich der Glymes in die Oder eingrenzen und einen 

Nebenfluss (Kaczawa) der Oder als Quelle für die Glymes in der Oder deutlich machen. Die 

Proben aus der Oder (unmittelbar hinter der Mündung der Kaczawa in die Oder) ergaben 

maximale Konzentrationen von Triglyme mit 0,46 µg l
−1 

und von Tetraglyme mit 2,21 µg l
−1

. Bei 

der Probenahme wurde der Einzugsbereich dieses Nebenflusses näher untersucht. Proben der 

Flüsse Czarna Woda und Kaczawa lieferten dabei sogar noch höhere Konzentrationen von 

Diglyme, Triglyme, und Tetraglyme mit Werten von 5,18 µg l
−1

, 12,87 µg l
−1

 bzw. 80,81 µg l
−1

, 
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wodurch die Quelle weiter eingegrenzt werden konnte. Diese wurde schließlich als der Ablauf 

einer Kläranlage, welche die Abwässer einer Kupferhütte reinigt, identifiziert. Diglyme, 

Triglyme und Tetraglyme wurden mit mittleren Konzentrationen (n = 3) von 569 µg l
−1

, 4300 µg 

l
−1

 und 65900 µg l
−1

 im Abwasser bestimmt. Weitere Nachforschungen konnten die Bezugsquelle 

der Glymes im Abwasser identifizieren. Die Gasentschwefelungsanlage (Solinox) in der 

Kupferhütte benutzt Glymes als physikalisches Absorptionsmittel für Schwefeldioxid aus den 

Rauchgasen und ist somit für die hohen Konzentrationen der Glymes im Ablauf der Kläranlage 

verantwortlich, die das Abwasser der Kupferhütte reinigt.   

Die Ergebnisse aus dieser Dissertationsschrift zeigen zusammenfassend, dass die 

Konzentrationen von ETBE in den untersuchten Proben durchweg sehr gering sind (bis zu 0,065 

µg l
−1

). Dies ist damit erklärbar, dass die Nutzung von ETBE als Kraftstoffzusatz aufgrund der 

Substitution durch Ethanol deutlich zurückgegangen ist. Derzeit sind Mischungen von 

Ethanol/Bioethanol mit Vergaserkraftstoffen allgemein üblich und gelangen als Kraftstoffe mit 

den Bezeichnungen E5, E10, E85 auf den Markt. Die ermittelten hohen Konzentrationen von 1,4-

Dioxan in unserer aquatischen Umwelt bis hin zum Trinkwasser sind besorgniserregend und 

erfordern dringenden Handlungsbedarf. Als eine bedeutende Quelle für 1,4-Dioxan im Main 

konnte der Ablauf einer Kläranlage identifiziert werden, die ein mit 1,4-Dioxan verunreinigtes 

Methanol als Kohlenstoffquelle für die nachgeschaltete Denitrifikation einsetzt. Für die hohen 

Frachten an 1,4-Dioxan in unseren Flüssen müssen darüber hinaus zahlreiche bisher noch 

unbekannte Eintragsquellen vorhanden sein. Weitere Anschlussprojekte sind deshalb zur 

Identifizierung dieser Quellen erforderlich. Besonders bedenklich ist die Tatsache, dass 1,4-

Dioxan die Uferfitration und die Trinkwasseraufbereitung nahezu ohne 

Konzentrationsverringerung übersteht. Auch bezüglich der Tri- und Tetraglymes konnte eine 

gravierende Kontaminationsquelle identifiziert werden. Diese kommt dadurch zustande, dass es 

offenbar problematisch ist, die z.B. im Solinox-Verfahren als Absorptionsmedium für 

Schwefeloxidgase eingesetzten Glymes bei der Aufbereitung vollständig zu entfernen, und dass 

diese dadurch zum Teil in das Abwasser gelangen. Da das Solinox-Verfahren nicht nur bei der 

Kupferverhüttung in Polen, sondern vielerorts in Europa zum Einsatz kommt, besteht Bedarf 

auch an diesen Standorten eine mögliche Belastung der Abwässer mit Glymes zu untersuchen.  
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Dichloromethane 
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Not detected 
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Organic carbon partition coefficient 

Parts per million  
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Sewage treatment plant 
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Tris(2-butoxyethyl) phosphate 
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Tetraethylene glycol dimethyl ether 
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Total organic carbon 

Triethylene glycol dimethyl ether 

United States Environmental Protection Agency 
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Wastewater treatment plant 

Leibniz-Centre for Agricultural Landscape Research 
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Chapter 1 Introduction 

 

1.1 Target analytes 

            The focus of many environmental investigations has been placed on organic contaminants 

such as pharmaceuticals, endocrine disruptors, pesticides, oxygenated gasoline additives, 

perfluorinated organic compounds, and phenolic compounds (Loos et al., 2009, Kim et al., 2007, 

Kasprzyk-Hordern et al., 2008, Skutlarek et al., 2006, Konstantinou et al., 2006, Herrero-

Hernández et al., 2013). The objective of the present thesis was to study the behavior of 

hydrophilic ethers in the aquatic environment. For that purpose six not commonly investigated 

ethers have been selected: ethyl tert-butyl ether (ETBE), 1,4-dioxane, ethylene glycol dimethyl 

ether (monoglyme), diethylene glycol dimethyl ether (diglyme), triethylene glycol dimethyl ether 

(triglyme), and tetraethylene glycol dimethyl ether (tetraglyme). The chemical structures of the 

target analytes and of an internal standard (4-chlorotetrahydropyran) are presented in Figure 1.1. 

1,4-Dioxane is a cyclic diether, whereas the four selected glycol dimethyl ethers contain a 

varying number of characteristic ethylene glycol units. ETBE has been chosen for the analysis 

because fuel oxygenates are widely used in Europe and many have a profound effect on the water 

bodies. Pollution of ground waters with 1,4-dioxane, resulting from its use as solvent stabilizer, 

has been reported in many countries around the world, however limited number of studies have 

been conducted in Europe thus far (Mohr, 2010). Although, monoglyme, diglyme, triglyme, and 

tetraglyme are a group of glycol ethers commonly used in various industries, the data on their 

possible occurrence in the aquatic environment is scarce.  
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FIGURE 1.1 Chemical structures of target analytes: ETBE, 1,4-dioxane, 4-

chlorotetrahydropyran, monoglyme, diglyme, triglyme, and tetraglyme with CAS numbers. 

 Investigations of the chosen target analytes in the aquatic environment in Europe have not 

been very common. Table 1.1 lists a summary of reported concentrations for ETBE, 1,4-dioxane 

and glymes in European surface-, drinking-, and ground waters. The majority of studies on the 

oxygenated fuel additives focused on methyl tert-butyl ether (MTBE). ETBE has been only 

sporadically determined in the water systems, although it is widely used in many European 

countries. Fayolle-Guichard et al. (2012)  in the study from Spain, demonstrated the extent of 

groundwater contamination in the proximity to an oil storage tank, where ETBE concentration 

reached 301 mg L
−1

. Moreover groundwater and surface water pollution with ETBE has been 

reported in Germany, with maximum concentration reaching 2.8 µg L
−1

 and 1.2 µg L
−1

, 

respectively (LUBW, 2010; Stupp et al. 2012). Also, high concentrations in the groundwater in 

Switzerland (11.8 – 13.1 µg L
−1

) have been determined. Although a concern of the water 

pollution with 1,4-dioxane has been previously reported in the U.S. and Japan, there has not been 

Tetraglyme
CAS:143-24-8

EtBE
CAS: 637-92-3

1,4-dioxane
CAS: 123-91-1

Monoglyme
CAS: 110-71-4

Diglyme
CAS: 111-96-6

Triglyme
CAS: 112-49-2

4-Chlorotetrahydropyran (IS)
CAS: 1768-64-5
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a great deal of analysis done on 1,4-dioxane in Europe (Chapter 4). 1,4-Dioxane has been 

detected in the leachates from municipal landfills and in the industrial wastewater at maximum 

concentrations of 36 µg L
−1

 and 6,400 µg L
−1

, respectively (Paxéus, 2000; Romero, 1998). 

Moreover, an investigation conducted in Denmark in 1990, showed high concentrations of 1,4-

dioxane in cosmetic products as well as dish washing liquids, reaching 96 mg/kg (Rastogi, 1990). 

Even though concentrations of 0.5 µg L
−1 

have been detected in the drinking water in the 

Netherlands, no further studies in Europe have been conducted and reported (European 

Commission, 2002). The most recent report on the concentration of 1,4-dioxane in surface waters 

come from the Rhine River in the Netherlands where in 2012, a maximum concentration reached 

1.7 µg L
−1 

(Rhine Water Works, 2012). The same agency also conducts investigations on the 

current levels of di-, tri-, and tetraglyme in the river Rhine. These glymes have been included in 

the list of the target substances in response to the high concentrations detected in the Rhine River 

in 2005. Figure A.2 b-d illustrates the detected concentration of diglyme, triglyme, and 

tetraglyme in the Rhine River, since their monitoring began. 

 Already the first sampling campaign conducted in Germany (Chapter 2) demonstrated 

that levels of ETBE in the surface waters are very low. In 2005, ETBE was introduced as a fuel 

additive in Germany in order to phase out the commonly applied MTBE (Stupp et al, 2008). 

According to the German Bioethanol Industry Association, 366,000 tons of bioethanol (79.6 %) 

was used for the production of ETBE in 2005 in Germany. In 2010, the majority of bioethanol 

was directly mixed with gasoline, and only 125,000 tons (10.8 %) were used for the ETBE 

production (Figure A.1). Hence, it can be concluded that in Gemany ETBE is being replaced by 

ethanol/bioethanol. Other European countries such as Spain, France, and Italy are the main 

markets for ETBE consumption; hence greater contamination of water bodies with ETBE is 

expected. ETBE is continuously analyzed in the Rhine River at the Lobith station, Netherlands by 

the Rhine Water Works (Figure A.2a). Between 2005 and 2010 concentration waves exceeding 

5.0 µg L
−1

 were occasionally reported. Currently, concentrations above the detection limit are 

rarely detected. In the surface water monitoring studies conducted within this thesis, 

concentrations close or below the detection limit were commonly determined for ETBE. 

Therefore, it is not further regarded in the subsequent discussion. Nevertheless, it was the first 

time that a solid phase extraction method was used for the enrichment of ETBE from water 

samples. Moreover, very good extraction recoveries were achieved (Chapter 2).  
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TABLE 1.1 Reported concentrations of ETBE, 1,4-dioxane and glymes in the aquatic 

environment in Europe.  

Location Matrix            Levels observed References 

 1,4-dioxane  

Denmark Cosmetic products 

Dish washing liquids 

0.3 – 96 ppm (mg/kg) 

1.8 – 65 ppm (mg/kg) 

Rastogi, 1990 

1. Netherlands 

2. Drente, Netherlands 

3. Germany 

Drinking water 

Surface water  

Surface water (Rhine 

River) 

0.5 µg/L 

1 – 10 µg/L 

< 10 µg/L 

European 

Commission, 

2002 

United Kingdom Unspecified river Not given Gelman Sciences, 

1989c 

Göteburg, Sweden Municipal landfills 8-36 µg/L Paxéus, 2000 

Barcelona, Spain Industrial waste 

water from polyester 

resin producers 

6,400 µg/L 

(<100 – 31,400 µg/L) 

 

Romero, 1998 

Netherlands Surface water Max. 1.1 µg/L (Lekkanal) 

Max. 1.7 µg/L (Rhine River) 

Rhine Water 

Works, 2012 

 ETBE  

Baden-Württemberg, 

Germany 

Groundwater Max. 2.8 µg/L LUBW, 2010 

Catalonia, Spain Groundwater Max. 0.68 µg/L Rosell et al., 2003 

Netherlands Groundwater 

Surface water 

0.1 – 1.0 µg/L 

0.1 – 1.0 µg/L 

Van Wezel et al., 

2009 

France Contaminated GW 

close to oil storage 

tank 

301 mg/L Fayolle-Guichard 

et al., 2012 

1. Morbio Inferiore  

Switzerland, 2008 

2. Canton St. Gallen 

Switzerland 2000-2009 

3. Bavaria, Germany 

2006-2010 

4. Saxony, Germany 

2008-2010 

5. Sweden 

6. Bavaria, Germany 

2006-2008 

 

7. Saxony, Germany 

2009 

 

Groundwater 

 

Groundwater 

 

Groundwater 

 

Groundwater 

 

Drinking water 

Surface water 

(Danube, Main Rivers) 

Surface water (Elbe, 

lakes, tributaries) 

11.8 – 13.1 µg/L 

 

max. 1.021 µg/L 

 

max. 0.331 µg/L 

 

max. 2.41 µg/L 

 

0.0079 µg/L 

Max. 0.4 µg/L, Avg. 0.036 

µg/L 

 

Max. 1.2 µg/L, Avg. 0.88 

µg/L 

Stupp et al., 2012 

Lobith, Netherlands 

2005-2013 

Surface water (Rhine 

River) 

Figure A.2a IAWR, 2013 
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Location Matrix Levels observed References 

 Glymes  

Netherlands Surface waters  

(Rivers Rhine, 

Meuse, Scheldt, 

Noordwijkerhout) 

0.060-0.900 µg/L Diglyme 

0.003 -1.000 µg/L Triglyme 

0.200-0.600 µg/L Tetraglyme 

van Stee, 2002 

Lobith, Netherlands 

2005-2013 

Surface water (Rhine 

River) 

Diglyme 

Triglyme 

Tetraglyme 

Figure A.2  

b-d 

IAWR, 2013 

 

1.2 Toxicity 

   The concern with many emerging organic contaminants is associated with the 

toxicological effects to their exposure. The selected ether compounds do not bioaccumulate in the 

environment; however, they contribute to the negative health effects when in contact with 

humans. According to U.S. Environmental Protection Agency (U.S. EPA) and the International 

Agency for Research on Cancer (IARC), 1,4-dioxane is a probable human carcinogen (Group B2) 

based on the inadequate evidence in humans and sufficient data from laboratory animal studies. 

Exposure to high levels of 1,4-dioxane may result in severe kidney and liver effects and possibly 

death (Agency for Toxic Substances and Disease Registry [ATSDR], 2012). Numerous studies 

on animals have shown that breathing 1,4-dioxane vapors, ingestion of contaminated water  

and/or skin contact affects mainly nasal cavity, liver and kidneys. Experimental studies on 

exposure of animals to monoglyme, diglyme, and triglyme showed reproductive and 

developmental effects as well as genotoxicity (Hardin, 1983; George et al.,1987; Schwetz et al., 

1992; European Centre for ecotoxicology and toxicology of chemicals [ECETOC], 2005). Hence, 

contact with these glymes may cause infertility and harm to the unborn child (U.S. EPA, 2011). 

Moreover, destruction of the red blood cells and blood forming organs may follow. Most of the 

toxic effects of glymes arise as a result of the metabolic conversion of the glycol ether into 2-

methoxyethoxyacetic acid generated from 2-methoxyethanol (ECETOC, 2005). Supposedly, the 

presence of longer alkyl groups at the glyme terminal ends and more ethylene glycol groups in 

the middle of the glyme molecule both act to reduce the toxicity of the ether. Therefore, negative 

health effects of triglyme and tetraglyme is expected to be lower than for monoglyme and 

diglyme (ECETOC, 2005).  
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1.3 Formation of 1,4-dioxane as a by-product 

 The majority of 1,4-dioxane sources in the aquatic environment are associated with its use 

as a solvent stabilizer for 1,1,1-trichloroethane (1,1,1-TCE). Many groundwater aquifers have 

been extensively contaminated through the incorrect handling, storage and disposal practices. 

Since 1995 the use of 1,1,1-TCE has been regulated by the Montreal Protocol, because of its 

ozone depleting properties, hence the use of 1,4-dioxane as its stabilizer has subsided. Another 

major source of 1,4-dioxane is its formation as a by-product during several ethoxylation 

reactions. Ethoxylation is a chemical process where ethylene oxide is added to fatty alcohols or to 

fatty acids to produce non-ionic surface active agents (surfactants). Ethoxylated surfactants can 

be found in household and industrial cleaners, topical pharmaceuticals, cosmetics and laundry 

detergents as foaming agents, emulsifiers and wetting agents (Mohr, 2010). During the 

ethoxylation process, ethylene oxide is combined and rearranged to form the polymer of ethylene 

oxide. In the presence of an acid catalyst, ethylene oxide can dimerize to form 1,4-dioxane 

(Figure 1.2). The formation of 1,4-dioxane during ethoxylation can be reduced by controlling 

mixing ratios, temperatures, and other reaction parameters. One of the earliest determination of 

1,4-dioxane in ethoxylated surfactants was addressed by Robinson and Ciurczak (1980) and 

Scalia (1990).  

 

  

FIGURE 1.2 Dimerization of ethylene oxide to 1,4-dioxane. 

 

 As shown in Figure 1.3, 1,4-dioxane may form as a by-product during sulfation reaction 

of alcohol ethoxylates. A common ingredient of cosmetics sodium laureth sulphate is produced 

through ethoxylation of sodium dodecyl sulphate.  
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FIGURE 1.3 Sulfonation of ethoxylated alcohols to alcohol ether sulfates. (Source: Ortega, 

2012) 

 1,4-Dioxane may also form as a byproduct during esterification reaction in the production 

of polyethylene terephthalate (PET) (Popoola, 1991). The mechanism of 1,4-dioxane formation 

during PET production is shown in Figure 1.4.  

 

FIGURE 1.4 Formation of 1,4-dioxane during PET production. (Source: Schiers and Long, 

2003) 

   Black et al. (2001) investigated the presence of 1,4-dioxane in cosmetics in the USA and 

reported concentrations of up to 1410 ppm in raw materials and 279 ppm in finished products. 

Fuh et al. (2005) detected 1,4-dioxane in non-ionic surfactants manufactured in Taiwan, but not 

in the three cosmetic products obtained from USA and Europe. The maximum concentration in 

shampoo equaled to 41.1 ppm, 7.8 ppm in a liquid soap sample and 6.5 ppm in a dish washing 

detergent. In the unpublished study conducted between 2007 and 2010 by the Independent 

Organic Consumer Association in the USA, 1,4-dioxane was present at a maximum concentration 

of 24 ppm in shampoos, 29 ppm in laundry detergents and 23 ppm in body wash. Moreover, 

many personal care products made especially for children contained high concentrations of 1,4-

dioxane (up to 12 ppm). Also in Germany, numerous samples of shampoos and body washes (n = 

34) were investigated. The average concentration of 1,4-dioxane was found to be between 1 and 2 

ppm (Chemische und Veterinäruntersuchungsamt Karlsruhe und Freiburg, 2011). In 1988, the 

German Cosmetic, Toiletry, Perfumery and Detergent Association (IKW) set a limit of 10 ppm 

(mg/kg) for 1,4-dioxane as an impurity in the final cosmetic products (Fruijtier-Pölloth, 2005). 
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Although the limit was not exceeded in the performed study, the objective is to lower the allowed 

concentration of 1,4-dioxane in personal care products in Germany. Results of these independent 

studies show that general public is exposed to 1,4-dioxan on daily basis. Consumers wishing to 

avoid exposure to 1,4-dioxane are advised to refrain from products containing ingredients or 

partial ingredient names that include: sodium laureth sulfate, polyethlylene, polyethylene glycol, 

and ceteareth.  

 

1.4  Focus of the research 

           The extensive use of the ETBE, 1,4-dioxane, and glymes in the industry and the lack of 

information about their presence and behavior in the aquatic systems command for more 

research. In order to gain knowledge about the occurrence, behavior, and fate of ETBE, 1,4-

dioxane and glymes in the aquatic environment, several questions were addressed in the present 

doctoral thesis:  

 

I. Method development for hydrophilic ethers – does a suitable method exists for 

determination of the hydrophilic ethers in various aquatic compartments at concentrations 

below 100 ng L
−1

 (surface-, drinking-, ground-, wastewater)? Can a method be validated 

for all the target analytes and matrices? 

 

II. Behavior of 1,4-dioxane and glymes during bank filtration and in the anoxic aquifer 

– Are 1,4-dioxane and glymes attenuated during bank filtration processes? Do they persist 

in the anoxic aquifer? Are they stable in during the ongoing reduction processes in the 

groundwater and can they be used as organic tracers? 

 

III. Distribution of 1,4-Dioxane in the aquatic environments – What is the spatial and 

temporal distribution of 1,4-dioxane in major rivers in Poland and Germany? What is the 

average load of 1,4-dioxane in the surface waters? Is 1,4-dioxane present in the influents 

and removed during sewage water treatment? Can 1,4-dioxane be detected in the drinking 

water produced through managed aquifer recharge? Can sources of 1,4-dioxane be 

identified? 
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IV. Occurrence and sources of glymes in the Oder River – What is the spatial distribution 

of monoglyme, diglyme, triglyme, and tetraglyme in the Oder River? Can the area of 

glyme pollution and their sources in the surface water be identified? Why are high 

concentrations of glymes discharged into the Oder River?  
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Chapter 2  Simultaneous determination of six hydrophilic 

ethers at trace levels using coconut charcoal adsorbent and 

gas chromatography/mass spectrometry 

 

 

2.1 Abstract  

The main objective of the following study was to determine the efficiency of a method 

that uses coconut charcoal as a solid-phase extraction (SPE) adsorbent in order to simultaneously 

detect six hydrophilic ether species in water in the low microgram-per-liter range. The applied 

method was validated for quantification of: ethyl tert-butyl ether, 1,4-dioxane, ethylene glycol 

dimethyl ether (monoglyme), diethylene glycol dimethyl ether (diglyme), triethylene glycol 

dimethyl ether (triglyme) and tetraethylene glycol dimethyl ether (tetraglyme). SPE followed by 

gas chromatography/mass spectrometry of the extracts using the selected ion monitoring mode 

allowed for establishing low detection limits in the range of 0.007 – 0.018 µg L
–1

 in ultrapure 

water and 0.004 – 0.020 µg L
–1

 in environmental samples. Examination of the method accuracy 

and precision resulted in a recovery greater than 86.8 % for each compound with a relative 

standard deviation of less than 6.6 %. A stability study established a 5 day holding time for the 

unpreserved water samples and extracts.  Finally, 27 samples obtained from surface water bodies 

in Germany were analyzed for the six hydrophilic ethers. Each analyte was detected in at least 

eight samples at concentrations reaching 2.0 µg L
–1

. The results of this study emphasize the 

advantage of the method to simultaneously determine six hydrophilic ether compounds. The 

outcome of the surface water analyses augments a concern about their frequent and significant 

presence in surface water bodies in Germany.  
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2.2 Introduction 

The number of chemical compounds previously not detected or discovered in the water is 

growing. Many of them pose a risk to humans and the environment but only some are considered 

“contaminants of emerging concern” (U.S. Environmental Protection Agency, 2010). The 

presence, frequency of occurrence, and sources of ethyl tert-butyl ether (ETBE), 1,4-dioxane, 

ethylene glycol dimethyl ether (monoglyme), diethylene glycol dimethyl ether (diglyme), 

triethylene glycol dimethyl ether (triglyme), and tetraethylene glycol dimethyl ether (tetraglyme) 

in surface waters are not well established. The International Agency for Research on Cancer 

listed 1,4-dioxane as a possible carcinogen to humans (Group B2), and toxicology studies 

revealed that glymes are toxic to the reproductive and/or developmental systems causing 

infertility and harm to the unborn children (U.S. Environmental Protection Agency, 2011). In 

2011, the U.S. Environmental Protection Agency regulated 14 glymes, including the four glymes 

being subject of the present study, in order to limit the manufacture, import and processing of 

these toxic chemicals in the USA. The European Union restricts the use of monoglyme, diglyme, 

and triglyme to professional users (Directive 2003/36/EC) and limits their use in the manufacture 

of cosmetics (Directive 76/768/EEC) and toys (Directive 2009/48/EC). 

The selected target compounds have been previously analyzed in the aquatic 

environments using various methods. 1,4-dioxane has been detected in waste-, surface, and 

ground waters as well as drinking waters, using extraction techniques such as purge and trap, 

liquid-liquid extraction, solid-phase microextraction (SPME), and solid-phase extraction (SPE) 

followed by both, gas chromatography (GC) and gas chromatography–mass spectrometry 

(GC/MS) (Zenker et al., 2003; Park et al., 2005; Shirey and Linton, 2006). ETBE is usually 

determined in water using techniques, such as purge and trap, direct aqueous injection, 

headspace, and SPME (Inal et al,, 2006). To the best of our knowledge, ETBE has not been 

determined by SPE thus far. Glymes have rarely been a focus of environmental analysis. Xu-

Liang Cao et al. (2001) monitored glymes in a fuel exhaust using graphitized carbon black and 

GC/MS (Cao and Zhu, 2001). Benson et al. (1999) analyzed mono-, di-, and triglyme by solid-

phase micro-extraction and GC/flame ionization detector. Di-, tri-, and tetraglyme were detected 

in a wide-range screening study of micro-contaminants in surface water that used XAD-4 and 

XAD-8 for extraction and GC-atomic emission detector/MS for the detection (van Steel et al., 
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2002). This is the first study that focuses on the method validation for the four glyme compounds 

in surface water samples by use of only one analytical procedure. 

The analytes chosen for this study are utilized in numerous industrial sectors. 1,4-dioxane 

is mainly used as a processing solvent in the production of adhesives, paint strippers, dyes, 

degreasers, fabric cleaners, paper, electronics, and many more (Sei et al, 2010). It is also formed 

as an undesired by-product in industrial processes, such as synthesis of polyester and 

ethoxylation (Sei et al., 2010, Black et al., 2001). ETBE is a fuel oxygenate used in numerous 

countries as an antiknock agent and to enhance fuel combustion. Glycol dimethyl ethers (glymes) 

are saturated polyethers, commonly used as reaction solvents in the area of pharmaceutical or 

specialty chemical production. They also find widespread use in the manufacturing of numerous 

products including printing inks, paints and coatings, adhesives, batteries, and break fluids (U.S. 

Environmental Protection Agency, 2011).  

According to the European Chemical Substances Information System, the production of 

1,4-dioxane, ETBE and diglyme exceeds 1,000 t/year in at least one member country placing 

them on the list of high production volume chemicals. As reported in the European Union Risk 

Assessment Report in 2002, the production of 1,4-dioxane in Europe is limited to only one 

production site. In 1997, BASF AG in Ludwigshafen, Germany reported a production volume of 

2,000-2,500 t (European Commission, 2002). Production of ETBE in Germany was initiated in 

2005 in order to phase out methyl tert-butyl ether. Although the manufacture of ETBE from 

bioethanol reached 367,000 tons in 2008, it decreased down to 125,000 tons in 2010 (German 

Bioethanol Industry Association, 2011). The Organization for Economic Co-operation and 

Development (OECD) registered monoglyme as a high production volume chemical since it is 

produced in at least one OECD member state was at 1,000 tons/year (European Chemicals 

Agency, 2011b). The European production of triglyme exceeded 1,000 tons in 2002 according to 

the Oxygenated Solvent Producer Association (European Chemicals Agency, 2011b). The 

production of tetraglyme has not been reported by the European Union industries (as of the time 

the article was printed).  

Table 2.1 lists the CAS numbers, molecular weights (in grams per mol) and selected 

physicochemical properties relevant to environmental behavior of the ETBE, 1,4-dioxane and 

four glymes. Ether compounds considered in this study are moderate to highly miscible in water 

and have Henry’s law constants ranging from 1.04×10
–14

 to 1.64×10
–3

 atm × m
3
 × mol

–1
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(tetraglyme and ETBE, respectively), ensuring low volatility from aqueous solutions. Based on 

their n-octanol-water partition coefficient (log Pow = ­1.03 to 1.92), they exert negligible 

potential for bioaccumulation. Their high vapor pressures (< 0.01 to 124 mm Hg) ensure fast 

volatilization from dry soils. Therefore, the main target compartment of ETBE, 1,4-dioxane, and 

glymes is presumed to be the hydrosphere. Their physicochemical properties imply their difficult 

removal from water and wastewater, which greatly increases the potential for surface and 

groundwater contamination.    

TABLE 2. 1 CAS numbers, molecular weight, and relevant physiochemical properties of ETBE, 

monoglyme, 1,4-dioxane, diglyme, triglyme, and tetraglyme. 

a 

U.S. EPA (2011b). Estimation Program Interface SuiteTM for Microsoft® Windows, v 4.10. US Environmental Protection Agency, Washington, 

DC, USA [7].      

 POW – n-Octanol/Water Partition Coefficient 

 

The objective of this paper was to determine a method and conduct an experimental and 

analytical validation in order to allow for simultaneous detection of six hydrophilic ethers in 

environmental samples.  

 

2.3 Experimental 

2.3.1 Chemical standards and reagents 

  ETBE (97 %) and tetraglyme (98 %) were purchased from Fluka (Steinheim, Germany).  

