Contents

Preface xiii
About the Authors xiv

1 The History of Wind Energy
Jos Beurskens

1.1 Introduction 1
1.2 The First Windmills: 600–1890 2
 1.2.1 Technical Development of the First Horizontal Windmills 5
1.3 Generation of Electricity using Wind Farms: Wind Turbines 1890–1930 10
1.4 The First Phase of Innovation: 1930–1960 16
1.5 The Second Phase of Innovation and Mass Production: 1960 to Today 25
 1.5.1 The State-Supported Development of Large Wind Turbines 28
 1.5.2 The Development of Smaller Wind Turbines 36
 1.5.3 Wind Farms, Offshore and Grid Connection 38
 1.5.4 International Grids 41
 1.5.5 To Summarise 43
References 43

2 The International Development of Wind Energy
Klaus Rave

2.1 The Modern Energy Debate 45
2.2 The Reinvention of the Energy Market 48
2.3 The Importance of the Power Grid 50
2.4 The New Value-added Chain 53
2.5 International Perspectives 55
2.6 Expansion into Selected Countries 58
2.7 The Role of the EU 59
2.8 International Institutions and Organisations 61
 2.8.1 Scenarios 64
2.9 Global Wind Energy Outlook 2012 – The Global View into the Future 65
 2.9.1 Development of the Market in Selected Countries 65
2.10 Conclusion 71
References 71

3 Wind Resources, Site Assessment and Ecology 73
Hermann van Radecke

3.1 Introduction 73
3.2 Wind Resources
 3.2.1 Global Wind Systems and Ground Roughness 73
 3.2.2 Topography and Roughness Length 75
 3.2.3 Roughness Classes 76
 3.2.4 Contour Lines and Obstacles 79
 3.2.5 Wind Resources with WASP, WindPRO, Windfarmer 81
 3.2.6 Correlating Wind Potential with Mesoscale Models and Reanalysis Data 84
 3.2.7 Wind in the Wind Farm 90
 3.2.8 Wind Frequency Distribution 95
 3.2.9 Site Classification and Annual Energy Production 96
 3.2.10 Reference Yield and Duration of Increased Subsidy 99
3.3 Acoustics 101
 3.3.1 The dB(A) Unit 101
 3.3.2 Sources of Noise 103
 3.3.3 Propagation through the Air 105
 3.3.4 Emission Site and Benchmarks 105
 3.3.5 Frequency Analysis, Tone Adjustment and Impulse Adjustment 106
 3.3.6 Methods of Noise Reduction 106
 3.3.7 Regulations for Minimum Distances 107
3.4 Shadow 107
3.5 Turbulence
 3.5.1 Turbulence from Surrounding Environment 110
 3.5.2 Turbulence Attributed to Turbines 111
3.6 Two Comprehensive Software Tools for Planning Wind Farms 111
3.7 Technical Guidelines, FGW Guidelines and IEC Standards 112
3.8 Environmental Influences Bundes-Immissionsschutzgesetz (Federal Emission Control Act) and Approval Process 113
 3.8.1 German Emission Protection Law (BImSchG) 114
 3.8.2 Approval Process 115
 3.8.3 Environmental Impact Assessment (EIA) 115
 3.8.4 Specific Aspects of the Process 118
 3.8.5 Acceptance 121
 3.8.6 Monitoring and Clarifying Plant-Specific Data 121
3.9 Example Problems 121
3.10 Solutions to the Problems 123
References 124
4 Aerodynamics and Blade Design 126
Alois Schaffarczyk

4.1 Summary 126
4.2 Horizontal Plants 126
 4.2.1 General 126
 4.2.2 Basic Aerodynamic Terminology 127
4.3 Integral Momentum Theory 130
 4.3.1 Momentum Theory of Wind Turbines: the Betz Limiting Value 130
 4.3.2 Changes in Air Density with Temperature and Altitude 132
 4.3.3 Influence of the Finite Blade Number 133
 4.3.4 Swirl Losses and Local Optimisation of the Blades According to Glauert 134
 4.3.5 Losses Due to Profile Drag 136
4.4 Momentum Theory of the Blade Elements 137
 4.4.1 The Formulation 137
 4.4.2 Example of an Implementation: WT-Perf 139
 4.4.3 Optimisation and Design Rules for Blades 139
 4.4.4 Extension of the Blade Element Method: The Differential Formulation 140
 4.4.5 Three-Dimensional Computational Fluid Dynamics (CFD) 141
 4.4.6 Summary: Horizontal Plants 142
4.5 Vertical Plants 142
 4.5.1 General 142
 4.5.2 Aerodynamics of H Rotors 144
 4.5.3 Aeroelastics of Vertical Axis Rotors 149
 4.5.4 A 50 kW Rotor as an Example 150
 4.5.5 Design Rules for Small Wind Turbines According to H-Darrieus Type A 150
 4.5.6 Summary: Vertical Rotors 151
4.6 Wind-Driven Vehicles with a Rotor 151
 4.6.1 Introduction 151
 4.6.2 On the Theory of Wind-Driven Vehicles 152
 4.6.3 Numerical Example 153
 4.6.4 The Kiel Design Method 153
 4.6.5 Evaluation 154
 4.6.6 Completed Vehicles 155
 4.6.7 Summary: Wind Vehicles 156
4.7 Exercises 157
References 158

