Contents

Part I The Physical and Technical Safety Concept of Light Water Reactors

1. **Introduction** .. 3
 1.1 Uranium Resources ... 5
 1.2 Uranium Consumption .. 6
 1.3 Uranium Enrichment ... 7
 1.4 Spent Fuel Reprocessing 7
 References ... 9

2. **Some Facts About Neutron and Reactor Physics** 11
 2.1 Radioactive Decay, Decay Constant and Half-Life 12
 2.2 Fission Process .. 12
 2.3 Neutron Reactions ... 15
 2.3.1 Reaction Rates ... 15
 2.4 Criticality or Effective Multiplication Factor \(k_{\text{eff}} \) 19
 2.5 Neutron Density and Power Distribution 19
 2.6 Neutron Poisons for the Control of the Reactor Power 22
 2.7 Fuel Burnup and Transmutation During Reactor Operation 22
 2.7.1 Prediction of the Burnup Effects 23
 2.8 Reactor Control and Temperature Effects 23
 2.9 Afterheat of the Fuel Elements After Reactor Shut Down 24
 2.10 Non-steady State Power Conditions and Negative Temperature Feedback Effects .. 25
 2.10.1 The Fuel-Doppler-Temperature Coefficient 26
 2.10.2 The Moderator/Coolant-Temperature Coefficient of LWRs ... 26
 2.11 Behavior of the Reactor in Non-steady State Conditions 28
 References ... 31
3 The Design of Light Water Reactors

3.1 Light Water Reactors

3.2 Pressurized Water Reactors

3.2.1 Core

3.2.2 Reactor Pressure Vessel

3.2.3 Coolant System

3.2.4 Containment Building

3.2.5 AP1000 Safety Design

3.2.6 The US-APWR Containment Design

3.2.7 Control Systems

3.2.8 PWR Protection System

3.3 Boiling Water Reactors

3.3.1 Core, Pressure Vessel and Cooling System of a BWR

3.3.2 Boiling Water Reactor Safety Systems

3.4 The Advanced Boiling Water Reactors

3.4.1 Core and Reactor Pressure Vessel of ABWR

3.4.2 The ABWR Safety and Depressurization Systems

3.4.3 Emergency Cooling and Afterheat Removal System of the ABWR

3.4.4 Emergency Power Supply of ABWR

3.4.5 The ABWR-II Design

References

4 Radioactive Releases from Nuclear Power Plants During Normal Operation

4.1 Radioactive Releases and Exposure Pathways

4.1.1 Exposure Pathways of Significant Radionuclides

4.2 Radiation Dose

4.3 Natural Background Radiation

4.3.1 Natural Background Exposure from Natural Sources in Germany

4.4 Radiation Exposure from Man-Made Sources

4.4.1 Nuclear Weapons Tests

4.4.2 Chernobyl Reactor Accident

4.4.3 Nuclear Installations

4.4.4 Medical Applications

4.4.5 The Handling of Radioactive Substances in Research and Technology

4.4.6 Occupational Radiation Exposure

4.5 Radiobiological Effects

4.5.1 Stochastic Effect

4.5.2 Deterministic Effects of Radiation

4.5.3 Acute Radiation Syndrome
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6</td>
<td>Permissible Exposure Limits for Radiation Exposures</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Limits of Effective Radiation Dose from Nuclear Installations in Normal Operation</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Radiation Exposure Limit for the Population</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Exposure Limits for Persons Occupationally Exposed to Radiation</td>
</tr>
<tr>
<td>4.6.4</td>
<td>Exposure Limits for Persons of Rescue Operation Teams During a Reactor Catastrophe</td>
</tr>
<tr>
<td>4.6.5</td>
<td>Life Time Occupational Exposure Limit</td>
</tr>
<tr>
<td>4.6.6</td>
<td>The ALARA Principle</td>
</tr>
<tr>
<td>4.7</td>
<td>Nuclear Power Plants</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Radioactive Effluents from PWRs and BWRs</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Occupational Radiation Exposure of Workers in Nuclear Power Plants</td>
</tr>
<tr>
<td>4.7.3</td>
<td>Radiation Exposures Caused by Radioactive Emission from Light Water Reactors</td>
</tr>
<tr>
<td>4.7.4</td>
<td>Comparison with Emissions of Radioactive Nuclides from a Coal Fired Plant</td>
</tr>
</tbody>
</table>