Monoglyme (99 %), 1,4-dioxane-d8 (99 %), and 4-chlorotetrahydropyran (96 %) were obtained 

from Sigma-Aldrich  (Steinheim, Germany ). 4-Chlorotetrahydropyran was used as an internal 

standard (IS) and 1,4-dioxane-d8 as a surrogate (SU). Diglyme (99 %) and 1,4-dioxane (99.5 %) 

were supplied by Dr. Ehrenstorfer (Ausgburg, Germany) and Ultra Scientific (Kingstown, USA), 

EtBe 637-92-3 102.18 13.6 124 1.64×10
-3

1.92

Monoglyme 110-71-4 90.12 85.2 79.2 1.07×10
-6

-0.21

1,4-dioxane 123-91-1 88.11 101.5 38.1 4.88×10
-6

-0.27

Diglyme 111-96-6 134.18 162.0 3.01 5.23×10
-7

-0.36

Triglyme 112-49-2 178.23 208.8 0.24 4.88×10
-12

-0.76

Tetraglyme 143-24-8 222.28 263.9 <0.01 1.04×10
-14

-1.03

Vapor pressure     

(mm Hg at 25°C)

Henry´s law constant  

(atm× m
3
× mol

-1
)

Log P ow 

(at 25 °C)                      Analyte CAS No.

Molecular weight  

(g/ mol)

Water solubility              

(at 25°C; g/L)
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respectively. Triglyme (99.8 %) was purchased from Alfa Aesar (Karlsruhe, Germany). 

Analytical grade dichloromethane (DCM), distilled before use and hypergrade methanol were 

both obtained from Merck (Darmstadt, Germany). Astacus ultrapure water purification system, 

from MembraPure (Bodenheim, Germany), was used to produce ultrapure water. A stock solution 

of the analytes was prepared in methanol at concentration of 1 µg µL
–1

. The IS and surrogate 

stock solutions used were prepared in methanol, each at 1 µg µL
–1

 concentration. Working 

standard solutions and calibration curves were prepared using appropriate dilutions of stock 

solutions in methanol or dichloromethane. 

  

2.3.2 Sample collection 

Surface water samples were collected from seven water bodies located in Germany, where 

significant concentrations of the analytes of interest were previously reported or suspected. Table 

2.2 lists locations of river samplings in Germany together with grid values of sampling sites and 

sampling dates. Two sampling campaigns were done in the month of October, resulting in a total 

of 23 samples. The Oder River sampling was carried out in February, adding four additional 

samples into the study. The river samples were collected without preservation in 500 mL or 1 L 

amber glass bottles. Containers were cleaned before use with distilled water and acetone followed 

by heating in the oven at 110 ºC for at least 2 h. The surface water samples were collected along 

the shore line of the river bodies. Each bottle was filled leaving no headspace and stored in the 

refrigerated storage room at 6 ºC for a maximum of 2 days. Surface water samples were not 

filtered prior to the extraction, only decanted if necessary. The extracts were analyzed 

immediately after the extraction. 
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TABLE 2.2  Locations of river samplings in Germany, grid values of sampling sites and 

sampling dates.  

Sample ID River Location Grid Values Sampling date 

SW1 WDC
 

Marl 51°40' 9.8034" N        7°   6' 52.2648"E 08 Oct 2011 

SW2 WDC Dorsten 51°39' 53.3622" N     6° 57' 59.4426"E 08 Oct 2011 

SW3 WDC Huenxe 51° 38' 56.4072" N     6° 47'   8.7102"E 08 Oct 2011 

SW4 WDC Wesel 51° 38'   6.4320" N     6° 39' 33.3756"E 08 Oct 2011 

SW5 Lippe Dorsten 51° 40'   5.6526" N      6° 57' 39.0492"E 08 Oct 2011 

SW6 Rhein Wesel 51° 39' 25.7142" N     6° 35' 43.9116"E 08 Oct 2011 

SW7 Rhein Voerde 51° 36'   9.2592" N      6° 35' 51.7878"E 08 Oct 2011 

SW8 Rhein Voerde 51° 34' 44.7450" N      6° 40'   0.0042"E 08 Oct 2011 

SW9 Rhein Duisburg 51° 25' 51.5136" N      6° 43'   9.0120"E 09 Oct 2011 

SW10 Rhein Leverkusen 51°   1' 56.9352" N      6° 57' 59.0184"E 09 Oct 2011 

SW11 Rhein Koeln 50° 58' 38.4918" N      6° 59' 57.0150"E 09 Oct 2011 

SW12 Rhein Bad Honnef 50° 39' 21.8592" N      7° 12' 28.0146"E 09 Oct 2011 

SW13 Rhein Wiesbaden 50°1' 40.4904" N      8° 15' 22.4712"E 09 Oct 2011 

SW14 Rhein Wiesbaden 50°1' 58.9296" N      8° 14' 39.9264"E 09 Oct 2011 

SW15 Rhein Wiesbaden 50°1' 58.9296" N      8° 14' 39.9264"E 09 Oct 2011 

SW16 Main Hanau 50°7' 35.3892" N       8° 52' 20.3664"E 22 Oct 2011 

SW17 Main Frankfurt 50°7' 55.5708" N 8° 46'   7.3158"E 22 Oct 2011 

SW18 Main Offenbach 50°6' 37.0542" N       8° 44'   7.8714"E 22 Oct 2011 

SW19 Main Kelsterbach 50°4' 12.8454" N       8° 31' 37.1532"E 23 Oct 2011 

SW20 Main Kelsterbach 50°3' 17.6544" N 8° 30' 40.5966"E 23 Oct 2011 

SW21 Main Ruesselsheim 49°59' 58.0446" N       8° 24' 57.2508"E 23 Oct 2011 

SW22 Schwarzbach Trebur 49°55' 20.6544" N       8° 24' 44.4450"E 23 Oct 2011 

SW23 Rur Düren 50°30'6.972" N       6° 26' 37.4598"E 24 Oct 2011 

SW24 Oder Genschmar 52°37'54.5268" N       14° 32' 19.2798"E 01 Feb 2012 

SW25 Oder Groß- Neuendorf 52° 37'1.3176" N       14° 24' 51.8610"E 01 Feb 2012 

SW26 Oder Güstebieser Loose 52° 45'41.3598" N       14° 19'   4.2450"E 01 Feb 2012 

SW27 Oder Bienenwerder 52° 48'44.4954" N       14° 13' 19.7214"E 01 Feb 2012 

WDC  Wesel Datteln Canal 
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2.3.3 Extraction procedure 

The analytes were extracted and enriched from water using “Resprep
®
 activated coconut 

charcoal SPE cartridges” (Restek, 80-120 mesh, approximately 150 µm, 2g, 6 mL). The 

extraction procedure has been adopted from the EPA 522 method, developed by Environmental 

Protection Agency for the determination of 1,4-dioxane in drinking water samples (U.S. 

Environmental Protection Agency, 2008). Cartridge processing station VacElut 20 (Varian, 

Germany) was used to mount a maximum of 20 cartridges. In order to remove impurities, the 

cartridges were conditioned with 3 mL of DCM, followed by 3 mL of methanol, aspirating 

completely using a vacuum set at 850 mbar. From then on, the cartridges were not allowed to dry, 

leaving a solvent just above the top frit. An additional 3 mL of methanol were added to the 

cartridge followed by 12 mL of ultrapure water to prepare the material for sample loading. Five 

hundred milliliters of the water sample was loaded onto the cartridge containing 2 grams of 

adsorbing material. Prior to the extraction each sample, blank and control standard were enriched 

with 5 µL of surrogate (1,4-dioxane-d8, 1 µg/µL). Cartridges and teflon tubes, filled with 

ultrapure water, were connected via Teflon adapters. Samples were allowed to percolate through 

the absorbing material at a vacuum of 850-900 mbar. To minimize the contact of the samples 

with ambient air in the laboratory, the openings of the bottles where covered with Parafilm 

(Pechiney Plastic Packaging, Chicago, IL). After the sample passed through, the cartridges were 

dried at 680 mbar for 10 minutes. The analytes were eluted at low vacuum with dichloromethane 

until the 9 mL mark on the collection tubes was reached. Subsequently, the extracts were adjusted 

to a final volume of 10 mL with dichloromethane. These steps lead to an enrichment of the 

analytes by a factor of 50 taking into account that always 500 mL of water sample was used for 

an extraction. The DCM layer was transferred to a 10 mL vial for storage and 500 µL of the 

sample extract with 10 µL of an IS (0.125 µg/µL , 4-chlorotetrahydropyran) were placed in the 

autosampler vial for GC/MS analysis.    

 

2.3.4 GC/MS analytical conditions 

Trace GC system coupled to a Voyager MS instrument (ThermoQuest Finnigan, Dreieich, 

Germany) was used to identify and quantify ETBE, 1,4-dioxane, 1,4-dioxane-d8, 4-

chlorotetrahydropyran, monoglyme, diglyme, triglyme, and tetraglyme. The GC was equipped 

with either a CS-624 (CS Chromatographie Service Gmbh, Langerwehe, Germany) or DB-624 
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(Agilent, Waldbronn, Germany) column with the dimensions of 30 m length × 0.25 mm ID and 

1.40 µm film thicknesses. Two µL of each extract was injected using Combi PAL autosampler 

(CTC Analytics, Switzerland). The injector was operated at 240 ºC in a splitless mode of 1 min 

and a split flow of 50 mL/min.  The initial oven temperature of 37 ºC was kept for 2.5 minutes, 

ramped to 75 ºC at 4 ºC/min, with a final increase to 220 ºC at a 10 ºC/min. During the recovery 

and precision studies, the last ramping was changed to 20 ºC/min, resulting in a shorter run 

without separation problems. Helium (≥99.999%) was used as a carrier gas at a constant flow of 

1 mL/min.  The mass spectrometer was operated in electron impact mode with electron energy of 

70 eV. The source temperature and GC interface temperature were kept at 220 °C and 250 °C, 

respectively. The emission current was 150 µA and the detector voltage was set at 500 V. 

XCalibur software (Thermo Fisher Scientific, version 2.0.7) was used to process all of the 

acquired data.  

 

2.3.5 Quantification and quality control  

  In order to quantify the analytes at low parts per billion (in micrograms per liter) levels, 

the standards and samples were acquired in the selected ion monitoring (SIM) mode. Initially, the 

standards were scanned from m/z 45–250 to determine the retention times and to select the ions 

for identification and quantification of the compounds studied. Example of a chromatogram with 

a standard run in TIC and SIM mode is presented in Figure A.3. In the samples, the analytes 

were identified by comparing their selected ions and retention time to the daily calibration or 

calibration verification standards. The calibration curves, standards and samples were acquired 

with time scheduled SIM mode presented in Table 2.3.  
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TABLE 2.3 GC/MS in time scheduled selected ion monitoring (SIM) acquisition program 

(example): retention time window (minutes), retention time (RT), dwell time, target (T) and 

confirmation (Q) ions as well as abundance ratio.  

 

With the aim of confirming the presence of a compound in each sample, the abundance of 

the confirmation ions relative to the target ion had to agree within an absolute 20 % of the 

relative abundance in the spectrum taken from the most recent calibration standard analyzed in 

the SIM mode. An initial calibration consisting of 7–9 points ranging from 2 µg L
–1

 to 1000 µg 

L
–1 

(corresponding to 0.040 µg L
–1

 to 20 µg L
–1 

in a water sample) was prepared for each analyte. 

Fixed amounts of IS and SU were added to each calibration level resulting in concentrations of 

250 µg L
–1 

and 500 µg L
–1

, respectively. For each analyte, a calibration curve was created using 

an IS technique in the Quan Browser of XCalibur software. The calibration curve for each 

analyte was fitted with a linear regression. The coefficient of determination (R
2
) for the linear fit 

of the calibration curve was ≥ 0.99 for all analytes. The average response factors from the initial 

calibration were used to calculate the concentration of each compound in the sample. During each 

day of the analysis, calibration verification standards were run at the beginning and at the end of 

ten sample batch. Two levels were chosen, one close to the quantitation limit and at the mid-

range of the calibration curve. Solvent blanks were run multiply times during the analysis in 

order to confirm that the solvent and the system are free from interferences. Each extraction batch 

consisted of maximum 18 samples. Additionally, one method blank and one standard containing 

all of the analytes of interest and a surrogate were treated in the same way as the samples. The 

percent of spike and surrogate recovery were monitored to verify the extraction efficiency with 

an acceptable range of 70–130%.  

Dwell

Analyte time T Q 1 Q 2 Q 1 /T Q 2 /T

ETBE 6.30-7.20 6.85 0.2 59 87 88 0.48 0.21

Monoglyme 7.20-9.50 8.63 0.133 45 60 90 0.16 0.14

1,4-dioxane--d8 (SU) 9.50-16.30 10.58 0.1 96 64 62 0.35 0.23

1,4-dioxane 9.50-16.30 10.7 0.1 88 58 87 0.36 0.14

IS 16.30-18.00 17.48 0.2 55 54 120 0.36 0.2

Diglyme 18.00-21.00 18.33 0.133 59 58 89 0.51 0.42

Triglyme 21.00-36.0 23.49 0.133 59 58 103 0.46 0.43

Tetraglyme 21.00-36.0 27.56 0.133 59 58 103 0.44 0.50

RT       

window

RT         

(min)

Selected Ions Abundance Ratio
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2.4 Results and discussion 

2.4.1 Optimization of the extraction method 

 During the SPE procedure, major sources of contamination come from reagents and solid-

phase extraction devices. It has previously been reported that contaminants may arise from solid 

phase sorbents and the polypropylene cartridges (Junk et al., 1988). Therefore, potential 

interferences originating from commercial cartridges had to be investigated. The above described 

extraction method was applied to three cartridges: Enviro-Clean 521 (UCT, Bristol, PA), method-

specific SPE cartridges from Restek (Bellefonte, PA) and Supelclean
TM

 coconut charcoal 

(Supelco, Taufkirchen, Germany). “Resprep
®
 activated coconut charcoal” SPE cartridges from 

Restek, developed specifically for EPA methods 521 and 522, proved to have the lowest 

background and produced no interference with the analytes. For the conditioning of the 

cartridges, various grades of methanol, acetone and acetonitrile were tested. Although acetone 

and acetonitrile were applicable, high purity methanol (Merck, Darmstadt) was chosen for the 

extraction as it created the lowest interference with the early eluting analytes. Lower purity 

grades of methanol contained compounds with interfering ions, prohibiting identification of the 

analytes of interest. Possible interferences coming from the extraction were examined by 

analyzing a method blank with each extraction batch. During this study, all of the method blanks 

evaluated using the ultrapure water, were below the method detection limits (MDLs) for the 

target compounds. In an attempt to eliminate residual water from the elution step, the cartridges 

were dried with nitrogen gas; this step removed the water from the cartridge and the eluent, but  

resulted in no recovery of the glymes. When the cartridges were completely dried, not only the 

water, but possibly also the analytes were removed from the adsorbing material.  

 

2.4.2 Precision and accuracy study  

The method’s accuracy and precision is described in terms of percent recovery and the 

percent of relative standard deviation (% RSD). To examine the accuracy of the SPE followed by 

GC/MS-SIM analysis for the six hydrophilic ethers, 500 mL of ultrapure water was enriched with 

a known amount of investigated analytes. Two concentrations were selected to validate the 

method: 1 µg L
–1 

and 10 µg L
–1

. Five microliters of a surrogate (1.0 µg µL
–1

) was added to each 

sample prior to the extraction and 10 µL of an IS (0.125 µg µL
–1

) was added to each extract. In 
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total, nine spiked water samples were analyzed on two occasions. Linear calibration range was 

established for each analyte with a R
2
 ≥ 0.990. The calibration verification standards did not 

exceed the acceptable range of ± 20 %. The results of the study are depicted in the table below 

(Table 2.4).  

 

TABLE 2.4 Precision and accuracy of the method analytes fortified at 1.0 µg L
–1 

and 10.0 µg L
–1 

in ultrapure water. 

  Fortified concentration 

1.0 µg L
–1

 (n = 5) 

  Fortified concentration 

10.0 µg L
–1

 (n = 4)     

Analyte Mean % 

Recovery 

RSD  

 

Mean % 

Recovery 

RSD  

  (%) 

 

(%) 

ETBE 92.1 5.7 

 

97.5 2.1 

Monoglyme 86.8 6.0 

 

108.8 2.5 

1,4-dioxane-d8 (SU) 99.6 6.6 

 

114.1 4.6 

1,4-dioxane 97.1 4.1 

 

94.3 3.4 

Diglyme 98.2 4.2 

 

112.2 1.3 

Triglyme 89.0 3.9 

 

107 2.4 

Tetraglyme 89.9 2.0 

 

90.6 1.3 

 

Good recoveries and precisions were obtained at both concentrations. Five ultrapure water 

samples spiked at 1.0 µg L
–1 

showed recovery range from 86.8 % to 98.2 % for the investigated 

analytes. The range of recoveries for the four ultrapure water samples fortified at 10.0 µg L
–1 

extended from 90.6 % to 112.2 %. The relative standard deviation (RSD) for all replicate 

analyses was less than 6.6 % for each compound. During the study, the analytes showed higher 

recoveries in the extracts fortified at higher concentration. This can be explained by considering 

the average percent recovery of the surrogate in the samples spiked at 10.0 µg L
–1 

is over 14 % 

higher than for the 1.0 µg L
–1 

samples. Additionally, during the elution step the top layer of water 

can prevent from accurately reading the volume of the solvent, resulting in the slightly higher 

recoveries. It is also probable that the analytes fortified at higher concentrations recover better 

using the above extraction procedure (Kawata et al., 2001).   
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2.4.3 Detection and quantification limits  

In order to determine a detection limit (MDL) for each analyte statistical approach was 

used (U.S. Environmental Protection Agency, 2011a). Initially, a 7–point calibration curve that 

represents concentrations from 0.040 µg L
–1

 to 5.0 µg L
–1

 in the analyzed water samples was 

prepared for each compound. The average response factors were calculated based on the linear 

calibration curves with R
2 

always greater than 0.990. The procedure for MDL determination in 

ultrapure water involved fortification and extraction of ten replicates of 500 mL sample at 0.040 

µg L
–1

 for 1,4-dioxane, ETBE, diglyme and 0.100 µg L
–1

 for triglyme and tetraglyme. 

Additionally, eight Main River water samples were spiked with each compound, resulting in a 

final concentration of 0.040 µg L
–1

. These concentrations were chosen appropriate based on the 

analytical and experimental procedure applied. The method blank was analyzed to verify that the 

extraction is free of contamination that would prevent the identification and exact quantitation of 

the analytes. The MDL was then calculated as MDL= t (n-1, 1-α = 0.99) × SD where t is the Student’s 

value appropriate for a 99 % confidence level (t = 2.998) and SD is the standard deviation of the 

eight replicate analyses (U.S. Environmental Protection Agency, 2008). MDLs and limits of 

quantification (LOQ) for ETBE, 1,4-dioxane and glymes are shown in Table 2.5.   

 

TABLE 2.5  Method detection limit (MDL) and limit of quantiation (LOQ) in micrograms per 

liter for ultrapure water samples and environmental samples (Main River), together with 

calibration range and coefficient of determination (R
2
) for ETBE, 1,4-dioxane, and glymes. 

  Calibration Ultrapure water (n = 8) Main River (n = 8) 

Analyte Range R
2
 MDL  LOQ  R

2
 MDL  LOQ  

   (µg L
–1

)    (µg L
–1

)  (µg L
–1

)    (µg L
–1

)  (µg L
–1

) 

ETBE 0.040 - 5.00 0.994 0.013 0.044 0.999 0.020 0.067 

Monoglyme 0.040 - 5.00 0.998 0.007 0.024 0.999 0.010 0.032 

1,4-dioxane 0.040 - 5.00 0.996 0.010 0.034 0.999 0.016 0.052 

Diglyme 0.040 - 5.00 0.998 0.013 0.047 0.998 0.010 0.032 

Triglyme 0.040 - 5.00 0.994 0.016 0.055 0.997 0.010 0.035 

Tetraglyme 0.040 - 5.00 0.992 0.018 0.057 0.994 0.012 0.041 
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The following detection limits were established in ultrapure water: 0.013 µg L
–1

 for 

ETBE, 0.007 µg L
–1

 for monoglyme, 0.010 µg L
–1

 for 1,4-dioxane, 0.011 µg L
–1

 for diglyme, 

0.016 µg L
–1

 for triglyme, and 0.018 µg L
–1

 for tetraglyme. The limits of quantitation (LOQ) 

were calculated by multiplying the average standard deviation of the replicate analysis by 10 

(LOQ = SD × 10), and ranged from 0.024 µg L
–1

 to 0.059 µg L
–1

.  The variation as determined 

from the relative standard deviation for all of the analytes was ≤ 15%. Signal-to-noise ratio for 

each compound was calculated dividing average concentration of replicates by standard deviation 

and ranged from 5 to 11. In the environmental samples (Main River), detection limits were: 0.020 

µg L
–1

 for ETBE, 0.010 µg L
–1

 for monoglyme, 0.016 µg L
–1

 for 1,4-dioxane, 0.010 µg L
–1

 for 

diglyme, 0.010 µg L
–1

 for triglyme, and 0.012 µg L
–1

 for tetraglyme. Limit of quantitation 

spanned from 0.032 – 0.067 µg L
–1

 and the relative standard deviation was below 15.8 %. Signal-

to-noise ratio for each analyte was between 9 and 15.  

 

2.4.4 Stability study   

To determine the stability of the selected ethers in the water, 20 unpreserved ultrapure 

water samples and 8 Main River samples were fortified with 5 µL of both a 0.1 µg µL
–1

 standard 

and 1 µg µL
–1

 surrogate, resulting in a final concentration of 1.0 µg L
–1

 and 10.0 µg L
–1

, 

respectively. After spiking, each 500 mL amber bottle was filled to the top, leaving no headspace.  

The bottles were stored in the dark in the refrigerated storage room at 6 ºC in the time span 

between spiking and analysis. Extractions with dichloromethane were performed on the day of 

fortification as well as on the second, fifth and ninth day following spiking. Each time, five 

ultrapure water samples and two Main River samples were extracted. The concentrations of 

analytes present in the environmental samples were subtracted from spiked samples. The fortified 

Main River samples did not contain any materials that adversely affected method performance. 

The outcome of the stability study for the water samples is shown in the figure below (Figure 

2.1). 
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FIGURE 2.1 Stability of ethers in a) ultrapure water (n = 5) and b) Main River samples (n = 2) 

with percent difference in the concentration between days 0 and 9. 

 To establish the stability of the analytes in the dichloromethane, all of the extracts were 

re-analyzed after 2, 5, 9, and 13 days following the extraction. Figure 2.2 shows the stability of 

the extracts during the study. Based on the obtained data, the holding time for both the samples 
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and extracts was established to be 5 days. As shown in Figure 2.1a and 2.1b, ETBE 

concentration was slightly falling throughout the period of 9 days. This can be explained by its 

higher vapor pressure and higher Henry’s law constant compared with the other ethers. In the 

ultrapure water concentration of glymes fell between 5.9 % for monoglyme and 13.4 % for 

tetraglyme. The decrease in the concentrations was more apparent in the Main River samples. 

Monoglyme concentration fell by 6.13 % and tetraglyme by 21.1 % within the 9 day period. 

Triglyme and tetraglyme were expected to be more stable in the water samples due to their 

physicochemical properties, but biodegradation cannot be excluded. 1,4-dioxane concentrations 

fell by 11.3 and 22.4 % in the ultrapure water and river sample, respectively. The stability of each 

compound in this particular study resulted in the determination of the sample holding time.  

The concentrations in the extracts showed a similar trend (Figure 2.2); therefore the 

extract holding time was also established to be 5 days. All of the samples in this study have been 

extracted within 2 days of sampling and the extracts were analyzed within 3 days of extraction.  

 

FIGURE 2.2  Stability of ethers in dichloromethane extracts over 13-day period (n = 7). In 

parenthesis, percent differences in the concentration between days 0 and 13 are shown for each 

compound. 
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2.4.5 Application to environmental water samples 

  To assess the applicability of the above extraction and analytical method, 27 surface water 

samples were analyzed. Target compounds were unequivocally identified by matching retention 

times and abundance of the confirmation ions relative to the target ions. Results of the study are 

reported in the Table 2.6. 1,4-dioxane was detected in all of the samples at concentrations that 

varied between 0.047 µg L
–1

 and 1.92 µg L
–1

. The highest concentration (1.92 µg L
–1

)
 
was 

reported in the Rhine River at the SW8 sampling location (Table 2.2). In the Main River the 

highest concentration of 1.12 µg L
–1

 for 1,4-dioxane was present at the SW21. 1,4-Dioxane was 

also found in the Lippe, Schwarzbach, Rur, and the Oder River samples with concentrations 

ranging from 0.20 µg L
–1

 to 1.28 µg L
–1

. Glymes were detected in numerous samples from the 

Main, Oder, and Rhine Rivers. Tetraglyme was present with the highest concentration in the Oder 

River at 1.73 µg L
–1

 (SW27). Monoglyme and diglyme were observed in all of the Rhine River 

samples with concentrations below 0.427 µg L
–1

 (SW13) and 0.200 µg L
–1

 (SW13), respectively. 

Diglyme was also detected in the Oder River samples with the average concentration of 0.065 µg 

L
–1

. Triglyme was determined in both Oder and Rhine River with the maximum concentration of 

0.540 µg L
–1

(SW25).  ETBE was present only in the Wesel Datteln Canal and the Rhine River 

with the maximum concentration of 0.065 µg L
–1

 (SW14).  

Historical and current concentrations of ETBE, diglyme, triglyme and tetraglyme in the 

Rhine River are available in the database provided by the International Association of Water 

works in the Rhine (IAWR). The measuring stations are located in Lobith (the Netherlands) and 

Bimmen (Germany). At these locations, ETBE is analyzed using a purge and trap system 

combined with GC/MS. A peak concentration reaching 60 µg L
–1

 was recorded for ETBE in 

October of 2006. The concentrations have decreased over the years. Currently, sporadic high 

values are detected in the Rhine River; with the majority of the detections being below 0.1 µg 

L
−1

. Low levels of ETBE in the German rivers can be explained by the downward trend of 

production and usage of ETBE. During this study, ETBE was detected in the Rhine River at an 

average concentration of 0.051 µg L
–1

. This value agrees with the most recent concentrations 

recorded. Diglyme, triglyme, and tetraglyme are being analyzed by SPE and GC/MS (exact 

method unknown) (Rhine Water Works, 2011). Since 2005, glymes have been monitored in the 

Rhine River in response to the high values observed (Landesamt für Umwelt, Wasserwirtschaft, 

und Gewerbeaufsicht Rheinland-Pflaz, 2006). 
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TABLE 2.6  Average, minimum, and maximum (in parenthesis) concentrations of ether compounds (in micrograms per liter) in the surface 

water bodies in Germany. WDC stands for Wesel-Datteln Canal. 

 

  Rhine Lippe WDC Main Schwarzbach Oder Rur 

Analyte n = 10 n = 1 n = 4 n = 6 n = 1 n = 4 n = 1 

ETBE 0.051 n.d. 0.057 n.d. n.d. n.d. n.d. 

  (0.040-0.065) 

 

(0.044-0.070) 

    Monoglyme 0.275 n.d. n.d. 0.114 n.d. n.d. n.d. 

  (0.113-0.427) 

      1,4-dioxane 0.97 0.672 0.067 0.506 0.200 0.816 1.28 

  (0.364-1.92) 

 

(0.047-0.093) (0.226-1.12) 

 

(0.782-0.891) 

 Diglyme 0.119 n.d. n.d. n.d. n.d. 0.065 n.d. 

  (0.067-0.200) 

    

(0.050-0.075) 

 Triglyme 0.110 n.d. n.d. n.d. n.d. 0.492 n.d. 

  (0.090-0.137) 

    

(0.462-0.540) 

 Tetraglyme 0.086 n.d. n.d. 0.409 n.d. 1.61 0.192 

  (0.074-0.097) 

  

(0.220-1.25) 

 

(1.47-1.73) 

 n.d. not detected 
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The highest concentration of diglyme detected reached 13 µg L
–1

 in 2006. In the same 

year, both triglyme and tetraglyme were detected at concentrations as high as 5.11 µg L
–1

 and 

2.50 µg L
–1

, respectively. The concentrations of glymes in the Rhine River have been steadily 

decreasing since 2006. Since 2009 concentrations of 1 µg L
–1 

and below have been reported. 

2.5 Conclusions 

Results obtained during this study demonstrate that the proposed analytical method based 

on SPE as an analyte isolation technique in combination with GC/MS–SIM gives good recoveries 

and reproducibility for ETBE, 1,4-dioxane, monoglyme, diglyme, triglyme, and tetraglyme in the 

water samples. Moreover, good performance of the method in terms of detection limit, accuracy, 

and precision has been demonstrated for each analyte. The method was also successfully applied 

to the determination of ethers in surface water samples. The frequent and significant presence of 

these compounds in the water samples demonstrates a need for further investigations of the 

aquatic environment in order to establish the distribution and sources of these toxic compounds. 

The analysis of environmental samples confirm that an effective and validated method able to 

simultaneously determine hydrophilic ethers such as ETBE, 1,4-dioxane and glymes in 

environmental samples is necessary in order to conduct an extensive research on the subject. If 

needed, the method might also be extended to other volatile and semi-volatile ethers of interest.   
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Chapter 3  Behavior of organophosphates and hydrophilic 

ethers during bank filtration and their potential application 

as organic tracers. A field study from the Oderbruch, 

Germany. 