5 Rotor Blades 162
Lothar Dannenberg

5.1 Introduction 162
5.2 Loads on Rotor Blades 163
 5.2.1 Types of Loads 163
 5.2.2 Fundamentals of the Strength Calculations 165
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.3 Cross-Sectional Values of Rotor Blades</td>
<td>167</td>
</tr>
<tr>
<td>5.2.4 Stresses and Deformations</td>
<td>172</td>
</tr>
<tr>
<td>5.2.5 Section Forces in the Rotor Blade</td>
<td>176</td>
</tr>
<tr>
<td>5.2.6 Bending and Inclination</td>
<td>178</td>
</tr>
<tr>
<td>5.2.7 Results According to Beam Theory</td>
<td>179</td>
</tr>
<tr>
<td>5.3 Vibrations and Buckling</td>
<td>180</td>
</tr>
<tr>
<td>5.3.1 Vibrations</td>
<td>180</td>
</tr>
<tr>
<td>5.3.2 Buckling and Stability Calculations</td>
<td>183</td>
</tr>
<tr>
<td>5.4 Finite Element Calculations</td>
<td>184</td>
</tr>
<tr>
<td>5.4.1 Stress Calculations</td>
<td>184</td>
</tr>
<tr>
<td>5.4.2 FEM Buckling Calculations</td>
<td>185</td>
</tr>
<tr>
<td>5.4.3 FEM Vibration Calculations</td>
<td>186</td>
</tr>
<tr>
<td>5.5 Fibre-Reinforced Plastics</td>
<td>187</td>
</tr>
<tr>
<td>5.5.1 Introduction</td>
<td>187</td>
</tr>
<tr>
<td>5.5.2 Materials (Fibres, Resins, Additives, Sandwich Materials)</td>
<td>188</td>
</tr>
<tr>
<td>5.5.3 Laminates and Laminate Properties</td>
<td>192</td>
</tr>
<tr>
<td>5.6 Production of Rotor Blades</td>
<td>195</td>
</tr>
<tr>
<td>5.6.1 Structural Parts of the Rotor Blades</td>
<td>195</td>
</tr>
<tr>
<td>5.6.2 Composite Manufacturing Methods</td>
<td>198</td>
</tr>
<tr>
<td>5.6.3 Assembly of the Rotor Blade</td>
<td>199</td>
</tr>
<tr>
<td>References</td>
<td>200</td>
</tr>
</tbody>
</table>

6 The Drive Train

Sönke Siegfriedsen

6.1 Introduction | 202 |
6.2 Blade Angle Adjustment Systems | 203 |
6.3 Wind Direction Tracking | 209 |
 6.3.1 General | 209 |
 6.3.2 Description of the Function | 209 |
 6.3.3 Components | 210 |
 6.3.4 Variations in Wind Direction Tracking Arrangements | 213 |
6.4 Drive Train Components | 215 |
 6.4.1 Rotor Locking and Rotor Rotating Arrangements | 216 |
 6.4.2 Rotor Shaft and Mountings | 217 |
 6.4.3 Gears | 220 |
 6.4.4 Brake and Coupling | 223 |
 6.4.5 Generator | 225 |
6.5 Drive Train Concepts | 227 |
 6.5.1 Direct-Driven – Double Mounting | 228 |
 6.5.2 Direct-Driven – Torque Support | 230 |
 6.5.3 One–Two Step Geared Drives – Double Bearings | 232 |
 6.5.4 One–Two Step Geared Drives – Torque Support | 234 |
 6.5.5 Three–Four Step Geared Drives – Double Mountings | 235 |
 6.5.6 Three–Four Step Geared Drives – Three-Point Mountings | 237 |
 6.5.7 Three–Four Step Geared Drives – Torque Support | 239 |
6.6 Damage and Causes of Damage | 240 |
7 Tower and Foundation
Torsten Faber

7.1 Introduction 253
7.2 Guidelines and Standards 255
7.3 Tower Loading
7.3.1 Fatigue Loads 255
7.3.2 Extreme Loads 257
7.4 Verification of the Structure
7.4.1 Proof of Load Capacity 258
7.4.2 Proof of Fitness for Use 259
7.4.3 Proof of Foundation 259
7.4.4 Vibration Calculations (Eigen Frequencies) 260
7.5 Design Details
7.5.1 Door Openings in Steel Tube Towers 262
7.5.2 Ring Flange Connections 262
7.5.3 Welded Connections 262
7.6 Materials for Towers
7.6.1 Steel 263
7.6.2 Concrete 263
7.6.3 Timber 264
7.6.4 Glass Fibre-Reinforced Plastic 265
7.7 Model Types
7.7.1 Tubular Towers 265
7.7.2 Lattice Masts 266
7.7.3 Guyed Towers 266
7.8 Foundations for Onshore WTs
7.8.1 Force of Gravity 267
7.8.2 Piles 267
7.8.3 Cables 267
7.9 Exercises 268
7.10 Solutions 269
References 272

