Contents

Foreword XIII
Preface to the Second Edition XV
Preface to the First Edition XVII
Symbols and Definitions (Units in Parentheses) XIX
Physical Constants XXV
List of Abbreviations XXVII

1 Introduction 1

2 Glass, A Ceramic Material 5
 2.1 Four Classes of Materials 5
 2.2 Materials Properties 11
 2.3 Selecting Materials 14
 2.4 Performance Indices 16
 2.5 Shape Factors in Mechanical Design 19

3 Glass Prehistory and History 25
 3.1 Natural Glasses 25
 3.2 Early Glasses 29
 3.3 First Optical Glasses 33
 3.4 Modern Glasses 34
 3.4.1 Soda–Lime–Silica Glasses 34
 3.4.2 Borosilicate and Aluminosilicate Glasses 40

4 Applications of Glass 41
 4.1 Glazing 41
 4.2 Containers 47
 4.3 Optical Glass 49
 4.4 Glass Fibres for Insulation and Reinforcement 50
 4.5 Abrasive Tools 52
 4.6 Glass Manufacturers 54
<table>
<thead>
<tr>
<th>5</th>
<th>Glass Structure</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>55</td>
</tr>
<tr>
<td>5.2</td>
<td>Silica Glass and Related Glasses</td>
<td>56</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Glass Network</td>
<td>56</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Glass Network Modification</td>
<td>59</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Short-Range Order</td>
<td>62</td>
</tr>
<tr>
<td>5.3</td>
<td>Borate Glass and Related Glasses</td>
<td>65</td>
</tr>
<tr>
<td>5.4</td>
<td>Organic and Chalcogenide Glasses</td>
<td>66</td>
</tr>
<tr>
<td>5.5</td>
<td>Metallic Glasses</td>
<td>67</td>
</tr>
<tr>
<td>5.6</td>
<td>Avoiding Crystallization</td>
<td>68</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Nucleation and Growth of Crystallized Phases</td>
<td>68</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Nucleation of Crystallized Phases</td>
<td>69</td>
</tr>
<tr>
<td>5.6.2.1</td>
<td>Homogeneous Nucleation</td>
<td>70</td>
</tr>
<tr>
<td>5.6.2.2</td>
<td>Heterogeneous Nucleation</td>
<td>72</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Crystal Growth</td>
<td>74</td>
</tr>
<tr>
<td>5.6.4</td>
<td>Temperature–Time–Transformation (TTT) Diagram</td>
<td>76</td>
</tr>
<tr>
<td>5.6.5</td>
<td>Devitrification</td>
<td>77</td>
</tr>
<tr>
<td>5.6.6</td>
<td>Factors That Favour Glass Formation</td>
<td>78</td>
</tr>
<tr>
<td>5.7</td>
<td>Vitroceramic Fabrication</td>
<td>78</td>
</tr>
<tr>
<td>5.7.1</td>
<td>Introduction</td>
<td>78</td>
</tr>
<tr>
<td>5.7.2</td>
<td>Conventional Method (Two Stages)</td>
<td>79</td>
</tr>
<tr>
<td>5.7.3</td>
<td>Modified Conventional Method (Single Stage)</td>
<td>80</td>
</tr>
<tr>
<td>5.7.4</td>
<td>Laser-Induced Method</td>
<td>80</td>
</tr>
<tr>
<td>5.8</td>
<td>Glass Surface</td>
<td>80</td>
</tr>
<tr>
<td>5.8.1</td>
<td>Surface Reaction</td>
<td>81</td>
</tr>
<tr>
<td>5.8.2</td>
<td>Molecular Diffusion</td>
<td>81</td>
</tr>
<tr>
<td>5.8.3</td>
<td>Glass Network Interaction with Water</td>
<td>82</td>
</tr>
<tr>
<td>5.8.3.1</td>
<td>Water Reaction</td>
<td>82</td>
</tr>
<tr>
