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Abstract

Model-checking allows one to formally check properties of systems: these prop-
erties are modeled as logic formulas and the systems as structures like transition
systems. These transition systems are often composed, i.e., they arise in form of
products or sums. The composition technique allows us to deduce the truth of a for-
mula in the composed system from “interface information”: the truth of formulas
for the component systems and information in which components which of these
formulas hold. We are interested in identifying situations where the composition
technique works in the context of model-checking (reachability properties, linear
and branching time temporal logic) and, in these cases, how large the interface
information can become.

In the first main part of this thesis, we extend known results for synchronized
products of transition systems by showing a composition theorem for finitely
synchronized products and first-order logic (or modal logic) extended by regular
reachability over a unary alphabet. We further show that the composition technique
fails for two generalizations of the logic: in the general case of regular reachability
and in the case of propositional dynamic logic over a unary alphabet. Furthermore,
it fails for synchronized products which are not finitely synchronized.

A known drawback of the composition technique is the growth of the size of
the generated interface information in relation to the given formula. Göller, Jung
and Lohrey have shown a non-elementary lower bound for this size in general
for first-order logic (for products) and modal logic (for disjoint ordered sums). In
the second and third part of this thesis, we look at combinations of logics and
systems where we can avoid this. In the second part, we show a composition
theorem for linear temporal logic (LTL) and disjoint ordered sums of words. A
careful analysis shows that, here, the size of the interface information only grows at
most exponential in the size of the given formula. In the third part, we generalize
this composition technique to a disjoint ordered sum of trees and computation tree
logic (CTL). Here, we deal with trees as components which are composed via a tree
structure. We show a composition result for which the interface information grows
exponentially in the size of the given formula and in the branching of the index tree
structure.
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Zusammenfassung

Model-Checking ermöglicht das formale Überprüfen von Eigenschaften von Syste-
men. Diese Eigenschaften werden als Logikformeln und die Systeme als Transiti-
onssysteme modelliert. Die Transitionssysteme sind häufig zusammengesetzt als
Produkte oder Summen. Die Kompositionstechnik leitet die Gültigkeit von Formeln
im zusammengesetzten System aus “Interfaceinformationen” ab: der Gültigkeit
von Formeln in den Komponenten des Systems sowie Informationen darüber, in
welchen Komponenten welche Formel gilt. Wir interessieren uns für Situationen, in
denen die Kompositionstechnik funktioniert und analysieren wie groß in diesen
Situationen die Interfaceinformationen werden können.

Im ersten Teil der Arbeit erweitern wir bekannte Resultate für synchronisierte
Produkte von Transitionssystemen indem wir einen Kompositionssatz für endlich
synchronisierte Produkte und First-Order Logic (oder Modal Logic) erweitert mit
regulärer Erreichbarkeit über einem einstelligen Alphabet zeigen. Weiter zeigen
wir, dass die Kompositionstechnik für zwei Erweiterungen der Logik fehlschlägt:
für reguläre Erreichbarkeit und für Propositional Dynamic Logic über einem ein-
elementigen Alphabet. Außerdem schlägt sie für synchronisierte Produkte fehl, die
nicht endlich synchronisiert sind.

Ein bekannter Nachteil der Kompositionstechnik ist das Wachstum der Größe der
Interfaceinformationen in Bezug zur gegebenen Formel. Göller, Jung und Lohrey
haben im Allgemeinen eine nicht-elementare untere Schranke für diese Größe
gezeigt. Im zweiten und dritten Teil der Arbeit betrachten wir Kombinationen
von Logiken und speziellen Systemen, bei denen wir dies verhindern können. Im
zweiten Teil zeigen wir einen Kompositionssatz für Linear Temporal Logic (LTL)
und disjunkte geordnete Summen von Wörtern. Eine gründliche Analyse zeigt, dass
die Größe der Interfaceinformationen hier exponentiell zur Größe der gegebenen
Formel wächst. Im dritten Teil verallgemeinern wir diese Kompositionstechnik auf
eine disjunkte geordnete Summe von Bäumen und Computation Tree Logic (CTL).
Hier ist jede Komponente ein Baum und im Allgemeinen auch die Struktur die zur
Verknüpfung der Komponenten dient. Wir zeigen einen Kompositionssatz, bei dem
die Interfaceinformationen exponentiell in der Länge der gegebenen Formel und in
der Verzweigung der Indexbaumstruktur wachsen.
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1 Introduction

Model-checking is a well-known formal method for hardware and software veri-
fication. It allows to formally check that a (hardware or software) systems meets
given requirements. Often, these systems are composed, i.e., they consist of com-
ponent systems which may work in sequence or in parallel and interact with each
other. While model-checking can be performed efficiently on the small component
systems, the composed system may become to large for efficient model-checking.
A natural idea, called composition technique, is to reduce the model-checking
problem for the composed system to model-checking problems for the components.
This thesis investigates settings where this composition technique works and also
shows where the boundaries for composition results are located.

In this introduction, we first give a more comprehensive overview of the model-
checking background. Afterwards, we present more details on the composition
technique and present our contribution to this approach. We conclude this chapter
with an overview of the thesis.

As mentioned above, model-checking allows to check that a system satisfies
desired properties. These properties are, e.g., deadlock freedom, invariants, reach-
ability of some state of the system or request-response conditions. Over the last
decades, formal methods for verification have become more and more important as
the impact of the reliance on IT systems has grown. They not only affect daily life as,
e.g., in mobile phones but also safety critical areas like medical systems, cars, planes
or nuclear plants. Starting from a theoretical framework – invented by Emerson and
Clarke in [CE81] and Queille and Sifakis in [QS82] – model-checking has become
a practical solution to formally check the correctness of systems which is used in
industry. An overview of the known results on the theoretical foundations can be
found in [CGP99, CS01, Mer01, BK08].

The approach of model-checking is a model-based, i.e., we work with formal
representations – models – of the system and the desired properties. As model for
the system, we usually use a transition system which consists in the simplest case
only of states and transitions between these states. A state encodes information
like, e.g., the current value of variables and the current line in a program. A
transition describes one possible continuation as time proceeds. Furthermore, the
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1 Introduction

desired properties have to be translated to a formal specification, described in a
logic. Usually some kind of temporal logic is used for the specification to express
correctness (“does the system do what it should?”), e.g., reachability (“is there a
way to a deadlock?”), safety (“does the system never end in a bad state?”), liveness
(“does the system finally end in a good state?”) and fairness (“does an event occur
repeatedly (under preconditions)?”).

In the classical model-checking setting, transition systems have a finite number
of states. A major task is the extension of model-checking to infinite transition
systems. Two approaches which try to reduce the size of a transition system in
general (and especially from infinite to finite) are abstraction and partial order
reduction (see, e.g., Chapters 7 and 8 in [BK08]). Roughly speaking, abstraction
combines equivalent states and partial order reduction reduces the number of
transitions for sequences where the order of the transitions is irrelevant, i.e., the
transitions are independent of each other.

We discuss here a third approach to reduce the size of a transitions system which
goes back to Feferman and Vaught [FV59] and Shelah [She75] in the area of model
theory. This approach has applications in computer science because large technical
systems are often combined of several smaller ones. In the model-checking area,
this means that we have (large) transition systems which consist of a composition
of smaller ones. These components may “run” one after the other, in parallel and
interact with each other. In this setting, a natural idea is to reduce the satisfaction
of a formula in the composed transition system to the satisfaction of formulas in
the components. This is the idea of the composition technique at which we look in
this thesis.

We mainly consider here two different sorts of composition: synchronized prod-
ucts and disjoint ordered sums. Synchronized products allow to express concur-
rency and interaction of programs by asynchronous and synchronized transitions.
(Asynchronous transitions are transitions in the product where only one component
changes its state and for synchronized transitions in several components transitions
are taken at the same time.) Disjoint ordered sums model the sequential execution
of programs.

As logics for the specification, we discuss first-order logic (FO) with and without
extensions, monadic second order logic (MSO) and temporal logics: linear-time
temporal logic (LTL), computation tree logic (CTL) and extensions of both.

We say that we have a composition theorem if we are able to reduce the satisfac-
tion of a formula in the product or sum of components to interface information. We
use this term for the satisfaction of a set of component formulas – formulas which are
interpreted in the components – and information about which of these component
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formulas have to hold in which components. We are only interested in situations
where we can also (algorithmically) compute the interface information. The aim of
this thesis is to find settings in which a composition theorem holds.

We pose the following two questions:

1. For which logics and compositions in the form of products or sums does a
composition theorem hold? To put it in another perspective: Where are the
limits of the composition technique?

2. How much information about the components and their relation do we need?
To be more precise: How “large” is the size of each component formula, the
size of the set of these formulas and how “large” is the information which
speaks about these formulas?

We now give an overview of the known results for both questions. As mentioned
above the results presented here have a background in model theory. This goes
back to work of Feferman and Vaught [FV59] in 1959 and Shelah [She75] in 1975.
They introduced composition techniques for general products, respectively sums,
of arbitrary (relational) structures (instead of only the special case of transition
systems). Feferman and Vaught [FV59] showed that the satisfaction of a formula ϕ

in a (generalized) product (or sum) can be deduced from FO formulas ϕ1, . . . , ϕm for
the component structures and a Boolean, respectively MSO formula β(X1, . . . , Xm)

interpreted in the index structure of the product (respectively sum). The formula
β(X1, . . . , Xm) describes in which of the components the formulas ϕ1, . . . , ϕm have
to hold. For the case of ordered disjoint sums of orderings, in [She75], Shelah
showed a composition theorem which captures MSO formulas in the sum (using
MSO logic for both the component formulas and the “index formula”). Many
variants of these results have since been developed, e.g., Gurevich and Shelah found
a composition theorem for sums of trees [GS85]. A good overview can be found
in [Mak04]. Further references are [GS79, Gur85, GS98, Hod97, Mos52, Tho97a].

For the area of model-checking, we now discuss the two questions from above –
first for products and then for sums of transition systems. For products, our focus
lies on the first question.

Note that the MSO theory of the successor structure of the natural numbers is
decidable but the MSO theory of the infinite binary grid – which can be seen as the
asynchronous product of two copies of the natural numbers – is undecidable. Thus,
the composition technique is not applicable for asynchronous products and MSO
logic. The question is where the boundary for the application of the composition
technique is located.

3



1 Introduction

In the literature, various extensions of first-order logic (and modal logic) over
transition systems have been discussed for the composition technique. We consider
here the following extensions:

• reachability by a path (abbreviated as R) – “there exists a path to a node at
which ϕ holds” (which corresponds to the CTL formula EFϕ),

• “there exists a path which satisfies ϕ on every node” (which corresponds to
the CTL formula EGϕ),

• regular reachability (abbreviated as RegR) – “there exists a path to a node
at which ϕ holds and the labeling sequence of this path is in a given regular
language” and

• the special case of regular reachability over a unary alphabet (abbreviated as
Reg1R) – this amounts to reachability augmented by modulo counting over
the path lengths.

We now present the known results for these logics for asynchronous, synchro-
nized and finitely-synchronized products. (The latter are synchronized products
where the number of synchronous transitions in the product is finite.)

We start with asynchronous products which contain no synchronization at all.
Rabinovich showed in [Rab07] a composition theorem for (multi-)modal logic
extended by reachability and asynchronous1 products. His proof also works for FO
logic extended by reachability. Sadly, this result does not hold even for the simplest
kind of (full) synchronization, namely the synchronous product of two components
– also shown in [Rab07]. For this, Rabinovich developed a formal proof technique
to show that there cannot be a composition theorem for a given logic formula and
product. (By applying his technique he also showed that, even for asynchronous
products, the composition technique fails for logics which can express the CTL
quantifier EG.)

As synchronization transitions and reachability are crucial points in model-
checking, attempts have been made to overcome the failure of the composition
technique for special cases. In [WT07], Wöhrle and Thomas found a composition
theorem for finitely synchronized products and FO(R) logic. We show here that
their result can be extended to capture also regular reachability over a unary
alphabet which is essentially the same as modulo counting over the path length.
Furthermore, we show – using a unified proof schema developed by Rabinovich –

1Asynchronous products of n components are called n-products in [Rab07].
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that the composition technique already fails for regular reachability2 over a binary
alphabet and also if we allow tests in the regular expressions over a unary alphabet.
We look at the general setting where we allow both the components to be finite or
infinite and also the number of components. A preliminary version of our results
can also be found in [Fel08] and [FT09]. As a side effect we also extend the known
results of [Rab07] and [WT07] from finite products of transition systems to infinite
products.

Recall the two questions from page 3. With the results from above, we have a
clearer view where the frontier of applicability of the composition technique lies
for products. We now look at the size of the decomposition, i.e., the size of the
interface information generated for a given formula by the composition technique.
It is defined as the sum over size of the formulas, their number and the size of
the formula for the index structure. The question of the size of the decomposition
has been discussed by Dawar, Grohe, Kreutzer and Schweikardt in [DGKS07] and
Göller, Jung and Lohrey in [GJL12]. In [GJL12], the authors found a non-elementary
lower bound for the number of formulas in the composition theorems, even for
products and modal logic, respectively for sums and first-order logic (with at least
three variables). Their proof technique relies on the fact that each state of the
underlying structures may have an unbounded out-degree of transitions.

The non-elementary size of the decomposition contrasts with an only exponential
size of information needed in an automaton-based composition result on words.
To check the acceptance of an ω-word w by a Büchi automaton A, we observe that
w must have the form w = w1w2 . . . with finite word segments w0, w1, . . . which
fulfill the following condition: With w0, we get from the initial state of A to a final
state and with each other wi from a final back to a final state. Thus, whether A
accepts w can be determined by the state transformations each wi defines. This
information is given by the set of all state pairs (p, q) ofA such thatA can go via wi

from p to q with, respectively without, passing a final state in-between. The number
of possible state transformations is of order 2n2

where n denotes the number of
states of A.

In this thesis, we get two similar composition results for logics (LTL, respectively
CTL) instead of automata on words, respectively on trees. This means, by restricting
the transition systems to words, respectively trees, and the logics from MSO to
LTL, respectively CTL, we are able to overcome the non-elementary blow-up of the
interface information (in relation to the size of the input formula) in the composition

2Note that the failure of the composition technique for regular reachability was already shown
in [WT07] using a reduction from the reachability problem for universal pushdown automata
with two stacks to the model-checking problem for FO(RegR).
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1 Introduction

technique. We get a composition theorem with a decomposition which has an
exponential size for both cases – LTL on words and CTL on trees.

Instead of looking at the whole set of all theoretically possible Hintikka formulas
as in the classical composition theorems of Feferman and Vaught, respectively
Shelah, our composition technique uses the special structure of the logics LTL and
CTL to reduce this number of formulas. We exploit that LTL and CTL can only
“look in the future” and that information like the satisfaction of an “Until” condition
may extend from the current component to “future” components.

We further discuss, why it will be either quite challenging or even impossible to
extended the latter result to CTL* over trees.

Overview of the Thesis

The thesis is divided into four main parts. The first part (Chapter 3) introduces
the composition method and reviews the classical results of Feferman and Vaught
on the one hand and Shelah on the other hand as well as a discussion on the
size of the decomposition. The second part (Chapter 4) contains a discussion
about the possible extensions of FO logic for which the composition technique
for products is applicable and where it fails. The third part (Chapter 5) presents
the new composition method for LTL over disjoint ordered sums of words and
the improvement in the size of the decomposition it involves. The fourth part
(Chapter 6) generalizes this method to CTL and trees. All parts are presented in a
way that they may be read independently of each other. However, for Chapter 6, it
is useful to also have the examples from the previous chapter in mind.