 

3.1 Abstract 

  The behavior of organophosphates and ethers during riverbank filtration and in the anoxic 

aquifer was assessed to determine their suitability as organic tracers. Four sampling campaigns 

were conducted at the Oderbruch polder, Germany to establish the presence of chlorinated flame 

retardants (TCEP, TCPP, TDCP), non-chlorinated plasticizers (TBEP, TiBP, TnBP), and 

hydrophilic ethers (1,4-dioxane, monoglyme, diglyme, triglyme, tetraglyme) in the Oder River, 

main drainage ditch, and anoxic aquifer. Selected parameters were measured in order to 

determine the hydro-chemical composition of both, river water and groundwater.  The results of 

the study confirm that organophosphates (OPs) are more readily attenuated during bank filtration 

compared to ethers. Both in the river and the groundwater, TCPP was the most abundant OP with 

concentrations in the main drainage ditch ranging between 105 and 958 ng L
-1

. 1,4-Dioxane, 

triglyme, and tetraglyme demonstrated persistent behavior during bank filtration and in the 

anoxic groundwater. In the drainage ditch concentrations of 1,4-dioxane, triglyme, and 

tetraglyme ranged between 1090 and 1467 ng L
-1

, 37 and 149 ng L
-1 

, and 496 and 1403 ng L
-1

, 

respectively. A strong positive correlation was found for the inorganic tracer chloride with 1,4-

dioxane and tetraglyme. These results confirm the possible application of these ethers as 

environmental organic tracers. Both inorganic and organic compounds showed temporal 

variability in the surface – and groundwater. Discharge of the river water, concentrations of 

analytes at the time of infiltration and attenuation were identified as factors influencing the 

variable amounts of the analytes in the surface and groundwater. These findings are of great 

importance for the production of drinking water via bank filtration and natural and artificial 
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groundwater recharge as the physicochemical properties of ethers create challenges in their 

removal.  

 

3.2 Introduction 

  Natural and artificial processes of riverbank filtration are used in many countries in order 

to replenish groundwater resources that can be subsequently utilized for drinking water 

production (Tufenkij et al., 2002). Yet in many places, surface waters are not sufficiently 

shielded from numerous point and nonpoint sources of organic contaminants resulting in a 

pollution of adjacent aquifers with compounds that are recalcitrant to attenuation through bank 

filtration. These compounds can play an important role as indicators of anthropogenic 

groundwater pollution. Several studies have shown contamination of groundwater with trace 

organic contaminants including organophosphates (OPs) via bank filtration of surface water or 

artificial recharge using reclaimed water (Knepper et al., 1999; Fries and Püttmann, 2003; 

Heberer et al., 2004; Stuyfzand et al., 2007; Hoppe-Jones et al., 2010). The presence of ether 

compounds in bank filtration or artificial recharge sites has also been reported (Noordsij et al., 

1985; Schmidt et al., 2003; Achten et al., 2002; Morgenstern et al., 2003; Stuyfzand et al., 2007; 

Kuster et al., 2010; Kegel et al., 2010; Wiese et al., 2011).  

  OPs such as the chlorinated flame retardants tris(2-chloroethyl) phosphate (TCEP), tris(2-

chloro-1-methylethyl) phosphate (TCPP), and tris(1,3-dichloro-2-propyl) phosphate (TDCP) and; 

the non-chlorinated plasticizers tris(2-butoxyethyl) phosphate (TBEP), tri-iso-butyl phosphate 

(TiBP), and tri-n-butyl phosphate (TnBP), are industrial chemicals widely used worldwide. Since 

the 1940s, OPs have been added to industrial and consumer products as flame retardants and 

plasticizing agents. Their use increased significantly between 1960 and 1980 (Muir, 1984). An 

estimate, made in 2006 by the European Flame Retardant Association (EFRA) indicated that 

approximately 91,000 tons of OPs were used annually in the EU. Concerns about the potential 

environmental risks of OPs in aquifer systems have been raised due to their adverse health 

effects. TCEP, TDCP, and TnBP are classified as category 3 human carcinogens (European 

chemical substances information system; ECSIS), and  TCPP is considered to be a possible 

human carcinogen (Reemtsma et al., 2008). In order to protect drinking water sources from non 

or weak genotoxic compounds, the German Environmental Agency has suggested a general 
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precautionary limit of 0.1 µg/L (Umweltbundesamt, 2003). No individual limits exist for the OPs 

selected for the present study. 

  The solvents 1,4-dioxane, monoethylene glycol dimethyl ether (monoglyme), diethylene 

glycol dimethyl ether (diglyme), triethylene glycol dimethyl ether (triglyme), and tetraethylene 

glycol dimethyl ether (tetraglyme) are used in a wide range of industrial processes and products. 

The current production volumes and applications in Europe are not readily available. Until 1995, 

1,4-dioxane was commonly used as a 1,1,1-trichloroethane stabilizer, which was found to deplete 

the ozone layer and was consequently regulated under the Montreal Protocol (Doherty, 2000). As 

of 1997, the production volume was estimated to reach 2,000–2,500 tons (European Commission, 

2002). Moreover, 1,4-dioxane may form as a by-product of the polyester esterification and 

ethoxylation process in surfactant production (Zenker et al., 2003). Glycol dimethyl ethers 

(glymes) are generally used as reaction solvents in the area of pharmaceutical production and 

manufacture of specialty chemicals. According to the Organization for Economic Co-operation 

and Development and ECSIS, production of monoglyme and diglyme exceeds 1,000 tons per 

year in at least one member country (European Chemicals Agency, 2011a, 2011b). In 2002, the 

Oxygenated Solvent Producer Association reported the production of triglyme to surpass 1000 

tons (European Chemicals Agency, 2011c). Production volume of tetraglyme has not been 

reported by EU industries. Toxicology studies reveal that glymes are toxic to the reproductive 

and/or developmental systems causing infertility and harm to the unborn children. The 

International Agency for Research on Cancer (IARC) listed 1,4-dioxane as a possible carcinogen 

to humans  (U.S. EPA, 2011). At this time no water regulatory limits exist in the European Union 

for the selected ethers studied. The general precautionary limit of 0.10 µg/L set by the German 

Environmental Agency applies to 1,4-dioxane as it is a non or weak genotoxic compound.  

  Physicochemical properties of the studied analytes are summarized in Table 3.1. 

Differences in the physicochemical properties of OPs are caused by specific moieties in the 

organic ester functional groups. The water solubility of OPs is relatively high, ranging from 18.1 

mg L
–1

 for TDCP to 7820 mg L
–1

 for TCEP. The values of the n-octanol/water partition 

coefficients (log Pow) and the solid/water partition coefficients for soils (log Poc) range from 1.7 

(TCEP) to 4.0 (TnBP) and from 2.48 (TCEP) to 5.67 (TBEP), respectively (Verbruggen et al., 

2005). The mobility of TCEP and TCPP is reported to be intermediate-to-high in groundwater, 

whereas the mobility of TDCP and TBEP is quite low (Pitt et al., 1999; World Health 
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Organization, 2000; European Commission, 2006, 2007a, 2007b). Unlike chlorinated OPs, the 

non-chlorinated OPs are expected to be partially degradable in aquatic environments (Saeger et 

al., 1979; Kawagoshi et al., 2002). However, the behavior of these compounds in groundwater 

can vary considerably from that in other aquatic compartments because of differences in redox 

conditions (Amy and Drewes, 2007). Low water temperatures, marginal dilution effects, and low 

levels of microbial activity can increase the persistence of trace organic contaminants in 

groundwater resulting in long residence times (Díaz-Cruz and Barceló, 2008), whereas some 

biogeochemical redox processes can enhance their transformation processes (Borch et al., 2009). 

Adsorption, dilution, and biological transformation are the most important processes attenuating 

OPs in groundwater during bank filtration. These processes have been studied with reference to 

attenuation of OPs in sewage treatment plants (Bester and Schäfer, 2009; Rauch-Williams et al., 

2010) and are only poorly understood in the context of surface water infiltration into groundwater 

through both artificial and natural processes. Results of previous studies on OP stability, 

biotransformation, and adsorption in soils and groundwater have been inconsistent (Heberer et 

al., 2004; Amy and Drewes, 2007; Bester and Schäfer, 2009; Rauch-Williams et al., 2010). Some 

studies have reported a removal of OPs due to adsorption other due to biodegradation.  In the 

field studies, OP elimination was highly dependent on the boundary conditions at the field site. 

  The ether compounds selected for this study are highly hydrophilic due to their excellent 

miscibility in water and low log Pow. The negative log Pow values indicate negligible potential for 

bioaccumulation and a favored partitioning to the soil moisture (Schwarzenbach et al., 1983). 

Volatilization of all the ethers from aqueous solutions and soil moisture into the air is negligible 

due to low Henry´s law constants (1.07×10
–6 

to 1.04×10
–14

). Furthermore, ether bonds generally 

show low biodegradability in water under both aerobic and anoxic conditions (Kameya et al., 

1995; Grossmann et al., 2001). Anticipated processes of ether attenuation during bank filtration 

are dilution, dispersion, and only possibly biodegradation.  
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TABLE 3.1 Physicochemical properties of the analyzed OPs and ethers. 

Analyte CAS No. 

Molecular weight  

(g mol
−1) 

Water solubility              

(at 25°C; g L
−1) 

Vapor pressure     

(mm Hg at 25°C) 

Henry`s law constant  

(atm×m3×mol
−1) Log Pow                       Log Poc                       

Monoglyme 110-71-4 90.1 85.2 79.20 1.07×10−6 −0.21 0.63 

1,4-dioxane 123-91-1 88.1 101.5 38.10 4.88×10−6 −0.27 0.60 

Diglyme 111-96-6 134.2 162 3.01 5.23×10−7 −0.36 0.45 

Triglyme 112-49-2 178.2 208.8 0.24 4.88×10−12 −0.76 0.14 

Tetraglyme 143-24-8 222.3 263.9 < 0.01 1.04×10−14 −1.03 < 0 

TCEP 115-96-8 285.5 7.82 1.13×10−8 2.55×10−8 1.70 2.48 

TCPP 13674-84-5 327.6 1.08 1.38×10−8 5.96×10−8 2.60 2.76 

TDCP 13674-87-8 430.9 0.18 5.53×10−11 2.62×10−9 3.80 4.09 

TBEP 78-51-3 398.5 1.30 1.62×10−9 1.20×10−11 3.80 5.67 

TnBP 126-73-8 266.3 0.40 4.59×10−6 3.19×10−6 4.00 3.28 

TiBP 126-71-6 266.3 0.27 1.69×10−5 3.19×10−6 3.60 3.05 

U.S. EPA (2011b), European Commission (2006), Verbruggen et al. (2005), IUCLID (2011) 

Pow – n-octanol/water partition coefficient, Poc – organic carbon partition coefficient 

 

  The main objective of this study was 1. to establish the transport behavior of OPs in the 

groundwater in comparison to the ethers; 2. to discuss possible processes of attenuation of 

chlorinated and non-chlorinated OPs as well as hydrophilic ethers during bank filtration; and 3. to 

determine if these compounds are suitable for conservative tracer studies. Three sampling 

campaigns were conducted at the Oderbruch polder between October 2009 and May 2012. Each 

time river water, main drainage ditch, and groundwater samples from six shallow and six deep 

monitoring wells were analyzed to investigate the behavior of OPs and ethers in the aquifer.  

 

3.3 Area description and methods 

3.3.1 Site description  

  The Oderbruch polder is located about 60 km northeast of Berlin and covers an area of 

more than 800 km². The eastern boundary of the German part of the Oderbruch polder is the Oder 

River, whereas the western boundary is the till plateau of Barnim/Lebus. Large parts of the polder 

area are intensively used for agriculture, and therefore influenced by significant hydraulic and 

water management measures. Levee construction, damming, and drainage with ditches and 

pumping stations enabled intensive land use over recent centuries. The hydrological environment 

is characterized by permanent bank filtration of Oder River water into the aquifer. The 
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unrestrained hydraulic contact between river and groundwater and the hydraulically permeable 

river base lead to a constant groundwater movement towards the slightly inclined polder area. 

The mostly confined groundwater drains into a wide drainage network encompassing the entire 

region. The hydraulic situation is thought to have been consistent over the last 250 years 

(Massmann et al., 2004). The aquifer at Oderbruch polder has an average thickness of 25 m and 

is composed of fine to medium sized sands of Pleistocene glaciofluvial origin. The aquifer is 

covered by a 0.24.0 m thick largely impermeable layer of Holocene alluvial loam (Massmann et 

al., 2003). The aquifer base is attached to a Saalian till. Even under low water level conditions 

Oder River water infiltrates into the bank (flow velocity 0.5–1.5 m d
–1

), whereas more than 80 % 

of the filtrate discharges several months later into a main drainage ditch running parallel to the 

river levee situated 100–200 m from the river (Merz et al., 2005). Bank filtrate travel times from 

the river to the central polder located about 3500 m from the Oder River are in the order of 

decades to 120 years (Sültenfuß and Massmann, 2004).  

  Groundwater from a transect comprising of six shallow (7–10 m) and six deep (19–23 m) 

groundwater monitoring wells was sampled at the Oderbruch polder (Bahnbruecke site) on four 

occasions between 2009 and 2012. Figure 3.1 depicts a simplified geological cross section of the 

sampling site. Each sampling location consists of one deep and one shallow screened well that 

allows to distinguish spatial differences in the hydrochemistry and the hydraulic conditions of the 

groundwater system (Sültenfuß and Massmann, 2004). The identification code, grid value, 

sampling depth, and distance to the Oder River for each monitoring well are shown in Table 3.2. 

Field parameters (i.e., pH, temperature, conductivity, dissolved O2, redox potential) were 

measured at each well using a flow cell equipped with probes. Sampling of groundwater (1 L) 

was performed in duplicate after all field parameters had stabilized. 
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FIGURE 3.1 Location of the Oderbruch polder northeast of Berlin and a simplified geological 

cross section of the sampling site. The black boxes represent the observation wells sampled. The 

annotation T stands for deep and the annotation F for shallow well. The arrows indicate 

groundwater flow direction.  
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TABLE 3.2  ID codes of the monitoring wells, grid values, sampling depth, distance to the Oder 

River and groundwater age (apparent 
3
H/

3
He age) at Oderbruch polder, Germany. 

ID N° E° Depth 

[m] 

Distance  to 

river [m] 

Apparent 

age [a]
a 

6/99 T 52°48,7980´ 14°13,0820´ 19.6 138 2.1 

9536 F 52°48,7810´ 14°13,0580´ 7.0 138 3.3 

9560 T 52°48,5420´ 14°12,9370´ 20.0 604 3.0 

9561 F 52°48,5400´ 14°12,9380´ 7.0 604 21.0 

6/05 F 52°48,2320´ 14°12,8030´ 9.0 1150 41.9 

6/05 T 52°48,2320´ 14°12,8030´ 22.0 1150 5.9 

4/05 T 52°47,7820´ 14°11,7720´ 22.0 2560 34.9 

4/05 F 52°47,7820´ 14°11,7700´ 9.6 2560 36.4 

3/05 T 52°47,6960´ 14°11,5390´ 22.0 2980 36.0 

3/05 F 52°47,6960´ 14°11,5390´ 9.0 2980 34.3 

2144 T 52°47,4440´ 14°11,0890´ 23.0 3434 42.4 

2144 F 52°47,4390´ 14°11,0930´ 9.0 3434 44.4 

a 
Sültenfuß and Massmann (2004), Tosaki et al. (2007),  Massmann et al. (2009).   

 

3.3.2 Analytical methods  

  Method I: A detailed description of the analytical method for the determination of OPs 

using gas chromatography–mass spectrometry (GC–MS) is provided in references Regnery and 

Püttmann (2009; 2010). Hence, only a brief description is given. This method was also used to 

analyze triglyme and tetraglyme during the 2011 sampling. Groundwater samples (1 L) were not 

filtered prior to the solid phase extraction (SPE). The samples were extracted using a styrene–

divinylbenzene polymeric SPE cartridge (Bond Elute PPL, 1 mL; Varian, Darmstadt, Germany), 

which was eluted with 1 mL methanol/acetonitrile (1/1 v/v). Quantitative analyses of the target 

compounds in the sample extracts were performed using a Trace GC Ultra gas chromatograph 

coupled to a DSQ II mass spectrometer (Thermo Scientific, Dreieich, Germany) operating in full 

scan mode (50-600 m/z). A TR-5MS capillary column (30 m length, 0.25 mm i.d., 0.25 m film 

thickness; Thermo Scientific) was used for GC separation with the following temperature 

program: 80 °C for 1 min, increase to 300 °C at 4 °C min
–1

, final temperature kept for 25 min. 
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Target analytes were quantified using squalane (Sigma Aldrich, Steinheim, Germany) as an 

internal calibration standard (Regnery and Püttmann, 2009). Individual stock solutions (1 g L
–

1
) of TCEP, TiBP, TnBP, TBEP, tetraglyme (Sigma Aldrich), TCPP, TDCP (Akzo Nobel, 

Amersfoort, The Netherlands), and triglyme (Alfa Aeser, Karlsruhe, Germany) were prepared in 

methanol/acetonitrile (1/1 v/v), whereas squalane stock solution (1 g L
–1

) was prepared in 

hexane. Acetonitrile (J. T. Baker, Deventer, The Netherlands) was ultrapure HPLC grade and was 

used as received. All other solvents (Merck, Darmstadt, Germany) were of analytical grade and 

were distilled before use. Working standard solutions were obtained by appropriate dilution. All 

stock and working standard solutions were regularly renewed every 2-4 weeks. 

  

  Method II: The samples obtained during the 2012 sampling were analyzed for 1,4-

dioxane, monoglyme, diglyme, triglyme, and tetraglyme with a SPE GC–MS method that has 

been developed especially for the six hydrophilic ether compounds (Stepien and Püttmann, 

2013). Resprep
®
 Coconut charcoal SPE cartridges (Restek, 80-120 mesh, approx. 150 µm) were 

used to extract and enrich the analytes from the water samples. Surrogate (1,4-dioxane-d8, 1 µg 

µl
–1

) was added to each sample resulting in a final concentration of 500 µg L
–1

. The analytes 

were eluted with 10 mL of dichloromethane. 10 µL of internal standard 4–chlorotetrahydropyran 

(12.5 µg L
–1

) was added to 500 µL extract and the sample vials were placed in the Combi PAL 

autosampler (CTC Analytics, Switzerland). Two µL of extract was injected onto the Trace 2000 

gas chromatograph coupled to a Voyager mass spectrometer (ThermoQuest Finnigan). The GC 

was equipped with a DB-624 column (Agilent, Waldbronn, Germany) and the following 

temperature program applied: 37 °C for 2.5 min, increased to 75 °C at 4 °C min
–1

 and 10 °C min
–

1
 to the final temperature of 220 °C, kept for 10 min. The standard stock solution (1 µg µL

–1
) of 

1,4-dioxane( Ultra Scientific, Kingstown, USA), diglyme (Dr. Ehrenstorfer, Ausgburg, 

Germany), monoglyme (Sigma Aldrich), triglyme, and tetraglyme was prepared in methanol 

(hypergrade, Merck). The working standards were prepared by appropriate dilution with distilled 

dichloromethane. 

 

  The analyses of groundwater hydrochemistry were performed at the Institute of 

Landscape Hydrology at the Leibniz-Centre for Agricultural Landscape Research (ZALF e.V.). 

Water samples were analyzed for Ca
2+

, Mg
2+

, K
+
, Na

+
, Cl


, NO3


, NO2


 and SO4

2
 by ion 

chromatography (DX500, Dionex, Idstein, Germany) using an IonPac column CS12A for the 
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cations and an AS9-HC4 column for the anions. Iron was determined by inductively coupled 

plasma atomic emission spectroscopy (Jobin Yvon, Unterhaching, Germany), alkalinity was 

determined by titration and NH4
+
 and PO4

2
 were measured by photometry (SPECORD 200, 

Analytik Jena, Jena, Germany). 

 

3.3.3 Quality assurance  

  Samples were collected in 1 L amber glass bottles, which were thoroughly pre-cleaned 

prior to sampling to avoid sample contamination. The samples were extracted within 72 h of 

collection. As controls for possible contamination during transport and laboratory treatment, 

blanks of ultrapure water were included and treated identically to the collected samples. 

Concentrations were not corrected in terms of SPE recovery rates. Recoveries of OPs in ultrapure 

water (n = 6) and natural surface water (n = 3) were in the range of 8599 % and 7299 %, 

respectively, with relative standard deviations (RSD) less than 10 %. Triglyme and tetraglyme 

demonstrated a recovery range of 87-98 % in ultrapure water (n = 5) with relative SD less than 7 

%.  Limits of detection (LOD) of 1 ng L
–1

 for TCEP, TCPP, TDCP, TBEP, TnBP, TiBP, and 

tetraglyme (Method I), and 2 ng L
–1 

for triglyme (Method I) were calculated from seven-point 

calibration curves of standard mixtures in accordance with DIN 32645 (DINTest, University of 

Heidelberg,  = 1 %). For TCEP, TCPP, TiBP, TnBP, triglyme, and tetraglyme the limit of 

quantification (LOQ) was estimated as three times the LOD, and ranged from 3 ng L
–1

 for TCEP 

to 5 ng L
–1

 for triglyme. As TDCP (4 ± 6 ng L
–1

) and TBEP (3 ± 5 ng L
–1

) were detected in the 

blanks (n = 8), the LOQ for each compound was calculated as the mean of blank value plus six 

times the SD of the mean, resulting in LOQs of 40 ng L
–1

 (TDCP) and 33 ng L
–1

 (TBEP). The 

LOD for the ethers using coconut charcoal SPE extraction and the Voyager GC-MS were 

calculated according to the United States Environmental Protection Agency Chapter 40 part 136, 

Appendix B of the Federal Register (U.S. Environmental Protection Agency, 2011c). Eight 

replicates of the environmental water samples (Main River) were spiked at 40 ng L
–1

, extracted 

and analyzed in order to calculate the following LODs: Monoglyme, 4 ng L
–1

; 1,4-dioxane, 16 ng 

L
–1

; diglyme, 13 ng L
–1

; triglyme, 10 ng L
–1

; and tetraglyme, 12 ng L
–1

. The LOQs were 

determined by multiplying the average SD of the replicate analysis by 10, resulting in LOQs for 

each compound between 12 and52 ng L
–1

.  
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3.4 Results and discussion 

3.4.1 Hydrochemistry 

  Geochemical indicators of natural attenuation can help to identify the ongoing processes 

in the aquifer. A more detailed description of the redox processes in the Oderbruch polder is 

provided by Massmann et al. (2004). Figure 3.2 shows average values for the redox relevant 

parameters in Oder River water (n = 1; March 2011) and deep groundwater wells (n = 3). 

Groundwater redox potentials (Eh) varied between samplings but were on average below 100 

mV. As shown in Figure 3.2, both dissolved O2 and NO3
–
 were consumed between the river and 

the first deep sampling well revealing anoxic conditions in the groundwater. The dissolved 

organic carbon (DOC) dropped from 7.6 mg L
–1

 (n = 1) to 6.3 mg L
–1

 (n = 3). The decrease in 

DOC continued until the deep well located 604 m away from the surface water body and slowly 

increased to 8.4 mg L
–1

 in the last well (3434 m). The pH decreased gradually with distance from 

the Oder River (pH 7.62 at well 6/99 T to pH 6.89 at well 2144 T). The electrical conductivity of 

the groundwater decreased with increasing distance from the river. Sulfate concentration 

increased in the groundwater flow direction (75.5 to 127 mg L
–1

). A significant sulfate drop in the 

most distant deep groundwater well (49.9 mg L
–1

; well 2144 T) indicates a sulfate–reducing 

environment. A continuous increase in dissolved iron (Fe(II)) from 0.05 mg L
–1

 in the first well 

to more than 15 mg L
–1

 over a distance of 2980 m (well 3/05 T) points to the occurrence of iron 

reduction throughout the aquifer (Figure 3.2). 
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FIGURE 3.2 Concentration of redox relevant parameters in the Oder River (n = 1) and six deep groundwater wells (n =3): redox potential 

(Eh), dissolved organic carbon (DOC), pH, conductivity (K), oxygen (O2), nitrate (NO3
-
), ferrous iron (Fe(II)) and sulfate (SO4

2
).
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3.4.2 Infiltration of OPs and ethers into the main drainage ditch 

  Table 3.3 summarizes the results of four sampling campaigns carried out between 

October 2009 and May 2012. Concentrations of OPs and ethers detected in the Oder river, the 

drainage ditch (following bank filtration), and seven groundwater sampling wells of the 

Bahnbruecke transect comprising of three shallow and four deep groundwater wells are listed. 

Based on the results collected temporal variations in the concentrations and compounds identified 

in the river and the main drainage ditch are apparent.  

  Except for TnBP, every OP was detected in the Oder River during each of the samplings 

conducted. Following bank filtration, in the main drainage ditch, TBEP and TDCP were not 

present. These two OPs have the highest n-octanol/water partition coefficients and are expected 

to sorb to soil particles (both log Pow = 3.8) during infiltration. TiBP was the only non-chlorinated 

plasticizer detected in the ditch and the groundwater, although at low concentrations. Its 

concentration in the surface water ranged from 4 to 54 ng L
–1

 and in the main drainage ditch from 

2 to19 ng L
–1

. Most abundant OPs in the Oder River were two chlorinated flame retardants TCEP 

(7-540 ng L
–1

) and TCPP (123-2353 ng L
–1

).  In the drainage ditch their concentrations decreased 

to 9-171 ng L
–1

 and 105-958 ng L
–1

, respectively.  

  Ethers were also readily identified in the collected samples. Triglyme was present during 

all of the sampling campaigns in both river and drainage ditch at 20-185 ng L
–1 

and 37-149 ng L
–

1
, respectively. Tetraglyme was detected at high concentrations both in the Oder River (273-1576 

ng L
–1

) and the ditch (496-1403 ng L
–1

). During the 2012 campaign, water samples were 

additionally analyzed for monoglyme, diglyme, and 1,4-dioxane with Method II. Monoglyme 

was not detected in any of the water samples. Diglyme was present in the river at lower 

concentrations compared to other glymes detected. In the river water its concentration ranged 

between 65 and 94 ng L
–1

 and in the ditch between 23 and 41 ng L
–1

. 1,4-Dioxane greatly 

exceeded in abundance all other analyzed compounds, with concentrations ranging from 1610 to 

3290 ng L
–1

 in the Oder River and 1090 to 1467 ng L
–1

 in the ditch.  
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TABLE 3.3 Concentrations of OPs and ethers (ng L
−1

) in the Oder River, adjacent main drainage 

ditch as well as shallow (F) and deep (T) groundwater sampling wells.   

Analyte 

Sampling 

Date 

Oder 

River Ditch  9536 F  9561 F  6/05 F  6/99 T  9560 T  6/05 T 4/05 T 

TiBP         27.10.09 54 19 12 

  

4 6 5 

 

 

10.03.11 4 2 4 

  

BDL BDL BDL 

 

 

27.03.12 18 4 7 

  

3 7 6 

   23.05.12 12 9 18     15 28 26   

TCPP 27.10.09 2353 958 261 

  

291 66 31 

 

 

10.03.11 183 198 324 

  

201 36 14 

 

 

27.03.12 123 128 258 

  

206 54 23 

   23.05.12 217 105 406     355 92 55   

TDCP 27.10.09 BDL 

        

 

10.03.11 7 

        

 

27.03.12 7 

          23.05.12 5                 

TBEP 27.10.09 BDL 

        

 

10.03.11 43 

        

 

27.03.12 63 

          23.05.12 12                 

Triglyme 27.10.09 151 106 245 

  

98 74 19 

 

 

10.03.11 20 37 82 

  

38 35 25 

 

 

27.03.12* 173 100 68 

  

67 104 131 

   23.05.12* 185 149 241     86 125 153   

Tetraglyme 27.10.09 1260 1230 1849 BDL 

 

1230 849 442 

 

 

10.03.11 273 496 803 29 

 

350 369 212 

 

 

27.03.12* 1433 693 547 60 

 

455 520 565 

   23.05.12* 1576 1403 1464 50   496 630 741   

1,4-

dioxane* 27.03.12 1610 1467 1440 751 196 1340 1020 1630 208 

  23.05.12 3290 1090 740 1040 121 1060 901 1129 219 

Diglyme* 27.03.12 94 41 34 

  

31 26 

    23.05.12 65 23 BDL     29 BDL     

* Analyzed by Coconut charcoal SPE and Voyager GC/MS 

      BDL− below detection limit 

          

  The concentrations of ethers both in the river and the main drainage ditch were typically 

higher in comparison to OPs. The elevated use and poor removal techniques in the wastewater 

treatment plants might account for their increased presence in the surface water (Vainberg et al., 

2006). The high concentrations of ethers (i.e. triglyme, tetraglyme, and 1,4-dioxane) following 

bank filtration can be related to their vast water solubility and poor sorption to soils (Barker et al., 

1990). From the investigated OPs, only TCPP was present at significantly high concentrations (> 
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100 ng L
–1

) in the main drainage ditch. Among the investigated OPs, TCPP and TCEP are 

expected to be the least affected by the attenuation processes during bank filtration. 