8 Power Electronics and Generator Systems for Wind Turbines
Friedrich W. Fuchs

8.1 Introduction 273
8.2 Single-Phase AC Voltage and Three-Phase AC Voltage Systems 275
8.3 Transformer 278
8.3.1 Principle and Calculations 278
8.3.2 Equivalent Circuit Diagram, Phasor Diagram 279
10 Grid Integration

Sven Wanser and Frank Ehlers

10.1 Energy Supply Grids in Overview
10.1.1 General
10.1.2 Voltage Level of Electrical Supply Grids
10.1.3 Grid Structures

10.2 Grid Control
10.2.1 Controlling the Power Range
10.2.2 Compensating Power and Balancing Grids
10.2.3 Base Load, Medium Load and Peak Load
10.2.4 Frequency Stability
10.2.5 Primary Control, Secondary Control and Tertiary Control
10.2.6 Voltage Stability
10.2.7 System Services by means of Wind Turbines

10.3 Basic Terminology of Grid Integration of Wind Turbines
10.3.1 Basic Electrical Terminology
10.3.2 Grid Quality

10.4 Grid Connections for WTs
10.4.1 Rating the Grid Operating Media
10.4.2 Checking the Voltage Changes/Voltage Band
10.4.3 Checking the Grid Reaction ‘Fast Voltage Change’
10.4.4 Checking the Short-Circuit Strength

10.5 Grid Connection of WTs
10.5.1 Switchgear
10.5.2 Protective Equipment
10.5.3 Integration into the Grid System

10.6 Further Developments in Grid Integration and Outlook
10.6.1 Grid Expansion
10.6.2 Load Displacement
10.6.3 Energy Storage

References

11 Offshore Wind Energy

Lothar Dannenberg

11.1 Offshore Wind Turbines
11.1.1 Introduction
11.1.2 Differences between Offshore and Onshore WTs
11.1.3 Environmental Conditions and Nature Protection
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2 Currents and Loads</td>
<td>409</td>
</tr>
<tr>
<td>11.2.1 Currents</td>
<td>409</td>
</tr>
<tr>
<td>11.2.2 Current Loads</td>
<td>410</td>
</tr>
<tr>
<td>11.2.3 Vortex Shedding of Bodies Subject to Flows</td>
<td>412</td>
</tr>
<tr>
<td>11.3 Waves, Wave Loads</td>
<td>413</td>
</tr>
<tr>
<td>11.3.1 Wave Theories</td>
<td>413</td>
</tr>
<tr>
<td>11.3.2 Superposition of Waves and Currents</td>
<td>423</td>
</tr>
<tr>
<td>11.3.3 Loads Due to Waves (Morison Method)</td>
<td>425</td>
</tr>
<tr>
<td>11.4 Swell</td>
<td>430</td>
</tr>
<tr>
<td>11.4.1 Regular Swell</td>
<td>430</td>
</tr>
<tr>
<td>11.4.2 Irregular or Natural Swells</td>
<td>430</td>
</tr>
<tr>
<td>11.4.3 Statistics</td>
<td>431</td>
</tr>
<tr>
<td>11.4.4 Swell Spectra</td>
<td>432</td>
</tr>
<tr>
<td>11.4.5 Influence of Currents</td>
<td>436</td>
</tr>
<tr>
<td>11.4.6 Long-Term Statistics of the Swell</td>
<td>436</td>
</tr>
<tr>
<td>11.4.7 Extreme Waves</td>
<td>436</td>
</tr>
<tr>
<td>11.5 Scouring Formation, Growth, Corrosion and Ice</td>
<td>437</td>
</tr>
<tr>
<td>11.5.1 Scouring</td>
<td>437</td>
</tr>
<tr>
<td>11.5.2 Marine Growth</td>
<td>438</td>
</tr>
<tr>
<td>11.5.3 Ice Loads</td>
<td>439</td>
</tr>
<tr>
<td>11.5.4 Corrosion</td>
<td>439</td>
</tr>
<tr>
<td>11.6 Foundations for OWTs</td>
<td>441</td>
</tr>
<tr>
<td>11.6.1 Introduction</td>
<td>441</td>
</tr>
<tr>
<td>11.6.2 Fixed Foundations</td>
<td>442</td>
</tr>
<tr>
<td>11.6.3 Floating Foundations</td>
<td>447</td>
</tr>
<tr>
<td>11.6.4 Operating Strength</td>
<td>448</td>
</tr>
<tr>
<td>11.7 Soil Mechanics</td>
<td>450</td>
</tr>
<tr>
<td>11.7.1 Introduction</td>
<td>450</td>
</tr>
<tr>
<td>11.7.2 Soil Properties</td>
<td>450</td>
</tr>
<tr>
<td>11.7.3 Calculation of Load-Bearing Behaviour of the Sea Bed</td>
<td>451</td>
</tr>
<tr>
<td>References</td>
<td>454</td>
</tr>
<tr>
<td>Index</td>
<td>455</td>
</tr>
</tbody>
</table>