References
6 Probabilistic Analyses and Risk Studies

6.1 General Procedure of a Probabilistic Risk Analysis

6.2 Event Tree Method

6.3 Fault Tree Analysis

6.4 Releases of Fission Products from a Reactor Building Following a Core Meltdown Accident

6.4.1 Initiating Events

6.4.2 Failure of the Containment

6.4.3 Releases of Radioactivity

6.4.4 Distribution of the Spread of Radioactivity After a Reactor Accident in the Environment

6.5 Protection and Countermeasures

6.6 Results of Reactor Safety Studies

6.6.1 Results of Event Tree and Fault Tree Analyses

6.6.2 Severe Accident Management Measures (Safety Level 4)

6.6.3 Core Melt Frequencies per Reactor Year for KWU-PWR-1300, AP1000 and EPR

6.7 Results of Event Tree and Fault Tree Analyses for BWRs

6.7.1 Core Melt Frequencies for KWU-BWR-1300, ABWR, ABWR-II and SWR-1000 (KERENA)

6.8 Release of Radioactivity as a Consequence of Core Melt Down

6.9 Accident Consequences in Reactor Risk Studies

6.9.1 Use of Results of Reactor Risk Studies

6.9.2 Safety Improvements Implemented in Reactor Plants After the Risk Studies

References

7 Light Water Reactor Design Against External Events

7.1 Earthquakes

7.1.1 Definition of the Design Basis Earthquake According to KTA 2201

7.1.2 Seismic Loads Acting on Components in Nuclear Power Plants

7.1.3 Comparison Between Seismic Design and Seismic Damage in Existing Nuclear Power Plants

7.2 Design Against Airplane Crash

7.3 Chemical Explosions

7.4 Flooding

References
8 Risk of LWRs

8.1 Comparison of the Risk of LWRs with the Risks of Other Technical Systems

8.2 Major Accidents in the Power Industry

8.3 Natural Disasters

References

9 The Severe Reactor Accidents of Three Mile Island, Chernobyl, and Fukushima

9.1 The Accident at Three Mile Island

9.2 The Chernobyl Accident

9.2.1 Radiation Exposure of the Operators, Rescue Personnel, and the Population

9.2.2 Chernobyl Accident Management

9.2.3 Contaminated Land

9.3 The Reactor Accident of Fukushima, Japan

9.3.1 Spent Fuel Pools of the Fukushima Daiichi Units 1–6

9.3.2 Measurement of the Radioactivity Released

9.3.3 Damage to Health Caused by Ionizing Radiation

9.3.4 Contamination by Cs-134 and Cs-137

9.3.5 Lessons Learned

9.3.6 Recommendations Drawn from the Fukushima Accident

9.4 Comparison of Severe Reactor Accident on the International Nuclear Event Scale

References

10 Assessment of Risk Studies and Severe Nuclear Accidents

10.1 Introduction

10.2 Principles of the KHE Safety Concept for Future LWRs

10.3 New Findings in Safety Research

10.3.1 Steam Explosion (Molten Fuel/Water Interaction)

10.3.2 Hydrogen Detonation

10.3.3 Break of a Pipe of the Residual Heat Removal System in the Annulus of the Containment by Steam

10.3.4 Core Meltdown After an Uncontrolled Large Scale Steam Generator Tube Break

10.3.5 Core Meltdown Under High Primary Coolant Pressure

10.3.6 Core Melt Down Under Low Coolant Pressure

10.3.7 Molten Core Retention and Cooling Device (Core Catcher)

10.3.8 Direct Heating Problem

References
10.3.9 Summary of Safety Research Findings About the KHE Safety Concept 227
10.4 Severe Accident Management Measures 229
10.5 Plant Internal Severe Accident Management Measures 229
10.6 Examples for Severe Accident Management Measures for LWRs 229
10.6.1 Examples for Severe Accident Management Measures for PWRs 229
10.6.2 Examples for Severe Accident Management Measures for BWRs 230
10.7 Emergency Control Rooms 231
10.8 Flooding of the Reactor Cavity Outside of the Reactor Pressure Vessel 232
10.9 Mobile Rescue Teams 232
10.10 Concluding Remarks 232
References 233