<td>5.8.3.2</td>
<td>Ion Exchange</td>
<td>82</td>
</tr>
<tr>
<td>5.8.3.3</td>
<td>Glass Corrosion</td>
<td>83</td>
</tr>
<tr>
<td>5.8.4</td>
<td>Surface Properties</td>
<td>84</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Glass Rheology</th>
<th>85</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Viscosity</td>
<td>85</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Viscosity and Process</td>
<td>85</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Viscosity Measurement</td>
<td>88</td>
</tr>
<tr>
<td>6.1.2.1</td>
<td>Rotation Viscometer</td>
<td>89</td>
</tr>
<tr>
<td>6.1.2.2</td>
<td>Falling Sphere Viscometer</td>
<td>90</td>
</tr>
<tr>
<td>6.1.2.3</td>
<td>Fibre Elongation Viscometer</td>
<td>91</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Viscosity Variation with Temperature</td>
<td>92</td>
</tr>
<tr>
<td>6.1.3.1</td>
<td>Introduction</td>
<td>92</td>
</tr>
<tr>
<td>6.1.3.2</td>
<td>Fragility</td>
<td>95</td>
</tr>
<tr>
<td>6.1.3.3</td>
<td>VFT Empirical Formula</td>
<td>96</td>
</tr>
<tr>
<td>6.1.3.4</td>
<td>Microscopic Approach</td>
<td>97</td>
</tr>
<tr>
<td>6.2</td>
<td>Glass Transition and Its Observation</td>
<td>101</td>
</tr>
</tbody>
</table>
6.2.1 'Observing' the Glass Transition 101
6.2.2 Dilatometry 103
6.2.3 Differential Scanning Calorimetry 105
6.3 Viscous Response of Glass 107
6.4 Viscoelastic Response of Glass 109
6.4.1 Introduction 109
6.4.2 Maxwell and Kelvin Solids 109
6.4.3 Dynamic Mechanical Analysis 111
6.4.4 Modelling Real Solids 115
6.4.5 Functional Formulation 116
6.4.5.1 Creep 116
6.4.5.2 Stress Relaxation 117
6.4.5.3 Elastic–Viscoelastic Correspondence 118
6.4.5.4 Superposition Principle (Simple Thermorheological Behaviour) 119
6.5 Thermal Tempering of Glass 121
6.5.1 Introduction 121
6.5.2 Freezing Theory 123
6.5.3 Stress Relaxation 125
6.5.4 Structural Relaxation 126
6.6 Transient Stresses 131
6.7 Chemical Tempering of Glass 133
6.7.1 Introduction 133
6.7.2 Ion Exchange and Stress Build-Up 134
6.7.3 Stress Relaxation 135
6.7.4 Engineered Stress Profile Glasses 135
7 Mechanical Strength of Glass 139
7.1 Theoretical Strength 139
7.2 Tensile Resistance of Glass 140
7.3 Stress Concentration and Griffith Energy Balance 147
7.3.1 Stress Concentration 147
7.3.2 Energy Balance 148
7.4 Linear Elasticity Crack Tip Stress Field 149
7.5 SIF under Non-uniform Stress 151
7.6 Toughness Measurement 151
7.6.1 Compact Tension 152
7.6.2 Notch Beam Test 152
7.6.3 Double Torsion 153
7.7 Influence of Residual Stress on Strength and Fragmentation 153
7.7.1 Influence of Residual Thermal Stress on Strength 154
7.7.2 Influence of Residual Chemical Stress on Strength 154
7.7.3 Influence of Residual Stress on Fragmentation 156
7.7.4 Impact-Induced Fracture 157
7.8 Statistical Weibull Analysis 158
 7.8.1 Introduction 158
 7.8.2 Functional Formulation 158
 7.8.2.1 Uniform Tensile Stress 160
 7.8.2.2 Non-uniform Tensile Stress 160
 7.8.3 Population of Flaws 161

