Contents

Series Editor's Preface XIII
About the Series Editor XV
About the Volume Editors XVII
List of Contributors XIX

1 Key Materials for Low-Temperature Fuel Cells: An Introduction 1
Bradley P. Ladewig, Benjamin M. Asquith, and Jochen Meier-Haack
Reference 2

2 Alkaline Anion Exchange Membrane Fuel Cells 3
Rhodri Jervis and Daniel J.L. Brett
2.1 Fuel Cells 3
2.2 PEM Fuel Cell Principles 4
2.2.1 Equilibrium Kinetics 4
2.2.2 Butler-Volmer Kinetics 7
2.2.3 Exchange Current Density 8
2.2.4 The Fuel Cell Polarization Curve 10
2.3 Alkaline Fuel Cells 11
2.3.1 The ORR Mechanism 12
2.3.2 The HOR in Alkaline 13
2.3.3 The Aqueous Electrolyte AFC 15
2.3.4 The AAEM Fuel Cell 16
2.3.4.1 AAEM Principles 16
2.3.4.2 Alkaline Membranes 17
2.3.4.3 AAEM Fuel Cell Examples 19
2.4 Summary 25
References 26

3 Catalyst Support Materials for Proton Exchange Membrane Fuel Cells 33
Xin Wang and Shuangyin Wang
3.1 Introduction 33
3.2 Current Status of Support Materials and Role of Carbon as Support in Fuel Cells 34
3.3 Novel Carbon Materials as Electrocatalyst Support for Fuel Cells 35
3.3.1 Mesoporous Carbon as Support Materials for Fuel Cells 35
3.3.2 Graphite Nanofibers as Support Materials for Fuel Cells 39
3.3.3 Carbon Nanotubes as Support Materials for Fuel Cells 42
3.3.4 Graphene as Support Materials for Fuel Cells 49
3.3.5 Nitrogen-Doped Carbon Materials 52
3.4 Conductive Metal Oxide as Support Materials 54
3.5 Metal Carbides and Metal Nitrides as Catalyst Supports 56
3.6 Conducting Polymer as Support Materials for Fuel Cells 57
3.7 Conducting Polymer-Grafted Carbon Materials 58
3.8 3M Nanostructured Thin Film as Support Materials for Fuel Cells 59
3.9 Summary and Outlook 60
References 61

4 Anode Catalysts for Low-Temperature Direct Alcohol Fuel Cells 69
Wenzhen Li
4.1 Introduction 69
4.2 Anode Catalysts for Direct Methanol Fuel Cells: Improved Performance of Binary and Ternary Catalysts 71
4.2.1 Principles of Direct Methanol Fuel Cells 71
4.2.2 Reaction Mechanisms and Catalysts for Methanol Electrooxidation 71
4.3 Anode Catalysts for Direct Ethanol Fuel Cells: Break C–C Bond to Achieve Complete 12-Electron-Transfer Oxidation 73
4.3.1 Principles of PEM-Direct Ethanol Fuel Cells 74
4.3.2 Reaction Mechanisms and Catalysts for Ethanol Electrooxidation 74
4.3.3 Anion Exchange Membrane-Based Direct Ethanol Fuel Cells (AEM-DEFCs) 77
4.3.4 Anode Catalysts for AEM-DEFCs 78
4.4 Anode Catalysts for Direct Polyol Fuel Cells (Ethylene Glycol, Glycerol): Cogenerate Electricity and Valuable Chemicals Based on Anion Exchange Membrane Platform 79
4.4.1 Overview of Electrooxidation of Polyols 79
4.4.2 Reaction Mechanisms and Catalysts for Ethylene Glycol Electrooxidation 81
4.4.3 Reaction Mechanisms and Catalysts for Glycerol Electrooxidation 82
4.5 Synthetic Methods of Metal Electrocatalysts 84
4.5.1 Impregnation Method 86
4.5.2 Colloidal Method 87
4.5.2.1 Polyol Method 87
4.5.2.2 Organic-Phase Method 89
4.5.3 Microemulsion Method 90
4.5.4 Other Methods 90
4.6 Carbon Nanomaterials as Anode Catalyst Support 91
4.6.1 Carbon Nanotubes 91
4.6.2 Carbon Nanofibers 94
8 Bioelectrochemical Systems 167
Falk Hamisch and Korneel Rabaey

- **8.1 Bioelectrochemical Systems and Bioelectrocatalysis** 167
- **8.2 On the Nature of Microbial Bioelectrocatalysis** 167
- **8.3 Microbial Electron Transfer Mechanisms** 169
 - **8.3.1 Direct Electron Transfer** 170
 - **8.3.2 Mediated Electron Transfer (MET)** 172
 - **8.3.2.1 MET Based on Secondary Metabolites** 173
 - **8.3.2.2 MET Based on Primary Metabolites** 173
- **8.4 From Physiology to Technology: Microbial Bioelectrochemical Systems** 173
- **8.5 Application Potential of BES Technology** 175
- **8.6 Characterization of BESs and Microbial Bioelectrocatalysts** 176
 - **8.6.1 Electrochemical Methods** 176
 - **8.6.1.1 Polarization Curves** 176
 - **8.6.1.2 Voltammetry** 177
 - **8.6.1.3 Spectroelectrochemical and Further Techniques** 178
 - **8.6.2 Biological Methods** 178
- **8.7 Conclusions** 179

Acknowledgments
180

References
180

9 Materials for Microfluidic Fuel Cells 185
Seyed Ali Mousavi Shaegh and Nam-Trung Nguyen

- **9.1 Introduction** 185
- **9.2 Fundamentals** 187
- **9.3 Membraneless LFFC Designs and the Materials in Use** 190
 - **9.3.1 Flow Architecture and Fabrication of Flow-Over Design** 197
 - **9.3.2 Flow Architecture and Fabrication of Flow-Through Design** 200
 - **9.3.3 Flow Architecture and Fabrication of LFFC with Air-Breathing Cathode** 201
- **9.3.4 Performance Comparison** 203
- **9.4 Fuel, Oxidant, and Electrolytes** 203
 - **9.4.1 Fuel Types** 203
 - **9.4.2 Oxidant Types** 207
 - **9.4.3 Electrolyte Types** 208
- **9.5 Conclusions** 210

References
211

10 Progress in Electrocatalysts for Direct Alcohol Fuel Cells 215
Luhua Jiang and Gongquan Sun

- **10.1 Introduction** 215
- **10.2 Developing an Effective Method to Prepare Electrocatalysts** 216
 - **10.2.1 Carbon-Supported Platinum** 216
 - **10.2.2 Carbon-Supported Platinum—Ruthenium** 217