Part II Safety of German Light-Water Reactors in the Event of a Postulated Aircraft Impact

11 Introduction 241
References 242
12 Overview of Requirements and Current Design 243
12.1 Possible Actions 243
12.2 Design Requirements 244
12.3 Development of the Design in Germany 245
References 247
13 Impact Scenarios 249
13.1 General 249
13.2 Accidental Aircraft Impact 249
13.3 Deliberate Forced Aircraft Impact 252
13.3.1 Relevant Airplane Models 253
13.3.2 Approach Angle and Approach Speed 256
References 259
14 Determination of a Load Approaches for Aircraft Impacts 261
14.1 General Information 261
14.2 Mathematical Models to Determine an Impact Load-Time Function 262
14.3 Load Approach for Fast Flying Military Aircraft 266
14.3.1 Load Approach for Starfighter 266
14.3.2 Load Approach for Phantom 266
14.4 Load Approaches for Large Commercial Aircraft .. 269
 14.4.1 Load Approach for a Long-Range Aircraft of the Type Boeing 747 271
 14.4.2 Impact Areas Boeing 747 ... 278
 14.4.3 Load Approach for the Medium-Range Aircraft of the Type Airbus A320 .. 279
14.5 Compilation of the Load Approaches ... 280
References .. 282

15 Verification of the Structural Behaviour in the Event of an Airplane Impact 285
 15.1 General ... 285
 15.2 Local Structural Behaviour: Resistance to Penetration 286
 15.3 Global Structural Behaviour: Structural Stability 291
 15.4 Induced Vibrations .. 291
References .. 295

16 Special Cases ... 297
 16.1 Engine Impact .. 297
 16.2 Wreckage, Small Aircraft and Debris .. 299
 16.3 Jet Fuel Fire ... 300
References .. 301

17 Evaluation of the Security Status of German and Foreign Facilities 303
 17.1 Security Status of German Reactors ... 303
 17.2 Design of Foreign Reactors ... 305

18 Summary .. 307

Part III The RODOS System as an Instance of a European Computer-Based Decision Support System for Emergency Management after Nuclear Accidents

19 Introduction .. 311
References .. 312

20 Relevant Radiological Phenomena, Fundamentals of Radiological Emergency Management, Modeling of Radiological Situation .. 315
 20.1 From Atmospheric Radioactivity Releases to Human Radiation Exposure 316
 20.2 Effects on Health from Radiation Exposure ... 318
 20.3 Emergency Management and Emergency Measures 320
 20.3.1 Basics of Emergency Management .. 320
 20.3.2 Distinction of Accident Phases from the Emergency Management Point of View ... 320
 20.3.3 Off-Site Radiation Protection Measures and Their Initiation 322
20.4 Modeling the Radiological Situation (Terrestrial Pathways) . . . 326
 20.4.1 Atmospheric Dispersion Models 326
 20.4.2 Modeling Radionuclide Deposition onto Surfaces . . . 328
 20.4.3 Processes and Models for the Transport of Activity Through the Human Food Chain 330
20.5 Calculation of Doses for the Terrestrial Exposure Pathways . . . 332
 20.5.1 Doses from the Cloud and from Contaminated Surfaces .. 332
 20.5.2 Doses from the Food Chain 334
References .. 334

21 The Decision Support System RODOS 337
 21.1 History .. 337
 21.2 Overview of the Models Contained in RODOS 338
 21.2.1 The Terrestrial Model Chain 339
 21.2.2 The Models for Radiological Consequences in Contaminated Inhabited and Agricultural Areas, ERMIN and AGRICP .. 341
 21.2.3 The Hydrological Model Chain 342
 21.3 Representation of Location-Dependent Results in RODOS 343
 21.4 The RODOS Center in Germany 344
 21.4.1 Data and User Concept 344
 21.4.2 Modes of Operation in the RODOS Center 346
 21.5 Adaptation to National Conditions 346
References .. 347

22 RODOS and the Fukushima Accident 349

23 Recent Developments in Nuclear and Radiological Emergency Management in Europe 353
Reference .. 354

Index .. 355