We now give a detailed overview of the thesis. We begin in Chapter 2 with basic
definitions. In Section 2.1, we define general structures and orderings, words, trees
and transition systems as specializations of them. We present index structures
and trees used for the definition of sums and products of structures. Then, we
define disjoint ordered sums of orderings. In the easiest case, the orderings are
labeled words and the sum can be seen as the concatenation of these words. We
further define disjoint ordered sums of trees which give us again trees. Then, we
define products of structures. In Section 2.2, we present the logics used in this
thesis: We start with modal logic (ML), first order logic (FO) and monadic second
order logic (MSO). We then consider the extensions of ML, respectively FO logic,
by the relations “reachable by a path”, “reachable by a modulo counting path” and
“reachable by a path which labeling sequence is in a regular language”. We further
give a definition of linear-time temporal logic (LTL), computation tree logic (CTL
and CTL*) and variations of them. In Section 2.3, we introduce the basic concept
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“interface information tuples” to speak about the satisfaction of formulas in the
components (called “component formulas”) of a product or sum via a formula
in the index structure (called “index formula”). This is done by describing, via
the index formula, in which components the component formulas have to hold.
The main usage of these tuples is in the composition theorems where they express
the conditions when a formula in a product or sum holds. However, they can be
also used to define further predicates and relations in the product. This is done
afterwards for the product definition of transition systems.

In Chapter 3, we first present the model-theoretic background of the composi-
tion technique, followed by the classical composition theorems by Feferman and
Vaught, respectively Shelah, and further, the known lower bounds for the size of
the decomposition found in the literature. We start in Section 3.1 with elementary
equivalence of structures and its description by Hintikka formulas for FO and MSO
logic. In Section 3.2, we then present the composition theorem for direct products of
(arbitrary relational) structures and FO logic and give a sketch of the proof. These
results go back to Feferman and Vaught who also showed a composition theorem
for a generalized version of product in [FV59]. We continue in Section 3.3 with
the classical composition theorem for disjoint ordered sums of orderings and MSO
logic by Shelah [She75]. For the composition theorems for products and sums, we
follow the presentations in [Hod97], respectively [Tho97a].

In Chapter 4, we focus on the composition technique for synchronized products
of transition systems. In Section 4.1, we first give a formal proof of the known
composition theorem for synchronized products of transition systems and FO logic
using our notation. We then present the necessary extensions of the structural
induction (used in the proof) to capture reachability by paths which are “able to
count modulo”. This is first done in Section 4.2 for asynchronous products and
afterwards, in Section 4.3, for finitely-synchronized products. These results extend
work of Rabinovich [Rab07] and Wöhrle and Thomas [WT07]. In Section 4.4, we
discuss the limits of the composition theorem for products. We give the proof
schema – developed by Rabinovich in [Rab07] – to show the failure of the compo-
sition technique for given sets of transition systems and a formula. We then use
his proof schema to show the failure of the composition technique in the following
cases. On the one hand, we show it for asynchronous products if the logic can
express reachability by a path with one of the following conditions: (a) the labels
of the path are in a regular language (over at least a binary alphabet) or (b) the
path fulfills a formula all the time (as in [Rab07]) or (c) the labels of the path are
in a regular language over a unary alphabet but allow tests. On the other hand,
we recap the proof of the failure for (unrestricted) synchronized products if the
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1 Introduction

logic can express reachability by a path from [Rab07]. In that sense, the results from
Section 4.3 are tight. We conclude the chapter in Section 4.5 with a summary on
the results of the composition technique for products. A preliminary version of the
results of this chapter can be found in the papers [Fel08, FT09].

In the next two chapters, our focus lies on sums. In Chapter 5, we show a
composition theorem for LTL over disjoint ordered sums of words. The main
difference to the general composition theorem for MSO logic and a disjoint ordered
sum of orderings is that we get a better complexity for the size of the interface
information. Note that LTL has the property that each (sub-)formula evaluated at a
current position in the word can only look at the positions following the current
position. By using this property we can restrict the number of possible formulas for
the current component as they depend on the formulas in the previous component.
Furthermore, we use an enriched formula for the index structure in the sense that
a part of the information of the given formula is also transferred to the formula
for the index structure. For example, an “Until”-condition translates into “Until”-
conditions over the components and an “Until”-condition over the index structure.
Technically, we use an inductive construction over both the subformulas and smaller
(sub-)sums – to be more precise, the sum starting from the next component. The
component formulas (for the interface information tuples) are only an exponential
extension of the closure of the given formula. We are able to show that the size of
the interface information tuples is only exponential – in comparison to the non-
elementary complexity in general – in the size of the closure of the given formula.

In Chapter 6, we generalize the results from the previous chapter to CTL and
a disjoint ordered sum of trees. We use trees with special symbols c1, c2, . . . in
the components. These marked trees are concatenated by replacing the symbols
c1, c2, . . . again with (marked) trees of the next components. All nodes with the
same special symbol are replaced by the same (or a CTL equivalent) tree. This
setting subsumes the different approaches of tree concatenation found in literature
and corresponds to the term “context” found, e.g., in [CDG+07]. We generalize
the proof from the previous chapter to show a composition theorem for CTL and
disjoint ordered sums of trees which has the same complexity. The main difference
is now that CTL formulas can speak over all paths or express that there is a path.
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2 Technical Preliminaries

In this chapter, we present the technical preliminaries for this thesis: we define
structures (Section 2.1) and logics (Section 2.2) and present “interface information
tuples” (Section 2.3) used in the composition technique. Let N denote the natural
numbers starting at 1 and N0 := N ∪ {0}. Furthermore, let [n] denote the set
{1, . . . , n} for n ∈N.

2.1 Structures

In this section, we give the basic definitions of the structures we use in this thesis.
Much of this material can also be found in [Hod97].

We begin with the definition of general structures and structures with an ordering
on their elements. Then, we consider special cases of structures: we first discuss
word models for finite and infinite words, which are labeled ordered structures.
Then, we look at trees and their models. Finally, we define transition systems which
are labeled graphs, i.e., structures with transition relations and unary predicates.
(The transition relations are binary relations between the elements (called states)
of the domain and the unary predicates labels of the states.) We conclude with
standard operations over structures: the disjoint ordered sum of words and trees
and the direct product of transition systems.

Structures are parametrized by a signature: a signature is a tuple σ = (C,F ,R)
consisting of a set of constant symbols C, function symbolsF and relational symbols
R. These are the labels for the constants, functions and relations which are to be
defined. We call σ finite, if C, F and R are finite sets. Furthermore, a relational
signature is a signature which has only relational symbols.

Definition 2.1. Given a signature σ = (C,F ,R), a σ-structure A is a tuple (A, {cA |
c ∈ C}, { fA | f ∈ F}, {RA | R ∈ R}) with

• a set A of elements, called the domain and written dom(A) = A,

• a constant cA for every constant symbol c ∈ C,

• a function fA for every function symbol f ∈ F and
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• a relation RA for every relation symbol R ∈ R.

We denote elements of A by a and write |A| for the cardinality of A. We call a
structure relational if its signature is relational. Let V and Σ be alphabets. For a
relational signature with only unary and binary relations, we use the notations Pv

for v ∈ V for the unary relations – also called predicates – and Ra for a ∈ Σ for the
binary relations.

To avoid misunderstandings, we use different constant, function and relation
symbols for different arities. Note that for an n-ary function symbol f we can intro-
duce a new (n+ 1)-ary relation symbol R f with R f (x1, . . . , xn+1)⇔ f (x1, . . . , xn) =

xn+1. From now on, we consider only relational structures. If not stated explicitly,
we assume finite signatures.

A linear order is a relation < over the domain A which is irreflexive, total and
transitive. An ordered structure or ordering is a structure with a linearly ordered
domain.

To speak about the indices of a product or sum of structures, we introduce the
notion index structure. Usually, we consider either the set of natural numbers N or
the set [n] for some n ∈N as index set.

Definition 2.2. An index structure Ind is a structure with countable set I (called
index set). An index ordering is an index structure Ind = (I,<Ind) where <I nd is a
linear order over the set I.

Words

We now define finite and infinite words and their word models for words over an
(in most cases k-ary Boolean) alphabet.

Definition 2.3. Given a (finite) alphabet Σ, a finite word w over Σ is defined as
w = a1 . . . an for n ∈ N and ai ∈ Σ. An infinite word w (also called ω-word) is
defined as a1a2 . . . with ai ∈ Σ for i ∈ N. We write Σ∗ and Σω for the set of finite
respectively infinite words.

Words over the alphabet Bk for some k ∈ N can be seen as ordered structures
extended by a labeling of the elements by k symbols:

Definition 2.4. A word model of a finite word w = a1 . . . an over the alphabet Σ = Bk

for k ∈ N is an ordered structure w = (domw, minw, maxw, Sucw,<w,Pw
1 , . . . , Pw

k )

with

• domain domw = [n],

12
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• minimal and maximal positions minw = 1, maxw = n

• a binary successor relation Sucw(i, j) that satisfies (i, j) ∈ Sucw ⇔ j = i + 1,

• the natural linear order i <w j and

• the unary predicate Pw
j (i) with i ∈ Pw

j ⇔ ai = (b1, . . . , bk)
T with bj = 1.

Word models for infinite words α ∈ Σω are defined analogously. For i ∈ domw we
write w[i] and w[i..] to denote the letter (as word model) at position i, respectively
the sub-word from position i onwards. We allow to omit the sub-, respectively
superscript w if it is clear from the context.

Example 2.1. Consider the word w =
(

0
1

)(
0
0

)(
1
1

)(
0
1

)
, then the domain of w is

{1, . . . , 4} with min = 1, max = 4 and P0(1) = P0(2) = P0(4) = 0, P0(3) = 1,
P1(2) = 0 and P1(1) = P1(3) = P1(4) = 1. For the ω-word

(
0
1

)(
1
1

)ω, we have as
domain N, P0(1) = 0, P1(1) = 1 and P0(i) = P1(i) = 1 for i ≥ 2.

Trees

A tree is a generalization of a word. In a tree, we have several successors for
a position (called node here). Given an alphabet Σ, a tree over Σ is a mapping
t : X → Σ with X ⊆ N∗, and X is closed under prefixes, i.e., xi ∈ X ⇒ x ∈
X ∧ ∀j < i : xj ∈ X. A tree has at most n successors if X ⊆ [n]∗.

Definition 2.5. Let t be a tree over Σ with domain X and at most n successors. The
tree model of t over Σ is the structure t = (domt,vt, Suct, {Suct

i | i ∈ [n]}, valt) with

• (prefix-closed) domain domt = X ⊆ [n]∗,

• successor relation Suct(x, y) that satisfies (x, y) ∈ Suct ⇔ ∃i : y = xi,

• i-th successor relation Suct
i(x, y) that satisfies (x, y) ∈ Suct

i ⇔ y = xi,

• x vt y that satisfies x vt y⇔ y = xw for some w ∈ [n]∗ and

• the value (or labeling) function valt : domt → Σ with valt(x) = t(x).

For a tree model over Σ = Bk, we often use predicates Pt
1, . . . , Pt

k instead of the
value function where Pt

j (x) holds iff t(x) = (b1, . . . , bk)
T and bj = 1. A tree model

for a tree with an unrestricted number of successors is defined with domt ⊆N∗ and an
ordering ≺ over the successors of a node instead of the relations Suct

i : x ≺t y iff
x = ui, y = uj for a u ∈ domt and i < j.
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Again, we allow to omit the sub- and superscript t. To simplify notation, from
now on, we also allow to write “tree” instead of tree model. Note that in contrast to
common definitions as, e.g., in [CDG+07], in our definition, the arity of a tree node
does not depend on the label of the node.

To prepare the composition of trees out of given trees, we introduce trees which
may have leaf nodes with labels of a special alphabet Ci with |Ci| = i for i ∈ N.
(The trees may also have normal leaves from Σ.) We call these trees marked by the
symbols cj ∈ Ci. The idea of the composition of a marked tree with trees over Σ is to
replace all nodes labeled with letters from Ci with the Σ-labeled trees. We force that
each letter of Ci has to be used at least at one leaf and that leaves with the same letter
c ∈ Ci have to be replaced with the same tree. Note that this is a generalization of
“special tree” and “context” found in literature (compare e.g. [CDG+07]). Special
trees (as used e.g. in the definition of regular tree languages) only allow exactly one
node labeled by one special symbol, whereas contexts allow each symbol of C to
occur only exactly once. We now give the definition of a marked tree:

Definition 2.6. Let C := {ci | i ∈ N} be an infinite alphabet of special symbols
and Ci denote the initial fragment {c1, . . . , ci} for i ∈N and C0 := ∅. A Ci-marked
tree t (also called i-marked tree) is a tree over the alphabet Σ∪̇Ci with the following
conditions:

• only leaf nodes can be labeled by Ci, i.e., ∀u valt(u) ∈ Ci ⇒ ¬∃j uj ∈ domt,

• each c ∈ Ci occurs at least at one leaf, i.e., ∀c ∈ Ci ∃u valt(u) = c and

• the root is not labeled with a special letter, valt(ε) 6∈ Ci.

A marked tree is a Ci-marked tree for some i ∈ N0. Note that by definition a tree
over Σ is also a marked tree; it is ∅-marked. (We call a tree strictly marked if we
want to exclude this case.) For the alphabet Bk∪̇Ci (of a Ci-marked tree), we use the
set of predicates {P1, . . . , Pk} ∪ {Pc | c ∈ Ci} instead of the value function valt.

Definition 2.7. We define T[Σ] as the set of all trees over the alphabet Σ, Ti[Σ; C] as
the set of all Ci-marked trees with Ci ⊆ C and T[Σ; C] as the set of all marked trees, i.e.,
T[Σ; C] =

⋃∞
i:=0 Ti[Σ; C].

Example 2.2. We consider the following trees tε, t1, t2, t21 ∈ T[Σ; C] from Figure 2.1.
The tree tε is in T2[Σ; C] because it contains leaves which are labeled with c1 and c2.
The tree t2 is in T1[Σ; C] and the trees t1, t21 are in T0[Σ; C].
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tε: {p}

{p, q}

{q} ∅

c1 c1 c2

t1: {p}

{q}

t2: {p}

c1 c1

t21: {q}

Figure 2.1: Trees from Example 2.2

Given a Ci-marked tree t and i trees t1, . . . , ti ∈ T[Σ], we get a new Σ-labeled
tree by replacing all cj-labeled nodes in t with the tree tj for all j ∈ [i] (see also
Figure 2.2). We call this process tree concatenation.

t

c1

t1

c1

t1

. . . ci

ti

Figure 2.2: Example for Tree Concatenation

To describe tree concatenation iteratively, we use a special kind of index structure:
an index tree which is a tree of trees – each node is labeled with a marked tree and a
node u has i successors iff the tree at node u is Ci-marked. (The leaves are labeled
with C0-marked trees which are Σ-labeled trees as C0 = ∅.) In Example 2.2 from
above, we get an index tree with the nodes ε, 1, 2, 21. The node ε is labeled with the
tree tε, the node 1 with t1 and so on.

Formally, an index tree is defined as follows:

Definition 2.8 (Index tree). A tree tI over the alphabet T[Σ; C] of marked trees is
called index tree iff the following compatibility condition holds:

uj ∈ domtI
iff the tree at node u is Ci-marked and j ≤ i,

i.e., iff u ∈ domtI , valtI (u) ∈ Ti[Σ; C] and j ≤ i

We call a set T ⊆ T[Σ; C] of (marked) trees compatible with a tree tI over the
alphabet T[Σ; C] if we have for each index exactly one tree in T (and there are no
other trees in T) and tI forms an index tree.
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Example 2.3. In Figure 2.3, we see a short notation for the index tree from above
using the trees from Figure 2.1. The compatibility condition is fulfilled as the node ε

has two successors and the tree tε uses exactly the symbols c1 and c2. Furthermore,
the node 2 has one successor and the associated tree uses only c1 and the other nodes
have no successors and the associated are from T[Σ] = T0[Σ; C]. The concatenation
of the trees (the “sum tree”) defined via this index tree is shown in Figure 2.4.

tε

t1 t2

t21

Figure 2.3: Index Tree for the Trees from Figure 2.1

We introduce a variant of an index tree: a tree which has sets of marked trees as
labels.