 

3.4.3 Occurrence of OPs and ethers in the aquifer  

  The groundwater from shallow wells near the Oder River (well 9/99 F and 9536 F) is 

hydraulically affected by the drainage function of the main ditch (Figure 3.1), therefore only 

groundwater from the six deep monitoring wells (19–23 m deep; Table 3.2) reaches beyond the 

ditch and represents an undisturbed water transport in the aquifer (Tosaki et al., 2007). The 

groundwater ages provided were determined in a study conducted by Massmann et al. (2009) 

using 
3
H/

3
He technique and match perfectly the modeled hydraulic ages up to the distance of 

1150 m.  

  In the deep wells of the Oderbruch polder TiBP, TCEP, and TCPP have been detected at 

varying concentrations up to the groundwater age of 5.9 years (well 6/05T, Table 3.2 and 3.3). In 

March 2011, TiBP was not detected above its detection limit in the groundwater, however in the 

2009 and 2012 samplings the concentration of TiBP in the deep groundwater wells increased 

with water age, indicating a decrease in its use in over 6 years (Table 3.3). This decline is 

confirmed by low river concentrations between 2009 and 2012. TCEP and TCPP were present at 

generally lower concentrations during 2011 sampling in the deep groundwater wells (4-20 ng L
–1

 

and 14-201 ng L
–1

) as compared to 2009 and 2012 samplings (9-51 ng L
–1

 and 23-355 ng L
–1

). In 

general, concentrations of OPs in the groundwater in May 2012 were higher than in the sampling 

performed two months earlier, whereas trends between deep groundwater wells remained similar. 

In 2009 and 2011, TCEP concentration decreased with groundwater age. In 2012 its 

concentration was higher in the 3 year old groundwater (9560 T) compared to the preceding 6/99 

T well (2.1 years), decreasing again in the final well (6/05T, 5.9 years) where the compound was 

detected.  These patterns reflect the variability of TCEP concentration in the river during the last 

decade. The infiltration and transport of TCPP from the river into the aquifer differed compared 

to other OPs. Its concentration in the aquifer dropped sharply between the groundwater age of 2.1 

and 3.0 years, a strong indication for attenuation in the anoxic aquifer. 

  The use of the chlorinated flame retardants TCEP and TCPP did not markedly increase 

until the 1970s (Muir, 1984). In Germany, both compounds were used in equal proportions in 

polyurethane foams until the mid-90s, when TCEP was phased out in Europe following a 
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voluntary industry agreement (Leisewitz et al., 2001). Although TCEP is no longer expected to 

be utilized as flame retardant in the European industry, it is still present in surface waters at 

fluctuating levels. TCEP has been recently detected in both house dust samples from California, 

as well as polyurethane foam samples collected from couches in the US (Stapleton et al., 2012; 

Dodson et al., 2012). These findings document that TCEP still enters the environment via 

evaporation from flame protected products that are produced outside the EU, but also same 

source of the chlorinated flame retardants might exist in Europe.  

  The concentration of triglyme and tetraglyme decreased with groundwater age during the 

2009 and 2011 sampling campaigns, while in 2012, the concentrations increased with 

groundwater age. This pattern suggests that concentration of glymes has been increasing in the 

last decade, considering the residence time of the groundwater in this part of transect. Tetraglyme 

was also detected in the shallow well (9561 F) with an estimated groundwater age of 21 years 

(27-60 ng L
–1

), indicating its long-term entrance into the groundwater.  The anticipated onset of 

triglyme and tetraglyme might be due to the increasing contribution of treated and/or untreated 

effluents of industrial origin, but based on their extensive applications the source is difficult to 

identify at this time. It is clearly visible from the acquired results that triglyme and tetraglyme 

persist in the anoxic groundwater and are not markedly degraded. 1,4-Dioxane was present at 

significant concentrations (> 200 ng L
–1

) up to the deep well 4/05 T with the estimated 

groundwater age of 34.9 years (2560 m). In the groundwater between 2.1 and 6 years its 

concentration exceeded 1000 ng L
–1

. The drop in the amount of 1,4-dioxane between well 6/05 T 

and 4/05 T can be attributed to lower historical concentrations in the surface water as well as 

dispersion of groundwater (see section 3.4.6). The ability to determine 1,4-dioxane in such distant 

and old groundwater clearly demonstrates its resistance to attenuation by the bank filtration 

process and the anoxic conditions in the aquifer.   

 

3.4.4 Factors influencing OP and ether concentrations  

  In addition to the residence time of the river water during bank filtration and the expected 

retardation of a compound, the highly variable concentrations in the river at the time of 

infiltration control contaminant dynamics in the groundwater following bank filtration (Noordsij 

et al., 1985). During winter time, many contaminants tend to be diluted by increased natural 

discharges, such as rain and snow. Whereas during a dry season, the river water is expected to 
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have the highest concentration of contaminants, due to the lesser dilution of effluents coming 

from the domestic and industrial wastewater treatment (Heberer et al., 2004). Figure 3.3 depict 

the changing levels and volume rate of water flow (discharge, in m
3
 s

–1
) of the Oder River 

between January 2006 and May 2012 at Hohensaaten-Finow (river km 664.9), which is located in 

the proximity to the sampling area (Landesamt für Umwelt, Gesundheit und Verbraucherschutz 

[LUGV], 2012).  

 

 

FIGURE 3.3  Average monthly water level (cm) and mean flow (discharge, m
3
 s

−1
)
 
of the Oder 

River between January 2006 and May 2012 at the Hohensaaten-Finow monitoring station 

(LUGV, 2011). 

  Based on the Figure 3.3 the increased discharge of the Oder River is especially apparent 

in the winter months. In the Figure 3.4 graphical comparison of the OP and ether concentrations 

to the discharge of the Oder River during four sampling campaigns is presented. During March 

2011 sampling, the extremely high discharge rates in the Oder River at the end of 2010 and early 

months of 2011 can explain the low concentrations of some analytes in the river (i.e. TCEP, 

triglyme, and tetraglyme; Table 3.3). At that time (discharge, 813 m
3
 s

–1
), concentrations of 

TCEP, TCPP, triglyme, and tetraglyme in the main drainage ditch exceeded the concentrations in 
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the Oder River. Only the concentration of TCPP remained high in the river during the increased 

water levels, proposing its entrance with surface runoff from urban areas close to the river 

(Regnery and Püttmann 2009; 2010).  

 

FIGURE 3.4  Variations of OP and ether concentrations (ng L
−1

) with discharge (m
3
 s

−1
) of the 

Oder River during four sampling campaigns. Diglyme and 1,4-dioxane were only analyzed in the 

samples collected on 20.03.2012 and 23.05.2012.  

  In 2009 (discharge, 397 m
3
 s

–1
) concentrations of TiBP, TCEP, and TCPP were extremely 

high compared to the levels observed during successive samplings. Possibly these OPs entered 

the surface water as a result of the high precipitation in the summer months (seen as a high peak 

in July–August 2009, Figure 3.3).  In 2012, the concentrations of TiBP, TCEP, TDCP, and 

TBEP varied with the discharge rate. In March, when the discharge rate was 740 m
3
 s

−1
 

concentrations were higher than in May when discharge dropped to 381 m
3
 s

−1
. The opposite is 

true for TCPP, which almost doubled in May 2012. Glymes were present in the river at similar 

concentrations during the samplings conducted in 2009 and 2012 and they did not respond to 

varying discharge rates. In contrast, the amount of 1,4-dioxane in the river doubled with the drop 



Chapter 3 

70 | P a g e  

in a discharge rate. The abovementioned results suggest that the concentrations of OPs and ethers 

in the aquifer are generally controlled by the fluctuating input from the Oder River. 

3.4.5 Attenuation of OPs and ethers during bank filtration  

  The proportion of analyte removal through bank filtration can only be calculated if the 

respective surface water concentrations at the time of infiltration are known. Nevertheless, the 

results of the study confirm that during bank filtration processes OPs are more readily attenuated 

compared to ethers. Based on the acquired data, attenuation of the studied compounds is 

discussed.  

   Non-chlorinated organophosphates are expected to be less stable than chlorinated OPs in 

an aquifer as a result of biotransformation processes. Elimination rates of up to 89 % have been 

reported for TnBP and TBEP during bank filtration and in soil infiltration experiments (Schmidt, 

2005; Bester and Schäfer, 2009). In the Oderbruch polder, TBEP was removed by the bank 

filtration processes below detection limit, confirming its efficient biodegradation. Sorption of 

chlorinated OPs on soils has been reported to be a function of the soil organic carbon content, and 

sorption to soil components other than organic carbon has been suggested to be insignificant 

(European Commission, 2007b). Such behavior can also be assumed for the non-chlorinated OPs, 

explaining the presence of TiBP in both the drainage ditch and groundwater. Of all the non-

chlorinated OPs considered in this study TiBP is expected to be attenuated the least by sorption to 

soil. According to the modeled Freundlich parameters, TDCP is considerably better adsorbed to 

organic carbon surfaces than is TCPP or TCEP (Nowotny et al., 2007). In this study 

concentration of TDCP in the river was low, and it was not present above detection limit in the 

drainage ditch following bank filtration. In the riverbank filtration study of Hoppe-Jones et al. 

(2010) no changes in concentrations of TCEP and TCPP were observed during subsurface 

treatment. Slight seasonal variations were reported for TCEP, with concentrations below 200 ng 

L
−1

 in the winter and above 200 ng L
−1

 in the summer (Hopee-Jones et al., 2010). In the 

Oderbruch polder, both TCEP and TCPP were not removed by the bank filtration and were 

eliminated below detection limit after 6 year residence time in the groundwater, proving their 

resistance to rapid biodegradation. The organic carbon composition of the river bed and the 

hyporheic zone is of major importance in the removal of OPs during riveraquifer interactions. 

Depending on sedimentation conditions, the concentrations of total organic carbon (TOC) in 

Oder River sediments vary between 0.2 % and 11.0 % (Duft et al., 2002). The aquifer at the 
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Oderbruch polder consists of fine-to-medium-sized sands and sediments, and contains less than 

0.1 % TOC (Massmann et al., 2004). However, high concentrations of organic matter in the top 

layer of river sediments (i.e. dirt cover, biofilm) and in soils near rivers will enhance the sorption 

of OPs within the first few centimeters-to-meters during subsurface transport of percolating river 

water. Adsorption of trace organic pollutants is significantly reduced in the presence of 

background organic matter (i.e., DOC) (Nowotny et al., 2007). At Oderbruch polder, the DOC 

value increased from 6.3 mg L
–1

 at site 6/99 T near the Oder River to 8.4 mg L
–1

 in groundwater 

at well 2144 T, far from the river. Further work will be necessary to clarify whether groundwater 

contains degradation products (e.g., bi- and mono-alkyl phosphates) of chlorinated and non-

chlorinated OPs. Knowledge of the processes of transformation and/or degradation of these 

analytes in groundwater is rudimentary. 

  Results of this study indicate that ethers are not easily adsorbed or degraded during 

infiltration of surface water. Their high water solubility and low soil partitioning coefficient 

prevents them from volatilization and adsorption to aquifer material. Triglyme, tetraglyme and 

1,4-dioxane were present at significantly high concentrations following bank filtration. 

Concentrations of diglyme in the surface water and main drainage ditch were lower, but also this 

glyme showed little degradation during bank filtration. As a consequence of the polar 

characteristics of ethers, these and similar compounds (e.g. MTBE) migrate through the aquifer 

with minimal retardation (Achten et al., 2002; Deeb et al., 2003). Initial degradation studies of 

MTBE under anaerobic conditions found that it is recalcitrant under sulfate-reducing conditions, 

and very poorly degraded under nitrate-reducing conditions (Mormille et al., 1994). More recent 

studies provided evidence of MTBE degradation in anoxic environment under nitrate-reducing, 

sulfate-reducing, iron-reducing, and methanogenic conditions (Bradley et al., 2001a; Bradley et 

al., 2001b; Finneran and Lovely, 2011). However, a study focusing on the biodegradation of 1,4-

dioxane under these hydro-geochemical settings showed no degradation in anaerobic microcosms 

during more than 400 days of incubation (U.S. Department of Defense, 2007). Biodegradation of 

ethers under methanogenic conditions require very low sulfate concentrations, whereas 

mineralization of ethers due to denitrification is limited by nitrate availability and only expected 

to occur in contaminated aquifers. In the Oderbruch aquifer, sulfate reduction occurred in the last 

sampling well, 3434 m from the river (Figure 3.2). No ethers were present in such distant well. 

According to Figure 3.2, denitrification occurred between the river and the first deep 

groundwater well (6/99 T). Therefore these two processes are not expected to contribute to the 
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degradation of ethers in the Oderbruch. The high iron (II) concentrations in the groundwater are 

the result of a reduction of Fe (hydr)-oxides in the sediment of the aquifer (Massmann et al., 

2004). Numerous studies focused on 1,4-dioxane decomposition in the presence of iron species in 

the sludge, wastewater, and contaminated groundwater (Beckett and Hua, 2003; Kiker et al., 

2010; So et al., 2009; Shen et al., 2008). In order to observe significant reduction or removal of 

the compound, strong oxidizing agents in the form of hydrogen peroxide or humic acid have to be 

supplied. The ex-situ studies suggest the development of anaerobic microbial communities 

capable of 1,4-dioxane degradation, since Fe (II) is often present in the groundwater 

contaminated with 1,4-dioxane (Shen et al., 2008). As determination of ether degradation 

products was not a part of the current study, it cannot be confirmed if iron reduction enhanced the 

attenuation of 1,4-dioxane in the groundwater. Based on the concentrations detected and 

chemical characteristics of 1,4-dioxane and glymes, only dispersion and dilution will be 

considered as relevant attenuation processes during riverbank filtration and groundwater 

movement in the Oderbruch polder. As concluded by Landmeyer et al. (1999) these are possibly 

the most effective processes in the reduction of trace organic contaminants such as ethers.   

 

3.4.6 Organic pollutants as hydrological tracers 

  A substance unintentionally released and persistent in the environment can become useful 

as a hydrological tracer. Ideally such pollutant should move with the water, without sorption to 

soil and without degradation (Flury and Wai, 2003). Moreover the chosen tracer should be 

resistant to changes in pH, alkalinity, or ionic strength, and should be easily detected in trace 

amounts by chemical analysis. The ideal groundwater tracer does not exist, but when different 

tracers are simultaneously determined, groundwater characteristics can be adequately identified. 

Chloride (Cl
−
) ion is often used as conservative inorganic tracer to study groundwater dynamics 

(Basberg et al., 1998; Lee et al., 2001; Peters et al., 1998). Cl
−
 is highly mobile due to its 

negligible sorption and minor chemical interactions with other materials during bank filtration 

process (Cox et al., 2007). Numerous sources affect the presence of Cl
−
 in the surface water and 

consequently in the groundwater such as: irrigation runoff, sewage effluents, precipitation, 

mining, chemical industry, snowmelt, and road salting during the winter (Department of Natural 

Resources Indiana, 2002). Temporal variability in chloride concentration in both the Oder River 

and in the groundwater was determined during this and previous studies study (Massmann, 2002). 
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  Persistent pollutants present at significant concentrations in the groundwater can be 

potentially applied as environmental tracers, therefore only OPs and ethers present at 

concentrations close to 100 ng L
−1

 were considered. Concentration of TCPP in the 2.1 year old 

groundwater exceeded 200 ng L
−1

, but after 3 year groundwater residence time its concentration 

decreased by 74−82 %. Obviously TCPP is affected by biological and/or chemical processes in 

the aquifer. Therefore only triglyme, tetraglyme, and 1,4-dioxane were evaluated as possible 

environmental tracers. Consequently, the presence of these compounds was correlated to the 

inorganic tracer Cl
−
. Relationship of triglyme with Cl

−
 concentration resulted in a relatively 

scattered pattern, which limits its use as organic tracer; nevertheless this glyme remains a good 

indicator of groundwater contamination. Figure 3.5 demonstrate a good correlation of 1,4-

dioxane (r = 0.913) and tetraglyme (r = 0.613) to Cl
−
concentration in the river water and deep 

groundwater wells.   

 

 

FIGURE 3.5  Correlation between chloride (mg L
−1

), 1,4-dioxane, and tetraglyme (ng L
−1

) 

concentrations in the Oder River and deep groundwater wells during four sampling campaigns. 

Correlation coefficients (r) for chloride with the ethers are given in parenthesis.  
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  The only points deviating strongly from the linearity occurred in March 2012 in the Oder 

River for both ethers. The chloride value for this sampling was taken five days prior to the actual 

sampling for the ether determination (93.8 mg L
−1

) and may possibly differ from the actual 

concentration on the sampling day. Also during 2011 sampling, the low concentrations of 

tetraglyme relatively to chloride (114 mg L
−1

) caused divergence. Nevertheless, similarities in the 

behavior of Cl
−
 and the organic compounds suggest that 1,4-dioxane and tetraglyme are 

controlled by the same hydraulic process and therefore can be used as additional tracers to study 

the dynamics of the groundwater system. 

 

3.5 Conclusions  

 

  In the Oderbruch polder, the presence of one non-chlorinated OP (TiBP) and two 

chlorinated OPs (TCEP, TCPP) was determined in the main drainage ditch following bank 

filtration and in the anoxic aquifer.  Moreover, the great mobility and low degradation potential 

were shown for hydrophilic ethers (diglyme, triglyme, tetraglyme, and 1,4-dioxane). Under the 

aquifer conditions described TiBP, TCEP, TCPP, diglyme and triglyme are not suitable as 

organic tracers in groundwater, because of their low and fluctuating concentration and/or 

biodegradation. Nevertheless, they are good indicators of contamination of groundwater with 

organic contaminant loaded surface waters. 1,4-Dioxane and tetraglyme were both present at 

significant concentrations (above 100 ng L
-1

) in the river, main drainage ditch and aquifer. Their 

persistence in the groundwater with an estimated age of 21 to 42 years, confirms their low 

biodegradation in the anoxic aquifer. The decrease in concentrations of both ethers and chloride 

at more distant groundwater wells is attributed to lower historical concentrations in the Oder 

River and the dispersion of the groundwater. The strong correlation of 1,4-dioxane and 

tetraglyme with the inorganic tracer Cl
− 

confirms their behavior as organic tracers. Therefore, 

1,4-dioxane and tetraglyme can play an important role in the interpretation of substance flow 

dynamics in complex groundwater systems. In order to exclude biodegradation of ethers in the 

aquifer, the formation of degradation products needs to be investigated.  
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Chapter 4 Fate of 1,4-dioxane in the aquatic environment: 

from sewage to drinking water 

 

4.1 Abstract 

Potential health effects of 1,4-dioxane and the limited data on its occurrence in the water 

cycle command for more research. In the current study, mobility and persistence of 1,4-dioxane 

in the sewage-, surface-, and drinking water was investigated. The occurrence of 1,4-dioxane was 

determined in wastewater samples from four domestic sewage treatment plants (STP). The 

influent and effluent samples were collected during weekly campaigns. The average influent 

concentrations in all four plants ranged from 262 ± 32 ng L
−1

 to 834 ± 480 ng L
−1

, whereas the 

average effluents concentrations were between 267 ± 35 ng L
−1

 and 62,260 ± 36,000 ng L
−1

. No 

removal of 1,4-dioxane during water treatment was observed. Owing to its strong internal 

chemical bonding, 1,4-dioxane is considered non-biodegradable under conventional bio-

treatment technologies. The source of increased 1,4-dioxane concentrations in the effluents was 

identified to originate from impurities in the methanol used in the postanoxic denitrification 

process in one of the STPs. In view of poor biodegradation in STPs, surface water samples were 

collected to establish an extent of 1,4-dioxane pollution. Spatial and temporal distribution of 1,4-

dioxane in the Rivers Main, Rhine, and Oder was examined. Concentrations reaching 2,200 ng 

L
−1

 in the Oder River, and 860 ng L
−1

 in both Main and Rhine River were detected.  The average 

load during the sampling was estimated to be 6.5 kg d
−1

 in the Main, 34.1 kg d
−1

 in the Oder, and 

134.5 kg d
−1

 in the Rhine River. In all rivers, concentration of 1,4-dioxane increased with 

distance from the source and was found to decrease with the increasing discharge of the river. 

Additionally, bank filtration and drinking water samples from two drinking water facilities were 

analysed for the presence of 1,4-dioxane. The raw water contained 650 ng L
−1

 to 670 ng L
−1

 of 

1,4-dioxane, whereas the concentration in the drinking water fell only to 600 ng L
−1

 and 490 ng 

L
−1

, respectively. 
 
Neither of the purification processes applied were able to reduce the presence 
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of 1,4-dioxane below the precautionary guideline limit of 100 ng L
−1

 set by the German Federal 

Environmental Agency.  

 

4.2. Introduction 

        1,4-Dioxane is a polar cyclic diether, commonly used as an industrial solvent in the 

production of adhesives, paint strippers, dyes, degreasers, fabric cleaners, paper, electronics, and 

pharmaceuticals (Tanabe et al., 2006). In the past, 1,4-dioxane was mainly associated with its use 

as a solvent stabilizer especially for 1,1,1-trichloroethane (1,1,1-TCA).  This application was 

discontinued in the 1990s, when 1,1,1-TCA was banned by the Montreal Protocol, due to its 

ozone depleting properties. Moreover, 1,4-dioxane is unintentionally formed during several 

chemical processes used to produce soaps, polyester, and plastics. According to the European 

Chemical Substances Information System, 1,4-dioxane is a high production volume chemical, 

meaning production exceeds 1,000 tons per year in at least one member country. The European 

Union Risk Assessment Report from 2002, states that the only production site in Europe; BASF 

SE in Ludwigshafen, Germany produced 2,000 – 2,500 tons of 1,4-dioxane  in 1997.  Currently, 

European Chemicals Agency lists three registrants/suppliers in Europe: BASF SE and Merck 

KGaA in Germany and Sustainability Support Services (Europe) AG in Sweden with a total 

amount of 1,4-dioxane exceeding 100 tons per year. 

In recent years international concern has risen about the ubiquitous presence of 1,4-

dioxane in the environment and the adverse health effects to its exposure. United States 

Environmental Protection Agency (U.S. EPA) and the International Agency for Research on 

Cancer assigned 1,4-dioxane to group B2 as a possible human carcinogen. Toxicological studies 

revealed an increased incidence of nasal cavity and liver carcinomas in rats, liver carcinomas in 

mice, and gall bladder carcinomas in guinea pigs (Zenker et al., 2003). Since then, a number of 

international regulatory guidelines emerged for 1,4-dioxane. World Health Organization 

suggested a 50 µg L
−1

 drinking water threshold value for 1,4-dioxane, whereas the U.S. EPA 

National Center for Environmental Assessment proposed a health-based advisory level of 3 µg 

L
−1

 in the tap water (Mohr, 2010). According to the U.S. EPA Integrated Risk Information 

System, cancer development could occur in 1 out of 1,000,000 people exposed to a concentration 

of 350 ng L
−1

 in drinking water over a lifetime (75 years). As a result, Unregulated Contaminant 

Monitoring Regulation from 2012, proposed a minimum reporting level for 1,4-dioxane at 70 ng 
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L
−1

. In its Drinking Water Regulation (2001), the German Federal Environmental Agency 

suggested a precautionary guideline limit for weak or non genotoxic compounds such as 1,4-

dioxane at 100 ng L
−1

 in drinking water.  

The physiochemical properties of 1,4-dioxane govern its high mobility and persistence in 

the environment (Table 4.1). Based on Henry’s law constant (4.88 × 10
-6 

atm × m
3 

× mol
−1

) and 

the indefinite solubility in water, volatilization of 1,4-dioxane from water is expected to occur 

slowly (National Industrial Chemicals Notification and Assessment Scheme [NICNAS], 1998). 

The low octanol water coefficient (log Pow = −0.27) is in accordance with its high mobility in soil 

and leaching to groundwater as well as no significant adsorbance to suspended sediments.  The 

moderate vapor pressure and Henry’s law constant implies slow volatilization from moist soil; 

however fast volatilization from dry soils. When 1,4-dioxane enters the atmosphere it is subjected 

to photo oxidation with hydroxyl radical (*OH)  radicals with a half-life of less than 7 hours 

(NICNAS, 1998).  Based on the aforementioned properties, removal of 1,4-dioxane from 

wastewater is expected to be difficult, increasing the possibility of surface, groundwater, as well 

as drinking water contamination.  

 

TABLE 4.1 Physicochemical properties and the structure of 1,4-dioxane.  

 

Data on the present dispersion of 1,4-dioxane in the environment in Europe and around 

the world are not readily available. Already, three decades ago 1,4-dioxane was first found as a 

water contaminant in the US (Kraybill, 1978; Burmaster, 1982; Hartung, 1989). Most recent 

work focussed on distribution of 1,4-dioxane in polluted groundwaters (Isaacson, 2006; Chiang, 

2008). Also, in Canada, groundwater contamination with the ether was documented (European 

Commission, 2002; Lesage, 1990). In Europe, the presence of 1,4-dioxane was confirmed in 

surface waters in Germany, Netherlands, and in the United Kingdom (European Commission, 

Property Value Reference Structure

Molecular weight (g/mol) 88.1 Budavari et al. (1989)

Density (g/cm
3
) 1.033 Keith and Walters (1985)

Boiling point (°C at 760 mmHg) 101.1 Verschueren (1983)

Water solubility (at 25°C; g/L) Miscible Budavari et al. (1989)

Vapor pressure (mmHg at 20°C) 30 Verschueren (1983)

Henry's law constant (atm×m
3
/mol

-1
) 4.88×10-6 Howard (1990)

Partition coefficient (Log P ow ) -0.27 Howard (1990)

log P oc 0.54 Howard (1990)
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2002; Gelman Sciences, 1989). Moreover, 1,4-dioxane  was detected in a municipal landfill 

leachate in Sweden as well as in the industrial wastewater from polyester resin producing 

company (Paxéus, 2000; Romero et al., 1998). In Japan, extensive research on the distribution 

and occurrence of 1,4-dioxane has been carried out. Numerous studies confirmed the presence of 

1,4-dioxane in landfill leachate (Yasuhara et al., 2003; Fujiwara et al., 2008), effluents from 

sewage plants (Abe, 1999; Tanabe et al., 2006), surface and groundwater (Abe, 1999; Kawata et 

al., 2003, Kawata and Tanabe, 2009). Other studies focused on the investigation of 1,4-dioxane in 

non-ionic surfactants and cosmetics. Fuh et al. (2005) determined that 22% of daily use cosmetics 

in Taiwan contained between 4.2 ppm and 41.1 ppm of 1,4-dioxane. Black et al. (2001) reported 

up to 1410 ppm of 1,4-dioxane in ethoxylated raw materials and up to 279 ppm in cosmetic 

finished products.  Numerous studies on the presence of 1,4-dioxane in cosmetic products have 

been conducted by independent consumer organizations in both US and Europe. 

In the presented study, the occurrence and distribution of 1,4-dioxane in the aquatic 

environment in Germany and Poland is investigated. The focus of the current study was to 

examine the mobility of 1,4-dioxane from wastewater to surface water, bank filtered 

groundwater, and finally to drinking water plants. The extent of 1,4-dioxane removal through 

riverbank filtration, drinking water treatment, and wastewater treatment was also investigated. To 

the best of our knowledge this is the first study conducted in Europe that focuses primarily on the 

occurrence and transport of 1,4-dioxane in such a wide range of samples from the aquatic 

environment.  

 

4.3. Materials and methods 

4.3.1. Chemicals and reagents 

1,4-Dioxane (99.5 %, CAS No. 123-91-1) was purchased from Ultra Scientific 

(Kingstown, USA). 1,4-Dioxane-d8 (99 %, CAS No. 17647-74-4) was used as a surrogate (SU) 

and 4-chlorotetrahydropyran (96 %, CAS No. 1768-64-5) as an internal standard (IS). Both 

standards were obtained from Sigma-Aldrich (Steinheim, Germany). Analytical grade 

dichloromethane (DCM) and hypergrade methanol, used for extraction and standard preparation, 

were purchased from Merck (Darmstadt, Germany). DCM was distilled before use. To produce 

ultrapure water, the Astacus water purification system from MembraPure (Bodenheim, Germany) 
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was used. Sodium bisulfate, a microbial inhibitor, was purchased from Aldrich Chemistry 

(Steinheim, Germany). Anhydrous sodium sulfate was supplied by Sigma Aldrich (Seelze, 

Germany) and conditioned at 400°C for 4 h before use. Separate stock solutions of 1 µg µL
−1

 of 

1,4-dioxane, SU, and IS were prepared in methanol. Subsequent working standards were obtained 

through appropriate dilutions in DCM.  

