Contents

Preface XI
List of Contributors XIII

1 Synthesis of Polymer Nanocomposites: Review of Various Techniques 1
Joel Fawaz and Vikas Mittal
1.1 Introduction 1
1.2 Synthesis Methods 4
1.2.1 Melt Intercalation 4
1.2.2 Exfoliation Adsorption 9
1.2.2.1 Solution Intercalation 9
1.2.2.2 Emulsion Polymerization 11
1.2.3 In Situ Polymerization 16
1.2.4 Nontraditional Methods 23
References 26

2 Masterbatch Approach to Generate HDPE/CPE/Graphene Nanocomposites 31
Ali U. Chaudhry and Vikas Mittal
2.1 Introduction 31
2.2 Experimental 33
2.2.1 Materials 33
2.2.2 Preparation of Graphite Oxide and Graphene Oxide 34
2.2.3 Nanocomposite Generation 35
2.2.4 Material Characterization 36
2.3 Results and Discussion 37
2.4 Conclusions 47
Acknowledgments 48
References 48
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Preparation and Applications of Hydroxyapatite Nanocomposites Based on Biodegradable and Natural Polymers</td>
<td>Pau Turon, Luis J. del Valle, Carlos Alemán, and Jordi Puiggali</td>
<td>51</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Preparation of HAp Nanocrystals</td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>3.3</td>
<td>Preparation of HAp Nanocomposites</td>
<td></td>
<td>58</td>
</tr>
<tr>
<td>3.4</td>
<td>Applications of HAp/DNA Nanocomplexes as Gene Carriers</td>
<td></td>
<td>61</td>
</tr>
<tr>
<td>3.5</td>
<td>Tissue Engineering Applications of HAp Nanocomposites Based on Biodegradable Polymers</td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>3.6</td>
<td>Applications of HAp Nanocomposites Based on Biodegradable Polymers as Drug Delivery Systems</td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>3.7</td>
<td>Miscellaneous Applications of HAp Nanocomposites Based on Biodegradable Polymers</td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>3.8</td>
<td>Concluding Remarks</td>
<td></td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>Synthetic Methods for Nanocomposites Based on Polyester Resins</td>
<td>Michał Kędzierski</td>
<td>87</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td></td>
<td>87</td>
</tr>
<tr>
<td>4.2</td>
<td>Nanocomposites with Zero-Dimensional Nanofillers</td>
<td></td>
<td>89</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Silicon-Containing Nanospheres</td>
<td></td>
<td>89</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Metal Oxides</td>
<td></td>
<td>91</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Other 0-D Nanoparticles</td>
<td></td>
<td>93</td>
</tr>
<tr>
<td>4.3</td>
<td>Nanocomposites with One-Dimensional Nanofillers</td>
<td></td>
<td>93</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Carbon Nanotubes and Nanofibers</td>
<td></td>
<td>93</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Cellulose Nanofibers</td>
<td></td>
<td>96</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Other 1-D Nanofillers</td>
<td></td>
<td>97</td>
</tr>
<tr>
<td>4.4</td>
<td>Nanocomposites with Two-Dimensional Nanofillers</td>
<td></td>
<td>97</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Layered Aluminosilicate Clays</td>
<td></td>
<td>97</td>
</tr>
<tr>
<td>4.4.1.1</td>
<td>Mixing Methods</td>
<td></td>
<td>98</td>
</tr>
<tr>
<td>4.4.1.2</td>
<td>Effects of the Clay Modification</td>
<td></td>
<td>99</td>
</tr>
<tr>
<td>4.4.1.3</td>
<td>Nanocomposites with MMT Introduced during the Synthesis of Pre-polymer</td>
<td></td>
<td>102</td>
</tr>
<tr>
<td>4.4.1.4</td>
<td>Various Properties and Multiphase Nanocomposites</td>
<td></td>
<td>103</td>
</tr>
<tr>
<td>4.4.1.5</td>
<td>Vinyl Ester–Clay Nanocomposites</td>
<td></td>
<td>106</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Layered Double Hydroxides</td>
<td></td>
<td>106</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Graphene-Based Nanofillers</td>
<td></td>
<td>107</td>
</tr>
<tr>
<td>4.5</td>
<td>Conclusions</td>
<td></td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>Abbreviations</td>
<td></td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td></td>
<td>110</td>
</tr>
</tbody>
</table>
5 Synthesis Fabrication and Characterization of Ag/CNT-Polymer Nanocomposites 115
Vijaya K. Rangari and Sanchit Dey