Definition 2.9 (Index tree over sets of trees). A tree tI over the alphabet P(T[Σ; C])
of sets of marked trees is called index tree (over sets of trees) iff the following compati-
bility conditions hold:

• ∀u ∈ domtI
∃i ∈N s.t. all t ∈ valtI

(u) are Ci-marked and

• ∀u ∈ domtI
: uj ∈ domtI

iff the trees at node u are Ci-marked and j ≤ i.

We now define transition systems, which are basically structures with only unary
and binary relations. The unary relations (also called predicates) are seen as a
labeling of the states and the binary relations as transitions between the states.

Definition 2.10. Given two alphabets Σ and V, a (labeled) transition system – also
called Kripke structure – is a structure K = (S, {Ra | a ∈ Σ}, {Pv | v ∈ V}) where

• S is the domain of K, called state space, and the elements s ∈ S are called
states,

• Ra are (binary) transition relations for a ∈ Σ and

• Pv are (unary) predicates for v ∈ V.

A pointed transition system (K, s) is a transition system K with one marked initial
state s.
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Paths

Intuitively, a path is a sequence of states that are connected via the transition
relations. We mainly follow [BK08] in the formal definition:

Definition 2.11. Let S denote the domain of a transition system, respectively of a
tree, and let R denote the union over the transition relations Ra (a ∈ Σ) , respectively
the union over the successor relations Suci (i ∈ [n]).

A finite path fragment is a sequence π = (s1, . . . , sk) of states from S such that
(si, si+1) ∈ R for i ∈ [k− 1]. An infinite path fragment is a sequence π = (s1, s2, . . . )
of states with (si, si+1) ∈ R for i ∈N. We use the notation π[i..] to denote the path
fragment starting at si and π[i, j] to denote the fragment from si to sj.

A maximal path fragment is a path fragment that cannot be extended, i.e., it is either
infinite or a finite path segment (s1, . . . , sk) and there is no outgoing transition from
sk. Given a state s, a path is a maximal path fragment starting in s. If we do not
mention the state s, we mean the initial state of the (pointed) transition system,
respectively the root of the tree.

Definition 2.12. For a transition system, the (transition) labeling sequence l(π) of a
path fragment π is defined as the sequence of labels of the transition between the
states of π. For a finite path fragments, we have l(π) = a1 . . . an−1 if π = (s1, . . . , sn)

and (si, si+1) ∈ Rai for i ∈ [n− 1] and for infinite fragments the same condition
for i ∈N. Furthermore, the (predicate) labeling sequence L(π) of a path fragment π

is defined as the sequence of labels of the predicates at the states of π. For finite
path fragments, we have L(π) = v1 . . . vn if π = (s1, . . . , sn) and Pvi(si) holds. The
definition for infinite path fragments is analogous.

Sums and products of structures

We now consider two standard operations on structures: the (ordered) disjoint sum
of orderings and trees and the direct product of general structures.

Definition 2.13 (Sum of orderings). We assume that we are given an index structure
Ind = (I,<I) with infinite index set I (usually N) and words wi with word models
wi = (domi,<i, mini, maxi, {Pi

v | v ∈ V}) – the components – with finite domain
domi for i ∈ I. Then, the (infinite) ordered disjoint sum over wi for i ∈ I is defined
as w = (dom,<,min, {Pv | v ∈ V}) where dom =

⋃̇
i∈Idomi (in the order of the

indices), min = min1 (where 1 denotes the first element from I), x < y if there is
either an i ∈ I with x <i y or there are i, j ∈ I with i <I j and x belongs to wi and y
to wj and Pv(x) holds if Pi

v(x) holds and x belongs to wi.
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The (finite) ordered disjoint sum over wi, i ∈ I = [n] (where the last wi may be
infinite) is defined analogously.

For a given index tree (with marked trees for the nodes), we now give the
definition for the sum of the trees which is constructed by concatenating the marked
trees which are assigned to the nodes of the index tree.

Definition 2.14 (Sum of trees). Let tI be an index tree over the alphabet of marked
trees T[Σ; C] with trees tz := valtI

(z) ∈ Ti[Σ; C] for a i ∈ N given for every
z ∈ domtI

. The sum tree tS of the trees tz, z ∈ domtI
in the order given by the index

tree is now constructed as follows:
Intuitively, each cj-labeled node of the tree tz is replaced with the tree of the j-th

successor. Formally, we first define a set Y of all pairs of a node z in the index tree
and a node u of the tree tz. Then, we define a function d which maps each of these
tuples to a subset of N∗. The image of this function is the domain of the sum tree.

Let Y := {(z, u) | z ∈ domtI
, u ∈ domtz

}. The function d : Y → P(N∗) is
defined as

• d(ε, u) := {u} and

• d(zj, u) :=
⋃{v · u | ∃w ∈ domtz

: v ∈ d(z, w) ∧ valtz
(w) = cj}, i.e., there is a

node w in the tree at the position z of the index tree that is labeled by cj and v
is the corresponding node to w in the already defined part of the sum tree

This defines the domain of the sum tree as domtS
:= d(Y). The labels of the sum

tree are defined in the natural way:

• If u ∈ domtS
with {u} = d(ε, u) and valtε 6∈ C, then valtS

(u) = valtε
(u).

• If w ∈ domtS
with w ∈ d(z, u) for a z ∈ domtI

and u ∈ N∗, valtz 6∈ C then
valtS

(w) = valtz(u).

The sum tree for an index tree over sets of trees at each component is defined
analogously and yields a set of trees as sum – the sum tree set.

Example 2.4. We look at the sum tree that we get from the concatenation of the
trees according to the index tree tI from Figure 2.3. The domain of tS contains all
nodes from tε because of d(ε, u) = {u}. Starting at the nodes 2, 3, it further contains
the tree t1 as d(1, ε) = {2, 3} and d(1, 1) = {21, 31} and at node 4 it contains the
tree t2. The sum tree contains the labels of associated trees where each c ∈ C is
replaced with the root of the tree which is inserted at this point. We get the sum
tree tS of Figure 2.4.
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{p}

{p, q}

{q} ∅

{p}

{q}

{p}

{q}

{p}

{q} {q}

Figure 2.4: Sum Tree of the Index Tree from Figure 2.3

Definition 2.15 (Product of structures). Given a (relational) signature σ = (∅, ∅,R),
an index structure Ind with index set I and σ-structures Ai, i ∈ I, the direct σ-
product ∏i∈I Ai – also called the Cartesian σ-product – is defined as the structure
(A, {RA | R ∈ R}) with

• domain A := {ā | ā : I → A}, ā[i] denotes the state of the i-th component and

• n-ary relation symbol RA with RA(ā1, . . . ān)⇔ ∀i ∈ I : RAi(ā1[i], . . . ān[i]).

For the composition theorem, one can look at various other definitions of prod-
ucts. In [Hod97], there are various definitions which generalize the concept of
direct products.

In the field of model checking, we are mainly interested in products of transition
systems. Here, the definition from above means that we have an a-labeled tran-
sition in the product if we have an a-labeled transition in every component. We
generalize this definition: a transition is in the product if there is a subset of the
components and each of these takes a transition. To express this information, we
use “interface information tuples” which define a relation in the product by giving
conditions expressing which formulas have to hold in which components. The
formal definition of synchronized products (and interface information tuples) can
be found in Section 2.3.

2.2 Logics

In this section, we present the logics we use in this thesis. We begin with the
commonly used logics: first-order (FO) logic and monadic second order (MSO) logic.
Then, we present the definition of logics used in model checking: modal logic (ML),
linear temporal logic (LTL) and computation tree logic (CTL). For convenience, we
present the definitions with all common operators in these logics even if shorter
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definitions are possible. We use the standard definitions of satisfaction and validity
as defined, e.g., in [EF05, EFT96].

First order and monadic second order logic

For the definition of first-order and monadic second order logic, we follow the
presentation in [EF05]. Given a finite (relational) signature σ with relation symbols
R1, . . . , Rm of arities n1, . . . , nm, we define first order logic over σ (FO(σ) logic) as fol-
lows: let x1, x2, . . . denote variables for elements of a σ-structure, then Ri(x1, . . . , xni),
tt, ff and x1 = x2 are (atomic) FO formulas. Furthermore, for FO formulas ϕ, ψ,
inductively, we get the formulas ¬ϕ, ϕ∨ ψ, ϕ∧ ψ, ϕ→ ψ, ϕ↔ ψ and the existential
and universal quantification ∃xϕ(. . . , x, . . . ), ∀xϕ(. . . , x, . . . ) with the usual seman-
tics as, e.g., in [EF05]. For FO formulas over the signature σ, we also write FO
σ-formulas. We write FO(<) to explicitly state that < has to be in the signature σ.

Variables which are not in scope of a quantifier are called free variables, the other
ones are bounded. A formula in which all occurrences of variables are bounded
is called sentence. We write ϕ(x1, . . . , xn) if ϕ contains at most x1, . . . , xn as free
variables.

A formula ϕ is a called (proper) subformula of δ (written ϕ C δ) if ϕ is used in the
inductive definition of δ. We write ϕ E δ if ϕ may also be δ. The formula ϕ is a
direct subformula of δ if it is used in the inductive definition in the last step. The set
of all subformulas of a formula δ is called the closure of δ and denoted as CL(δ). The
size s(δ) of a formula δ is defined as CL(δ), i.e., s(δ) := |CL(δ)|.

The quantifier depth qd(ϕ) of an FO formula ϕ is defined as follows: For atomic
formulas ϕ, we have qd(ϕ) = 0, for negation qd(¬ϕ) = qd(ϕ), for conjunction
and disjunction qd(ϕ ∨ ψ) = qd(ϕ ∧ ψ) = max{qd(ϕ), qd(ψ)} and for existential
and universal quantification qd(∃xϕ) = qd(∀xϕ) = qd(ϕ) + 1. The quantifier
alternation depth counts only the alternations between existential and universal
quantifications.

Monadic second order logic (MSO logic) is defined as an extension of first order logic.
Let X1, X2, . . . be variables for sets of elements. We add (atomic) formulas X(y) stat-
ing that the variable y belongs to the set variable X and formulas ∃Xϕ(. . . , X, . . . ),
∀Xϕ(. . . , X, . . . ) which quantify over set variables with the usual semantics as, e.g.,
in [EF05]. The closure and size of an MSO formula are defined analogously the
ones for FO formulas. For the quantifier depth of an MSO formula, we count both
the normal and the set quantifiers.

One should note that there is a fragment of MSO(<) logic which uses only
set variables and quantification over them and is logically equivalent to MSO(<)
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logic, see, e.g., [Tho97a]. The main idea is the following: For set variables X, Y we
introduce new atomic formulas Nonempty(X ∩Y) with the meaning X and Y have
a nonempty intersection, X ⊆ Y, X < Y meaning there are elements x in X and y in
Y with x < y and the formula X1 ∪ · · · ∪ Xk = All which expresses that the union
of the sets X1, . . . , Xk is the universe.

We define a partition formula that expresses that set variables X1, . . . , Xk form a
partition of a set variable X, i.e., (

⋃k
i=1 Xi = X) ∧∧i,j∈[k],i 6=j(Xi ∩ Xj = ∅).

Definition 2.16. The partition formula βPartition(X1, . . . , Xk; X) is defined as

∀x(X(x)→
∨

i∈[k]
Xi(x)) ∧

∧
i,j∈[k],i 6=j

¬∃x(Xi(x) ∧ Xj(x)).

We now discuss extensions of FO and MSO logic interpreted over transition
systems. A main drawback of FO logic in comparison to MSO logic is the lack
of being able to express reachability via paths. We consider several variants of
reachability added to FO logic.

Definition 2.17. Let σ be a signature with binary relations Ra for a ∈ Σ and let
R :=

⋃
a∈Σ Ra. Let R∗ be a symbol denoting the binary relation of all state pairs

(x, y) such that y is reachable from x via a path fragment of transitions from R.
Then, we define FO logic with reachability (FO(R)) by FO logic over the signature
σ ∪ R∗.

Given a regular expression α, we define Reachα by the set of all pairs (x, y) such
that there exists a path fragment π from x to y and l(π) is in the language of the
regular expression α over Σ. FO logic with regular reachability FO(RegR) is defined
as FO logic over the signature σ extended by the relations Reachα(x, y) for regular
expressions α over Σ. If the regular expressions only use a unary alphabet, we call
this extension FO(Reg1R).

We show that every relation Reachα over a unary alphabet can be expressed by
relations which express reachability where the path length is in a semilinear set.

Lemma 2.18. For l, k ∈ N, let Pathl,k be the set of all pairs (x, y) such that there
exists a path fragment π from x to y and the length of π is divisible by k with
remainder l. Every relation Reachα with a regular expression α over a unary
alphabet can be expressed by a formula using atomic formulas Pathl,k with k ∈N

and l ∈ [k]− 1. Thus, the logic FO(Reg1R) can be described as FO logic with the
additional relations Pathl,k for k ∈N and l ∈ [k]− 1.

Proof. Let L be the regular language defined by α. The language L has a semilinear
image ψ(L) =

⋃
i∈[m] Mi with m ∈ N and Mi = {ki0 + ni1 · ki1 + · · · + nir · kir |
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nij ≥ 0 for 1 ≤ j ≤ ri}. We have kij ∈ N because α is a regular expression over a
unary alphabet. It is well-known that Presburger arithmetic is decidable and that
the family of semilinear sets is equivalent to the family of Presburger sets in N.
Thus, each Mi from above can be described as a union of a finite set R and a set
{z | z = l + n · k, z > m, n ∈ N} for some k, l ∈ N and m is the maximum of the
elements from R. The results used in this proof can be found in [Har78].

We now look at an extension of MSO logic (without <) that allows counting over
the number of elements in a set (variable). Afterwards, we show that this logic can
be expressed in MSO(<) logic.

Definition 2.19. For a set variable X, let Cardj,k(X) denote that X contains a number
of elements which is divisible by k with remainder j. Counting monadic second order
logic (CMSO) is defined as the extension of MSO logic by the predicates Cardj,k(X).

Lemma 2.20. Over linearly ordered structures, CMSO logic is equivalent to MSO(<)
logic. In general, CMSO logic is strictly more expressive than MSO logic.

A proof of the second statement can be found in [GR08]. The proof idea of the first
statement is just the standard argument to express counting in MSO(<): for every
formula Cardj,k(X), we force that there exist k− 1 disjoint subsets X0, . . . , Xk−1 of
X, the first element of X is in X0, the last is in Xj−1 (respectively Xk−1 for j = 0)
and two successive elements from X are in the sets Xj, Xj+1 for j ∈ {0, . . . , k− 2}
(respectively Xk−1, X0). For example, for the formula Card0,2(X) we get

∀x∀y[X(x) ∧ X(y)→ ∃X0(first(x, X)→ X0(x) ∧ last(x, X)→ ¬X0(x)

succ(x, y, X)→ (X0(x)↔ ¬X0(y)))]

with first(x, X) := ¬∃y(y < x ∧ X(y)), last(x, X) analogously and succ(x, y, X) :=
¬∃z(x < z ∧ z < y ∧ X(z)).

Modal logic and propositional dynamic logic

In this section, we present (multi-)modal logic (ML) and propositional dynamic logic
according to [BvBW07, HKT02]. These logics can be interpreted in any labeled
transition system together with an (initial) state. Modal logic extends predicate
logic: it not only allows to check predicates of states (of a given transition system)
and Boolean combinations of formulas, but also local modalities between neighbor
states. Note that in contrast to FO and MSO logic, ML does not contain variables.

