Contents

Preface XI

1 Introduction 1
1.1 A Nano History of Molecular Magnetism 1
1.2 Molecules, Conductors, and Magnets 4
1.3 Origin of Molecular Magnetism 5
1.4 Playing with the Periodic Table 7
1.5 p Magnetic Orbitals 7
1.6 d Magnetic Orbitals 10
1.7 f Magnetic Orbitals 13
1.8 The Goals of Molecular Magnetism 14
1.9 Why a Book 15
1.10 Outlook 16
1.11 The Applications of Ln 18
1.12 Finally SI versus emu 21
References 22

2 Electronic Structures of Free Ions 25
2.1 The Naked Ions 25
2.2 Spin–Orbit Coupling 28
2.3 Applying a Magnetic Field 31
References 32

3 Electronic Structure of Coordinated Ions 33
3.1 Dressing Ions 33
3.2 The Crystal Field 35
3.3 The aquo Ions 38
3.4 The Angular Overlap Model 40
3.5 The Lantanum(III) with Phthalocyanine (Pc) and PolyOxoMetalates (POM) 42
3.6 Introducing Magnetic Anisotropy 47
References 49
4 Coordination Chemistry and Molecular Magnetism 51
 4.1 Introduction 51
 4.2 Pyrazolylborates 52
 4.3 Phthalocyanines 53
 4.4 Cyclopentadiene and Cyclooctatetraene 54
 4.5 Polyoxometalates (POMs) 56
 4.6 Diketonates 58
 4.7 Nitronyl-nitroxides (NITs) 60
 4.8 Carboxylates 62
 4.9 Schiff Bases 62
References 65

5 Magnetism of ions 69
 5.1 The Curie Law 69
 5.2 The Van Vleck Equation 72
 5.3 Anisotropy Steps in 75
References 82

6 Molecular Orbital of Isolated Magnetic Centers 83
 6.1 Moving to MO 83
 6.2 Correlation Effects 84
 6.3 DFT 87
 6.4 The Complexity of Simple 88
 6.5 DFT and Single Ions 90
 6.6 DOTA Complexes, Not Only Contrast 93
References 96

7 Toward the Molecular Ferromagnet 99
 7.1 Introduction 99
 7.2 A Road to Infinite 102
 7.3 Magnetic Interactions 104
 7.4 Introducing Interactions: Dipolar 110
 7.5 Spin Hamiltonians 113
 7.6 The Giant Spin 114
 7.7 Single Building Block 115
 7.8 Multicenter Interactions 115
 7.9 Noncollinearity 117
 7.10 Introducing Orbital Degeneracy 119
References 124

8 Molecular Orbital of Coupled Systems 127
 8.1 Exchange and Superexchange 127
 8.2 Structure and Magnetic Correlations: d Orbitals 129
 8.3 Quantum Chemical Calculations of SH Parameters 130
 8.4 Copper Acetate! 132
13 Single Ion Magnet (SIM) 217
 13.1 Why Single 217
 13.2 Slow Relaxation in Ho in Inorganic Lattice 218
 13.3 Quantum Tunneling of the Magnetization: the Role of Nuclei 219
 13.4 Back to Magnets 222
 13.5 The Phthalocyanine Family: Some More Chemistry 223
 13.6 The Anionic Double Decker 224
 13.7 CF Aspects 225
 13.8 The Breakthrough 226
 13.9 Multiple Deckers 229
 13.10 The Polyoxometalate Family 231
 13.11 More SIM 233
 13.12 Perspectives 235
 References 236

14 SMM with Lanthanides 239
 14.1 SMM with Lanthanides 239
 14.2 More Details on SMM with Lanthanides 245
 14.3 New Opportunities 247
 References 249

15 Single Chain Magnets (SCM) and More 251
 15.1 Why 1D 251
 15.2 The Glauber Model 253
 15.3 SCM: the d and p Way 257
 15.4 Spin Glass 259
 15.5 Noncollinear One-dimensional Systems 260
 15.6 f Orbitals in Chains: Gd 262
 15.7 f Orbitals in Chains: Dy 266
 15.8 Back to Family 271
 References 274

16 Magic Dysprosium 277
 16.1 Exploring Single Crystals 277
 16.2 The Role of Excited States 282
 16.3 A Comparative Look 289
 16.4 Dy as a Perturbation 292
 References 293

17 Molecular Spintronics 295
 17.1 What? 295
 17.2 Molecules and Mobile Electrons 297
 17.3 Of Molecules and Surfaces 302
 17.4 Choosing Molecules and Surfaces 305
 17.5 Is it Clean? 307
17.6 X-Rays for Magnetism 308
17.7 Measuring Magnetism on Surfaces 310
17.8 Transport through Single Radicals 311
17.9 Pc Family 314
17.10 Mn$_{12}$ Forever 317
17.11 Hybrid Organic and f Orbitals 318
17.12 Magnetically Active Substrates 319
17.13 Using Nuclei 321
17.14 Some Device at Last 324
References 325

18 Hunting for Quantum Effects 329
18.1 From Classic to Quantum 329
18.2 Basic QIP 331
18.3 A Detour 334
18.4 Endohedral Fullerenes 335
18.5 Criteria for QIP 338
18.6 Starting from Inorganic 340
18.7 Molecular Rings 341
18.8 V$_{15}$ 346
18.9 Qubit Manipulation 347
18.10 Some Philosophy 347
References 348

19 Controlling the Growth 351
19.1 Introduction 351
19.2 Metal–Organic Frameworks MOFs 352
19.3 From Nano to Giant 358
19.4 Molybdates 358
19.5 To the Limit 360
19.6 Controlling Anisotropy 363
19.7 Cluster with Few Lanthanides 365
19.8 Analyzing the Magnetic Properties 366
19.9 Two-Dimensional Structures 369
References 371

20 ESR 375
20.1 A Bird’s Eye View of ESR of Ln 375
20.2 Gd in Detail 376
20.3 Gd with Radicals 379
20.4 Including Orbit 381
20.5 Involving TM 384
20.6 Ln Nicotinates 388
20.7 Measuring Distances 391
References 392