 

4.3.2 Analytical methods 

The method used for determination of 1,4-dioxane in water samples has been previously 

described in detail by Stepien and Püttmann (2013) and U.S. Environmental Protection Agency 

(2008). Therefore, only a short description of the extraction and analytical method follows. Two 

solid-phase extraction (SPE) methods were used to determine 1,4-dioxane in water samples. The 

first method involved “Resprep
®

 activated coconut charcoal SPE cartridges” (Restek, 80-120 

mesh, approximately 150 µm, 2 g, 6 mL) and 500 mL of water sample loaded onto the previously 

conditioned adsorbing material with DCM, methanol, and distilled water. The elution of the 

analyte was accomplished with 10 mL of DCM. The second method required only 100 mL of a 

water sample to be passed through a conditioned “Supelclean
TM

 ENVI-Carb
TM

 Plus” SPE tube 

(Supelco, bed wt. 400 mg, 1 mL). Prior to the elution, cartridges were washed with 2 mL of 20 % 

methanol solution. Analytes of interest were eluted with 2 mL dichloromethane. The extracts 

were then dried on the sodium sulfate column. After each extraction, 500 µL of an extract and 10 

µL of IS are added (0.125 µg µL
−1

, 4-chlorotetrahydropyran) and placed in the autosampler for 

GC/MS analysis. Only influent samples obtained from wastewater treatment plant were subjected 

to pressure filtration before extraction, to prevent clogging of the cartridges.  For that purpose a 

stainless steel pressure holder (2.12 L; Sartorius, Goettingen, Germany) equipped with a 142 mm 

diameter borosilicate glass fiber filter (Filter pore size <1 µm; type A/E, Pall, Dreieich, Germany) 

was used, with 1.5 bar air pressure. Before use, the filters were conditioned in DCM and heated 

to 400 °C for 2 h. After each blank, spike, and sample filtration the equipment was thoroughly 

cleaned with ultrapure water.  

Analyses were carried out using a Thermo Finnigan Voyager MS system coupled to a 

Trace 2000 GC (ThermoQuest Finnigan, Dreieich, Germany) equipped with a DB-624 column 

(30 m length, 0.25 mm ID, 1.40 µm film thicknesses) from Agilent (Waldbronn, Germany). The 

injector temperature was set at 240°C in 1 min splitless mode. The column temperature program 
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started at 37 °C for 2.5 minutes, increased at the rate of 4 °C min
-1

 to 75 °C with the final 10 °C 

min
-1

 increase to 220 °C. Carrier gas, helium (≥99.99 %) was set to a constant flow mode of 1 

mL min
-1

. The mass spectrometer was operated in a selected ion monitoring mode with electron 

impact ionization set to 70 eV. For data processing XCalibur software (Thermo Fisher Scientific, 

version 2.0.7) was used. Quantitation of 1,4-dioxane was performed using an internal standard 

method. The response factor for 1,4-dioxane was calculated relatively to 4-chlorotetrahydropyran 

at seven calibration levels ranging in concentration from 2.0 µg L
−1

 to 250 µg L
−1

 (corresponding 

to 0.040 – 5.0 µg L
-1

 in the sample). SU and IS were added at 500 µg L
−1

 and 250 µg L
−1

, 

respectively.   

 

4.3.3. Quality assurance 

Amber glass collection containers were pre-cleaned with distilled water and methanol and 

heated in the oven at 110 °C for a minimum of two hours to ensure no contamination of the 

sample. Preservative in the form of sodium bisulfate was added to each bottle at 1 g per Liter. 

After collection, the samples were stored in the refrigerators during transport and in the 

refrigerated storage room at 4 °C prior to the extraction.  Each sample was extracted after a 

maximum of 8 days from the collection day. A method blank and control standards were included 

with each batch of 17 samples. Prior to the extraction, samples, blanks, and control standards 

were enriched with 5 µL of a surrogate (1.0 or 0.20 µg µL
−1

). Control samples were spiked with 

standards to reach the final concentration close to the detection limit and the mid-point of the 

calibration curve. The percentage of surrogate and spike recovery was always within the 

acceptable range of 70 % to 130 %. For the method utilizing 500 mL of a sample, 1,4-dioxane 

recovery in the ultrapure samples spiked at 1.0 µg L
−1 

and 10 µg L
−1

 was calculated to be in the 

range of 94.3 %  to 97.1 % with a relative standard deviation of 3.4 % to 4.1 % (Stepien and 

Püttmann, 2013). The limit of quantitation (LOQ) for 1,4-dioxane in the surface water samples 

was determined to be 52 ng L
−1

 and 34 ng L
−1

 in ultrapure water samples (Stepien and Püttmann, 

2013). For 100 mL samples, the extraction recovery for 1,4-dioxane was calculated to be 103 % 

with a relative standard deviation of 4.69 %. The LOQ equaled to 32 ng L
−1

 for ultrapure water 

samples and 34 ng L
−1

 for surface waters. Additionally, a study was performed to determine the 

stability of 1,4-dioxane in the ultrapure water and surface waters when preserved with sodium 

bisulfate. After 10 days, there was no observable decrease in the spiked concentration.   
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All of the extracts were analyzed in the SIM mode. The presence of 1,4-dioxane in 

environmental samples was confirmed using the abundance of the confirmation ions (m/z = 58, 

87) relative to the target ion (m/z = 88). The ratio had to agree with the absolute 20 % of the 

relative abundance in the spectrum taken from the most recent calibration standard analyzed in 

the SIM mode.  

 

4.5. Site description and sampling methods 

4.5.1. Sewage treatment plants 

Four municipal Sewage Treatment Plants (STPs) were investigated for the occurrence of 

1,4-dioxane. Table 4.2 lists relevant information about the sampling and the capacity of the 

STPs. Each STP examined was equipped with fundamental treatment processes such as 

mechanical pre-treatment with coarse particle screening, an aerated grit-removal tank, a primary 

clarifier and one to two biological treatment stages with activated sludge. Two of the STPs 

studied (C, D) employ a postanoxic denitrification step before discharging the effluent into the 

receiving surface water. In each case, the external carbon source consisted of methanol, to 

provide an electron donor for nitrate reduction. Influent and effluent water samples were acquired 

at each STP. Additionally, water samples after primary and secondary treatment were obtained 

from STP C. Twenty-four hours composite samples were collected at STP B, C, and D for a 

continuous duration of at least seven days. At STP A, qualified random samples were taken for a 

week. In STP D, two influents are separately entering the plant, which represent approximately 

57 % and 43 % of wastewater, respectively. Each influent is mechanically pretreated, before it is 

joined together for a first and second biological treatment with a final postanoxic denitrification 

step. STP A represents the lowest capacity plant (73,000 people served), whereas STP D the 

highest. The wastewater treated in all of the STPs consisted of household sewage and indirect 

discharges from industries. STP B receives the highest and STP C the lowest percentage of 

indirect discharges.  
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TABLE 4.2  Sampling events and characteristics of the four sewage treatment plants sampled.  

 Sewage Treatment Plant 

  A B C D 

No. of samples 14 16 42 21 

Sampling date 10.12.12-

16.12.12 

13.11.12-

20.11.12 

27.11.12-03.12.12 08.07.13-

14.07.13   17.01.13-23.01.13 

Sampling type Qualified random 

sample 

24-h composite 24-h composite 24-h 

composite 

      

Retention time 24-h 48-h   24-h   

Flow rate of 

outflow (m
3
 year

-1
) 

8,290,000 14,100,000 16,000,000 92,600,000 

% of indirect 

discharge 

35 50 30 38 

Population served 73,000 240,000 140,000 750,000 

Treatment steps M/B/N/D/P M/B/N/P M/B/N/D/P M/B/N/D/P 

M - mechanical, B - biological, N - nitrification, D - denitrification, P - phosphorus removal 

4.5.2. Surface waters  

For the investigation of 1,4-dioxane in surface waters, three rivers were chosen. The Oder 

River flows mainly through western Poland, becoming a border between Poland and Germany at 

river km 545, ultimately flowing into the Baltic Sea. Forty-nine samples (n = 49) were obtained 

from a 600 km stretch of the river between January 2012 and April 2013. Each collection flask 

containing sodium bisulfate was filled to the top, leaving no headspace. The samples were 

collected along the shore line of the river, from the bridges or from a ship where possible. The 

second surveyed river was the Rhine, which is the longest river in Germany. A two week 

investigation (08/20/12 and 09/02/12) of the 24-hours composite samples (n = 28) was 

undertaken at the Rhine Water Control Station Worms, Germany, located at river km 443.3.  The 

sample collection took place on the left (MWL1) and on the right (MWL4) side of the river. 

Submersible pumps allowed for a collection of water samples from the river at the depth of 50 

cm. The sampling systems consisted of two auto-samplers SP II-A (MAXX Mess- und 

Probennahmetechnik GmbH, Germany) connected to twelve water collectors, keeping the water 

cooled at 4°C. Throughout the day, 15 mL of water were collected every 10 min. Additionally, 

over a 350 km stretch of the Rhine River − between the city of Mainz (km 499) and Emmerich 

(km 852) − was sampled in May 2013 resulting in 19 samples. The Main River being the most 

significant right tributary of the Rhine River was sampled on April 2013. Fifteen (n = 15) 
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samples were obtained between Hanau and Mainz-Kostheim. Table 4.3 lists all surface water 

sampling locations and the corresponding water conditions on the day of the sampling and 

Figure 4.1 illustrates the sampling locations. 

 

4.5.3. Bank filtration and drinking water treatment 

Two drinking water treatment (DWT) facilities were investigated for the presence of 1,4-

dioxane that utilize bank filtered surface water from the Rhine River for the drinking water 

production. Sample collection of the DWT 1 was performed by an external company on the 

12/10/12. A total of 11 water samples were obtained: 9 from multilevel wells, one raw water 

sample after bank filtration, and a drinking water sample. Three multilevel monitoring wells A (n 

= 3), B (n = 3), and C (n = 3) are situated 20, 40, and 80 m from the river bank, respectively. In 

the matter of weeks (15-70 d), surface water passes through a 30 m thick sand and gravel layer 

where the natural filtration of water occurs. The water reaching wells A and B originates from the 

bank filtration only. In well C, generally groundwater inflow from land is observed, except at 

high river water levels when mixing with bank filtration water takes place. Subsequently, the raw 

water is directed to the DWT plant, where the following treatment processes are implemented to 

meet drinking water standards: ozonation, aeration, and a two layer activated carbon filtration. 

Finally, a mix of phosphate and silicate (at 1 mg L
-1

) and chloride dioxide (at 0.06 mg L
-1

) are 

added to the finished water in order to prevent corrosion of the pipes and biological 

contamination. More information about the area sampled can be found in Achten et al. (2002). 

DWT 2 was sampled on the 03/22/13. One river sample, raw water sample, and two drinking 

water samples were obtained. The facility treats and provides 8 million m
3
 of drinking water per 

year to about 170,000 people. The natural filtration of the surface water takes on average 35 days, 

until it reaches the recovering well. The naturally pre-cleaned raw water undergoes additional 

purification steps at the DWT facility. The following treatment processes are utilized: ozonation, 

oxidation, sand/gravel filtration, activated carbon filtration, physical decalcification to remove 

carbonic acid, and disinfection with chlorine dioxide. 
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TABLE 4.3 Sampling locations, sample ID, river water level (cm), and discharge (m
3
 s

-1
) during 

surface water collection from the Oder, Rhine, and Main River.  

 

Oder Od1 Genschmar 1 626 Jan-12

Oder Od2 Groß-Neuendorf 1 634 Jan-12

Oder Od3 Güstebieser Loose 1 645 436 806 Jan-12

Oder Od4 Bienenwerder 1 654 436 806 Jan-12

Oder Od5 Lebus, DE 1 595 350 370 Mar-12

Oder Od6 Połęcko, PL 2 530 233 289 Mar-12

Oder Od7 1 530 77 97.3 Aug-12

Oder Od8 Frankfurt,DE/Slubice, PL 2 585 141 Aug-12

Oder Od9 Krosno Odrzańskie 1 514 Aug-12

Oder Od10 Brody, PL 2 491 142 87.2 Aug-12

Oder Od11 Nowa Sól, PL 2 429 142 82.4 Aug-12

Oder Od12 2 429 307 283 Apr-13

Oder Od13 Bytom Odrzański, PL 1 416 Aug-13

Oder Od14 1 416 Apr-13

Oder Od15 Glogów, PL 2 392 157 Aug-13

Oder Od16 3 392 Apr-13

Oder Od17 Ścinawa, PL 2 331 151 104 Aug-13

Oder Od18 3 331 295 263 Apr-13

Oder Od19 Kawice, PL 2 310 Aug-13

Oder Od20 1 310 354 291 Apr-13

Oder Od21 Malczyce, PL 1 305 Aug-13

Oder Od22 Brzed Dolny, PL 1 284 97-196 61.6-124 Aug-13

Oder Od23 2 284 Apr-13

Oder Od24 Wrocław, PL 1 242 314 Aug-13

Oder Od25 Oława, PL 2 216 177 Aug-13

Oder Od26 Brzeg, PL 2 199 126 Aug-13

Oder Od27 Kopanie, PL 1 187 Aug-13

Oder Od28 Opole, PL 1 155 405 Aug-13

Oder Od29 Krapkowice, PL 2 124 217 Aug-13

Oder Od30 Koźle, PL 3 97 276 Aug-13

Oder Od31 Uraz, PL 1 272 Apr-13

Rhine Rh1 Worms 28 443 118-241 886-1541 08/20/12-09/02/12

Rhine Rh2 Guntersblum 1 473 Mar-13

Rhine Rh3 Nierstein 1 483 Mar-13

Rhine Rh4 Mainz-Kastel 2 499 402 May-13

Rhine Rh5 Koblenz 2 591 396 May-13

Rhine Rh6 Wiesenthurm 2 611 May-13

Rhine Rh7 Bad Honnef 2 642 May-13

Rhine Rh8 Bonn 2 655 492 3480 May-13

Rhine Rh9 Köln 1 688 517 3630 May-13

Rhine Rh10 Leverkusen 1 699 May-13

Rhine Rh11 Düsseldorf 2 744 474 3650 May-13

Rhine Rh12 Ruhrort 2 780 619 3740 May-13

Rhine Rh13 Wesel 1 814 586 May-13

Rhine Rh14 Rees 1 837 525 3705 May-13

Rhine Rh15 Emmerich 1 852 463 3770 May-13

Main Ma1 Hanau 2 469  156* Apr-13

Main Ma2 Maintal 2 474 156 Apr-13

Main Ma3 Offenbach 2 482 156 Apr-13

Main Ma4 Schwanheim 2 500 156 Apr-13

Main Ma5 Höchst 1 503 156 Apr-13

Main Ma6 Sindlingen 2 506 156 Apr-13

Main Ma7 Rüsselsheim 2 517 156 Apr-13

Main Ma8 Mainz-Kostheim 2 526 156 Apr-13

* average discharge of the River Main on the day of the sampling (Source: German Federal Institute of Hydrology (BfG))

Discharge  

(m
3 

s
-1

) Sampling dateRiver

Sample   

ID Sampling Location

No.  of 

samples

River     

km

Level  

(cm)
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FIGURE 4.1 Maps of surface water sampling sites in Germany and Poland, including major tributaries. Sample IDs reflect the locations 

listed in Table 4.3.   
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4.6. Results and discussion 

4.6.1. 1,4-dioxane in municipal sewage treatment plants 

  Four sewage treatment plants (STP) were investigated with respect to the occurrence of 

1,4-dioxane in the wastewater coming mainly from the domestic sewage. 1,4-Dioxane was 

detected in the influent and effluent samples at each STP. Additionally, samples after primary 

and secondary treatment were collected at STP C. The concentrations of 1,4-dioxane in the 

wastewater from each STP are presented in Figure 4.2. In the STP A, B, and D the average 

concentration of 1,4-dioxane (n = 7 - 8) in the influent was 262 ± 32 ng L
−1

, 340 ± 62 ng L
−1

, and 

516 ± 73 ng L
−1

, respectively. The lowest average concentration of 1,4-dioxane was detected in 

the STP A, which also has the lowest capacity. In the STP C the average influent concentration 

based on 14 collected samples was 833 ± 480 ng L
−1

. In STP A, B, and D the concentrations in 

the effluents were comparable to those detected in the influents, showing that the wastewater 

treatment steps are not configured for 1,4-dioxane removal. In comparison, STP C effluent 

contained extremely high amount of 1,4-dioxane (62,260 ± 35,960 ng L
−1

).  In this STP, effluent 

concentrations were over 100 times higher than in the influent. Based on the daily average 

discharge at the STP C, the load of 1,4-dioxane into the receiving surface water was calculated to 

be 0.59 -2.51 kg d
−1

 during December sampling and 2.17 – 5.03 kg d
−1

 in January. The second 

weekly sampling campaign was therefore extended to wastewater samples after primary and 

secondary treatment, where the average concentrations were 6,120 ± 2,420 ng L
−1 

and 5,800 ± 

2,490 ng L
−1

, respectively.  

 The potential sources of 1,4-dioxane within the water treatment process at STP C were 

inspected. The increased concentrations after primary and secondary treatment and the extremely 

high concentrations in the effluent, supported the assumption that methanol used in the 

postanoxic denitrification step might be responsible for the increased concentrations of 1,4-

dioxane. Hence methanol samples were obtained both from STP C and D for analysis. Three 

different lots of methanol provided by two different suppliers were obtained from STP C and two 

different lots of methanol were made available by STP D. 
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FIGURE 4.2  Average concentration (ng L
−1

) and a standard deviation of 1,4-dioxane in influent 

samples, after primary and secondary treatment, and in effluent water samples in four municipal 

sewage treatment plants (STP) investigated.  

   According to the company that provided the solvent to STP C, the purity of methanol is 

between 90 % and 96 %.  100 µL of methanol sample was diluted in 100 mL of ultrapure water 

and extracted using the SPE method described in Section 4.3.2 to determine the possible 1,4-

dioxane impurities in the solvent. As expected, only the methanol samples coming from STP C 

were positive for 1,4-dioxane. The concentration of 1,4-dioxane differed in the methanol with lot 

and with a supplier. In the methanol samples from the first supplier 1,4-dioxane ranged between 

1,650 µg mL
−1

 to 2,190 µg mL
−1

. The methanol from the second supplier contained 10 µg mL
−1

 

of 1,4-dioxane. The results show that the presence and the amount of 1,4-dioxane as an impurity 

in methanol is dependent on the supplier and the source of the solvent.  

  The amount of methanol added to the postanoxic denitrification step depends on the 

amount of nitrate to be removed and the amount of dissolved oxygen in the influent wastewater 

to be consumed. At the STP C the solvent is added continuously to the postanoxic denitrification 
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stage. During the two sampling campaigns methanol was added at an average of: 1,860 L d
−1

 

during the first sampling period and 2,337 L d
−1

 during the second sampling period. The elevated 

1,4-dioxane concentrations in the wastewater after primary and secondary treatment resulted 

from the redirected sludge dewatering from the postanoxic denitrification step. The methanol 

samples analyzed from STP C correspond to the methanol used during the second wastewater 

sampling. Methanol mixing occurs during the methanol delivery and storage, nevertheless one of 

the methanol samples analyzed makes up the majority of the methanol used during that time. 

Determined concentration of 1,4-dioxane in that methanol (1650 µg mL
−1

) was used to calculate 

the expected concentration and amount (kg d
−1

) of 1,4-dioxane in the effluent coming entirely 

from the methanol, assuming that 1,4-dioxane is not used as a carbon source for  postanoxic 

denitrification. For that purpose, the amount of methanol added and the effluent discharge were 

used. Table 4.4 lists the amount of methanol added (L d
-1

), the effluent discharge at the STP C 

(m
3
 d

−1
), detected amount of 1,4-dioxane in this study (kg d

−1
), amount  of 1,4-dioxane in the 

effluent calculated based on the amount of the ether detected in the pure methanol sample (kg 

d
−1

), and the percent difference between the values. The results show a good agreement between 

the calculated and measured amounts of 1,4-dioxane in the effluent except for two of samplings 

on the 01/20/13 and 01/22/13, where the difference was 35.4 % and 44.8 %, respectively. 

Nevertheless, it can be concluded that the impurity of 1,4-dioxane in the methanol is responsible 

for the high amount of 1,4-dioxane in the effluent of this sewage treatment plant and corresponds 

to the amount of the methanol added during the postanoxic denitrification step. The concentration 

of 1,4-dioxane in the influent, which in the second sampling period was 714 ± 480 ng L
−1

, has a 

negligible influence on the concentrations in the effluent. Moreover the results show that 

methanol from other sources/suppliers does not contain 1,4-dioxane as an impurity. 
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TABLE 4.4  Amount of methanol (MeOH) used for postanoxic denitrification (in Liters per d) at 

STP C ,effluent discharge in m
3
 d

-1
, amount of 1,4-dioxane detected (kg d

-1
) in the effluent in this 

study, amount of 1,4-dioxane as an impurity (kg d
-1

) calculated based on the detected 

concentration in the methanol (1650 µg mL
−1

) used for denitrification, and percent difference 

between results. 

Sampling MeOH Discharge 1,4-dioxane 1,4-dioxane as impurity % Difference 

Date L/d m³/d kg/d kg/d   

01/17/13 2,608 36,700 3.96 4.30  7.8 

01/18/13 2,362 37,900 3.66 3.90  6.1 

01/19/13 2,009 36,800 3.56 3.32          -7.4 

01/20/13 1,523 59,000 3.40 2.51        -35.4 

01/21/13 2,106 67,400 3.37 3.47  2.9 

01/22/13 2,383 43,500 2.17 3.93         44.8 

01/23/13 3,367 39,000 5.03 5.56  9.5 

 

4.6.2. Temporal and spatial distribution of 1,4-dioxane in surface waters 

In order to observe temporal distribution of 1,4-dioxane in the surface water, 24−hour 

composite samples from the Rhine River were collected for a period of 14 days. Figure 4.3a 

illustrates daily fluctuations of 1,4-dioxane (ng L
−1

) during the two week profile study at the 

Rhine Water Control Station Worms, Germany. Detected concentrations of 1,4-dioxane on the 

left (MWL1) and the right (MWL4) side of the Rhine River are plotted together with the average 

daily discharge (flow rate in m
3
 s

−1
). The lowest concentration of 1,4-dioxane was detected on the 

right side of the river and equalled to 250 ng L
−1

, whereas the highest concentration reached 

2,200 ng L
−1 

on the left river side. The average concentration of 1,4-dioxane during the two week 

profile study was 770 ng L
−1

. At the MWL1 location (left river side), the quality of the surface 

water is influenced by the domestic and industrial sewage water predominantly coming from the 

city of Ludwigshafen, Germany, including 4.5 m
3
 s

−1
 treated wastewater from one of Europe’s 

largest chemical industry sites. Several other communal and industrial STP, and the river Neckar 

have an influence on the Rhine River between  km 2 and km 14.9 upstream of MWL4 (right river 

side). For the period of the first eight days, the concentration of 1,4-dioxane was higher at the 

MWL1; after that the trend reversed showing slightly higher concentrations of 1,4-dioxane at the 

MWL4. In general, the concentration of 1,4-dioxane detected increased during the first week of 

the sampling (08/20/12 – 08/26/12) compared to the following week (08/27/12 – 09/02/12). The 
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discharge of the Rhine River also increased gradually during the sampling. The results suggest 

the possible entrance of the 1,4-dioxane with both industrial and domestic sewage effluents. The 

effluents discharged by the communal and/or industrial sewage treatment plants situated nearby 

most probably had an influence on the extremely high concentration of 1,4-dioxane on 08/24/12 

(2,200 ng L
−1

). Only during the last day of the sampling, the river’s discharge reached above 

average annual discharge of 1,450 m
3
 s

−1
. Therefore, the conditions during the sampling event 

can be considered as typical for low water levels.  

In order to compare the results of the study performed at the Rhine Water Control Station 

Worms, additionally monthly concentrations of 1,4-dioxane in the Rhine River at the monitoring 

stations Lobith (km 862) were obtained from the Dutch River Waterworks Association (RIWA-

Rijn) in Nieuwegein (Netherlands), where grab water samples collected each month are analyzed 

for 1,4-dioxane. Based on the results presented in Figure 4.3a and 4.3b, it can be concluded that 

the concentration of 1,4-dioxane in the Rhine River decreases with increasing discharge of the 

river.   

Moreover, it can be assumed that the higher water rate flow dilute the amount of 1,4-

dioxane in the surface water. Based on the obtained data from the Rhine Water Control Station 

Worms, the total loading of the river cannot be exactly calculated. The sampling system for the 

centre section of the Rhine River − normally fixed to the two bride piers − was out of order due 

to the bridge’s maintenance. The load of organic pollutants is expected to be highest in the 

middle of the river, because of the higher water flow in this segment (Guedez et al., 2010). 

Nevertheless, according to the calculations by the Rhine Water Control Station, the sampling site 

MWL1 and MWL4 represent 10 % and 20 % of the total discharge, respectively (Luckas and 

Diehl, 2000). Therefore, the average load of 1,4-dioxane on the left side of the river (MWL1) was 

calculated to equal 16.7 kg d
−1

 and on the right (MWL4) side 5.71 kg d
−1

. The minimum load was 

determined in MWL1 (2.32 kg d
−1

) and the maximum in MWL4 sampling point (35.51 kg d
−1

).  
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FIGURE 4.3  a) Concentration profile of 1,4-dioxane (ng L
-1

) on the left (MWL1) and on the 

right (MWL4) side of the Rhine River during a two week study at the Rhine Water Control 

Station Worms, Germany with the river discharge values (m
3
 s

-1
). b) Monthly concentration of 

1,4-dioxane in 2012 at the monitoring station Lobith, Germany with the discharge values. On 

11.01.12 concentration of 1,4-dioxane was below detection limit (< 500 ng L
-1

). (Source of data 

shown in Fig.3b: RIWA-database Nieuwegein) 

 

b) 

a
) 
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Furthermore, it can be estimated that approximately 30 % of the total load could be 

detected, which leads to an overall load of approx. 74.8 kg d
−1

. The load of 1,4-dioxane is most 

likely influenced by the discharge of STPs located nearby and  fluctuate with time. Based on the 

data from the Lobith station at the German-Dutch border, the average monthly load of 1,4-

dioxane was calculated to be 172 kg d
−1

, with a minimum of 96.2 kg d
−1

 and a maximum of 251 

kg d
−1

. The average estimated load in Worms is below the minimum load calculated for the Rhine 

at the Lobith station. The 419 km distance between the two monitoring stations, suggest 

numerous additional source of 1,4-dioxane entering the Rhine River.   

The spatial distribution of 1,4-dioxane in the surface water was studied in three rivers: 

Oder, Rhine, and Main River. Table 4.5 summarizes the concentration profile of 1,4-dioxane  

during the sampling campaigns conducted. The highest average concentration of 664 ng L
−1 

was 

detected in the Oder River with the minimum of 143 ng L
−1 

and a maximum level of 2,245 ng 

L
−1

. Average concentration in the Main River (490 ng L
−1

) slightly exceeded concentration 

detected in the Rhine River (470 ng L
−1

). The maximum concentrations in Rhine and Main 

Rivers were a little over 850 ng L
−1

, whereas the minimum levels detected were 210 and 110 ng 

L
−1

, respectively.  

 

TABLE 4.5  Summary of 1,4-dioxane concentrations (in ng L
–1

) in the three rivers investigated.  

 

 

In Figure 4.4, concentrations of 1,4-dioxane detected at each sampling location are 

plotted against the distance from the spring of the river. The continuous sampling of the Oder 

River in August 2012, and the Main and Rhine River show similar patterns, in which 1,4-dioxane 

concentrations increase with distance.  

 

River No. of samples Mean Median Max Min

Oder 49 660 550 2200 140

Rhine 19 470 440 860 210

Main 15 490 530 860 110
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FIGURE 4.4  Spatial distribution of 1,4-dioxane in the Oder, Rhine, and Main River. The 

trendlines indicate increases in 1,4-dioxane concentration with increasing distance from the 

spring of the river. 
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The fluctuations of the concentrations between sampling points is most likely affected by 

the increasing number of sewage effluent discharging into the river as well as elevation or 

dilution of concentrations by tributaries. Numerous minor and major tributaries of the Oder, 

Rhine, and Main River exhibit a high percentage of municipal and industrial wastewater, which 

can impact the concentration of the receiving waters (Figure 4.1). Studies of other trace organic 

pollutants confirm the plausibility of 1,4-dioxane behaviour in surface water. Sacher et al. (2008) 

observed the trend of temporal variations of pharmaceuticals and their increasing concentration 

levels and loads with increasing distance from the spring of the river , but unlike for 1,4-dioxane, 

no correlation with discharge. Another study focused on the occurrence of perfluorinated 

surfactants in the surface waters, seven of which were detected in the Rhine River at 

concentrations below 200 ng L
−1 

(Skutlarek et al., 2006). The location of the main source of 

pollution was found to exist in the tributaries: Ruhr and Moehne River. 