We present the syntax of multi-modal logic for a given signature with (unary)
predicates Pv for v ∈ V and (binary) transition relations Ra for a ∈ Σ: we have
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the atomic formulas tt, ff and for every Pv the atomic formula pv. For ML formulas
ϕ, ψ we get the formulas ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ → ψ, ϕ ↔ ψ. Moreover, for every
a ∈ Σ we get the formulas 〈a〉ϕ and [a]ϕ – meaning that there is an outgoing a-
labelled transition to a state where ϕ holds, respectively for all outgoing a-labelled
transitions ϕ holds.

Strictly speaking, modal logic is the fragment of multi-modal logic which does
not distinguish between the different transition relations (and uses simply ♦ϕ and
�ϕ instead of 〈a〉ϕ and [a]ϕ). As we are only interested in multi-modal logic, we
simply write modal logic if we mean multi-modal logic. In the literature [HKT02],
multi-modal logic is also called dynamic logic.

We look at the same extensions of modal logic that we discussed for FO logic:
ML(R) denotes the extension by reachability, ML(RegR) reachability by path frag-
ments described by regular expressions and ML(Reg1R) reachability by path frag-
ments described by regular expressions over a unary alphabet. We use the notations
EFϕ respectively 〈α〉ϕ for “there is a path (which satisfies α) to a state where ϕ

holds”.
(Regular) propositional dynamic logic (PDL) extends modal logic by allowing more

complex conditions instead of the modalities 〈a〉 and [a]. We only give here the
syntax and an intuition of the semantics – a comprehensive discussion can be
found in [HKT02]. In PDL, we distinguish between formulas and programs. For
the signature of a transition system with (unary) predicates and binary transition
relations, the predicates are the atomic formulas and the transition relations the
atomic programs. For formulas ϕ, ψ and a program α, inductively, we get the
formulas ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, ϕ → ψ, ϕ ↔ ψ and 〈α〉ϕ, [α]ϕ. For a formula ϕ and
programs α, β, we inductively get the programs α; β (sequential composition of the
programs), α + β (non-deterministic choice between the programs), α∗ (arbitrary
iteration of the program α) and ϕ? (test if the formula ϕ holds). Note that the first
three operations for programs are similar to the standard operations of regular
expressions: concatenation, disjunction and iteration. Thus, the variant “PDL
without tests” coincides with modal logic with regular reachability (ML(RegR))
from above. We call PDL over a unary alphabet 1PDL. Note that 1PDL without
tests is equivalent to ML(Reg1R).

Linear Temporal Logic

Linear temporal logic (LTL) allows specifying linear time properties. It was intro-
duced into computer science by Pnueli [Pnu77] and can be interpreted over linear
structures (words) or over all paths of a branching structure (transition systems).
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LTL extends predicate logic by modalities which allow to express global properties,
i.e., properties over whole path(s).

We mainly follow Baier and Katoen [BK08] in the presentation of LTL and also
the logics defined in the next sections. However, we use the letters X, F, G (instead
of ©,♦,�) for “next”, “finally” and “globally” to avoid confusion with modal
logic.

Given a signature σ and V an alphabet for the unary predicates, the syntax of
linear temporal logic is defined as follows.

• We have the atomic formulas tt, ff and p for p ∈ V.

• Given LTL formulas ϕ and ψ, we get the LTL formulas ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, Xϕ,
Fϕ, Gϕ, ϕUψ and ψRϕ.

The closure and the size of an CTL or LTL formula are defined as for FO formulas.
The modal depth md(ϕ) of an LTL formula ϕ is defined analogously to the quantifier
depth of an FO formula: md(ϕ) = 0 for atomic formulas ϕ ∈ {p, tt, ff}, md(Xϕ) =

md(ϕ) + 1, md(ϕ ∧ ψ) = md(ϕ ∨ ψ) = max(md(ϕ), md(ψ)) and = md(ϕUψ) =

md(ϕRψ) = max(md(ϕ), md(ψ)) + 1.

Before we define the semantics of LTL, we first give the intuition of the operators:

• Xϕ: at the next state ϕ holds,

• Fϕ: eventually (finally) there is a state where ϕ holds,

• Gϕ: globally (on all states) we have ϕ,

• ϕUψ: we have ϕ on all states until ψ holds at a state and

• ψRϕ: we have ϕ on all states or there is a state where ψ holds and this state
releases ϕ, i.e., ϕ does not have to hold after this state.

For shorter notation, we further use the Weak-Until operator ϕWψ as an abbrevia-
tion for (ϕUψ) ∨ Gϕ.

Formally, the semantics of LTL is defined as follows. Let π be a path or a word
model. Then, we have:
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π[i..] |= tt :⇔ i is a position of π

π[i..] |= ff :⇔ i is no position of π

π[i..] |= p :⇔ Pp(π[i]) holds
π[i..] |= ϕ ∧ ψ :⇔ π[i..] |= ϕ and π[i..] |= ψ

π[i..] |= ϕ ∨ ψ :⇔ π[i..] |= ϕ or π[i..] |= ψ

π[i..] |= ¬ϕ :⇔ π[i..] 6|= ϕ

π[i..] |= Xϕ :⇔ π[i+1..] |= ϕ

π[i..] |= Fϕ :⇔ ∃k ≥ i (π[k..] |= ϕ)

π[i..] |= Gϕ :⇔ ∀j ≥ i (π[j..] |= ϕ)

π[i..] |= ϕUψ :⇔ ∃k ≥ i (π[k..] |= ψ and ∀j, i ≤ j < k : π[j..] |= ϕ)

π[i..] |= ψRϕ :⇔ ∀j ≥ i (π[j..] |= ϕ) or
∃k ≥ i (π[k..] |= ϕ ∧ ψ and ∀j, i ≤ j < k : π[j..] |= ϕ)

For a finite path π (respectively word models), we can define the last state of π

by stating that the next position satisfies ff. Thus, we define the formula last as Xff.
We now present some useful transformations for LTL formulas (see also [BK08]).

Most of these transformations are used in later chapters.

Duality laws:

¬Xϕ ≡ X¬ϕ ¬(ϕUψ) ≡ (¬ϕ)R(¬ψ)

¬Fϕ ≡ G¬ϕ ¬(ϕWψ) ≡ (ϕ ∧ ¬ψ)U(¬ϕ ∧ ¬ψ)

Expansion laws:

ϕUψ ≡ ψ ∨ (ϕ ∧ X(ϕUψ)) ψRϕ ≡ (ϕ ∧ ψ) ∨ (ϕ ∧ X(ψRϕ))

ϕWψ ≡ ψ ∨ (ϕ ∧ X(ϕWψ))

Distributive laws:

X(ϕUψ) ≡ (Xϕ)U(Xψ) F(ϕ ∨ ψ) ≡ Fϕ ∨ Fψ

G(ϕ ∧ ψ) ≡ Gϕ ∧ Gψ

Note that F(ϕ ∧ ψ) 6= Fϕ ∧ Fψ and, dually, G(ϕ ∨ ψ) 6= Gϕ ∨ Gψ.
We now introduce two negation normal forms (NNF) of an LTL formula, where

the negation sign only occurs in front of the atomic formulas. The two versions
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use the Until and the Release operator, respectively the Until and the Weak-Until
operator. They are called Release positive normal form (Release PNF) and Weak-
Until PNF in the literature [BK08].

We only introduce the Release PNF – here simply called NNF – as the transfor-
mation of an LTL formula into Release PNF produces an LTL formula which size
is only linear in the size of the original formula. (In the other case, the size grows
exponential.)

Definition 2.21. An LTL formula is in negation normal form (NNF) if it can be con-
structed from the atomic and negated atomic formulas tt, ff, p,¬p and inductively
from ϕ ∧ ψ, ϕ ∨ ψ, Xϕ, ϕUψ, ψRϕ for formulas ϕ, ψ in NNF.

Lemma 2.22. Every LTL formula ϕ can be transformed into an equivalent LTL
formula ψ in NNF with size |ψ| ∈ O(|ϕ|).

Proof sketch. To prove this lemma, we can use the duality laws for X, F, G, U and
R operators. These laws (as well as the duality of ∧ and ∨) increase the size only
by a constant factor. Thus, by inductively using them, the size of ϕ grows only
linearly.

Computation tree logic

In this subsection, we present computation tree logic (CTL) which is – in contrast
to linear time logic – a branching time logic. CTL formulas are interpreted at the
states of a transition system. CTL allows to specify conditions at nodes about the
existence of a path or about all paths starting at a node. It does only allow “next”,
“until” and “release” conditions over these paths where the subformulas are again
interpreted at states. In the next section we introduce the logic CTL∗ in which this
restriction is lifted.

The name “computation tree logic” stems from the fact that instead of looking
at all paths starting in the initial node of the transition system, CTL looks at
the (usually infinite) tree which is obtained by “unfolding” the transition system
and each traversal through this tree represents a possible computation. CTL was
introduced by Clarke and Emerson [CES86]. This subsection follows mainly the
(more detailed) presentation in [BK08].

We first introduce the syntax of CTL. For this, we inductively define CTL path
and state formulas which are interpreted over a path respectively at a state.

• We have tt, ff and the predicates p as (atomic) CTL state formulas.
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• For CTL state formulas ϕ, ψ and a CTL path formula ϕ̄, we get the CTL state
formulas ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, Eϕ̄ and Aϕ̄

• For CTL state formulas ϕ, ψ, we get CTL path formulas Xϕ, Fϕ, Gϕ, (ϕUψ),
and (ψRϕ).

We give the intuition for these formulas: Eϕ̄ stands for “there exists a path
starting at the current node which satisfies ϕ̄” and Aϕ̄ stands for “all paths starting
at the current node satisfy ϕ̄”. Note that state and path formulas have to alternate,
e.g. AFAGp is a CTL formula but AFGp not.

Formally, the semantics of CTL is defined as follows:

s |= tt for all states s
s |= ff for no state
s |= p :⇔ Pp(s) holds
s |= ¬ϕ :⇔ s 6|= ϕ

s |= ϕ ∧ ψ :⇔ s |= ϕ and s |= ψ

s |= ϕ ∨ ψ :⇔ s |= ϕ or s |= ψ

s |= Eϕ̄ :⇔ there exists a path π starting in s which satisfies π |= ϕ̄

s |= Aϕ̄ :⇔ all paths π starting in s satisfy π |= ϕ̄

π[i..] |= Xϕ :⇔ π[i+1] |= ϕ

π[i..] |= Fϕ :⇔ ∃k ≥ i (π[k] |= ϕ)

π[i..] |= Gϕ :⇔ ∀j ≥ i (π[j] |= ϕ)

π[i..] |= ϕUψ :⇔ ∃k ≥ i (π[k] |= ψ and ∀j, i ≤ j < k : π[j] |= ϕ)

π[i..] |= ψRϕ :⇔ ∀j ≥ i (π[j] |= ϕ) or
∃k ≥ i (π[k] |= ϕ ∧ ψ and ∀j, i ≤ j < k : π[j] |= ϕ)

We further define a Weak-Until in both version E(ϕWψ) and A(ϕWψ) with an
analogous meaning as the Weak-Until in LTL. We cannot use the definition from
LTL as E((ϕUψ)∨Gϕ) is not a valid CTL formula. However, we can use the duality
law for the LTL Weak-Until to define the CTL Weak-Until and get:

E(ϕWψ) ≡ ¬A((ϕ ∧ ¬ψ)U(¬ϕ ∧ ¬ψ))

A(ϕWψ) ≡ ¬E((ϕ ∧ ¬ψ)U(¬ϕ ∧ ¬ψ))

As in the case of LTL, we present useful transformations for CTL formulas
(according to [BK08]) which we use later.
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Duality laws:

¬AFϕ ≡ EG¬ϕ ¬A(ϕUψ) ≡ E((¬ϕ)R(¬ψ))

¬EFϕ ≡ AG¬ϕ ¬E(ϕUψ) ≡ A((¬ϕ)R(¬ψ))

¬AXϕ ≡ EX¬ϕ ¬A(ϕWψ) ≡ E(ϕ ∧ ¬ψ)U(¬ϕ ∧ ¬ψ)

¬E(ϕWψ) ≡ A(ϕ ∧ ¬ψ)U(¬ϕ ∧ ¬ψ)

Expansion laws:

AFψ ≡ ψ ∨ AX AFψ A(ϕUψ) ≡ ψ ∨ (ϕ ∧ AX A(ϕUψ))

EFψ ≡ ψ ∨ EX EFψ E(ϕUψ) ≡ ψ ∨ (ϕ ∧ EX E(ϕUψ))

AGϕ ≡ ϕ ∧ AX AGϕ A(ψRϕ) ≡ (ϕ ∧ ψ) ∨ (ϕ ∧ AX A(ψRϕ))

EGϕ ≡ ϕ ∧ EX EGϕ E(ψRϕ) ≡ (ϕ ∧ ψ) ∨ (ϕ ∧ EX E(ψRϕ))

Distributive laws:

AG(ϕ ∧ ψ) ≡ AGϕ ∧ AGψ EF(ϕ ∨ ψ) ≡ EFϕ ∨ EFψ

Note that AF(ϕ ∨ ψ) 6= AFϕ ∨ AFψ and dually EG(ϕ ∨ ψ) 6= EGϕ ∨ EGψ.

Again, we introduce a negation normal form (NNF) for CTL formulas. As in the
case of LTL, we only consider the negation normal form which uses the Until- and
Release-operators.

Definition 2.23. A CTL formula is in negation normal form (NNF) if it can be
constructed from the atomic and negated atomic (state) formulas tt, ff, p, ¬p and
inductively from state formulas ϕ, ψ and a path formula ϕ̄ in NNF, giving the state
formulas ϕ ∧ ψ, ϕ ∨ ψ, Eϕ̄ and Aϕ̄ and path formulas Xϕ, Fϕ, Gϕ, (ϕUψ), and
(ψRϕ).

As in the case of LTL, the translation into NNF is linear. The proof again uses the
duality laws for the X, F, G, U and R operators.

Lemma 2.24. Every CTL formula ϕ can be transformed into an equivalent CTL
formula ψ in NNF with size |ψ| ∈ O(ϕ).
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Comparison between LTL and CTL

In this subsection, we discuss the relationship between LTL and CTL. For this, we
evaluate an LTL formula over all paths of a tree. We further introduce the logic
CTL∗ which allows arbitrary nesting of state and path formulas like AFGp (and
includes the logics LTL and CTL). Then, we present the restrictions ACTL∗ and
ECTL∗ of CTL∗ which only use universal, respectively existential, quantified path
formulas. We finish with CTL extended by a past version of the next operator.

Theorem 2.25. The logics LTL and CTL (both interpreted as tree logics) are incom-
parable in expressive power, i.e., there are LTL formulas which are not expressible
in CTL and vice verse.

The proof of this theorem is shown in [BK08]. The authors give two formula
pairs: the LTL formula FGp and the CTL formula AFAGp and the pair F(p ∧ Xp)
and AF(p ∧ AXp). They show that there is no CTL formula which is equivalent to
the LTL formula FGp and no LTL formula which is equivalent to the CTL formula
AFAGp. Here, we just give the intuition why FGp and AFAGp are not equivalent.
For this, consider the following transition system where p holds at the black nodes:

We look at the unravelling of this transition system shown in Figure 2.5 to
determine the truth of the LTL formula FGp (over all paths) and the CTL formula
AFAGp. For FGp, we have to check if there is a node on all paths from which on
we have p on all nodes. The right outermost path satisfies this condition as it has
only black nodes. On all other paths, we have a white node on the left successor of
the nodes of the right outermost path and after this node only black nodes follow.
Thus, FGp holds on all paths. For the formula AFAGp, we have to find on all paths
a node such that all paths starting at this node satisfy Gp. For the right outermost
path, we cannot find such a node as all nodes have a black and a white successor.
Thus, AFAGp does not hold. The same counter example can be used to show that
F(p ∧ Xp) and AF(p ∧ AXp) are not equivalent.