8 Contact Resistance of Glass 165
 8.1 Sharp and Blunt Contact 165
 8.1.1 Introduction 165
 8.1.2 Spherical Indentation 166
 8.1.2.1 Elastic Loading 166
 8.1.2.2 Hertz Fracture and Indentation Toughness 168
 8.1.3 Sharp Indentation 172
 8.1.3.1 Elastic Loading 172
 8.1.3.2 Elastic–Plastic Loading 173
 8.1.3.3 Hardness 174
 8.1.3.4 Radial–Median Cracking 179
 8.1.3.5 Indentation Toughness 182
 8.1.3.6 Lateral Cracking and Chipping 184
 8.1.3.7 Brittleness Index 184
 8.2 Sharp Contact Resistance 185
 8.3 Scratch Resistance 189
 8.4 Abrasion Resistance 191
 8.5 Introducing a Controlled and Critical Surface Flaw 193
 8.6 Cutting and Drilling of Glass 194

9 Ageing of Glass 199
 9.1 Fatigue in Glass 199
 9.1.1 Static Fatigue 199
 9.1.2 Testing Methods 199
 9.2 Stress Corrosion 200
 9.2.1 Introduction (Domain III) 200
 9.2.2 Domains O and I: Reaction Controlled 201
 9.2.3 Domain II: Transport Controlled 203
 9.3 Charles and Hillig Theory 203
 9.4 Lifetime under Static Fatigue 205
 9.5 Applications 207
 9.6 NiS Phase Transformation 208
 9.7 Crack Healing 210

10 Mechanics of Glass Processes 211
 10.1 Introduction 211
 10.1.1 Batching 212
 10.1.2 Melting 213
10.1.3 Fining 214
10.1.4 Forming 216
10.2 Float Process 216
10.3 Fusion Draw 221
10.4 Container Process 222
10.4.1 Pressing 223
10.4.2 Press-and-Blow, Blow-and-Blow Processes 225
10.5 Fibre Process 228
10.5.1 Tensile Drawing 228
10.5.2 Centrifugal Drawing 230

11 Production Control of Residual Stresses 235
11.1 Introduction 235
11.2 Residual Stresses in Flat Glass 236
11.3 Basics of Photoelasticity in Flat Glass 237
11.4 Stress Meters 241
11.4.1 Edge Stress Meters 241
11.4.2 Surface Stress Meters 243

12 High-Tech Products and R&D 247
12.1 Market Trend-Driven R&D 247
12.2 Flat Displays 248
12.2.1 Liquid Crystal Displays 249
12.2.2 Plasma Display Panels 250
12.2.3 Glass Stability 250
12.2.4 Glass Shock and Damage Resistances 252
12.3 Thin-Film Technology 253
12.3.1 Chemical Vapour Deposition 256
12.3.2 Physical Vapour Deposition 258
12.3.3 Sol–Gel Routes 263
12.4 Residual Stresses in Thin Films 266
12.5 Summary 268

13 Conclusion 271

Appendix A: Light Absorption, Dispersion and Polarization 273
A.1 Electromagnetic Spectrum 273
A.2 Light Absorption 273
A.3 Light Dispersion 275
A.4 Light Polarization 275

Appendix B: Atomic Structure and Bond Formation 279
B.1 Atomic Structure 279
B.2 Mendeleev Table 281
B.3 Bond Formation 282
Appendix C: Thermal Expansion and Elasticity 285

C.1 The α-E Trend 285
C.2 Qualitative Approach 285
C.3 Expansion Modelling 286
C.4 Differential Expansion Measurement 287

Appendix D: Falling Sphere Viscometer and Fining of Glass 289

D.1 Falling Sphere 289
D.1.1 Asymptotic Regime 289
D.1.2 Transient Regime 290
D.1.3 Faxen's Side Correction 291
D.2 Fining of Glass 291

Appendix E: Theoretical Strength of a Solid 293

Appendix F: Weibull Analysis 297

Appendix G: Photoelastic Set-Up for Lectures 301

G.1 Set-Up for Photoelastic Projection 301
G.2 Example of a Beam under Flexion (Transient Stresses) 301
G.3 Example of Tempered Specimens (Residual Stresses) 302

Appendix H: Instrumented Nanoindentation Applied to Thin Films 305

H.1 Instrumented Nanoindentation 305
H.2 Indentation Strain Field 309
H.3 Hardness, Yield Stress and Representative Flow Stress 310
H.4 Coating–Substrate Composite Response 314
H.5 Time-Dependent Response 316
H.5.1 Viscoelastic Indentation Curves 317
H.5.2 Viscous Elastic–Plastic Indentation $F(h)$ Curves 318
H.6 Elastic–Plastic Ratios 321

Appendix I: Strain and Stress 323

I.1 Stress and Strain 323
I.2 Stress and Strain Tensors 325
I.3 Uniaxial Tensile Test 326
I.4 Simple Shear 327
I.5 Plane Stress 328
I.6 Hydrostatic Pressure and Stress Deviator 329
I.7 Generalized Hooke's Law 329
I.8 Kelvin and Maxwell Models 330
I.9 Generalized Maxwell Model 331