Based on the concentrations determined and flow rate of the river (for sampling points 

where data on discharge was available: Table 4.3), the daily transport of 1,4-dioxane in the 

surface waters was calculated. Figure 4.5 illustrates the load of 1,4-dioxane (in kg d
−1

) in the 

Rhine, Oder, and Main Rivers. The highest average load of 1,4-dioxane was calculated for the 

Rhine River (134.5 kg d
−1

). Taking into consideration the much lower discharge of the Oder 

River, the average load of 1,4-dioxane was calculated to be 34.1 kg d
−1

. In the Main River the 

load, as expected, was the lowest with 6.5 kg d
−1

. Figure 4.6 depicts the load of 1,4-dioxane in 

the Oder River at locations sampled on two different occasions. The results show that the loads of 

1,4-dioxane in the Oder River in the samples Od6 and Od7 (both taken in Połęcko, PL) were not 

constant over time during March and August samplings. Even though the discharge in March was 

higher (289 m
3
 s

−1
) than in August (97.3 m

3
 s

−1
) the load of 1,4-dioxane was 68.3 kg d

−1
 

compared to 7.2 kg d
−1

 in the sample taken during the summer month. Except these two samples, 

loads of 1,4-dioxane at all other locations sampled on two occasions were similar. In April 2013, 

when the discharge was almost three times higher than in August 2012, the loads of 1,4-dioxane 

remained comparable at all sampling points.  Therefore, long term temporal variations in the load 

of 1,4-dioxane occur. Consequently, daily and yearly transport of 1,4-dioxane in the surface 

water might be under- or overestimated, based on random samplings.   
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FIGURE 4.5  Load of 1,4-dioxane (kg d
-1

) in the three rivers sampled. For the Oder and Rhine 

River load was calculated only at locations, where data on discharge (m
3
 s

-1
) was available. For 

the Main River, average discharge of the day (156 m
3
 s

-1
) was used for 8 locations sampled (~ 50 

km of the river). Error bars represent standard deviation. 
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FIGURE 4.6  Loads of 1,4-dioxane (kg d
−1

) at locations sampled on two different occasions.  

Several studies reported the presence of persistent pollutants in the river Rhine and other 

European waters with which the occurrence of 1,4-dioxane in the Rhine River can be compared. 

As reported by the Rhine Water Works (RIWA), in its yearly report, the maximum concentration 

of 1,4-dioxane detected at the Lobith station was 1.7 µg L
−1

 (1700 ng L
−1

) in 2012 (Rhine Water 

Works, 2012). In the current study the highest concentration of 2,200 ng L
-1

 was recorded at the 

Rhine Water Control Station Worms. The water reaching the Lobith station undergoes dilution 

and a raise in effluent proportion, hence the concentration reported is comparable with the 

amount reported in this study. According to Loos et al. (2009), many polar organic persistent 

pollutants in European rivers do not exceed the average concentrations of 250 ng L
−1

. In that 

study 1,4-dioxane was not on the list of 35 selected contaminants, although its occurrence and 

toxicological concerns are comparable with the compounds selected. In the decade long 

monitoring study, Sacher et al. (2008) reported the occurrence of 12 pharmaceutical residues in 

the river Rhine. The maximum concentrations of the pharmaceuticals detected did not exceed 900 

ng L
−1

. These studies show that 1,4-dioxane surpasses in concentration many other pollutants 

found to be significant for the surface water conditions, especially when used for drinking water 
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purposes. The International Association of Waterworks in the Rhine Catchment Area (IAWR) in 

its memorandum from 2008 has established target limits that apply to surface water used for the 

production of drinking water (IAWR, 2008). Substances with low biodegradability have been 

assigned a target value of 1.0 µg L
−1

.  This concentration has been occasionally surpassed in all 

of the rivers for 1,4-dioxane.  

 

4.6.3. Occurrence of 1,4-dioxane in bank filtration and drinking water   

In view of the poor removal of 1,4-dioxane during wastewater treatment and the high 

concentrations in the surface waters, bank filtration and drinking water samples were investigated 

for the occurrence of the persistent ether. Samples from two drinking water treatment plants 

(DWT) were analyzed. Figure 4.7 illustrates the cross section of the bank filtration area studied, 

together with the concentration of 1,4-dioxane detected at the DWT 1. In the first sampling well 

(A) located 20 m from the Rhine River bank, 1,4-dioxane was determined at an average 

concentration of 570 ng L
−1 

(n = 3) . In the deepest monitoring well the concentration was higher 

(680 ng L
−1

) than in the upper and middle wells, although the residence time of water is about 

twice as high in the bottom well.  The infiltrated water in well A and B originates only from the 

bank filtration. In the well B, 1,4-dioxane was present at an average of 730 ng L
−1 

(n = 3). In well 

C, the concentration of 1,4-dioxane reached 3,800 ng L
−1 

in the most upper part of the multilevel 

well, whereas in the two lower wells it was 610 ng L
−1 

(n = 2) on average.  The water at this 

particular well consists of inflowing land groundwater that mixes with bank filtration water only 

at high surface water levels. Prior to the sampling (10 weeks) the river water levels were between 

163 cm and 411 cm. The annual maximum for the year 2012 was 735 cm and the minimum water 

level was 128 cm. Therefore, the water level prior to and during sampling is not considered as 

high. Hence, dilution of water in well C is not expected. The groundwater from the land alone 

was not analyzed for 1,4-dioxane.  
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FIGURE 4.7  Hydrological cross section through the Rhine River and the bank filtration site.  

Concentrations of 1,4-dioxane at multilevel monitoring wells (A-C) are given in a box. Dotted 

lines indicate the water pathways and flow direction. (Figure source: Achten et al., 2002) 

The concentrations determined in the Rhine River at the Lobith measuring station can be 

used to compare the occurrence of 1,4-dioxane during bank filtration at DWT1. In the river 

water, 1,4-dioxane was present at 790 ng L
−1 

on both 10/17/12 and 11/14/12 (RIWA-database 

Nieuwegein). Considering the water residence time of 15 – 70 d, the measured concentration in 

the wells indicates that there was no removal of 1,4-dioxane during bank filtration. Moreover, a 

significant additional source of 1,4-dioxane from land groundwater is reaching the recovery well 

causing the high concentration of 3,800 ng L
−1 

in the upper part of well C. The source of the 

increased 1,4-dioxane concentration in the groundwater needs to be investigated. Figure 4.8 

represent concentrations of 1,4-dioxane in the raw and drinking water samples at two DWT 

investigated. The raw water at the DWT 1, consisting of 75 % bank filtration water and 25 % 

groundwater from natural groundwater recharge, contained 670 ng L
−1 

of 1,4-dioxane. Once the 
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water passed through the treatment process (described in Section 3.3) the concentration decreased 

only to 490 ng L
−1

. At the DWT 2, the concentration of 1,4-dioxane in the raw water sample 

(following ozonation, aeration, and gravel filtration) was 650 ng L
−1

. Once the water passed 

through another filtration step with activated carbon, the average concentration of 1,4-dioxane 

dropped to 600 ng L
−1 

(n = 2) in the drinking water. At the same time as the sampling in DWT 2, 

two Rhine River samples were obtained in which an average concentration of 1,4-dioxane of 770 

ng L
−1 

was determined. These results demonstrate that neither bank filtration nor purification of 

the raw water was capable to remove 1,4-dioxane below detection limit. The reported surface 

water concentrations do not correspond with the amount of 1,4-dioxane at the time of infiltration, 

taking into account the residence time of the water during bank filtration. Nevertheless, the 

concentrations are within the typical range at which 1,4-dioxane has been detected in the Rhine 

River. As previously discussed, the concentrations of 1,4-dioxane fluctuate in the river water, 

therefore its presence in the drinking water will also vary.  

 

FIGURE 4.8  Concentration of 1,4-dioxane (ng L
−1

) in the raw water after bank filtration and in 

the drinking water after water purification.  
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 It is not surprising that concentrations of 1,4-dioxane remained at a high level after bank 

filtration and drinking water treatment. In a groundwater study at the Oderbruch polder, 

Germany, 1,4-dioxane showed no attenuation during bank filtration, and the drop in 

concentration in the groundwater with an estimated age of 42 years was most likely due to lower 

historical levels in the Oder River (Stepien et al., 2013). Based on the numerous studies 

conducted, the removal of 1,4-dioxane from water is primarily achieved using advanced 

oxidation processes (AOP) such as: ozone (O3)/hydrogen peroxide (H2O2); UV/H2O2; and 

Fenton’s reagent (Fe and H2O2)  (Adams et al., 1994; Safarzadeh-Amiri et al., 1997; Mohr, 2010; 

Suh and Mohseni, 2004; Stefan and Bolton, 1998). These types of processes have not been 

implemented at the drinking water treatment plants investigated. AOPs represent an alternative 

drinking water treatment option for substances with relatively low Henry´s constant, high water 

solubility and low biodegradability. The major drawback of implementing AOPs in water 

treatment is the cost of necessary devices and the energy requirement. According to the study of 

Katsoyiannis et al. (2011), O3/H2O2 is an efficient process for organic micropollutants  removal 

and energy requirement is only up to 25 % higher than for ozonation alone.  Owing to its strong 

internal chemical bonding, 1,4-dioxane is commonly considered to be nonbiodegradable. More 

recent studies demonstrated biodegradation of the cyclic ether by newly isolated bacterial strains 

such as: Pseudonocardia sp. ENV 478 (Vainberg et al., 2006; Masuda et al., 2012); 

Mycobacterium sp PH-06 (Kim et al., 2009); Flavobacterium (Sun et al., 2011). In most cases the 

presence of the cometabolite tetrahydrofuran was required to observe degradation of 1,4-dioxane 

in the strain. Moreover, the studies are usually confined to laboratory settings and biodegradation 

of 1,4-dioxane in samples from the natural environment is not readily reported. Study of Shen et 

al. (2008) focused on the degradation of 1,4-dioxane under iron-reducing conditions, but 

amendments were necessary in order to observe significant reduction in the cyclic ether. The 

physico-chemical properties described earlier ensure that the removal of 1,4-dioxane from 

environmental samples is difficult, and costly techniques have to be implemented during 

wastewater, drinking water or groundwater treatment to eliminate efficiently a persistent organic 

compound such as 1,4-dioxane. 

Schriks et al. (2010) established provisional drinking water guideline values for 50 

emerging contaminants that are relevant for drinking water and the water cycle. A provisional 

guideline for 1,4-dioxane based on a specific cancer risk level of 10
-5

 was set at 30 µg L
−1

. The 

specific risk level of 10
-6

, commonly used in the European countries, would result in a 



Chapter 4 

 
101 | P a g e  

provisional guideline value of 3 µg L
−1 

(3000 ng L
−1

). The author suggested that compounds such 

as 1,4-dioxane should be regularly monitored in the drinking water, since its guideline value is 

easily exceeded. The concentrations of 1,4-dioxane detected in the drinking water samples of two 

DWT plants did not exceed the U.S. EPA regulatory level of 3 µg L
-1

 in the tap water. 

Nevertheless, the amount of 1,4-dioxane present in the drinking water surpassed the 

concentration of 350 ng L
−1

, which as stated by U.S. EPA IRIS, could cause cancer to 1 in 

1,000,000 individuals consuming contaminated drinking water. As previously mentioned, the 

proposed target value for 1,4-dioxane by IAWR in surface waters used in the production of 

drinking water is 1000 ng L
−1

, although the German Federal Environmental Agency set a 

precautionary guidance limit in drinking water for compounds such as 1,4-dioxane to be 100 ng 

L
−1

. The concentrations of 1,4-dioxane detected in the drinking water produced by both DWT 1 

and 2 exceeded this value four fold. The goal of IAWR is to achieve surface water quality that 

allows production of drinking water using primarily natural treatment methods. In order to ensure 

a safe source of drinking water produced from bank filtration, lower regulatory limits should be 

developed. In view of the fact that 1,4-dioxane cannot be eliminated through natural processes 

alone, its occurrence in surface waters should be reduced significantly. Industries and sewage 

treatment plants should intensify their effluent control and reduce surface water pollution with 

1,4-dioxane.  

 

4.7 Conclusions 

The results of the conducted study confirm the need for 1,4-dioxane monitoring and 

regulation. The high concentrations of this compound detected in the surface waters and its 

resistance to natural attenuation pose a threat to drinking water produced through bank filtration. 

Advanced oxidation processes such as: ozone (O3)/hydrogen peroxide (H2O2); UV/H2O2; and 

Fenton’s reagent (Fe and H2O2) should be implemented in the water treatment processes to 

ensure removal of trace organic contaminants such as 1,4-dioxane. Additionally, the search for 

sources of the 1,4-dioxane in the aquatic environment should be intensified. One source, 

identified in the present study comes from the contaminated industrial methanol used by one of 

the STPs as an organic substrate for postanoxic denitrification. STPs should purchase methanol 

only from companies that certify the absence of 1,4-dioxane and other hardly biodegradable 

impurities from the supplied product. Further identification of unknown sources of 1,4-dioxane is 
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necessary in order to explain high concentrations found in surface waters. Industries that utilize 

1,4-dioxane as a processing solvent should implement vacuum stripping, a process suggested by 

U.S. EPA, in order to decrease or eliminate the persistent ether from their effluents. Because of 

possible human carcinogenic properties of 1,4-dioxane, its concentration in wastewater, surface 

water, and drinking water should be minimized, in order to protect water resources.  
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Chapter 5 Source identification of high glyme concentrations 

in the Oder River 

 

5.1. Abstract 

The objective of the following study was to identify the source of high concentrations of glycol 

diethers (diglyme, triglyme, and tetraglyme) in the Oder River. Altogether four sampling 

campaigns were conducted and over 50 surface samples collected. During the first two samplings 

of the Oder River in the Oderbruch region (km 626–690), glymes were detected at concentrations 

reaching 0.065 μg L
−1 

(diglyme), 0.54 μg L
−1

 (triglyme) and 1.7 μg L
−1

 (tetraglyme). The 

subsequent sampling of the Oder River, from the area close to the source to the Poland–Germany 

border (about 500 km) helped to identify the possible area of the dominating glyme entry into the 

river between km 310 and km 331. During that sampling, the maximum concentration of triglyme 

was 0.46 μg L
−1

 and tetraglyme 2.2 μg L
−1

; diglyme was not detected. The final sampling focused 

on the previously identified area of glyme entry, as well as on tributaries of the Oder River. 

Samples from Czarna Woda stream and Kaczawa River contained even higher concentrations of 

diglyme, triglyme, and tetraglyme, reaching 5.2 μg L
−1

, 13 μg L
−1

 and 81 μg L
−1

, respectively. 

Finally, three water samples were analyzed from a wastewater treatment plant receiving influents 

from a Copper Smelter and Refinery; diglyme, triglyme, and tetraglyme were present at a 

maximum concentration of 1700 μg L
−1

, 13,000 μg L
−1

, and 190,000 μg L
−1

, respectively. Further 

research helped to identify the source of glymes in the wastewater. The gas desulfurization 

process Solinox uses a mixture of glymes (Genosorb
®
1900) as a physical absorption medium to 

remove sulfur dioxide from off-gases from the power plant. The wastewater generated from the 

process and from the maintenance of the equipment is initially directed to the wastewater 

treatment plant where it undergoes mechanical and chemical treatment processes before being 

discharged to the tributaries of the Oder River. Although monoglyme was also analyzed, it was 

not detected in any of the water samples. 
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5.2. Introduction 

Glymes (glycol diethers) are polyethylene glycols or polypropylene glycols, end capped 

with a methyl-, ethyl-, butyl-, or vinyl group. For this study four polyethylene glycols end capped 

with a methyl group were selected. Monoethylene glycol dimethyl ether (monoglyme), diethylene 

glycol dimethyl ether (diglyme), triethylene glycol dimethyl ether (triglyme), and tetraethylene 

glycol dimethyl ether (tetraglyme) are widely used industrial solvents. The lack of reactive 

functional groups makes glymes inert chemically; hence they are often used in chemical synthesis 

applications. Additionally, their high solvating power and their thermal and chemical stability 

make them ideal for use as solvents and processing aids in the manufacture and formulation of 

industrial chemicals. Moreover, their application extends to formulation of paints, inks, cleaning 

fluids, brake fluids, anti-icing agents etc. (Table 5.1). Glymes are also applied as a gas absorption 

media. Several processes have been developed, such as the Solinox and Selexol, that use a 

mixture of polyethylene glycol dimethyl ethers [CH3O(CH2CH2O)nCH3; n = 3–9] as a physical 

solvent to remove sulfur dioxide and/or hydrogen sulfide from flue gases (Clariant, 2013a). The 

major sources of glyme pollution in surface waters will most likely emerge from their use, 

manufacturing and processing. According to the European Chemicals Agency (ECHA), 

numerous glyme suppliers exist in Europe although the actual production volumes are 

confidential. The European Chemical Substances Information System (ECSIS) lists monoglyme 

as a low production volume chemical with production and/or import volume of 10–1000 tons per 

year (ECSIS, 2013). Diglyme is listed by ECSIS as a high production volume chemical, with a 

production and/or import volume in excess of 1000 tons per year (ECSIS, 2013). According to 

ECHA, the annual triglyme and tetraglyme import and/or production volume in Europe is 

between 10 and 100 tons and at above 100 tons per year, respectively (ECHA, 2013). 
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TABLE 5.1 Physicochemical properties and applications of glymes  

 

 

 

 

 

 

 

 

 

Common Molecular formula Boiling point Solubility      Henry’s law const. Log P ow
a

Name (°C) (g/L, at 25 °C) (atm×m
3
×mol

-1
) (at 25 °C)

1,2-dimethoxyethane Monoglyme CH3O(CH2CH2O)CH3 85 85.2 1.07×10
-6 − 0.21 Lithium batteries, pharmaceuticals, industrial 

solvent

bis(2-methoxyethyl) ether Diglyme CH3O(CH2CH2O)2CH3 162 162 5.23×10
-7 − 0.36 Printing inks, adhesives, pharmaceuticals, 

sealants, reaction solvent, process chemical

1,2-bis(2-methoxyethoxy)ethan Triglyme CH3O(CH2CH2O)3CH3 216 208.8 4.88×10
-12 − 0.76 Adhesives, brake fluids, paints, manufacture and 

formulation of industrial chemicals

Bis[2-(2-methoxyethoxy)ethyl]ether Tetraglyme CH3O(CH2CH2O)4CH3 275 263.9 1.04×10
-14 − 1.03 Inks, paints, gas absorption liquid, textile, 

plastics, industrial chemical processes

b
 Source: European Chemicals Agency (ECHA), Clariant, Novolyte

Applications
bIUPAC Name

a
 P ow  n -octanol water partition coefficient
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The physicochemical properties of glymes listed in Table 5.1 indicate that once released 

into the environment they will persist mainly in the hydrosphere. Glymes are highly soluble in 

water; they have low octanol–water partition coefficients (logPow) and also low Henry's law 

constant, which induce their partition to water, rather than evaporation from water into the gas 

phase. Hydrolysis is not expected to be an important environmental fate process since these 

compounds lack functional groups that hydrolyze under environmental conditions. The low 

logPow values show that glymes are not likely to sorb to soil and have a low bioaccumulation 

potential. 

The rising concern about the use, exposure, and a possible environmental contamination 

with glycol diethers is reflected in their reproductive toxicity (US EPA, 2011). Monoglyme, 

diglyme and triglyme have been shown to cause reproductive and developmental effects in 

experimental animals (Hardin, 1983; George et al., 1987; Schwetz et al., 1992; ECETOC, 2005). 

Human exposure to these glymes may also cause infertility and harm to an unborn child (US 

EPA, 2011). Moreover, destruction of red blood cells and the blood forming organs may follow 

(ECETOC, 2005). Results of metabolic studies suggest that 2-methoxyacetic acid, a product of 

glyme metabolism, is responsible for their toxicity (WHO, 2002). Supposedly, the presence of 

longer alkyl groups at the glyme terminal ends and more ethylene glycol groups in the middle of 

the glyme molecule both act to reduce their toxicity (ECETOC, 2005). According to the data 

provided by the European Chemicals Agency, the predicted no-effect concentration (PNEC) 

in the freshwater for three glymes was derived to be 6400 μg L
−1

 (ECHA, 2013). Moreover, the 

oral derived no-effect level (DNEL) for general population is 0.23 mg/kg bw/day, 

1.04 mg/kg bw/day, and 3.13 mg/kg bw/day for monoglyme, diglyme, and triglyme, respectively 

(ECHA, 2013). 

Recently, the US Environmental Protection Agency presented a “Significant New Use 

Rule” for 14 glymes that are in use in the United States (US EPA, 2011). The purpose of the 

document is to control and limit a significant new use of these glymes by manufacturers and 

users, but it does not create restrictions for previously registered applications of these solvents. 

Also in Europe, numerous regulations are in place that limit the use of glymes found toxic for 

reproduction. Annex XV, Group 30 of the REACH regulation (Registration, Evaluation, 

Authorization and Restriction of Chemicals) confine the presence of monoglyme, diglyme, and 

triglyme to a generic concentration of 0.3% to be present on the market as a substance, 

constituent of a substance or in mixtures (ECHA, 2011a,b,c). Additionally, Directive 2009/48/EC 

restricts the use of these glymes in toys or in components of toys, and the Cosmetic Directive 

76/768/EEC limits the use of glymes as a composition of cosmetic products. Moreover, the 
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Directive 2004/42/EC places a limitation of emission of volatile organic compounds (boiling 

point < 250 °C) used as organic solvents in certain paints and varnishes (ECHA, 2011a,b,c). 

Little information is available on the historical and current concentrations of glymes in 

surface waters. In the Netherlands, diglyme, triglyme, and tetraglyme were identified during a 

wide-range screening of micro-contaminants in Dutch rivers, with concentrations reaching 

1 μg L−1 (van Steel et al., 2002). In 2005, high concentrations of diglyme (max. 5.60 μg L
−1

), 

triglyme (max. 2.95 μg L
−1

), and tetraglyme (max. 1.45 μg L
−1

) were reported in the river Rhine 

(RIWA, 2005). The RIWA (2006) report states that the high glyme concentrations in the Rhine 

River emerged from effluents of an industrial wastewater treatment plant located in Wiesbaden, 

Germany, but the industry responsible for the pollution was not identified. Consequently, a 

guideline value has been set during the Donau-, Mass-, and Rhine Memorandum in 2008, which 

limits the presence of individual glymes and other trace organic compounds to 1.0 μg L
−1

(Wirtz, 

2009). Moreover, the objective of the memorandum was to protect drinking water 

produced using the River Rhine from persistent organic compounds (such as glymes), which are 

not easily removed during water treatment. According to a current report on the Rhine River 

glymes are no longer present in the river above detection limits (RIWA, 2012). 

The purpose of the present study was to determine the occurrence of diglyme, triglyme, 

and tetraglyme in the Oder River and to identify their possible pollution sources. Besides the 

above mentioned report from the Rhine River, possible sources of glymes in the surface waters 

have not been identified and reported before. 

 

5.3. Materials and methods 

5.3.1. Chemicals and reagents 

Monoglyme (99%), 4-chlorotetrahydropyran (96%), and 1,4-dioxane-d8 (99%) were 

purchased from Sigma–Aldrich (Steinheim, Germany). 4−Chlorotetrahydropyran was used as an 

internal standard (IS) and 1,4-dioxane-d8 as a surrogate (SU). Diglyme was obtained from Dr. 

Ehrenstorfer (Augsburg, Germany). Triglyme (99.8%) and tetraglyme (98%) were acquired from 

Alfa Aesar (Karlsruhe, Germany) and Fluka (Steinheim, Germany), respectively. Analytical 

grade dichloromethane (DCM), which was distilled before use, and hypergrade methanol, used 

for extraction and standard preparation were purchased from Merck (Darmstadt, Germany). An 

Astacus water purification system from MembraPure (Bodenheim, Germany) was utilized in 

order to produce ultrapure water for determination of method blanks and spike preparation. 
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Sodium bisulfate was obtained from Aldrich Chemistry (Steinheim, Germany) and was used as 

received. Anhydrous sodium sulfate was purchased from Sigma Aldrich (Seelze, Germany) and 

conditioned at 400 °C for 4 h before use. Individual and composite stock solutions (1 μg μL
−1

) of 

glymes, SU, and IS were prepared in methanol. Subsequent working standards were obtained 

through appropriate dilutions of stock solutions in DCM. The standards were stored in the dark at 

5 °C and replaced on monthly basis. 

 

5.3.2. Analytical methods 

Solid phase extraction (SPE) method was used for an enrichment of monoglyme, 

diglyme, triglyme, and tetraglyme from aqueous samples. Either a 100 mL or a 500 mL sample 

volume was loaded onto a Supelclean™ ENVI-CarbTM Plus (Supelco, bed wt. 400 mg, 1 mL) 

and “Resprep® activated coconut charcoal SPE cartridges” (Restek, 80–120 mesh, approximately 

150 μm, 2 g, 6 mL), respectively. The cartridges obtained from Supelco were used during the last 

two sampling campaigns due to a similar performance at lower cost compared to the 

Resprep® cartridges. The aqueous samples obtained from the wastewater treatment plant were 

subjected to a pressure filtration before extraction to prevent cartridges from clogging. Surface 

water samples did not require filtering. A stainless steel pressure holder (2.12 L; Sartorius, 

Goettingen, Germany) equipped with a 142 mm diameter borosilicate glass fiber filter (Filter 

pore size <1 μm; type A/E, Pall, Dreieich, Germany) was used for sample filtration. The filters 

were sonicated in DCM and heated to 400 °C for 2 h before use. After each blank, spike, and 

sample filtration the apparatus was thoroughly cleaned with ultrapure water. The SPE method 

utilizing Resprep® cartridges for glyme extraction was previously described in detail by Stepien 

and Püttmann (2013). The extraction with “Supelclean™ ENVI-CarbTM Plus” cartridges 

required a smaller volume of both water sample (100 mL) and the elution solvent (2 mL). One 

mL of DCM and 2 mL of each methanol and ultrapure water were necessary for the conditioning 

of the cartridges prior to the sample loading. After the aqueous sample passed through the 

cartridges, the material was first washed with 2 mL of 20% methanol solution. Thereafter, 

analytes of interest were eluted with 2 mL DCM. Subsequently, the extracts were passed through 

a sodium sulfate column in order to remove water from the solvent. Five hundred μL of an 

extract was spiked with 10 μL of IS (0.125 μg μL
−1

) and placed in the autosampler for GC/MS 

analysis. All samples were analyzed using Thermo Finnigan Voyager GC/MS with Trace 2000 

GC (ThermoQuest Finnigan, Dreieich, Germany), equipped with a DB−624 capillary column 

(30 m length, 0.25 mm ID, 1.4 μm film thickness) (Agilent, Waldbronn, Germany). The 

instrument conditions and quantitation method have been previously described in Stepien and 
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Püttmann (2013). XCalibur software (Thermo Fisher Scientific, version 2.0.7) was used for data 

processing. 

 

5.3.3. Quality assurance 

Amber glass bottles used for sample collection were pre-cleaned with distilled water and 

methanol and subsequently heated in the oven at 110 °C for a minimum of 2 h. Sodium bisulfate 

was added as a preservative to each bottle at 1 g per liter. Following collection, the water samples 

were stored in refrigerators during transport at a temperature below 10 °C. Before extraction and 

analysis, samples were stored in a refrigerated storage room at 4 °C for a maximum of seven 

days. With each batch of 17 samples, a blank and control standards were extracted. Each water 

sample and quality control standard was enriched with 5 μL of a surrogate (1.0 or 0.20 μg μL
−1

) 

to reach the final concentration of 10.0 μg L
−1

 in the extract. Control standards were spiked close 

to the method detection limit or mid-point of the calibration curve. The acceptable recovery for a 

surrogate and a spike was ±30%. The calibration curve ranged from 0.040 μg L
−1

 to 5.0 μg L
−1

. 

The limits of quantitation (LOQ) for monoglyme, diglyme, triglyme, and tetraglyme were 

determined for each SPE cartridge in ultrapure water and surface water. The method utilizing 

Resprep® coconut charcoal cartridges and 500 mL of a sample gave the following LOQs for 

monoglyme, diglyme, triglyme, and tetraglyme: 0.024 μg L
−1

, 0.047 μg L
−1

, 0.055 μg L
−1

, 

0.057 μg L
−1

 in ultrapure water and 0.032 μg L
−1

, 0.044 μg L
−1

, 0.035 μg L
−1

, 0.041 μg L
−1

 in 

surface water, respectively (Stepien and Püttmann, 2013). The method using 

Supelclean™ ENVI-CarbTM Plus cartridges gave a LOQ of 0.030 μg L
−1

 for monoglyme, 

0.067 μg L
−1

 for diglyme, 0.069 μg L
−1

 for triglyme and 0.067 μg L
−1

for tetraglyme in ultrapure 

water. In the surface water, the LOQ for monoglyme, diglyme, triglyme and tetraglyme was 

calculated to be 0.035 μg L
−1

, 0.032 μg L
−1

, 0.044 μg L
−1

, and 0.047 μg L
−1

, respectively. 

 

5.4. Site description and sampling methods 

5.4.1. Description of the study area 

Oder River is the second longest river in Poland with 854 km length and a total watershed 

area of 118,861 square kilometers, of which almost 90% is on the Polish territory. The river rises 

in the Oder Mountains in the Czech Republic, flows through western Poland, later creating a 

187 km border between Poland and Germany. The flow of the river is mainly in the southwest-
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northwest direction, but it changes to the northward trend as it nears the Baltic Sea. Numerous 

tributaries enter the Oder River, which have a profound influence on the river's condition. 