We now introduce the logic CTL∗. The syntax is the same as for CTL only without
the restriction that path formulas can only use state formulas as subformulas.

• As atomic CTL∗ formulas we have tt, ff and the predicates p for p ∈ V are
(atomic) CTL∗ state formulas.

• For CTL∗ state formulas ϕ, ψ and a CTL∗ path formula ϕ̄, we get the CTL∗

state formulas ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, Eϕ̄ and Aϕ̄.
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Figure 2.5: Counter Example Tree for FGp and AFAGp

• For a CTL∗ state formula ϕ and CTL∗ path formulas ϕ̄, ψ̄, we get CTL∗ path
formulas ϕ, X ϕ̄, Fϕ̄, Gϕ̄, ϕ̄Uψ̄, and ψ̄Rϕ̄.

The semantics of CTL∗ is defined as follows:

s |= tt for all states s
s |= ff for no state
s |= p :⇔ Pp(s) holds
s |= ¬ϕ :⇔ s 6|= ϕ

s |= ϕ ∧ ψ :⇔ s |= ϕ and s |= ψ

s |= ϕ ∨ ψ :⇔ s |= ϕ or s |= ψ

s |= Eϕ̄ :⇔ there exists a path π starting in s with π |= ϕ̄

s |= Aϕ̄ :⇔ all paths π starting in s satisfy π |= ϕ̄

π[i..] |= ϕ :⇔ si |= ϕ and π = (s0, s1, . . . )
π[i..] |= X ϕ̄ :⇔ π[i+1..] |= ϕ̄

π[i..] |= Fψ̄ :⇔ ∃k ≥ i (π[k..] |= ψ̄

π[i..] |= Gϕ̄ :⇔ ∀j ≥ i (π[j..] |= ϕ̄)

π[i..] |= ϕ̄Uψ̄ :⇔ ∃k ≥ i (π[k..] |= ψ̄ and ∀j, i ≤ j < k : π[j] |= ϕ̄)

π[i..] |= ψ̄Rϕ̄ :⇔ ∀j ≥ i (π[j..] |= ϕ̄) or
∃k ≥ i (π[k..] |= ϕ̄ ∧ ψ̄ and ∀j, i ≤ j < k : π[j..] |= ϕ̄)

CTL∗ extends both CTL and LTL. ACTL∗ is the fragment of CTL∗ which contains
all CTL∗ formulas which only allow universal quantification over the paths, i.e., for
ACTL∗ state formulas ϕ, ψ and ACTL∗ path formula ϕ̄ it contains ¬ϕ, ϕ ∧ ψ, ϕ ∨
ψ and Aϕ̄ as state formulas. The ACTL∗ path formulas and the semantics are
defined as above. ECTL∗ is defined analogously to ACTL∗ by using only existential
quantification over the paths.
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All these logics only allow quantification over “future” states and paths. There is
a theory which extends these results to the past by introducing past quantifiers for
X, F, G, U and R, see [LS95]. From these logics, we only use the simplest extension
of CTL by the past variant of X: the previous operator X−1. Let CTL+X−1 be the
extension of CTL by X−1 defined by adding the state formula X−1ϕ for a state
formula to the syntax of CTL with the semantics: π[i] |= X−1ϕ :⇔ π[i− 1] |= ϕ.
As in [LS95], we consider the past as fixed. Thus, we can simply write X−1 instead
of EX−1 or AX−1.

2.3 Interface Information

The aim of the composition technique is to reduce the truth of a formula in a product
or sum to information about the truth values of formulas in the components of
the product or sum. To express this information formally, we introduce interface
information tuples.

An interface information tuple – also called determining sequence [Rab07] or
MSO profile [FT09] in the literature – consists of formulas which are interpreted
in the components and a formula which speaks about the component indices in
which these formulas should hold. Formally, it is described as follows

Definition 2.26 (Interface information). Let σ be a (relational) signature and Ind
an index structure with index set I for the indices of the component σ-structures
of a sum or product. An interface information tuple is a tuple ρ = 〈α1, . . . , αk; β〉
of formulas αj (j ∈ [k]) and a formula β. The formulas αj are interpreted in the
components and the formula β is interpreted in the index structure. The formula β

allows to describe conditions in which components these formulas should hold. To
achieve this, for every formula αj (j ∈ [k]) the formula β speaks about an additional
predicate which is interpreted by the set of indices of the components in which αj

holds.
If β is an MSO formula, we use free set variables X1, . . . , Xk for these predi-

cates. Formally, for given σ-components Ai (i ∈ I), we write (Ind, I1, . . . , Ik) |=
β(X1, . . . , Xn) with Ij := {i ∈ I | Ai |= αj} to denote that β holds in the index
structure if the sets Xj are interpreted with the component indices in which αj holds.
If β is an LTL, CTL or CTL∗ formula, we use the predicates Pj as atomic formulas
and Pj is interpreted by {i ∈ I | Ai |= αj}. For easier notation, we also allow to use
the formula αj instead of the index j, i.e., we allow to write Xαj for Xj and Pαj for Pj.

We assume that we are given an interpretation of the predicates and relations in
the components. Then, an interface information tuple ρ = 〈α1, . . . , αk; β〉 with FO-
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or MSO-formulas αj defines a relation Rρ of arity l in a product or a sum where l is
the number of different variables all αj use.

For a sum with |I| components, we want to ensure that (s1, . . . , sl) ∈ Rρ holds in
the sum iff (Ind, I1, . . . , Ik) |= β(X1, . . . , Xk) where Ij contains all components which
satisfy αj, i.e., Ij := {i ∈ I | Ai |= αj(s1, . . . , sl)}. For a product with |I| components,
we have (s̄1, . . . , s̄l) ∈ Rρ in the product iff (Ind, I1, . . . , Ik) |= β(X1, . . . , Xk) where
Ij contains all components which satisfy the formula αj for the i-th component of
the states s̄m (m ∈ [l]), i.e., Ij := {i ∈ I | Ai |= αj(s̄1[i], . . . , s̄l [i])}.

On the one hand, interface information tuples can be used to specify relations
in the product as we will see below in the examples and in the definition of a
synchronized product of transition systems. On the other hand, in the composition
theorem, we inductively construct an interface information tuple to describe when
a formula ϕ(x1, . . . , xl) holds in the sum or product, i.e., it is used to describe the
l-ary relation which is defined by ϕ(x1, . . . , xl).

We consider two examples with FO logic over the components and MSO logic
over the index structure.

Example 2.5. In the following examples, we consider FO logic interpreted over
component transition systems which only have one (unary) predicate P and one
binary (transition) relation R. In the (direct) product, the interface information
tuple ρ1 = 〈P(x); ∃iX1(i)〉 expresses that there is at least one component where P(x)
holds. In a product, this is the set {x̄ | ∃i : P(x̄[i]) holds}. For a product of transition
systems, the interface information tuple ρ = 〈R(x, y), x = y; ∃i X1(i) ∧ ∀j(j 6=
i)→ X2(j)〉 expresses that there is exactly one component in which a transition is
taken and in the other components the state stays the same. Thus, this interface
information tuple describes an asynchronous transition relation in the product, i.e.,
the set {(x̄, ȳ) | R(x̄[i], ȳ[i]) ∧ x̄[j] = ȳ[j] for all j 6= i}.

We consider a third example with LTL over the components.

Example 2.6. We look at an infinite disjoint ordered sum of (finite) words with
predicate r and LTL over the components and FO logic over the indices. We
consider the interface information tuple 〈r, G(¬last→ Xr); β〉 with β = ∀i(P2(i) ∧
∃j(Suc(i, j) ∧ P1(j))). This expresses that we have Xr on all states of the sum which
is equivalent to a predicate with “GXr” at the first state of the sum. Note that we can
express the same condition with LTL over the indices by using β = G(P2 ∧ XP1).

In the literature, there are several ways to describe the “size” of an interface
information tuple. We take the size of the formulas α1, . . . , αk for the components,
their number k and the size of the index formula into account.
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Definition 2.27. The size of an interface information tuple 〈α1, . . . , αk; β(X1, . . . , Xk)〉 is
defined as ∑k

j=1 s(αj) + s(β) where s(αj) and s(β) denote the size of αj, respectively
β.

The composition theorems in the later chapters describe the truth value of a
formula in the sum or product by an interface information tuple. The size of the
decomposition of a given formula is defined as the size of the generated interface
information tuple.

Product Definition via Interface Information

The next definition introduces synchronized products. For this definition, we
consider “local” and “synchronous” transitions in the components for which we use
two disjoint subsets Σl and Σs of alphabets. In the product, the local transitions
result in asynchronous transitions, i.e., only one component takes a transition and
the other components stay at the same state. Moreover, we use interface information
tuples to describe “synchronized” transitions in the product where a subset of the
components takes a synchronous transition at the same time. (Formally, this is done
via a mapping τ from the alphabet for the synchronized transitions to interface
information tuples.)

Definition 2.28. Let Ind be an index structure for the components (of a product)
with index set I. Moreover, let Σ := Σl∪̇Σs and V be alphabets and σ be a signature
(for the components) with transition relations Ra for a ∈ Σ and (unary) predicates
Pv for v ∈ V. Furthermore, let C be another alphabet and σ′ be a signature (for the
product) with transition relations R̄i

a for a ∈ Σl , R̄c for c ∈ C and predicates P̄i
v for

v ∈ V and i ∈ I.
We further assume that we are given for every c ∈ C an interface informa-

tion tuple 〈Ra1(x, y), . . . , Ram(x, y), x = y; β(X1, . . . , Xm+1)〉 with an MSO formula
β(X1, . . . , Xm+1) that specifies the conditions in which component which transition
has to be taken. Furthermore, it satisfies βPartition(X1, . . . , Xm+1; I) (i.e., it assures
that every component takes at most one synchronous transition).

We call these tuples disjoint and use a mapping τ from C to these interface
information tuples to denote the corresponding interface information tuples.

For σ-transition systems Ki = (Si, {Ri
a | a ∈ Σ}, {Pi

v | v ∈ V}) for i ∈ I, the
synchronized (σ′, τ)-product ∏i∈I Ki is the structure K = (S̄, {R̄a | a ∈ Σl}, {R̄c |
c ∈ C}, {P̄i

v | v ∈ V}) with

• domain S̄ := {s̄ | s̄ : I 99K
⋃

i∈I Si with s̄[i] ∈ Si} where s̄[i] denotes the state
of the i-th component,
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• asynchronous transition relations R̄a (a ∈ Σl), i.e., (x̄, ȳ) ∈ R̄a ⇔ ∃i :
(x̄[i], ȳ[i]) ∈ Ri

a ∧ ∀j 6= i : x̄[j] = ȳ[j],

• synchronized transition relations R̄c (c ∈ C) defined by the given interface
information tuples τ(c) and

• predicates P̄i
v = {s̄ | s̄[i] ∈ Pi

v}.

We call a product asynchronous if we have no synchronized transitions in the
product, i.e., if C is empty. Furthermore, if the transition relation R̄c is finite for
every c ∈ C, the product is called finitely-synchronized.

Note that the asynchronous transition relation R̄a of the product can be described
by the interface information tuple 〈Ra(x, y), x = y; β(X1, X2)〉 with β(X1, X2) = ∃i :
(X1(i) ∧ ∀j : j 6= i → X2(j)). Furthermore, the predicate P̄i

v can be described by
〈Pv(x); β(X1)〉 with β(X1) = X1(i).
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3 The Composition Method

In this chapter, we first repeat (in Section 3.1) the model theoretic background
which is used in the classical composition theorems of Feferman and Vaught and
Shelah. In Sections 3.2 and 3.3, we present the composition theorems and give
a short sketch of the proofs. We conclude the chapter in Section 3.4 with known
results on the complexity of these composition approaches.

3.1 Model Theoretic Background

In this section, we first introduce Hintikka formulas, which are FO formulas that
describe all possible structures for a given signature. Then, we discuss a similar
definition for MSO logic. These formulas are used in the following sections in the
proofs of the classical composition theorems of Feferman and Vaught for products
of structures and of Shelah for sums of orderings.

Hintikka Formulas

A common way to describe how similar two structures are, is to look at the FO
sentences which they satisfy: two structures A,B are elementary k-equivalent if no
FO formula of quantifier rank k can distinguish between them. They are called
elementary equivalent if they are elementary k-equivalent for all k ∈N.

For a given signature, the class of all structures which are elementary k-equivalent
to a given structure A can be described by a special FO formula: all structures
with m marked elements that are elementary k-equivalent to A with marked ele-
ments a1, . . . , am are described by the FO formula ϕk

A,ā(x̄) with ā = a1, . . . , am and
x̄ = x1, . . . , xm. It is defined, in Definition 3.1, by induction over the number of
quantifiers k. In the literature, these formulas are called Hintikka formulas [EF05] or
game-normal formulas [Hod97].

For quantifier rank 0, the formula ϕ0
A,ā(x̄) states all atomic (and negated atomic)

properties which hold between the elements of ā. Formally, this is simply a conjunc-
tion of all atomic or negated atomic formulas with free variables x1, . . . , xm which
hold for a1, . . . , am. In the induction step for quantifier rank k + 1, the formula
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3 The Composition Method

considers all possible valuations of the new variable y by elements a of A. On the
one hand, it states that there is an element which behaves like a and on the other
hand, that there are no other than these elements.

Definition 3.1 (Hintikka formulas for a structureA). For a structureAwith domain
A, the Hintikka formulas for A are inductively defined as follows.

ϕ0
A,ā(x̄) =

∧
{ϕ(x̄) | ϕ atomic or negated atomic formula, (A, ā) |= ϕ(x̄)}

ϕk+1
A,ā (x̄) =

∧
{∃y ϕk

A,ā,a(x̄, y) | a ∈ A} ∧ ∀y
∨
{ϕk
A,ā,a(x̄, y) | a ∈ A}

s1 s2
p

s3

s4

Figure 3.1: Transition System from Example 3.1

Example 3.1. We consider the transition system K with state set S = {s1, . . . , s4},
transition relation R and unary predicate P as shown in Figure 3.1. We assume
that we always have ¬R(si, si) for all i ∈ [4] and that R(si, sj) holds iff R(sj, si)

holds for all i, j ∈ [4]. To simplify notation, we shorten the Hintikka formulas by
leaving out the formulas which become redundant under these preliminaries. For
the element ā = (s1, s2), we get the formula ϕ0

K,ā(x1, x2) = ¬(x1 = x2)∧ R(x1, x2)∧
¬P(x1) ∧ P(x2). Furthermore, we get ϕ0

K,(s1,s3)
(x1, x2) = ϕ0

K,(s1,s4)
(x1, x2) = ¬(x1 =

x2) ∧ ¬R(x1, x2) ∧ ¬P(x1) ∧ ¬P(x2). With these formulas, ϕ1
K,s1

(x1) is defined
as ∃ x[x1 6= x ∧ R(x1, x) ∧ ¬P(x1) ∧ P(x)] ∧ ∃x [x1 6= x ∧ ¬R(x1, x) ∧ ¬P(x1) ∧
¬P(x)]∧∀x [(x1 6= x∧R(x1, x)∧¬P(x1)∧ P(x))∨ (x1 6= x∧¬R(x1, x)∧¬P(x1)∧
¬P(x))] .