5.1 Introduction 115
5.2 Experimental Procedure 118
5.3 Results and Discussion 119
5.3.1 XRD analysis 119
5.3.2 Transmission Electron Microscopy 119
5.3.3 TGA Analysis of Nanoparticles 121
5.3.4 Thermal Response of the Polymer Composites 121
5.3.5 Compression Test Results of Polymer Composites 124
5.3.6 Flexure Test Results of Polymer Composites 125
5.4 Conclusion 127
Acknowledgments 127
References 127

6 Preparation and Characterization of PVDF-Based Nanocomposites 131
Derman Vatansever Bayramol, Tahir Shah, Navneet Soin, and Elias Siores

6.1 Synthesis of Poly(vinylidene fluoride) (PVDF) 131
6.2 Structure and Piezoelectric Properties of PVDF 131
6.2.1 Relationships and Equations 135
6.2.1.1 The Piezoelectric Charge Constant and Piezoelectric Voltage Constant 136
6.3 Processing of PVDF for Energy Harvesting Applications 137
6.4 Processing of PVDF Based Materials: Polymer/Polymer, Polymer/Nanofiller, Polymer/Ionomer Blends 138
6.5 PVDF Based Nanocomposites for Energy Harvesting Applications 139
6.6 Conclusion 140
References 141

7 In Situ Thermal, Photon, and Electron-Beam Synthesis of Polymer Nanocomposites 145
Luana Persano, Andrea Camposeo, Anna Maria Laera, Francesca Di Benedetto, Vincenzo Resta, Leander Tapfer, and Dario Pisignano

7.1 Introduction 145
7.2 Thermal-Assisted In Situ Synthesis: Material Choice and Nanocomposite Characterization 146
7.2.1 Precursor Molecules 146
7.2.1.1 Metal Salts 147
7.2.1.2 Organometallic Compounds 147
7.2.2 Thermal Synthesis and Composites Characterization 151
7.2.2.1 Microstructural Characterization 152
7.2.2.2 Optical Spectroscopy Experiments 154
VIII Contents

7.3 Fabrication of Nanocomposites and Patterning 155
 7.3.1 Nanocomposites by Photoirradiation 157
 7.3.1.1 UV and Visible Irradiation 157
 7.3.1.2 Multiphoton Irradiation 160
 7.3.2 Nanocomposites by Electron-Beam Writing 160
 7.3.3 Nanocomposite Polymer Fibers 165
 7.3.3.1 Photo-Assisted Synthesis 167
 7.3.3.2 Thermal-Assisted Synthesis 169
 7.4 Conclusions 171

Acknowledgments 172
References 172

8 Synthesis of Polymer Nanocomposites by Water-Assisted Extrusion 179
 Naïma Sallem-Idrissi, Michel Sclavons, and Jacques Devaux
 8.1 Introduction 179
 8.2 Nanocomposites Structure and Characterization 180
 8.2.1 Clays 180
 8.2.2 Organomodification of Layered Silicates 181
 8.2.3 Nanocomposites Structure and Characterization 182
 8.3 Nanocomposites Preparation 183
 8.3.1 Intercalation from Solution 183
 8.3.2 In Situ Polymerization 183
 8.3.3 Melt Compounding 184
 8.3.3.1 Melt Blending of Polymer/Organoclay Nanocomposites 184
 8.3.3.2 Melt Blending of Polymer/Pristine Clay Nanocomposites 186
 8.4 Nanocomposite Properties 195
 8.4.1 Thermal Stability 195
 8.4.2 Flame Retardancy 197
 8.5 Toward Fully Green Composites? 198

References 201

9 In Situ Preparation of Conducting Polymer Nanocomposites 211
 Liping Yang, Cher Ling Toh, and Xuehong Lu
 9.1 Introduction 211
 9.1.1 Electrically Conductive Polymer Nanocomposites and Their Applications 212
 9.1.2 Percolation Theory 213
 9.1.3 Factors Affecting the Electrical Conductivity of Nanocomposites 214
 9.1.3.1 Physical Properties of the Fillers 214
 9.1.3.2 Filler Distribution and Dispersion 216
 9.1.3.3 Physical Properties of Polymer Matrices 216
 9.1.3.4 Filler Orientation and Alignment 217
 9.1.3.5 Nanocomposite Fabrication Methods and Conditions 218