Additionally, numerous industries located close to the river are responsible for severe pollution; 

such industries include steelwork, metal processing, electrical industry, printing industry, paper 

and wood factory, chemical industry, etc. Two periods of high water levels occur in the Oder 

catchment. Winter floods happen usually in February and March due to snow melt and summer 

floods in August due to high precipitation (Mudelsee et al., 2003). Kaczawa River is a left 

tributary of the Oder River and it discharges north of the city of Ścinawa. The river is 83.9 km in 

length with a catchment area of 2261 km
2
. The Kaczawa River is used in the production of a 

drinking water for the city of Legnica, which is being collected 32 km before it discharges into 

the Oder River. Czarna Woda is a left tributary of Kaczawa River and discharges to Kaczawa 

River 22.2 km before it reaches the Oder River. Czarna Woda stream is 48.0 km long with a 

985 km
2
 catchment area. 

 

5.4.2. Surface water sampling 

Based on the previously reported high concentrations of glymes in the Oder River 

by Stepien and Püttmann (2013), subsequent investigations were carried out between May 2012 

and April 2013. A total of fifty samples (n = 50) were collected from the Oder River. 

In Fig. 5.1 the study area and the sample IDs of the Oder River samplings are shown. During the 

last major sampling campaign of the Oder catchment, two samples were obtained from both 

the  Kaczawa River and  the Czarna Woda stream. Manually collected grab samples were taken 

from the bridge, shore line, or ship where possible. In numerous locations samples from both 

sides of the river were gathered in order to facilitate identification of a possible glyme entry . 

Amber glass bottles containing sodium bisulfate as a preservative were filled to the top, leaving 

no headspace. Samples were kept cooled during transport. Table 5.2 lists the locations, date, and 

conditions during surface water samplings. 
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TABLE 5.2  Locations, date, and conditions during surface water sampling. 

Sample   

ID 

River 

sampled 

River     

km Sampling Location 

River   

Side 

Level  

(cm) 

Discharge  

(m
3 
s

−1
) 

Sampling 

date 

OD−1 Oder 97 Koźle R, L 276 

 

08/31/12 

OD−2 Oder 124 Krapkowice R, L 217 

 

08/31/12 

OD−3 Oder 155 Opole R 405 

 

08/31/12 

OD−4 Oder 187 Kopanie L 

  

08/30/12 

OD−5 Oder 199 Brzeg R, L 126 

 

08/30/12 

OD−6 Oder 216 Oława R, L 177 

 

08/30/12 

OD−7 Oder 242 Wrocław L 314 

 

09/01/12 

OD−8 Oder 272 Uraz R 

  

04/10/13 

OD−9 Oder 284 Brzed Dolny R   196 124 08/30/12 

OD−10 Oder 284 Brzed Dolny R 

  

04/10/13 

OD−11 Oder 305 Malczyce L 

  

08/30/12 

OD−12 Oder 310 Kawice R, L 

  

08/30/12 

OD−13 Oder 310 Kawice R, L 354 291 04/10/13 

OD−14 Oder 331 Ścinawa R, L 151 104 08/30/12 

OD−15 Oder 331 Ścinawa R, L 295 263 04/09/13 

OD−16 Oder 392 Glogów R, L 157 

 

08/30/12 

OD−17 Oder 392 Glogów R, L 

  

04/09/13 

OD−18 Oder 416 Bytom Odrzański L 

  

08/30/12 

OD−19 Oder 416 Bytom Odrzański L 

  

04/09/13 

OD−20 Oder 429 Nowa Sól R, L 142 82 08/30/12 

OD−21 Oder 429 Nowa Sól R, L 307 283 04/09/13 

OD−22 Oder 491 Brody R, L 142 87 08/29/12 

OD−23 Oder 514 Krosno Odrzańskie  R 

  

08/29/12 

OD−24 Oder 530 Połęcko R 77 97 08/29/12 

OD−25 Oder 585 Słubice R 

  

08/29/12 

OD−26 Oder 585 Frankfurt L 141 

 

08/29/12 

OD−27 Oder 626 Genschmar L 

  

01/31/12 

OD−28 Oder 634 Groß-Neuendorf L 

  

01/31/12 

OD−29 Oder 645 Güstebieser Loose L 285 362 05/23/12 

OD−30 Oder 645 Güstebieser Loose L 436 806 01/31/12 

OD−31 Oder 654 Bienenwerder L 436 806 01/31/12 

OD−32 Oder 654 Bienenwerder L 287 377 05/24/12 

OD−33 Oder 661 Cedynia R 289 

 

05/23/12 

OD−34 Oder 662 Hohenwutzen L 289 381 05/23/12 

OD−35 Oder 665 Hohensaaten L 289 381 05/23/12 

OD−36 Oder 672 Bielinek R 301 

 

05/23/12 

OD−37 Oder 690 Krajnik Dolny R 581   05/23/12 

CW−1 Czarna Woda 

 

Reszotary 

 

160 

 

04/10/13 

CW−2 Czarna Woda 

 

Legnica 

   

04/10/13 

KW−1 Kaczawa 

 

Legnica 

 

199 18 04/10/13 

KW−2 Kaczawa   Prochowice       04/10/13 
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FIGURE 5.1 Map of sampling points along the Oder River with sample IDs.  
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5.4.3. Wastewater sampling 

Manually collected grab samples were obtained from three unidentified unit operations in 

the wastewater treatment plant (WWTP) located close to the city of Legnica. The plant has a 

capacity of 22,400 m
3 

d
−1

 and treats mainly water originating from the copper industry located in 

the area. About 1,4 million cubic meters of wastewater are treated annually. Mechanical and 

chemical treatment processes such as flocculation, coagulation, and sedimentation are employed 

before the water is discharged to the receiving surface water. The wastewater does not undergo 

any biological treatment steps. Details about the wastewater treatment plant were not made 

available due its privacy policies. 

 

5.5. Results and discussion 

5.5.1. Occurrence of glymes in the Oder River 

The extensive samplings of the Oder River helped to observe the occurrence of glymes in 

the river course (Fig. 5.1) and to determine their point of entry. In order to facilitate 

determination of the possible entry locations of glymes, samples from the right and left sides of 

the river were collected. By implementing this technique one is also able to determine whether 

the contamination might be coming from one of the tributaries of the river. Initially, samples 

from the river at the border of Poland and Germany (from km 626 to km 690) were taken in 

January (n = 4) and May (n = 7) 2012. These samplings were meant to determine if glymes are 

present in the Oder River and establish their possible sources. In August 2012, about 500 km of 

the Oder River was investigated in order to locate their possible point of entry (n = 28). Once the 

area of heavy pollution with glymes was identified between km 310 and km 331, further analysis 

(n = 11) of the river was conducted in April 2013 focusing on this section, where previously the 

highest concentrations were detected. Table 5.3 presents the average concentrations of each 

glyme detected, with minimum and maximum concentrations observed. 
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TABLE 5.3  Average, minimum and maximum concentrations of diglyme, triglyme, and 

tetraglyme, in µg L
−1

, on the left and right riverbank, during four sampling campaigns. 

Sampling  No. of   Mean/Min/Max Diglyme Triglyme Tetraglyme 

campaign samples   (µg L
-1

) (µg L
-1

) (µg L
-1

) 

January, 2012 4 Mean −Left 0.07 0.49 1.61 

 

4 Min 0.05 0.21 1.47 

 

4 Max 0.07 0.54 1.73 

May, 2012 3 Mean − Right 0.03 0.06 0.33 

 

4 Mean − Left 0.07 0.17 1.05 

 

7 Min 0.03 0.05 0.26 

 

7 Max 0.07 0.20 1.39 

August, 2012 14 Mean − Right n.d. 0.15 0.34 

 

14 Mean − Left n.d. 0.22 0.61 

 

28 Min n.d. 0.07 0.03 

 

28 Max n.d. 0.46 2.21 

April, 2013 6 Mean − Right 0.06 0.47 7.87 

 

5 Mean − Left 0.06 0.70 14.73 

 

11 Min 0.06 0.25 0.08 

  11 Max 0.06 1.01 28.53 
n.d. - not detected 

 

 

 

    
The first sampling campaign in the Oderbruch area showed that diglyme, triglyme and 

tetraglyme are present in the Oder River at maximum concentrations of 0.065 μg L
−1

, 

0.49 μg L
−1

, and 1.6 μg L
−1

, respectively (Table 5.3). Results of the subsequent sampling 

presented that the glyme concentration is greater on the left side of the river (Table 5.3), 

suggesting Lusatian Neisse (Nysa Lużycka), a left tributary of the Oder River, as a possible 

source of contamination. Water samples taken from Lusatian Neisse however, contained no 

glymes. One possible explanation for this discrepancy is the presence of a minor source of 

glymes entering on the left side downstream of the Lusatian Neisse tributary. Hence, the 

objective of the next sampling campaign was to determine the area or areas where glymes are 

discharged into the Oder River. Water samples from almost 500 km of the river were collected 

starting close to the Oder source. 

Fig. 5.2 illustrates the concentrations of triglyme and tetraglyme during sampling 

campaigns of the Oder River done in August 2012 and in April 2013. During the August 2012 

sampling diglyme was not detected and in April 2013 it was detected only in one location (OD-

15, km 331, n = 2) with a maximum concentration of 0.057 μg L
−1

 (Table 5.3). Based on the 

results from all sampling campaigns, diglyme occurs in the Oder River mainly below or close to 
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the detection limit of the method. In August 2012, triglyme was first detected in the OD-14 

sampling location (km 331) with a concentration of 0.46 μg L
−1

 on the left river bank exceeding 

twofold the concentration detected on the right bank of the Oder River. Its presence decreased 

fourfold on both sides of the river at the last sampling collection points (OD−25 and OD−26). 

This drop in the concentrations is most likely a result of a dilution of the compound in the surface 

water, since these sampling points are located in the Oder-Neisse line. Tetraglyme was present in 

the samples located closest to the source of the river (OD−1 and OD−2, km 217 and 276, 

respectively) at concentrations ranging between 0.11 μg L
−1

 and 0.61 μg L
−1

. According to the 

information on the European Chemicals Agency website, tetraglyme is produced in this area by 

one chemical production company (ECHA, 2013). Dilution of the concentration to slightly above 

detection limit was observed until the sampling point OD−14 (km 331), where the concentration 

of tetraglyme increased again to 0.58 μg L
−1

 on the right river bank and 1.2 μg L
−1

 on the left 

river bank. From then on, the amount of tetraglyme increased with distance until OD−20 (km 

429), where it reached 2.2 μg L
−1

 on the left bank and 1.7 μg L
−1

 on the right bank of the river. In 

samples OD−22 to OD−26 (km 491 and km 585), the concentrations were much lower with a 

maximum of 0.33 μg L
−1

. At these locations samples were taken on 08/29/12, whereas sampling 

closer to the source was done a day later, which might explain the variation. Moreover, at these 

locations, the Oder River is joined by its numerous major tributaries such as Bóbr and Lusatian 

Neisse, which also might cause a dilution of the concentrations. During this sampling it was 

determined that both triglyme and tetraglyme were present on the left bank at concentrations 

higher than that of the right bank. This suggests that the pollution is coming either from a 

tributary, or from a municipal/industrial sewage treatment plant located on the left side of the 

river. Moreover, both compounds showed up at increased concentrations at the location OD−14 

(km 331), suggesting that a source of the glyme pollution is located upstream from this area. 

Therefore, the focus of the last sampling in April 2013 was mainly the area between km 310 and 

km 429. At that time, triglyme was detected in the Oder River at much higher concentrations 

reaching over 1.0 μg L
−1 

and the concentration increased with distance over the sampling area 

investigated (OD−15, km 331 to OD−21, km 429). Tetraglyme was present again at low 

concentrations between the river km 272 and km 310 (about 0.10 μg L
−1

) verifying that the 

predominant source is not located in that area. The amount of tetraglyme in the river increased 

with distance between OD−15 (km 331) and OD−21 (km 429), reaching a maximum of 

29 μg L
−1

 on the right river bank at OD−21. Further sampling locations were not investigated 

during this sampling campaign. The increasing trend in the concentration of both compounds 

during this campaign might be explained by the sampling trend and the discharging source. The 

samples were collected in an upstream direction with OD-21 sampled first and OD-15 sampled at 
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the end of the day. Moreover, the discharge of glymes into the surface water might have occurred 

recently with peak concentrations detected at OD−21. As previously mentioned, the predicted no-

effect concentration for diglyme and triglyme is 6400 μg L
−1

. This level has not been exceeded 

for any of the glymes in the samples collected. 

 

FIGURE 5.2  Concentration of triglyme and tetraglyme, in μg L
−1

, on the left and right side of 

the Oder River during the sampling campaigns conducted in August 2012 and April 2013. 
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In order to calculate the load of diglyme, triglyme, and tetraglyme in the Oder River, 

discharge information was obtained from the Institute of Meteorology and Water Management in 

Poland and the Ministry of Environment, Health and Consumer Protection of the Federal state of 

Brandenburg, Germany (IMGW-PIB, 2013; LUGV, 2013). Information on discharge (m
3 

s
−1

) of 

the Oder River was only available for few sampling locations (Table 5.2). Fig. 5.3 demonstrates 

the loads (kg d
−1

) of diglyme, triglyme and tetraglyme in the Oder River for all of the locations 

for which river discharge was available. The average load of diglyme in the Oder River equaled 

to 2.5 kg d
−1

 (n = 7) and was, as expected, the lowest out of all investigated glymes. The load of 

triglyme was between 0.62 kg d
−1

 and 37 kg d
−1

. Tetraglyme was present in the Oder 

River between 1.79 kg d
−1

and 680 kg d
−1

. The highest load of diglyme (5.2 kg d
−1

) and triglyme 

(37 kg d
−1

) was calculated for the sampling performed in January 2012. During that time the 

discharge of the Oder River was over twofold greater than during the other sampling campaigns, 

reaching over 800 m
3
 s

−1
 (Table 5.2). Also, in the samples collected in April 2013 the load of 

triglyme and tetraglyme in the Oder River was particularly high, with 24 kg d
−1

 and 680 kg d
−1

, 

respectively. At this time the discharge was close to 300 m
3
 s

−1
. Additionally, it was observed 

that at locations sampled twice, OD-14/15 (km 331), OD-20/21 (km 429) and OD-29/30 (km 

645) the load of the glymes increased with the increasing discharge of the river (Fig. 5.3). 

However, due to the lack of continuous data over a prolonged period, seasonal trends cannot be 

evaluated. Nevertheless, these results show that the load of glymes in the Oder River is not 

constant. The amount of glymes in the river might be dependent on the source of pollution, hence 

discharge of wastewater effluent into the river. The possible explanation for this observation is 

provided in Section 4.4. 
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FIGURE 5.3 Load of diglyme, triglyme, and tetraglyme (in kg d
−1

) in the Oder River. 
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5.5.2. Occurrence of glymes in tributaries 

Based on the collected data, the entry point of the glymes into the Oder River was 

identified to arise between sampling locations OD−12/13 (km 310) and OD−14/15 (km 331). At 

these locations glymes were either first detected or their concentration radically increased in the 

river. Detailed research of the suspected area identified a large production facility for copper and 

silver that might be responsible for the pollution. Moreover, Kaczawa River is the only tributary 

of the Oder River in the suspected area. In April 2013, samples from Kaczawa River, and its 

tributary Czarna Woda stream were obtained to investigate if these surface water bodies 

contribute to the high glyme concentrations in the Oder River. Fig. 5.4 illustrates the detected 

concentrations of the glymes in the Czarna Woda stream (CW1 & CW2), Kaczawa River (KW-1 

& KW-2), and at the closest sampling locations of the Oder River (OD-13 & OD15). Samples 

from the Czarna Woda stream showed that concentrations at sampling point CW-2 were 

considerably higher than at CW-1, indicating that the glyme entrance in this region is located 

around sampling point CW-2. The detection of lower concentrations of both triglyme and 

tetraglyme at the CW-1 sampling point compared to CW2 might have occurred due to water 

mixing. Further investigations helped to identify the source of glymes in this area. The WWTP 

located in the proximity to the sampling area discharges its effluent into the creek entering the 

Czarna Woda stream close to the CW-2 sampling point. The Czarna Woda stream enters 

Kaczawa River in the city of Legnica. The concentration at KW-1 decreased twofold compared to 

CW-2, whereas the concentrations at KW-2 were similar to those at KW-1. As expected, the 

concentrations in the Oder River were much lower than in the tributaries, due to a dilution 

of surface waters. At the time of the sampling, the discharge of the Kaczawa River at KW-1 was 

18 m
3
 s

−1
, whereas the discharge of the Oder River at OD−15 was 263 m

3
 s

−1
 (LUGV, 2013). The 

load in the tributary was calculated to equal to 4.1 kg d
−1

 (diglyme), 9.2 kg d
−1

 (triglyme), and 

61 kg d
−1

 (tetraglyme). In the Oder River (OD−15), the average load based on the concentrations 

on the left and right side of the river was 1.3 kg d
−1

 for diglyme, 6.5 kg d
−1

 for triglyme, and 

83 kg d
−1

 for tetraglyme. Information on average yearly discharge is not readily available for 

Czarna Woda. The variations in the loads between the tributary and the Oder River might be 

explained by a dilution as well as variations in the sampling period. The samples from the Oder 

River at OD−15 were obtained the day before the tributary sampling. The Kaczawa River is an 

important source of drinking water for the city of Legnica. Through bank filtration and additional 

water treatment processes, about 18,000 m
3
 of drinking water is produced daily. The surface 

water is withdrawn several km before the Czarna Woda stream discharges into Kaczawa River. 
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Nevertheless, one drinking water sample collected during the sampling campaign in April 2013 

showed a concentration of 0.092 μg L
−1

 for triglyme and 0.36 μg L
−1

 for tetraglyme. Based on the 

oral DNEL for triglyme (3.13 mg/kg bw/day), this concentration does not pose a risk to the 

general population living in the area. Assuming that an individual person weighs 70 kg and 

consumes 2 L of water per day, over a 75 year lifespan, the concentration that could cause 

reproductive and developments effects equals to 93,000 μg L
−1

 for triglyme (ECHA, 2012). 

Nevertheless, the Kaczawa River should be protected from large effluent discharges, due to its 

proximity to the drinking water production facility. Although the river water is subject to bank 

filtration before additional drinking water treatments, based on the previous investigations 

by Stepien et al. (2013) glymes are not readily attenuated during bank filtration. Additional water 

sampling is necessary to determine the extent of drinking water contamination with glyme 

compounds in the area. 

 

FIGURE 5.4 Concentrations of glymes (μg L−1) in the Oder River (OD), Czarna Woda 

stream (CW) and Kaczawa River (KW) during April 2013 sampling campaign. 
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5.5.3. Glymes in the investigated industrial wastewater 

Three manually collected grab wastewater samples were obtained from a WWTP that 

receives effluents from nearby industries, among which is the Legnica Copper Smelter and 

Refinery. In order to combat the extremely high atmospheric pollution with sulfur dioxide, 

Legnica Copper Smelter and Refinery installed a gas desuphurization Solinox plant in 1994. The 

German company Linde AG developed the Solinox process, in which a mixture of homologes of 

polyglycol dimethyl ethers (glymes), marketed under the name Genosorb®1900 is used as a 

physical scrubbing solvent for the purification of vent gases from sulfur dioxide (Heisel and 

Belloni, 1991; Sporer, 1992). At the Legnica Copper Smelter and Refinery gases from the shaft 

furnaces generated from the copper production are first dedusted and then used at the local heat 

and power plant. Next the gases are desulfurized in the Solinox installation and the recovered 

SO2 is used in the sulfuric acid plant (Szczęśniak, 2000). Additionally, the off-gases from the 

sulfuric acid plant are also treated in the Solinox process. 

The wastewater produced by this process is treated in the investigated WWTP. Following 

the mechanical and chemical treatment, the effluent of the WWTP is discharged into a small 

creek that enters Czarna Woda stream. Table 4shows glyme concentrations in the three 

wastewater samples (WW-1, WW-2, WW-3) from unidentified unit operations in the WWTP 

investigated. The concentrations of diglyme ranged from 1 μg L
−1

 to 1700 μg L
−1

, triglyme 

63 μg L
−1

 to 13,000 μg L
−1

, and tetraglyme from 810 μg L
−1

 to 190,000 μg L
−1

. The effluent 

sample was not made available by the WWTP. The limited, but sufficient data verified that the 

investigated WWTP is the major cause of glyme pollution in the investigated surface waters. The 

PNEC value established (6400 μg L
−1

) was exceeded for triglyme and tetraglyme in these 

samples. However, considering the dilution of the concentrations resulting after the discharge of 

the wastewater into the surface waters, glyme concentrations can be expected to have no 

predicted effect on the environment. The investigated industrial WWTP employs only chemical 

and mechanical treatment, hence removal of glymes is not expected and a mixture of the sampled 

wastewaters is most likely reaching the receiving surface water. Nevertheless, according to the 

published studies, biological treatment also does not ensure complete removal of polyethylene 

glycol ethers from wastewaters (Roy et al., 1994; Fischer and Hahn, 2005; Beschkov et al., 1997; 

Kawai, 2002). 
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Table 5.4 Concentration (μg L
−1

) and load (kg d
−1

) of diglyme, triglyme and tetraglyme in the 

three wastewater (WW) samples from the WW treatment plant treating effluents from a Solinox 

process. 

 

 WW-1 WW-2 WW-3 

Analyte Concentration (μg L
−1

) 

Diglyme 14 1.0 1700 

Triglyme 230 63 13,000 

Tetraglyme 6300 810 190,000 

 Load (kg d
−1

) 

Diglyme 0.050 0.004 6.4 

Triglyme 0.87 0.24 48 

Tetraglyme 24 3.1 730 

 

5.5.4. Gas desulphurization as a source of glyme pollution 

About 450 m
3
/h of a solvent circulates within the Solinox installation in the Legnica 

Copper Smelter and Refinery (Czubak, 2005). According to Harasimowicz et al. 

(2005) and Czubak (2005), the composition of a Genosorb® 1900 changes during regeneration of 

the solvent. A fresh solvent makes up less than 5% of triglyme, 72−75% of tetraglyme, 16% of 

pentaglyme and the rest consist of higher glymes (Czubak, 2003). The regenerated solvent 

composition changes to: 1% of triglyme, 35−40% of tetraglyme, 40−45% of pentaglyme and 

about 15% of higher glymes. Hence, the proportion of triglyme to tetraglyme in the fresh solvent 

is about 6.6%, whereas in the used solvent it is about 2.5%. In the wastewater samples collected, 

the proportion of the two glymes is between 3.6% and 7.8%, being close to the expected value. 

Diglyme was not reported as a component of the Genosorb® 1900 solvent, therefore it is 

expected to be present as a degradation product formed during solvent regeneration or solvent 

storage. Oxygen is responsible for the degradation of the sorbent, resulting in shorter glyme 

chains (ex. diglyme) as well as ester groups, aldehydes, hydroxyl groups, alcohols, water and 

carboxylic acids (Wenger et al., 1999; Geiger and Becker, 1999). 

According to Harasimowicz et al. (2005), 20,000 m3 of wastewater is produced annually 

by the Solinox process, containing about 40 tons of Genosorb®1900. Czubak (2005) reported 

that 77 tons of solvent is lost each year at the Legnica Copper Smelter and Refinery. Based on the 

three samples made available by the wastewater treatment plant, the average total load of 

diglyme, triglyme, and tetraglyme in the wastewater was calculated to equal 98 tons per year 

(higher glymes not included in the calculation), considering that 1,400,000 m3 of wastewater is 

treated in the WWTP annually. This average load calculated for the three glymes exceeds the 40 
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tons stated by Harasimowicz et al. (2005) and 77 tons reported by Czubak (2005). The load of the 

Genosorb®1900 solvent in the wastewater is contingent on the maintenance of the Solinox 

installation and the waste produced by the process itself (Czubak, 2005). Hence, the variability of 

the glyme concentration in the wastewater and the fluctuating discharge of the Oder River may 

explain the high load variation of glymes in the Oder River. The average total load of diglyme, 

triglyme and tetraglyme in the Oder River was determined to be about 40 tons per year, being in 

good agreement with an average load of Genosorb®1900 in the wastewater reported 

by Harasimowicz et al. (2005), noting that higher glymes were not analyzed. At the time of the 

sampling, the total load of the three glymes in the Kaczawa River was 75 kg d
−1

, hence 27 tons 

per year. The limited number of samples collected from the rivers and the WWTP constrain 

detailed comparison of the results. 

The problem of the solvent loss in the Solinox process, hence contamination of surface 

waters, has already been addressed. Harasimowicz et al. (2005) used a process of selective 

reverse osmosis and was able to recover 96% of the ether solvent from wastewater produced 

during a Solinox process. Liang et al. (2004) showed an effective pervaporation of monoglyme 

from aqueous solutions on cross lined oligosilylstyrene-PDMS composite membranes. If such 

processes were implemented in the Solinox installation in Legnica, the loss of solvent could be 

reduced and the discharge of effluents containing high glyme concentrations into surface waters 

may appreciably decrease. 

 

5.6. Conclusions 

The results of the current study provide information on the occurrence of diglyme, 

triglyme and tetraglyme in the Oder River. By tracking the high concentrations in the Oder River, 

the main source of contamination was localized in the area of Legnica city. Wastewater treatment 

plant, treating effluents originating from the Solinox process was found responsible for the high 

glyme concentrations in the Oder River and its tributaries. The Solinox process is a physical 

absorption process, which removes SO2 from flue gases using a mixture of glymes as a physical 

solvent. The amount of glymes in the wastewater is contingent on the maintenance of the Solinox 

installation and the waste produced by the process itself. Hence, the load of glymes in the surface 

waters is expected to correlate with the amount of glymes in the influents received and effluents 

discharged by the WWTP as well as the discharge (water flow) of the river. The issue of 

high solvent loss during the Solinox has already been addressed and an improved technique for 
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their recovery from the wastewater will hopefully be implemented in the near future in order to 

protect receiving surface waters. 
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Chapter 6  Summary, conclusions and outlook 

 

6.1. Summary 

The focus of the presented doctoral thesis was to 1. Develop a suitable method for 

determination of six hydrophilic ethers: ETBE, 1,4-dioxane, monoglyme, diglyme, triglyme, and 

tetraglyme; 2. Determine the behavior of hydrophilic ethers during bank filtration and in the 

anoxic aquifer system; 3. Investigate the distribution of 1,4-dioxane in the aquatic environments 

and to 4. Study the occurrence and identify sources of glymes in the Oder River. These topics 

were discussed in the following chapters: 

Chapter 2 Method development for hydrophilic ethers: The proposed analytical 

method based on SPE and GC/MS-SIM provided excellent recoveries, reproducibility and low 

detection limits (in ng L
−1

 range) for ETBE, 1,4-dioxane, monoglyme, diglyme, triglyme, and 

tetraglyme. This was the first time that a SPE method was applied for the analysis of ETBE, 

which is considered as volatile substance, for which in general headspace analysis is applied. 

Nevertheless, the recoveries of the SPE method for ETBE were as high as those known from 

headspace analytical methods. Moreover, this method can be extended for analysis of other ether 

compounds that might be of significance to the environment and/or human health. The extensive 

use of ETBE, 1,4-dioxane, and glymes in Europe and their persistent physicochemical properties 

call for their continuous monitoring in the aquatic environment. During this research project, 27 

samples from seven surface water bodies were obtained for quantitation of the six target 

substances. Especially, outstanding were the high concentrations (reaching 2.00 µg L
−1

) of 1,4-

dioxane in all of the waters investigated. The high concentrations of selected glymes in the Oder 

River also requested further investigation.  

Chapter 3 Behavior of 1,4-dioxane and glymes during bank filtration and in the 

anoxic aquifer:   In this study the behavior of ethers during infiltration of the Oder River into the 

Oderbruch aquifer was compared to the behavior of chlorinated and non-chlorinated 

organophosphates. The results of four sampling campaigns performed between 2009 and 2012, 

showed a much greater persistence of ethers both in the main drainage ditch (after bank filtration) 

and in the anoxic aquifer. Moreover, ethers such as triglyme, tetraglyme, and 1,4-dioxane were 
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detected further from the Oder River and in older ground waters than any of the OPs. Tetraglyme 

was present in the shallow groundwater of the Oderbruch with an estimated age of 21 years 

within 27 and 60 ng L
−1

 and 1,4-dioxane in a 34.9 year groundwater (deep well) at a 

concentration above 200 ng L
−1

. Moreover, these two ethers showed a high correlation with the 

frequently used inorganic tracer chloride, hence their possible application as organic tracers to 

study the dynamics of the groundwater system. Additionally, possible biodegradation and 

attenuation processes of OPs and ethers were discussed based on the obtained data.  

Chapter 4 Distribution of 1,4-dioxane in the aquatic environments: As presented in 

Chapter 1 and 2, 1,4-dioxane showed a ubiquitous presence in the surface waters. Initially, the 

contribution of sewage treatment plants (STPs) to the high concentrations of 1,4-dioxane in the 

rivers was investigated. The maximum influent concentrations in the four investigated STPs 

reached only 834 ± 480 ng L
−1

. Surprisingly, the effluent concentration of 1,4-dioxane was 

determined to be 62,260 ± 36,000 ng L
−1

. An extensive sampling of the STP responsible for the 

high effluent concentrations, showed that the methanol used in the postanoxic denitrification 

process contains high amount of impurities, among which was 1,4-dioxane. Moreover, spatial 

and temporal distribution of 1,4-dioxane in the Main, Rhine, and Oder River, showed that the 

concentration of 1,4-dioxane increases with a distance from the spring of the river. A two week 

investigation of the Rhine River at the monitoring station in Worms demonstrated that the 1,4-

dioxane concentration decreases with an increasing discharge of the river. Based on the results 

from the groundwater study in the Oderbruch polder presented in Chapter 3, that showed the 

natural bank filtration is not capable of removing 1,4-dioxane from water, two drinking water 

facilities that utilize bank filtration in drinking water production were investigated. 1,4-Dioxane 

was present in the raw water samples collected after bank filtration at concentration close to or at 

650 ng L
−1

 and after drinking water treatment processes at 490 ng L
−1 

and 600 ng L
−1

.  