As a second example we consider the finite word w = 10111 with its word
model w = ({1, . . . , 5},<, Q), such that Q(i) holds for all positions except the
second one. As above we shorten the notation by skipping formulas of the form
¬(xi < xi). Then, ϕ0

w,(3,1) = Q(x1) ∧ Q(x2) ∧ x2 < x1 ∧ ¬(x1 < x2), ϕ0
w,(3,2) =

Q(x1)∧¬Q(x2)∧ x2 < x1 ∧¬(x1 < x2) and ϕ0
w,(3,4) = ϕ0

w,(3,5) = Q(x1)∧Q(x2)∧
x1 < x2 ∧¬(x1 < x2). The formula ϕ1

w,3 is a conjunction over the existence of these
possibilities and states that these are the only possible elements.

So far, we only considered Hintikka formulas for given structures. General
Hintikka formulas sum up the Hintikka formulas for all structures: for a fixed
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3.1 Model Theoretic Background

signature they consider all theoretically possible formulas which can be constructed
with the given signature. There are only finitely many different formulas (up to
equivalence) because the signature is finite. Consider, e.g., the signature of the
transition system from the example above, then we get for k = 0 and two variables
all possible conjunctions of xi = xj, R(xi, xj) and P(xi) for i, j ∈ {1, 2} and their
negations. For each quantifier rank k and free variables x1, . . . , xm, these formulas
are stored as a set Φk

m. Note that in general, we may also produce unsatisfiable
formulas like ¬(x1 = x1) in the other example above. These formulas cannot be
satisfied by any structure, but they do not harm in the set of all possible formulas.
The sets Φk

m are formally defined as follows.

Definition 3.2 (General Hintikka formulas). Let {ϕ1(x̄), . . . , ϕl(x̄)} with the abbre-
viation x̄ = (x1, . . . , xm) denote the set of all (positive) atomic formulas with m free
variables. Then, Φ0

m is the set of all conjunctions of these formulas, respectively their
negations: Φ0

m := {τ(1)ϕ1(x̄) ∧ · · · ∧ τ(l)ϕl(x̄) | τ : {1, . . . , l} → {ε,¬}}. Given
Φk

m+1 = {ψ1, . . . , ψj}, the set Φk+1
m is defined as {∧i∈S ∃x ψi(x̄, x)∧∀x

∨
i∈S ψi(x̄, x) |

S ⊆ {1, . . . , j}}.

We state known facts about these general Hintikka formulas, known as the Fraïssé-
Hintikka theorem (see, e.g., [Hod97, Theorem 3.3.2]). For every given signature σ,
quantifier rank k and number of free variables m, we have:

• Every σ-structure A together with m elements of A satisfies exactly one
formula ψ of the general Hintikka formulas from Φk

m if the free variables in ψ

are interpreted by the given m elements.

• Two σ-structures A,B together with m-tuples ā, respectively b̄, of elements
from A, respectively B, are k-equivalent iff they satisfy the same general
Hintikka formula (interpreted with the elements from ā, respectively b̄).

• Every FO formula of quantifier rank ≤ k with m free variables is equivalent
to a disjunction of Hintikka formulas from the set Φk

m.

In the next sections, we use an enumeration of these general Hintikka formulas as
αj with j ∈ [k] in interface information tuples 〈α1, . . . , αk; β(X1, . . . , Xk)〉. We show
that the truth of a formula in a product or sum can be reduced to the “satisfaction”
of such an interface information tuple, i.e., that the MSO formula holds, if the sets
Xj are interpreted by the component indices for which the components satisfy the
formulas αj.
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3 The Composition Method

Hintikka Formulas for MSO Logic

The notion of Hintikka formulas can be generalized from FO logic to MSO logic.
This is done according to [Tho97a]. Technically, MSO formulas which contain only
set variables are considered. Recall that each MSO formula can be translated into
one with only set variables (see Section 2.2). For the inductive construction of
the MSO Hintikka formulas, we use the quantifier alternation depth as induction
parameter, i.e., we use blocks of only existential, respectively only universal1, (set)
quantifiers in one step.

With these preliminaries, the definition of the MSO Hintikka formulas follows
straight-forwardly from the definition of the FO Hintikka formulas. For the def-
inition, we use some abbreviations: let () denote the empty tuple. Given a tuple
l̄ = (l1, . . . , lk) of natural numbers lj, let (l̄, lk+1) denote the tuple (l1, . . . , lk, lk+1).
Furthermore, let P̄ be an abbreviation for the tuple P̄1, . . . , P̄m and X̄ for the tuple
X̄1, . . . , X̄m.

Definition 3.3 (MSO Hintikka formulas for a structure A). For a structure A with
domain A, the MSO Hintikka formulas for A are inductively defined as follows.

ϕ
()
A,P̄(X̄) =

∧
{ϕ(X̄) | ϕ atomic or negated atomic formula, (A, P̄) |= ϕ(X̄)}

ϕ
l̄,lk+1
A,P̄ (X̄) =

∧
{∃Ȳ ϕl̄

A,P̄,Q̄(X̄, Ȳ) | Q̄ ∈ P(A)lk+1}

∧ ∀Ȳ
∨
{ϕl̄
A,P̄,Q̄(X̄, Ȳ) | Q̄ ∈ P(A)lk+1}

Example 3.2. We consider a labeling of the natural numbers: the structure (A, P̄)
with A = (ω,<), P̄ = (P1, P2) and predicates P1 = {7}, P2 = {7, 8}. For
ϕ
()
A,P1,P2

(X1, X2), we get a concatenation of the atomic formulas which hold for P1

and P2: Nonempty(X1), Nonempty(X2), Nonempty(X1∩X2), X1 ⊆ X2,¬X2 ⊆ X1,
¬X1 < X1, X2 < X2, X1 < X2, ¬X2 < X1, ¬X1 = All, ¬X2 = All, ¬X1 ∪ X2 = All.
We get different combinations of these formulas for the following choices of P2:
{6}, {7}, {8}, {5, 6}, {6, 7}, {6, 8}, {7, 8}, {8, 9}, {6, 7, 8}, ∅, N, N \ {7}. All
other choices are equivalent to one of these combinations. We name these for-
mulas ϕ1, . . . , ϕ12. Now we consider the MSO Hintikka formula ϕ

(1)
A,P1

: we get

ϕ
(1)
A,P1

=
∧12

j=1 ∃Yϕj(X1, Y) ∧ ∀Y
∨12

i=1 ϕj(X1, Y).

1To be more precise, by using the equivalence ∀Xϕ(X) = ¬∃X¬ϕ(X), we consider only blocks of
existential quantifiers, but have to start with a new block when a negation appears.

38



3.1 Model Theoretic Background

General MSO Hintikka formulas are defined as the general Hintikka formulas
and as in the case of (FO) Hintikka formulas, every MSO formula can be written as a
disjunction over elements of the set of all possible general MSO Hintikka formulas.

There is a more compact representation of the (general) MSO Hintikka formulas
which avoids mentioning each possible formula ϕl̄

A,P̄,Q̄(X̄, Ȳ) in the inductive Defi-
nition 3.3 twice: the representation by l̄-types, where the MSO Hintikka formulas
are represented inductively as sets of previous sets. The formal definition is as
follows:

Definition 3.4. The l̄-type T l̄(A, P̄) of a structure A with predicates P̄ = {P1, . . . , Pm}
is defined by

• T()(A, P̄) = {ϕ(X̄) | ϕ(X̄) atomic and (A, P̄) |= ϕ(X̄)}

• T l̄,lk+1(A, P̄) = {T l̄(A, P̄, Q̄) | Q̄ ∈ P(A)lk+1}

The induction definition starts for the ()-type with all possible sets of atomic
formulas with m free second-order variables which hold in the structure A with
the predicates P1, . . . , Pm. In the induction step, all possible subsets of the last set
with m + lk+1 free variables are taken.

Example 3.3. Let us consider again the structure (A, P̄) with A = (ω,<), P̄ =

(P1, P2) and predicates P1 = {7}, P2 = {7, 8}. Then, the type T()(A, P̄) is the set
{Nonempty(X1), Nonempty(X2), Nonempty(X1∩X2), X1 ⊆ X2, X2<X2, X1<X2}.
As T(1)(A, (P1)), we get a set which contains the sets T()(A, P̄) for P̄ = (P1, P2)

with the 12 possible choices for P2 from the last example.

As in the generalization from Hintikka to general Hintikka formulas, we intro-
duce general l̄-types for all possible structures. For this, we consider all possible
atomic formulas with m free second-order variables in the base of the inductive
definition and all possible subsets of the previous sets.

Definition 3.5. The general l̄-type T l̄(m) is defined by

• T()(m) := P({ϕ(X1, . . . , Xm) | ϕ(X1, . . . , Xm) atomic})

• T l̄,lk+1(m) := P(T l̄(m + lk+1))

This set representation of the general Hintikka formulas is used in the composi-
tion theorem for disjoint ordered sums by Shelah.
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3.2 Composition Theorem for Products

In this section, we present the classical Feferman-Vaught composition theorem for
(direct) products and FO logic (in our notation). It allows to deduce the truth of
an FO formula in a product of structures from information about the components:
which component satisfies which of the general Hintikka formulas. This informa-
tion can be expressed by a Boolean formula (as in the original paper) or by an MSO
formula (expressing the Boolean conditions). We present it here as an MSO formula
as we use this format also in our own results.

Theorem 3.6. For a given signature σ, let α1(x̄), . . . , αk(x̄) be the general Hintikka
formulas for quantifier rank r and with a tuple x̄ of free variables.

For a σ-FO formula ϕ(x̄) with quantifier rank r, we can compute an MSO formula
βϕ(X1, . . . Xk) – interpreted in the index structure Ind – such that for every direct
σ-product ∏i∈I Ai of σ-components Ai the following holds:

∏
i∈I

Ai |= ϕ(ā)⇔ (I, I1, . . . , Ik) |= βϕ(X1, . . . , Xk)

where Ij is the set {i ∈ I : Ai |= αj(ā[i])}.

We want to remark that Feferman and Vaught also showed a composition theo-
rem for more general products.

We now give a sketch of the proof idea of the composition theorem for direct
products. The theorem is proven by an induction over the structure of the given FO
formula ϕ(x̄).

For the induction base, ϕ(x̄) is an atomic (or negated atomic) formula and the
general Hintikka formulas are conjunctions of atomic formulas. We consider the
subset of the general Hintikka formulas which contain ϕ(x̄) as a conjunct. The
MSO formula for ϕ expresses that every component satisfies one of these formulas.

In the induction step for the conjunction and disjunction of FO formulas ϕ, ψ of
the same quantifier rank, the MSO formula is βϕ ∧ βψ respectively βϕ ∨ βψ. If the
formulas ϕ, ψ have different quantifier rank, the one with lower quantifier rank is
transformed into an equivalent formula with the higher quantifier rank and the
Hintikka formulas are adjusted accordingly. For negation, we take the negation of
the MSO formula.

We now consider the existential quantification ∃yϕ(x̄, y). Let α1(x̄, y), . . . , αk(x̄, y)
be the given general Hintikka formulas (of quantifier rank r− 1) for ϕ(x̄, y). Fur-
thermore, let µj(x̄), j ∈ [2k] denote the general Hintikka formulas (of quantifier rank
r) for ∃yϕ(x̄, y). Recall that µj(x̄) is defined as ∃y

∧
h∈Sj

αh(x̄, y) ∧ ∀y
∨

h∈Sj
αh(x̄, y)
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where Sj denotes the j-th set in the list of all subsets of [k]. From the induction
hypothesis, we are given the MSO formula βϕ over the sets Y1, . . . , Yk. The MSO
formula β∃yϕ(x̄,y) over the sets X1, . . . , X2k expresses that the index set I can be
partitioned into sets Y1, . . . , Yk, such that βϕ(Y1, . . . , Yk) holds and for all h ∈ [k]:
Yh ⊆

⋃
h∈Sj

Xj. In [Hod97] it is shown that this choice actually works.

3.3 Composition Theorem for Sums

In this section, we show the composition theorem for ordered disjoint sums and
MSO logic by Shelah. The theorem is presented according to [Tho97a] and works
on the general l̄-types as defined in Section 3.1. It reduces the general l̄-type of the
sum to general types of the index structure which is expanded by sets Iτj containing
the components which satisfy the r̄-type τj. Note that this allows to reduce the truth
of any formula in the sum to corresponding general types of the index structure and
the components because every formula can be represented by the types it satisfies.

Theorem 3.7. Let (I,<) be an index ordering and (Ai, P̄i) for i ∈ I be component
structures with predicates P̄i = {Pi

1, . . . , Pi
m}. Furthermore, let τ1, . . . , τs denote an

enumeration of the l̄-types of the components (which are all contained in the general
l̄-type). Given l̄ = (l1, . . . , lk) and m ∈N, we can compute r̄ = (r1, . . . , rk) such that
for every ordered disjoint sum ∑i∈I(Ai, P̄i) the l̄-type of the sum is determined by
the r̄-type of the index structure (I,<) which is expanded by the sets Ij = {i ∈ I |
(Ai, P̄i) has the type τj} for j ∈ [s].

For the proof sketch of the theorem, we first show how r̄ is constructed from l̄ and
then show the construction of the types for the index structure and the components
by induction over the general types in the sum.

The value of r̄ is inductively defined as follows: for empty sequences l̄ = (), we
have r̄ = (). For non-empty sequences l̄′ = (l̄, lk+1) and m free MSO variables,
we have r̄′ = (r̄, r′) where r̄ is the sequence assigned to l̄ for m + lk+1 free MSO
variables and r′ is |T l̄(m + lk+1)|.

Note that l̄ and r̄ have the same number of entries whereas the single entries of r̄
can be larger than those of l̄. This is the reason why the quantifier alternation depth
(and not the quantifier depth) was used in the definition of MSO Hintikka formulas
respectively their type-representation.

The proof of the theorem uses an induction over k. For k = 0, we have l̄ = () and
atomic formulas. The kinds of atomic formulas are Nonempty(Xi ∩ Xj), Xi ⊆ Xj,
Xi < Xj and Xi1 ∪ · · · ∪ Xij = All.
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• The formula Nonempty(Xi ∩ Xj) holds in the ordered disjoint sum – i.e.,
we have Nonempty(Xi ∩ Xj) ∈ T()(∑h∈I(Ah, P̄h)) – if and only if there is at
least one component index l such that in this component Nonempty(Xi ∩ Xj)

holds, i.e., Nonempty(Xi ∩ Xj) ∈ T()(Al , P̄l). Thus, there has to be (at least)
one non-empty set Ik for a type τk with Nonempty(Xi ∩ Xj) ∈ τk. This is
equivalent to that there exists a k with Nonempty(Xk) ∈ T()(I,<, I1, . . . , Is)

and Nonempty(Xi ∩ Xj) ∈ τk.

• The formula Xi ⊆ Xj holds in the ordered disjoint sum if and only if only com-
ponents are taken where Xi ⊆ Xj holds, i.e., Xi ⊆ Xj ∈ τk ⇔ Nonempty(Xk) ∈
T()(I,<, I1, . . . , Is).

• The formula Xi < Xj holds in the ordered disjoint sum if it either holds
in one component or if Xi and Xj are used in two components where Xi

is used in a component before that where Xj is used (and Xi and Xj are
not empty). Thus, we have Xi < Xj ∈ T()(∑h∈I(Ah, P̄h)) iff either Xi <

Xj ∈ τk and Nonempty(Xk) ∈ T()(I,<, I1, . . . , Is) or Nonempty(Xi) ∈ τk and
Nonempty(Xj) ∈ τk′ and Xk < Xk′ ∈ T()(I,<, I1, . . . , Is).

• The formula Xi1 ∪ · · · ∪ Xij = All holds in the sum iff it holds in all compo-
nents, i.e., Xi1 ∪ · · · ∪ Xij = All ∈ τk ⇔ Nonempty(Xk) ∈ T()(I,<, I1, . . . , Is).

We now consider the induction step. Recall that T(l̄,lk+1)(∑h∈I(Ah, P̄h)) contains
all types of T l̄(∑h∈I(Ah, P̄h, R̄h)) for all possibilities of R̄h := Rh

1, . . . , Rh
lk+1. By

induction hypothesis, we can compute each T l̄(∑h∈I(Ah, P̄h, R̄h) for a specify choice
of R̄h from an expanded index structure (I,<, I1, . . . , Ir) where τ1, . . . , τr is the
enumeration of all types from the general type T l̄(m + lk+1) which hold for the
components for this choice of R̄h.

The goal is to collect all these r̄-types for the index structure which are induced
by all possible choices of R̄h. By definition, the type T(r̄,rk+1)(I,<, I1, . . . , Is) (with
Ih = {i ∈ I | T(l̄,lk+1)(Ai, P̄i) = τh}) contains types Tr̄(I,<, I1, . . . , Is, J1, . . . , Jt)

where t = rk+1 = |T l̄(m + lk+1)| and σ1, . . . , σt are all types from the general type
T l̄(m + lk+1).

The main proof idea is to establish compatibility conditions over these σ1, . . . , σt

and to choose only those r̄-types which satisfy them. Let X1, . . . , Xs, Y1, . . . , Yt

denote the variables used in the types for the sets I1, . . . , Is, J1, . . . , Jt. Then, the
compatibility conditions are:
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• Each component (Ai, P̄i, R̄i) has to satisfy exactly one2 of the types σ1, . . . , σt.
This is achieved by forcing that the sets J1, . . . , Jt form a partition, formally:
Y1 ∪ · · · ∪Yt = All and Yi ∩Yj = ∅ for all i, j.

• For each i ∈ Ih, i.e., a component of type τh = T(l̄,lk+1)(Ah, P̄h), the index i
also has to be in all Jj with σj = T(l̄)(Aj, P̄j, R̄j) for any R̄j. This is captured by
Nonempty(Xh ∩Yj).

It can be shown that these conditions are not only necessary but also sufficient to
describe the type T(l̄,lk+1)(∑i∈I(Ai, P̄i)). For details of the proof see [Tho97a].

3.4 Size of the Decomposition

In the last sections, we have only seen the classical composition theorems for
products and ordered sums. There are several variants of composition theo-
rems, especially composition theorems for less expressive logics like modal logic,
see, e.g., Rabinovich [Rab07]. A good overview of the results can be found in
Makowsky [Mak04].

Remember that the size of the decomposition for a given formula was defined
as the size of the generated interface information tuple, see Definition 2.27. Note
that both the constructions for products and sums in the last two sections lead to
a non-elementary size of the decomposition, because in the induction step for the
existential quantification we consider all combinations of the (general) Hintikka
formulas from the previous step. Thus, every existential quantification leads to
an exponential increase of the number of formulas, resulting, in total, in a non-
elementary size of the decomposition. In the literature [DGKS07, GJL12], it has been
shown that this is unavoidable for almost all combinations of logics and products
or sums: Dawar, Grohe, Kreutzer and Schweikardt showed a non-elementary lower
bound for the size of the decomposition for FO logic and products. This result has
been extended by Göller, Jung and Lohrey to modal logic and transferred to disjoint
ordered sums and FO logic. We briefly present here their results and give a sketch
of the proof. Note that the proof uses that the structures – here: transition systems –
may have an unbounded degree of outgoing transitions.

Theorem 3.8. In general, for asynchronous products and modal logic the size of
the decomposition is non-elementary in the size of the given formula. Furthermore,
this holds also for any logic which is at least as expressive as modal logic.

2Note that on the other hand there may be types which are not satisfied by any component. (There
are even types which are not satisfiable at all, e.g., if Xi < Xj is in a type but Nonempty(Xi) is
missing.)
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3 The Composition Method

We only present a sketch of the proof here. Let Tower(l, n) be defined by
Tower(0, n) = n and Tower(l, n) = 2Tower(l−1,n). The main idea of the proof is
to encode large structures by small formulas. For this, trees are constructed in
which each node at height l has Tower(l, n) successors. To be more precise, a (l, n)-
treelike structure is defined where the root has Tower(l, n) successors which are all
(l − 1, n)-treelike. These trees are an extension of the trees defined in [DGKS07] by
additional predicates. In particular, a predicate Pb is added which is used to assign
a value to each of these trees. To be more precise, the predicate Pb at all successors
together encodes a natural number in binary which is defined as the value of the
tree. Then, formulas are defined which compare the predicates of two such trees for
each level (l, n). Afterwards, using these formulas, a formula ϕl,n is defined which
checks that two such trees have the same value (via the Pb). This can be used in a
binary asynchronous product to check that both components have the same value.

Now, the proof that the size of the decomposition is non-elementary is shown by
contradiction. One uses an elementary function from the size of the formula ϕl,n to
the number of formulas for the components. Then, there is some (l, n) from which
on there are less formulas for the components than there are different trees. Thus,
two trees satisfy the same formulas. Assuming that the composition theorem holds,
this would mean that ϕl,n holds for these trees although they have different values,
which contradicts the definition of ϕl,n.

The result from above is used to derive a non-elementary lower bound for the
composition theorem of FO logic and disjoint ordered sums of two components.
Furthermore, it is also shown that this holds if FO logic with only three variables –
denoted as FO3 logic – is used.

Theorem 3.9. In general, for disjoint ordered sums and FO3 logic the size of the
decomposition is non-elementary in the size of the given formula.

We want to mention that this result does not hold for FO2 logic. In [GJL12], the
authors found a double exponential upper bound for the case of FO2.
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Logic extended by Paths with Counting

In Sections 3.2 and 3.3, we have seen composition theorems for products and sums
of general structures. In the field of model-checking, we are mainly interested in
special structures – transition systems. Instead of looking at direct products of
arbitrary relational structures, in this chapter, we look at synchronized products
of transition systems. In these products, we may have both asynchronous and
synchronous behaviour between the components. To be more precise, we may have
an a-transition between two states in the product if exactly one component takes
an a-transition (asynchronous behaviour) or all components take an a-transition
(synchronous behaviour) or a mixture of both called synchronized behaviour, where
a fixed subset of components takes an a-transition and the other components stay at
the same state. A special case of a synchronized product is a finitely-synchronized
product which contains only a finite number of synchronized transitions.

In Chapter 3, we have seen that the composition theorem for disjoint ordered
sums is stated for MSO logic while the composition theorem for products is stated
for FO logic. It is easy to see that we can not generalize the composition theorem for
products to MSO logic. For this, consider an asynchronous product of two copies
of the natural numbers with successor. It is well-known that the MSO theory of the
natural numbers with successor relation is decidable, but the MSO theory of their
product – which is the infinite grid – is undecidable.

This raises two questions:

1. Does the composition technique for products work for stronger logics than
FO logic?

2. Which logical properties cause the technique to fail?

Both questions have been addressed in the literature. On the one hand, Wöhrle
and Thomas [WT07] looked at the extension of FO logic by (unconditioned) reacha-
bility, i.e., by relations Reach(x, y) which express that there exists a path fragment
from x to y. For arbitrary synchronized products, already this extension leads to
a failure of the composition theorem, but for finitely-synchronized products the
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4 Composition for Products and FO Logic extended by Paths with Counting

composition theorem is applicable for this logic. Note that (unconditioned) reacha-
bility corresponds to the CTL quantifier EF. On the other hand, Rabinovich [Rab07]
showed that the composition theorem fails even for asynchronous products if the
logic can express the CTL quantifier EG. Furthermore, in [WT07], the failure of the
composition technique for asynchronous products and regular reachability – i.e.,
reachability by path fragments which are labeled according to a regular language –
described by a regular expression – was shown.

In this chapter, we take a deeper look at where the actual limit for the compo-
sition theorem for synchronized products is. We show that for the subclass of
finitely synchronized products we can extend FO logic by a conditioned version
of reachability: FO(Reg1R) – FO logic augmented by modulo counting over the
length of the paths. We also consider general regular reachability (over any finite
alphabet). Here, we present an alternative proof to [WT07] which shows the failure
of the composition technique for regular reachability over an alphabet of two labels
and asynchronous products.

For the result that the composition theorem is also applicable for FO logic ex-
tended by modulo counting over the path length, we generalize the proof of the
composition theorem by Rabinovich – shown in [Rab07] – which is a slight variation
of the original proof by Feferman and Vaught. (The original result by Feferman and
Vaught has a lot of redundancy as it considers all theoretically possible (Hintikka)
formulas and does not take the current input formula into account. For example,
also if a predicate P is not used in the input formula, the atomic Hintikka formulas
contain all conditions with p as well as with ¬p as a conjunct. The construction of
Rabinovich avoids this and uses only the formulas which are relevant for the given
input formula.)

We begin this section by adapting the proof of Rabinovich to FO logic. (He
considers modal logic.) Then, we present our extension of the proof to capture FO
logic with predicates which allow to express reachability with modulo counting
over the length of the path fragment. This will be shown first for asynchronous
products and afterwards for finitely-synchronized products. We continue with the
extension to regular reachability and show the failure of the composition technique
in this case. We conclude with a summary and an outlook. As we only speak about
path fragments in this chapter, we simply write path instead of path fragment to
ease notation.
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4.1 Composition Theorem for Synchronized Products of
Transition Systems

For the following theorem, we use as in Definition 2.28 an index structure Ind with
index set I. Moreover, let Σ := Σl∪̇Σs be an alphabet for the local and synchronous
relations in the components, V for the (unary) predicates and C for the synchronized
transitions in the product. Furthermore, let σ be the signature which contains the
relation symbols Ra for a ∈ Σ and Pv for v ∈ V and σ̄ the signature which contains
the relation symbols R̄a for a ∈ Σl , R̄c for c ∈ C and P̄i

v for v ∈ V and i ∈ I.
Moreover, let τ denote a mapping from C to disjoint interface information tuples.

Theorem 4.1. For every given σ̄-FO formula γ(x̄1, . . . , x̄r), we can effectively com-
pute an interface information tuple 〈γ1, . . . , γm; β(Z1, . . . , Zm)〉 with σ-FO formulas
γj(x1, . . . , xr) for j ∈ [m] and an MSO formula β(Z1, . . . , Zm) interpreted in the
index structure Ind, such that for all synchronized (σ̄, τ)-products K = (S̄, {R̄a |
a ∈ Σl}, {R̄c | c ∈ C}, {P̄i

v | v ∈ V}) of transition systems Ki = (Si, {Ri
a |

a ∈ Σ}, {Pi
v | v ∈ V}) (i ∈ I) and for every state tuple (s̄1, . . . , s̄r) with s̄j ∈ S̄:

(K, s̄1, . . . , s̄r) |= γ(x̄1, . . . , x̄r)⇐⇒ Ind |= β(I1, . . . , Im)

with Ik = {i ∈ I | (Ki, s̄1[i], . . . , s̄r[i]) |= γk(x1, . . . , xr)} for k ∈ [m].

We preprocess the formula by replacing every universal quantifier by ∀xϕ =

¬∃x¬ϕ. Then, the proof uses a structural induction over the input formula.

Induction base:
For the induction base, we have to find interface information tuples which describe
the atomic formulas, i.e., the asynchronous and synchronized transition relations
R̄a, R̄c, the predicates P̄i

v and the equivalence x̄ = ȳ.

The asynchronous transition relation R̄a for a ∈ Σl can be described by the
interface information tuple 〈Ra(x, y), x = y; β(X1, X2)〉 with β(X1, X2) = ∃i :
(X1(i) ∧ ∀j(j 6= i → X2(j))). For the synchronized transition relations R̄c with
c ∈ C, the interface information tuples are given by τ. The interface information
tuple 〈Pv(x); β(X1)〉 with β(X1) = X1(i) defines the predicate P̄i

v for v ∈ V and
i ∈ I. Furthermore, the equivalence relation x̄ = ȳ can be described by the interface
information tuple 〈x = y; ∀iX1(i)〉.

Induction hypothesis:
The induction hypothesis states that for every subformula ϕ(x̄1, . . . , x̄r′) of the
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4 Composition for Products and FO Logic extended by Paths with Counting

current formula δ(x̄1, . . . , x̄r) we have an interface information tuple 〈ϕ1, . . . , ϕm;
βϕ(X1, . . . , Xm)〉 for ϕ such that for every state tuple (s̄1, . . . , s̄r′) with s̄j ∈ S̄:

(K, s̄1, . . . , s̄r′) |= ϕ(x̄1, . . . , x̄r′)⇐⇒ Ind |= βϕ(I1, . . . , Im)

with Ik = {i ∈ I | (Ki, s̄1[i], . . . , s̄r′ [i]) |= ϕk(x1, . . . , xr′)} for k ∈ [m].

Induction step:
In the induction step, we have to consider negation, disjunction and existential
quantification.

For the negation of the given formula, we simply have to negate the MSO formula
of the interface information tuple. So for δ(x̄1, . . . , x̄r) = ¬ϕ(x̄1, . . . , x̄r) and a given
interface information tuple 〈ϕ1, . . . , ϕm; βϕ(X1, . . . , Xm)〉 for ϕ, we get 〈δ1, . . . , δm;
βδ(X1, . . . , Xm)〉 with δj = ϕj for j ∈ [m] and βδ(X1, . . . , Xm) = ¬βϕ(X1, . . . , Xm) as
the interface information tuple for δ.

For the disjunction of two given formulas ϕ and ψ, we take the disjunction of
the index formula of their interface information tuples with a small preparation
to ensure that ϕ and ψ use the same free variables. Consider a free variable x
which is used in ψ but not in ϕ. We can simply add the formula x = x to the
list of component formulas of the interface information tuple of ϕ and shift the
indices of the sets X1 . . . , Xm according to the insert position without changing
its satisfiability. So, w.l.o.g., we can assume that ϕ and ψ have the same free
variables. Let 〈ϕ1, . . . , ϕm; βϕ(X1, . . . , Xm)〉 be the interface information tuple for
ϕ(x̄1, . . . , x̄r) and 〈ψ1, . . . , ψm′ ; βψ(X1, . . . , Xm′)〉 for ψ(x̄1, . . . , x̄r). The interface in-
formation tuple for δ is 〈ϕ1, . . . , ϕm, ψ1, . . . , ψm′ ; βδ(Z1, . . . , Zm, Zm+1, . . . , Zm+m′)〉
with βδ = βϕ(Z1, . . . , Zm) ∨ β(Zm+1, . . . , Zm+m′). The construction for the conjunc-
tion of two given formulas is analogous.

For the existential quantification, we need a preparation of the given interface
information tuple. In order to find existentially quantified formulas for the com-
ponents, we guarantee that each component satisfies exactly one of the formulas.
This will be done by ensuring that the conjunction of two of the formulas for the
components is unsatisfiable and the disjunction over all of the formulas is true.

Lemma 4.2. For every interface information tuple 〈γ1, . . . , γm; β(X1, . . . , Xm)〉, there
exists an equivalent interface information tuple 〈δ1, . . . , δ2m ; β(Y1, . . . , Y2m)〉 that
fulfills the following properties: δi ∧ δj is unsatisfiable for all i, j ∈ [2m] and

∨2m

i=1 δi

is valid, i.e., the sets Y1, . . . , Y2m have to form a partition.