Chapter 5 Occurrence and sources of glymes in the Oder River.  Based on the high 

concentrations of especially triglyme and tetraglyme in the Oder River reported in Chapter 2, an 

investigation of possible glyme sources was initiated. The extensive sampling campaigns of the 

Oder River in Poland and Germany helped to identify the region of glyme entry and the 

predominating source of contamination. In the Oderbruch polder area, concentrations of diglyme, 

triglyme, and tetraglyme were determined at 0.07 µg L
-1

, 0.54 µg L
−1

 and 1.73 µg L
−1

, 

respectively. During the subsequent sampling in Poland, when samples from almost 500 km of 
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the river were collected, triglyme was present at a maximum concentration of 0.46 µg L
−1 

and 

tetraglyme at 2.21 µg L
−1

. At the same time, the area of the glyme entry into the Oder River was 

identified, and the final sampling campaign focused also on the tributaries: Czarna Woda stream 

and the Kaczawa River. The concentrations in Czarna Woda reached 5.18 µg L
−1

, 12.87 µg L
−1

 

and 80.81 µg L
−1

 for diglyme, triglyme, and tetraglyme, respectively. Finally, three wastewater 

samples from an industrial wastewater treatment plant were collected. The average concentration 

of diglyme was 569 µg L
−1

, triglyme 4300 µg L
−1

, and tetraglyme 65900 µg L
−1

. Further research 

identified a gas desulfurization process (Solinox) used in the nearby copper smelter, to be 

responsible for the high concentrations of glymes in the tributaries and in the Oder River. Glymes 

are used as physical absorption media for the removal of sulphur dioxide from the flue gases. 

 

6.2. Conclusions 

This doctoral thesis focused on providing information about the occurrence, distribution 

and behavior of ETBE, 1,4-dioxane and glymes in the major rivers in Germany and Poland. The 

conclusions of the research projects follow: 

ETBE 

In the investigated rivers in Germany and in the Oder River (Poland) ETBE was present at 

concentrations close to or below detection limit. As mentioned in Chapter 1, in Germany MTBE 

has been replaced by ETBE in 2005, but currently ethanol is blended directly with the gasoline. 

Nevertheless, ETBE is known to be extensively used in other European countries such as Spain, 

France, and Italy, where its entrance into an aquatic environment might be of concern. Many 

environmental aspects of ETBE are comparable with MTBE, except that ETBE is likely to show 

even lower evaporation from water due to its higher boiling temperature and lower vapor 

pressure. An extensive research has been done on the occurrence, behavior and fate of MTBE in 

the aquatic environment, since high concentrations in surface-, ground- as well as drinking water 

were reported. In order to ensure that ETBE does not pose a risk to public water supplies its 

occurrence should also be regularly monitored particularly in countries that still use ETBE as an 

anti-knocking additive for gasoline.  
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1,4-DIOXANE 

Based on the data obtained in this study from the waste-, surface-, ground-, and drinking 

waters it can be concluded that 1,4-dioxane is an extremely persistent organic pollutant. Its 

widespread presence in the aquatic environment and the high concentrations detected necessitate 

continuous monitoring. The results from the four investigated sewage treatment plants show that 

the amount of 1,4-dioxane in the influents does not exceed 1000 ng L
−1

. Possibly, this quantity 

originate from the personal care products used in many households that reportedly contain 1,4-

dioxane as a production byproduct (Chapter 1 & 4). In one out of the four investigated STPs, 

addition of methanol during the postanoxic denitrification process resulted in extremely high 

concentrations of 1,4-dioxane in effluents (62,260 ± 36,000 ng L
−1

). The source and purity of the 

methanol needs to be a part of a quality control in the STPs in order to prevent discharge of high 

concentrations of 1,4-dioxane into the receiving surface waters. Since the STP investigated used a 

recycled methanol from unknown industries it is most likely that 1,4-dioxane in not efficiently 

removed from the methanol. 1,4-dioxane forms an azeotropic mixture with methanol, hence 

simple distillation will not separate them from each other and alternative solvent recovery 

methods might not be able of separating them completely. The load of 1,4-dioxane from this STP 

was calculated to be between 2.17 to 5.03 kg d
−1

. The average load in the Main, Oder and Rhine 

River was determined in this study to be 6.5 kg d
-1

, 34.1 kg d
-1

 and 134.5 kg d
-1

, respectively. 

This high load of 1,4-dioxane in the Main River cannot be solely explained with the results from 

the investigated STP, hence it can be expected that other major sources of 1,4-dioxane exist. 

Further industrial effluents might contain high concentration of 1,4-dioxane as a by-product such 

as PET plastic production, ethoxylation and synthesis of polyesters. Manufacturer supposedly use 

vacuum stripping process in order to remove 1,4-dioxane from their effluents, however studies 

are not available in order to assess if this removal process effectively reduces the amount of 1,4-

dioxane from effluents.  

The importance of regulating high concentrations of 1,4-dioxane in the effluents 

discharged into the surface waters is reflected in its effortless transfer to drinking water sources. 

As discussed in Chapter 4, bank filtration is often utilized as a first major treatment process of 

surface water for the subsequent production of drinking water. This technique is often used in 

Germany as well as other countries around the world. Consequently, protection of surface waters 

from pollution with toxic or carcinogenic substances is crucial. The average concentration of 1,4-
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dioxane in the Rhine River in this study was calculated to be 470 ng L
−1

 however it varies with 

the discharge of the river. The concentration of 1,4-dioxane in the Rhine River often surpasses 

1000 ng L
−1 

(Figure 4.9), which is a proposed target value by IAWR for contaminants in surface 

water used in the production of drinking water. The concentration of 1,4-dioxane in the drinking 

water depends on the concentrations occurring in the river and on the local drinking water 

treatment methods. In the two raw water samples collected in this study from drinking water 

treatment facilities, the concentration of 1,4-dioxane was 650 ng L
−1

 and 670 ng L
−1

. Following 

various treatment technologies applied at the two drinking water treatment facilities the 

concentrations fell only slightly to 600 ng L
−1

 and 490 ng L
−1

, respectively. The concentration of 

1,4-dioxane exceeded the precautionary guidance limit of 100 ng L
-1

 in drinking water proposed 

by the German Federal Environmental Agency. Moreover, U.S. EPA proposed a minimum 

reporting level (MRL) for 1,4-dioxane in drinking water at 70 ng L
-1

, as a part of Unregulated 

Contaminant Monitoring Rule 3.  The analysis of 1,4-dioxane in drinking water is expected to 

become of great importance in the future.  

Furthermore, the results show that conventional treatment technologies are not capable of 

removing 1,4-dioxane below the precautionary guidance limit of 100 ng L
−1

 in drinking water 

proposed by the German Federal Environmental Agency. Numerous studies have documented 

advanced oxidation processes to be a promising remedial technology for 1,4-dioxane. Especially 

H2O2/UV proved to be a viable treatment process for 1,4-dioxane and many other persistent water 

contaminants. Hence, drinking water production from sources known to contain an elevated 

amount of compounds resistant to degradation such as 1,4-dioxane should employ AOP in their 

treatment technologies.  

As of the beginning of this research project, the occurrence of 1,4-dioxane in the aqueous 

environment in Germany was not known. The detection of high concentrations of 1,4-dioxane in 

surface waters was surprising and lead to numerous important findings. This doctoral thesis 

provided a foundation for further studies required with respect to the sources and behaviour of 

1,4-dioxane in the aquatic environment.  
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GLYMES 

This was the first study that focused primarily on the occurrence of glycol diethers in the 

aquatic environment. Based on the results from the first surface water sampling campaign 

(Chapter 2) in Germany, the occurrence and concentrations of monoglyme, diglyme, triglyme, 

and tetraglyme vary significantly in rivers. Concentrations of glymes in the Rhine River (Chapter 

2) during this study were below 0.500 µg L
-1

 for monoglyme, and 0.200 µg L
-1

 for diglyme, 

triglyme, and tetraglyme. In the past, concentrations reaching 10.0 µg L
-1

 for diglyme, 5.0 µg L
-1

 

for triglyme, and 2.5 µg L
-1

 tetraglyme were detected in the Rhine River (Figure A.2). Although 

the industry responsible for the discharge of glymes into the Rhine River was identified, no other 

information was made public. Tetraglyme was also detected in the Main and Rur River at an 

average of 0.409 µg L
-1

 (n = 6) and 0.192 µg L
-1

 (n = 1), however the possible sources there were 

not identified. The wide range of industrial applications of glymes makes it difficult to establish 

their origin in the surface waters. The high concentrations of diglyme (0.07 µg L
-1

), triglyme 

(0.54 µg L
-1

), and tetraglyme (2.21 µg L
-1

) in the Oder River encouraged investigation of their 

source. The extensive sampling campaigns of the Oder River as well as its tributaries and 

samples from the wastewater treatment were required in order to establish the cause of high 

glyme concentrations and to identify the area and source of pollution. At the Copper Smelter and 

Refinery in Legnica, PL, Solinox installation was installed in 1994 and as a result the pollution of 

the Oder River with the glycol diethers begun (Chapter 5). This information is supported by the 

data obtained during the study of the bank filtration and ground water passage at the Oderbruch 

polder (Chapter 3). Tetraglyme was detected in the groundwater with an estimated age of 21 

years, but not in any of the older wells. As reported by Clariant (2013), flue gas desulfurization 

techniques utilizing glymes as physical absorption media are commonly used in Europe. 

Therefore it can be expected, that unless proper solvent recovery techniques are implemented 

within the process, other surface waters might be affected by glyme pollution.  

Moreover, the persistence of glymes in the aquatic environment was demonstrated in 

Chapter 3. Both triglyme and tetraglyme were present at significant concentrations in the 

groundwater of the Oderbruch polder following bank filtration. Furthermore, the similarities in 

the behavior of Cl
−
 and tetraglyme show that they are controlled by the same or similar hydraulic 

process. The correlation factor of Cl
−
 with tetraglyme was calculated to be r = 0.613, which is 

lower than for 1,4-dioxane (r = 0.913), however according to the results presented in Chapter 5, 
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the concentrations of tetraglyme in the Oder River are influenced by the highly variable effluent 

concentrations of  the wastewater treatment plant responsible for glyme pollution. As previously 

mentioned glymes are toxic to reproduction and as shown are not easily removed from water 

during natural attenuation processes. Moreover, they are not likely to undergo biodegradation. 

Therefore, it can be concluded that AOPs would need to be applied in order to remove them from 

effluents. Water bodies that are used for drinking water production should be protected from high 

concentrations of these ethers. In the Rhine River the problem of glyme pollution was relatively 

quickly addressed and solved. The solution for the pollution of the Rhine River with 1,4-dioxane 

seem to be more complex.  

The most important contribution of the present study on glymes was the establishment of 

their sources in the Oder River. No other publication was found that identified origin and 

pollution of surface waters with glymes. Nevertheless, other major sources of glymes in the 

environment exist and still need to be determined. 

 

6.3. Outlook 

Many topics have been addressed in the presented doctoral thesis. Some research 

questions stated in Chapter 1 (Section 1.4) have been answered completely and some still require 

further investigations in order to better understand the behavior of the hydrophilic ethers (Chapter 

3) and to determine other possible sources of these compounds in surface waters (Chapter 4 & 5). 

Nevertheless, the work presented contributed greatly to the knowledge on the occurrence, 

distribution, and behavior of hydrophilic ethers (1,4-dioxane and glymes) in the aquatic 

environment. 

According to the results presented in Chapter 3 and 4, 1,4-dioxane and glymes are not 

readily attenuated during bank filtration and persist in the anoxic aquifer. The data collected at 

the Oderbruch polder from the shallow and deep groundwater wells situated at increasing 

distance from the river, showed that ethers such as 1,4-dioxane and tetraglyme remain in the 

groundwater much longer than other organic compounds such as organophosphates. The 

sampling scheme did not take into account the travel time of water from the river into the main 

drainage ditch; therefore the degree of attenuation of ethers during bank filtration could not be 

established. Long term monitoring study in the Oderbruch polder is required to determine if any 
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of the attenuation processes in the reducing aquifer are able to decrease the concentrations of 

ethers. The influence of redox conditions in the aquifer on the degradability of ethers was not 

established based on the collected data. Only the presence of degradation products would enable 

to verify the extent of ether biodegradation, if any, in the anoxic aquifer.  

In order to explain the high load of 1,4-dioxane in the surface waters, the effluent 

concentration of other municipal as well as industrial wastewater treatment plants need to be 

investigated. In a view of the fact that 1,4-dioxane may reach potable water it would be advisable 

to perform a nationwide study, to determine if many drinking water sources, produced from the 

managed aquifer recharge, are affected by significant concentrations of 1,4-dioxane. Moreover, it 

would be of interest to investigate a drinking water treatment plant that applies advanced 

oxidation processes in order to observe the extent of 1,4-dioxane removal from drinking water.  

Glymes are reportadly used as physical absorption media in many parts of Europe. 

Genosorb
® 

1753 is used for H2S removal in plants situated in proximity to Weser and Ems Rivers 

in Germany. It would be of interest to determine if pollution with glymes also occurs in these 

rivers. Moreover, both monoglyme and tetraglyme were identified in the Main River. Especially, 

high concentrations reaching 1.25 µg L
-1

, were detected for tetraglyme, therefore a significant 

source of this glyme must exist upstream from the city of Frankfurt/Main and should be 

determined.   
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Appendix 

TABLE A. 1  Stability of ethers in ultrapure water (n = 5) and the Main River samples and the 

percent difference in concentration between day 0 and 9. 

 

Concentration (µg L
−1

) 
   Ultrapure water, n = 5   

Analyte Day 0 Day 2 Day 5 Day 9 % Difference 

EtBe 0.901 0.830 0.813 0.803 10.90% 

Monoglyme 0.983 0.947 0.946 0.891 5.90% 

1,4-dioxane 0.959 0.915 0.884 0.851 11.30% 

Diglyme 1.029 1.011 0.999 0.983 4.47% 

Triglyme 0.947 0.856 0.835 0.830 12.40% 

Tetraglyme 0.965 0.889 0.868 0.836 13.40% 

  Surface water (Main River), n = 2 % Difference 

EtBe 0.901 0.857 0.855 0.722 19.9 % 

Monoglyme 1.010 0.991 0.948 0.953 6.13 % 

1,4-dioxane 1.001 0.950 0.874 0.777 22.4 % 

Diglyme 1.064 1.020 0.983 0.982 7.71 % 

Triglyme 0.927 0.840 0.833 0.790 14.8 % 

Tetraglyme 1.028 0.933 0.890 0.811 21.1 % 

  

TABLE A. 2  Stability of ethers in dichloromethane extracts over 13-day period and percent 

difference in concentration between day 0 and 13.  

 

Concentration (µg L
−1

), n = 7 

 Analyte Day 0 Day 2 Day 5 Day 9 Day 13 % Difference 

EtBe 1.014 0.888 0.908 0.832 0.862 9.26% 

Monoglyme 1.102 0.961 1.018 1.001 1.002 2.12% 

1,4-dioxane 1.041 0.971 0.894 0.966 0.971 8.21% 

Diglyme 1.05 1.039 0.983 0.824 0.79 18.20% 

Triglyme 0.949 0.942 0.885 0.793 0.733 13.50% 

Tetraglyme 0.989 0.983 0.902 0.932 0.939 6.28% 
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TABLE A. 3  Concentration of redox relevant parameters with standard deviation in the Oder River (n = 1) and six deep groundwater wells 

(n = 3): redox potential (Eh), dissolved organic carbon (DOC), pH, conductivity (K), oxygen (O2), nitrate (NO3
-
), ferrous iron (Fe(II)) and 

sulfate (SO4
2
). 

Sample Distance pH Eh K O2 NO3
-
 SO4

2-
 DOC Fe(II)  

ID  [m] 

 

 [mV] [mV] [mg L
−1

] [mg L
−1

] [mg L
−1

] [mg L
−1

] [mg L
−1

] 

Oder River 0 7.66 242.5 709 15.080 11.55 83.50 7.59 0.01 

6/99-D 138 7.62±0.254 78.17±58.75 733±37.6 0.093±0.035 1.033±0.112 75.5±1.47 6.27±0.776 0.413±0.219 

9560-D 604 7.53±0.267 55.00±47.44 766±33.7 0.177±0.074 0.960±0.020 82.8±4.12 4.15±0.348 1.540±0.121 

6/05-D 1150 7.54±0.262 65.10±26.73 792±7.2 0.117±0.031 1.039±0.109 89.4±2.30 4.40±0.719 1.747±0.352 

4/04-D 2560 6.90±0.266 73.47±28.2 620±12.9 0.133±0.050 1.007±0.090 96.3±13.77 5.34±0.819 11.233±2.887 

3/05-D 2980 6.97±0.252 65.57±39.01 709±11.4 0.160±0.060 0.950±0.000 127.4±6.04 6.74±1.734 13.640±2.944 

2144-D 3434 6.89±0.241 79.67±24.17 601±2.5 0.147±0.168 1.040±0.090 49.9±3.49 8.41±0.537 12.360±3.429 
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TABLE A. 4  Discharge (m
3
 s

−1
) and water level (m) of the Oder River during sampling 

campaigns.  

Sampling Water level Discharge 

Date (m) (m
3
 s

−1
) 

27-Oct-09 296 397 

10-Mar-11 438 813 

29-Mar-12 417 740 

24-May-12 298 381 

 

 

TABLE A. 5  Concentration of chloride (mg L
−1

), 1,4-dioxane and tetraglyme (ng L
−1

)  in the 

Oder River and deep groundwater wells during four sampling campaigns.  

Sampling Sample Chloride Tetraglyme 1,4-Dioxane 

Date ID (mg L
−1

) (ng L
−1

) (ng L
−1

) 

27-Oct-09 Oder 132.0 1260 n.a. 

10-Mar-11 

 

81.7 273 n.a. 

29-Mar-12 

 

93.8 1433 1610 

24-May-12   163.0 1576 3290 

27-Oct-09 6/99 T 128.9 1230 n.a. 

10-Mar-11 

 

86.9 339 n.a. 

29-Mar-12 

 

106.0 455 1340 

24-May-12   111.0 496 1060 

27-Oct-09 9560T 115.2 849 n.a. 

10-Mar-11 

 

115.0 369 n.a. 

29-Mar-12 

 

104.0 520 1020 

24-May-12   98.0 630 901 

27-Oct-09 6/05T 109.8 442 n.a. 

10-Mar-11 

 

114.0 212 n.a. 

29-Mar-12 

 

116.0 565 1630 

24-May-12   116.0 741 1129 

29-Mar-12 4/05 T 55.6 n.d. 208 

24-May-12   57.8 n.d. 219 

n.d. - not detected 
   n.a. - not analyzed 
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TABLE A. 6  Influent and effluent concentrations of 1,4-dioxane in µg L
−1

 in STP A, B, and C. 

  STP A STP B STP D 

Sampling period 10.12.12-16.12.12 13.11.12-20.11.12 08.07.13-14.07.13 

Influent 0.272 0.401 0.499 

 

0.227 0.295 0.593 

 

0.213 0.353 0.558 

 

0.269 0.395 0.568 

 

0.262 0.369 0.510 

 

0.303 0.210 0.372 

 

0.238 0.355 0.512 

    0.347   

Effluent 0.261 0.408 0.467 

 

0.248 0.402 0.246 

 

0.237 0.355 0.393 

 

0.274 0.331 0.500 

 

0.278 0.382 0.420 

 

0.339 0.306 0.235 

 

0.292 0.367 0.273 

    0.306   

 

TABLE A. 7  1,4-Dioxane concentrations (µg L
−1

) in STP C during two sampling campaigns. 

Sampling period Influent 1° Treatment 2° Treatment Effluent 

27.11.12-03.12.12 2.355 n.a. n.a. 31.9 

 

0.825 n.a. n.a. 59.7 

 

1.030 n.a. n.a. 80.9 

 

0.743 n.a. n.a. 60.7 

 

0.595 n.a. n.a. 23.6 

 

0.631 n.a. n.a. 14.2 

  0.495  n.a.  n.a. 12.5 

17.01.13-22.01.13 0.736 9.11 8.36 108.0 

 

0.779 7.27 7.97 96.7 

 

1.159 6.89 7.56 96.8 

 

0.609 5.31 5.33 57.7 

 

0.407 1.55 1.24 50.0 

 

0.710 5.18 4.46 49.9 

  0.598 7.53 5.69 129.0 

     n.a. – not analyzed 



Appendix 

151 | P a g e  

TABLE A. 8  Concentration of 1,4-dioxane (ng L
−1

) on the left (MWL1) and on the right 

(MWL4) side of the Rhine River during a two week study at the Rhine Water Control Station 

Worms, Germany and the average daily river discharge (m
3
 s

−1
).  

Sampling MWL1 MWL4 Discharge Load MWL1 Load MWL2 

date (ng L
−1

) (ng L
−1

) (m
3
 s

−1
) (kg d

−1
) (kg d

−1
) 

20-Aug-12 1272 807 892 98.1 62.2 

21-Aug-12 1384 374 886 105.9 28.6 

22-Aug-12 666 596 898 51.7 46.2 

23-Aug-12 1346 737 909 105.7 57.9 

24-Aug-12 2238 1208 918 177.6 95.8 

25-Aug-12 1182 853 951 97.1 70.1 

26-Aug-12 815 664 994 70.0 57.0 

27-Aug-12 442 249 1079 41.2 23.2 

28-Aug-12 555 621 1113 53.4 59.7 

29-Aug-12 702 692 1083 65.7 64.7 

30-Aug-12 590 685 1056 53.8 62.5 

31-Aug-12 479 630 1089 45.1 59.3 

1-Sep-12 434 582 1248 46.8 62.7 

2-Sep-12 365 376 1541 48.6 50.1 

 

TABLE A. 9  Monthly concentrations of 1,4-dioxane in 2012 at the monitoring station Lobith, 

Germany with the discharge values (m
3
 s

−1
). (Source: RIWA-database Nieuwegein). 

Sampling 1,4-dioxane Discharge 

month (ng L
−1

) (m
3
 s

−1
) 

Jan-12 BDL 5982 

Feb-12 1100 1880 

Mar-12 1700 1709 

Apr-12 1200 1352 

May-12 950 1836 

Jun-12 640 2213 

Jul-12 1300 1806 

Aug-12 1100 1224 

Sep-12 1600 1493 

Oct-12 790 2899 

Nov-12 790 2553 

Dec-12 1000 2258 
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TABLE A. 10  Concentrations and loads of 1,4-dioxane in the Oder, Rhine, and Main Rivers.  

Sample 1,4-dioxane Load Sample 1,4-dioxane Load 

ID ng L
−1

 kg d
−1

 ID ng L
−1

 kg d
−1

 

Od1 891   Od28 309 

 Od2 782   Od29 305 6.93 

Od3 793 55.2 Od30 230 5.78 

Od4 797 55.5 Od31 278 

 Od5 1610 51.5 Rh2 856 102 

Od6 1851 68.3 Rh3 685 81.7 

Od7 1457   Rh4 234 52 

Od8 861 7.24 Rh5 452 

 Od9 806   Rh6 470 145 

Od10 783 5.9 Rh7 429 

 Od11 727 5.18 Rh8 391 118 

Od12 1055   Rh9 421 132 

Od13 1541   Rh10 352 

 Od14 934 8.4 Rh11 380 120 

Od15 901 8.25 Rh12 611 197 

Od16 672   Rh13 554 

 Od17 859   Rh14 498 159 

Od18 176   Rh15 471 153 

Od19 217   Ma1 117 1.57 

Od20 184   Ma2 308 4.15 

Od21 184   Ma3 363 4.89 

Od22 226   Ma4 624 8.41 

Od23 403   Ma5 542 7.31 

Od24 280   Ma6 750 10.1 

Od25 447   Ma7 680 9.17 

Od26 230 5.62 Ma8 526 6.63 

Od27 298         
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TABLE A. 11  Detected concentrations (µg L
−1

) of diglyme, triglyme and tetraglyme on the left 

and on the right bank of the Oder River.  

Sample Left Sample  Right 

ID Diglyme Triglyme Tetraglyme ID Diglyme Triglyme Tetraglyme 

OD-1 n.d. n.d. 0.142 OD-1 n.d. n.d. 0.112 

OD-2 n.d. n.d. 0.607 OD-2 n.d. n.d. 0.308 

OD-4 n.d. n.d. 0.049 OD-3 n.d. n.d. 0.047 

OD-5 n.d. n.d. 0.041 OD-5 n.d. n.d. 0.035 

OD-6 n.d. n.d. 0.030 OD-6 n.d. n.d. 0.043 

OD-7 n.d. n.d. 0.049 OD-8 n.d. n.d. 0.112 

OD-11 n.d. n.d. 0.049 OD-9 n.d. n.d. 0.065 

OD-12 n.d. n.d. 0.056 OD-10 n.d. n.d. 0.098 

OD-13 n.d. n.d. 0.085 OD-12 n.d. n.d. 0.045 

OD-14 n.d. 0.461 1.147 OD-13 n.d. n.d. 0.084 

OD-15 0.055 0.247 3.270 OD-14 n.d. 0.272 0.581 

OD-16 n.d. 0.162 1.165 OD-15 0.057 0.323 4.014 

OD-17 n.d. 0.596 14.848 OD-16 n.d. 0.256 1.165 

OD-18 n.d. 0.324 2.133 OD-17 n.d. 0.570 14.388 

OD-19 n.d. 1.013 28.190 OD-20 n.d. 0.253 1.737 

OD-20 n.d. 0.325 2.214 OD-21 n.d. 0.987 28.530 

OD-21 n.d. 0.944 27.230 OD-22 n.d. 0.148 0.286 

OD-22 n.d. 0.143 0.296 OD-23 n.d. 0.119 0.326 

OD-26 n.d. 0.122 0.604 OD-24 n.d. 0.074 0.214 

OD-27 0.073 0.426 1.620 OD-25 n.d. 0.070 0.290 

OD-28 0.050 0.536 1.620 OD-33 0.037 0.049 0.258 

OD-29 0.076 0.209 1.437 OD-36 0.031 0.077 0.402 

Od-30 0.062 0.528 1.470 OD-37 0.034 0.066 0.315 

OD-31 0.074 0.475 1.730 

    OD-32 0.065 0.200 1.387 

    OD-34 0.071 0.163 0.857 

    OD-35 0.061 0.099 0.527         

   n.d. – not detected 
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TABLE A. 12  Load of diglyme, triglyme and tetraglyme (kg d
−1

) at sampling locations where 

information on discharge was available.  

Sample  Diglyme Triglyme Tetraglyme 

ID kg d
−1

 kg d
−1

 kg d
−1

 

OD-35 2.01 3.26 17.35 

OD-34 2.34 5.37 28.21 

OD-32 2.12 6.51 45.18 

OD-29 2.38 6.54 44.94 

OD-30 4.32 36.77 102.37 

OD-31 5.15 33.08 120.47 

OD-24 n.d. 0.62 1.79 

OD-22 n.d. 1.09 2.19 

OD-21 n.d. 23.61 681.70 

OD-20 n.d. 2.05 14.00 

OD-15 1.28 6.48 82.80 

OD-14 n.d. 3.29 10.31 

OD-13 n.d. n.d. 2.13 

OD-9 n.d. 2.44 7.76 

KW-1 4.10 9.24 61.43 

        n.d. – not detected 

TABLE A. 13  Concentration and load of diglyme, triglyme and tetraglyme in the three samples 

obtained from the wastewater treatment plant in Legnica,PL. 

 

 

Sample-1 Sample-2 Sample-3 

  Concentration (µg L
−1

) 

Diglyme 13.6 1.02 1692 

Triglyme 228 63 12600 

Tetraglyme 6340 809 190630 

  Load (kg d
−1

) 

Diglyme 0.05 0.004 6.43 

Triglyme 0.87 0.24 47.90 

Tetraglyme 24.1 3.08 724.7 
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FIGURE A. 1 Consumption of bioethanol in Germany from 2007 to 2011 (Source: German 

Bioethanol Industry Association). The amount of bioethanol used for production of ETBE has 

decreased throughout the years. 
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FIGURE A. 2  Historical concentrations of a) ETBE, b) diglyme, c) triglyme, and d) tetraglyme in the Rhine River at the measuring station 

Lobith (Source: IAWR, 2013)

d) 
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          FIGURE A. 3  GC/MS chromatogram of the target analytes: ETBE, monoglyme 1,4-dioxane, 

1,4-dioxane-d8 (Surrogate), 4-chlorotetrahydropyran (Internal Standard), diglyme, triglyme and 

tetraglyme in total ion chromatogram (TIC) and selected ion monitoring (SIM). 
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