Proof. To show the lemma, we start by defining the interface information tuple
〈δ1, . . . , δ2m ; β(Y1, . . . , Y2m)〉. For a subset H ⊆ [m], let δ′H :=

∧
i∈H γi ∧

∧
i 6∈H ¬γi. We
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use a listing of the formulas δ′H (H ⊆ [m]) for the formulas δ1, . . . , δ2m . This listing is
chosen by an arbitrary bijective mapping f : P([m])→ [2m] from the subsets to the
indices of the formulas δi. Let δi := δ′H iff f (H) = i. In β(Y1, . . . , Y2m), we guarantee
that there are sets X1, . . . , Xm such that the original formula holds for these sets and
(by using the mapping f ) that z ∈ Xi iff z ∈ YH for one of the sets H which contain
i:

β(Y1, . . . , Y2m) = ∃X1 . . . ∃Xm[
m∧

i=1

∀z(Xi(z)↔
∨

{k|i∈ f−1(k)}
Yk(z)) ∧ β(X1, . . . , Xm)]

The interface information tuple 〈δ1, . . . , δ2m ; β(Y1, . . . , Y2m)〉 defines the same rela-
tion as 〈γ1, . . . , γm; β(X1, . . . , Xm)〉: we have for all i ∈ [m] that

∨
{H⊆[m]|i∈H} δ′H =

γi, because of
∨
{H⊆[m]|i∈H} δ′H =

∨
{H⊆[m]|i∈H}(

∧
j∈H γj ∧

∧
j 6∈H ¬γj) which is equal

to
∧

j∈[m],j 6=i(
∨
{H⊆[m]|j∈H} γj ∨

∨
{H⊆[m]|j 6∈H} ¬γj) ∧

∨
{H⊆[m]|i∈H} γi = tt∧ γi.

It remains to show the properties: δi ∧ δj is unsatisfiable for all i, j ∈ [2m] and∨2m

i=1 δi is valid. We first show that
∨

H⊆[m] δ′H is valid. As we consider all subsets
of H, there is a subset G ⊆ [m] such that exactly the formulas γi with i ∈ G are
satisfied and the formulas γi with i 6∈ G not. Thus, by definition δ′G holds. Now
consider two different subsets G1, G2 ∈ [m]. As they are different, there exists at
least one index i ∈ G1 and i 6∈ G2 (or vice verse). Thus, δ′G1

∧ δ′G2
can not be satisfied

because it contains γi and ¬γi in the conjunction.

We continue with the existential quantification in the inductive proof of the
composition theorem. For δ(x̄1, . . . , x̄r) = ∃x̄r+1ϕ(x̄1, . . . , x̄r, x̄r+1), we have to
ensure that the formulas ∃xϕj(x1, . . . , xr, x) for the components are unambiguous,
i.e., that each component satisfies exactly one of the formulas. This is done as
follows: we first apply Lemma 4.2 to ensure that every component satisfies one of
the formulas ϕj(x1, . . . , xr, xr+1). Let 〈ϕ1, . . . , ϕm; βϕ(Y1, . . . , Ym)〉 be the converted
interface information tuple for ϕ which we get by applying the lemma. Then, we
have ϕi ∧ ϕj is unsatisfiable for all i, j ∈ [m] and

∨m
i=1 ϕi is valid. (Note that by

applying the lemma, we get an exponential growth of the number of formulas.)

If we now consider the formulas ∃xϕ1(x1, . . . , xr, x), . . . , ∃xϕm(x1, . . . , xr, x) we
may no longer have ∃xϕi ∧ ∃xϕj is unsatisfiable and

∨m
i=1 ∃xϕi is valid. Thus,

we have to assure these conditions again by a partition condition over these
formulas. This is done as follows: we define the interface information tuple
for δ(x̄1, . . . , x̄r) = ∃x̄ϕ(x̄1, . . . , x̄r, x̄) as 〈δ1, . . . , δm; βδ(X1, . . . , Xm)〉 with δi :=
∃xϕi(x1, . . . , xr, x) and βδ(X1, . . . , Xm) as the formula ∃Z1 . . . ∃Zm[

∧
k∈[m] Zk ⊆ Xk ∧

βPartition(Z1, . . . , Zm; I) ∧ βϕ(Z1, . . . , Zm)].
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4 Composition for Products and FO Logic extended by Paths with Counting

We now show that this choice for the existential quantification is correct. For
this, let (K, s̄1, . . . , s̄r) |= δ(x̄1, . . . , x̄r) = ∃x̄ϕ(x̄1, . . . , x̄r, x̄). We show that the index
structure fulfills βδ of the interface information tuple 〈δ1, . . . , δm; βδ(X1, . . . , Xm)〉
as defined above if Xk is interpreted as Ik = {i ∈ I | (Ki, s̄1[i], . . . , s̄r[i]) |=
∃xϕk(x1, . . . , xr, x)}. From (K, s̄1, . . . , s̄r) |= ∃x̄ϕ(x̄1, . . . , x̄r, x̄), we get that there
exists a state s̄ in the product such that (K, s̄1, . . . , s̄r, s̄) |= ϕ(x̄1, . . . , x̄r, x̄) holds. By
induction hypothesis, we know that this holds iff the MSO formula βϕ(Y1, . . . , Ym)

of the interface information tuple for ϕ (which is already in the converted form by
Lemma 4.2) is satisfied for Jk = {i ∈ I | (Ki, s̄1[i], . . . s̄r[i], s̄[i]) |= ϕk(x1, . . . , xr, x)}.
Note that Jk ⊆ Ik = {i ∈ I | (Ki, s̄1[i], . . . , s̄r[i]) |= ∃xϕk(x1, . . . , xr, x)} holds. By
Lemma 4.2, we also have that Jk ∩ Jk′ = ∅ for every k, k′ ∈ [m] and

⋃m
i=1 Ji = I,

i.e., that βPartition(J1, . . . , Jm; I) holds. Thus, the sets Jk for k ∈ [m] can be used as
interpretation for the sets Zk in βδ(X1, . . . , Xm) as they satisfy all the demanded
properties. We conclude that βδ(X1, . . . , Xm) is satisfied for Ik as defined above.

For the other direction, let the MSO formula βδ(X1, . . . , Xm) of the interface
information tuple 〈δ1, . . . , δm; βδ(X1, . . . , Xm)〉 be satisfied for the sets Ik, again,
defined as {i ∈ I | (Ki, s̄1[i], . . . , s̄r[i]) |= ∃xϕk(x1, . . . , xr, x)}. By definition of
βδ(X1, . . . , Xm), there are sets Jk with Jk ⊆ Ik and βPartition(J1, . . . , Jk; I) that satisfy
the condition βϕ(Y1, . . . , Ym) from the interface information tuple for ϕ. From Jk ⊆
Ik we know that also for all i ∈ Jk we have (Ki, s̄1[i], . . . , s̄r[i]) |= ∃xϕk(x1, . . . , xr, x).
So for every k ∈ [m] and every i ∈ Jk there exists a state si ∈ Si such that
(Ki, s̄1[i], . . . , s̄r[i], si) |= ϕk(x1, . . . , xr, x). From βPartition(J1, . . . , Jk; I) we get that for
every i ∈ I there is exactly one k ∈ [m] with (Ki, s̄1[i], . . . , s̄r[i], si) |= ϕk(x1, . . . , xr, x).
So together, these states si for i ∈ I define a state s̄ with s̄[i] = si such that the for-
mula βϕ(Y1, . . . , Ym) of the interface information tuple 〈ϕ1, . . . , ϕm; βϕ(Y1, . . . , Ym)〉
is satisfied for {i ∈ I | (Ki, s̄1[i], . . . s̄r[i], s̄[i]) |= ϕk(x1, . . . , xr, x)}. By induction
hypothesis this holds iff (K, s̄1, . . . , s̄r, s̄) |= ϕ(x̄1, . . . , x̄r, x̄). Thus, (K, s̄1, . . . , s̄r) |=
∃x̄ϕ(x̄1, . . . , x̄r, x̄) holds.

4.2 Composition Theorem for Asynchronous Products and
Counting over the Path Length

In this and the next section, we discuss modulo counting over the path length.
We first generalize the composition theorem from the last section to capture this
property for the special case of asynchronous products.

Let Ind be an index structure with index set I. Moreover, let Σ be an alphabet for
the local relations in the components and V for the (unary) predicates. Furthermore,
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let σ be the signature which contains the relation symbols Ra for a ∈ Σ and Pv for
v ∈ V and σ̄ the signature which contains the relation symbols R̄a for a ∈ Σl and P̄i

v

for v ∈ V and i ∈ I.

Theorem 4.3. For every σ̄-FO(Reg1R) formula γ(x̄1, . . . , x̄r), we can effectively com-
pute an interface information tuple 〈γ1, . . . , γm; β(Z1, . . . , Zm)〉 with σ-FO(Reg1R)
formulas γj(x1, . . . , xr) for j ∈ [m] and a CMSO formula β(Z1, . . . , Zm) interpreted
in the index structure Ind, such that for the asynchronous σ̄-product K = (S̄, {R̄a |
a ∈ Σ}, {P̄i

v | v ∈ V}) of σ-transition systems Ki = (Si, {Ri
a | a ∈ Σ}, {Pi

v | v ∈ V})
(i ∈ I) and for every state tuple (s̄1, . . . , s̄r) we have:

(K, s̄1, . . . , s̄r) |= γ(x̄1, . . . , x̄r)⇐⇒ Ind |= β(I1, . . . , Im)

with Ik = {i ∈ I | (Ki, s̄1[i], . . . , s̄r[i]) |= γk(x1, . . . , xr)} for k ∈ [m].

As the asynchronous product is a special case of a finitely-synchronized prod-
uct, we extend the inductive proof of Theorem 4.1 by the case for the additional
atomic formulas Pathl,k(x̄, ȳ). Recall that FO(Reg1R) is equivalent to FO logic with
additional predicates Pathl,k. So we have to find interface information tuples for
the atomic formulas Pathl,k(x̄, ȳ) in the product. Note that for the special case of an
asynchronous product the length of a path in the product is simply the sum of the
lengths of the segments of this path in the components.

The main idea is as follows: we use formulas Path0,k(x, y), . . . , Pathk−1,k(x, y)
in every component to count the fragment of the path length modulo k in this
component. Note that Path0,k(x, y) can be used for components with a path length
divisible by k and for components with no path between x and y at all, i.e., for
x = y. With these formulas, we can count via the CMSO formula of the interface
information tuple the number of components which have a path length 0, . . . , k−1
modulo k. We ensure that the components with path lengths 1, . . . , k−1, together,
create a path of length l modulo k via a formula β′ by expressing the solutions of
an equation in MSO logic.

We now present the formal definition. Let |Y|k denote the number of elements
of Y modulo k and let [k]−1 := {0, . . . , k−1}. For every l ∈ [k]−1 the inter-
face information tuple has the following form: 〈Path0,k(x, y), . . . , Pathk−1,k(x, y);
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β(X0, . . . , Xk−1)〉 with

β(X0, . . . , Xk−1) := ∃Y0 . . . ∃Yk−1 :∧
j∈[k]−1

Yj ⊆ Xj ∧ βPartition(Y0, . . . , Yk−1; I) ∧ β′(Y1, . . . , Yk−1)∧

∧
j∈{1,...,k−1}

∨
r∈[k]−1

Cardr,k(Yj)

where β′ (defined later) describes the condition that the path lengths for the compo-
nents from Y1, . . . , Yk−1 sum up to l.

We explain the other parts of β first: If Xj is interpreted by {i ∈ I | (Ki, x̄[i], ȳ[i]) |=
Pathj,k(x, y)} for all j ∈ [k]− 1, then the formula means that there are (sub-)sets Yj

which satisfy Pathj,k(x, y) such that every component is in exactly one of these sets,
the formula β′(Y1, . . . , Yk−1) holds and the sets Yj are finite for j ∈ 1, . . . , k− 1. (The
set Y0 does not need to be finite because it includes the possibility that x = y.)

To count the path length modulo k in the product, we observe that for j ∈
{1, . . . , k− 1}, each component with a path segment of length j modulo k adds
j (mod k) to the whole path. We have to ensure that these segment lengths sum up
to l (mod k). In other words, we have to ensure ∑j∈{1,...,k−1} j · yj = l (mod k) with
yj = |Yj|k (mod k).

Note that the variables yj are in the range {0, . . . , k− 1}. So we get finitely many
solutions for the equation. Let L be the set of solutions

L := {(z1, . . . , zk−1) | 1 ∗ z1 + · · ·+ (k− 1) ∗ zk−1 = l (mod k) ∧ ∀j : zj ∈ [k− 1]}

We use a description of these solutions in MSO logic as formula β′(Y1, . . . , Yk−1):

∨
(z1,...,zk−1)∈L

(Cardz1,k(Y1) ∧ · · · ∧Cardzk−1,k(Yk−1))

4.3 Composition Theorem for Finitely Synchronized
Products and Counting over the Path Length

In this section, we generalize the result from the last section to finitely synchronized
products.

Again, let Ind be an index structure with index set I. Moreover, let Σ := Σl∪̇Σs

be an alphabet for the local and synchronous relations in the components, V for the
(unary) predicates and C for the synchronized transitions in the product. Further-
more, let σ be the signature which contains the relation symbols Ra for a ∈ Σ and
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Pv for v ∈ V and σ̄ the signature which contains the relation symbols R̄a for a ∈ Σl ,
R̄c for c ∈ C and P̄i

v for v ∈ V and i ∈ I. Furthermore, let τ denote a mapping from
C to disjoint interface information tuples.

Theorem 4.4. For every σ̄-FO(Reg1R) formula γ(x̄1, . . . , x̄r) and q ∈ N, we can
effectively compute an interface information tuple 〈γ1, . . . , γm; β(Z1, . . . , Zm)〉 with
σ-FO(Reg1R) formulas γj(x1, . . . , xr) (j ∈ [m]) and a CMSO formula β(Z1, . . . , Zm)

interpreted in the index structure Ind, such that we have: If the synchronized
(σ̄, τ)-product K = (S̄, {R̄a | a ∈ Σl} ∪ {R̄c | c ∈ C}, {P̄i

v | v ∈ V}) of transition
systems Ki = (Si, {Ri

a | a ∈ Σ}, {Pi
v | v ∈ V}) (i ∈ I) is finitely synchronized

with q synchronized transitions, then for every state tuple (s̄1, . . . , s̄r), the following
equivalence holds:

(K, s̄1, . . . , s̄r) |= γ(x̄1, . . . , x̄r)⇐⇒ Ind |= β(I1, . . . , Im)

with Ik = {i ∈ I | (Ki, s̄1[i], . . . , s̄r[i]) |= γk(x1, . . . , xr)} for k ∈ [m].

Note that the generated interface information tuple for γ depends on the number
q of synchronized transitions in the product. Before we show the theorem, we
first explain the proof ideas: The proof works by induction over the number
of synchronized transitions in the product. For one synchronized transition in
the product, we consider the paths in the components and split each path into
asynchronous parts and the usage of this synchronized transition. We count the
length of the asynchronous segments (before and after taking the synchronized
transition) in each component modulo k and create for each component their sum
(modulo k). Then, we add these sums for all components and add the number
of times the synchronized transition has been taken. It has to be counted only
once for every repetition as it is taken together in all components. The idea is the
same for a fixed number of synchronized transitions. Here, we observe that the
usage of r synchronized transitions can be described by segments using only r− 1
synchronized transitions and the usage of the r-th synchronized transition.

Proof. Induction base:
We show the theorem for the case of only one synchronized transition in the prod-
uct. Let C = {c̄1} and {(s̄1, t̄1)} = Rc̄1 be the set which contains this transition. To
simplify notation, we assume that c̄1 is defined as a synchronization between all com-
ponents and the transitions in the components are labeled by c1. (The generalization
to only a subset of components which are synchronized via potentially different
symbols is straightforward.)
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4 Composition for Products and FO Logic extended by Paths with Counting

For asynchronous products, we already have an MSO formula over the index
structure that can express that two states are reachable in the product via a path with
a length l (mod k) (by summing up the paths in the components). In a synchronized
product with one synchronized transition1, we have the following cases: First, we
may also have in all components paths which use only asynchronous transitions
which sum up to a path of length l (mod k). Second, we may have in all components
paths which use exactly once a c1-transition. Third, we may have in all components
paths which use a c1-transition more than once but in all components the same
number of times. In the later two cases, we have to ensure that the c1-transitions
are only counted once (per repetition) for the whole path length as all components
take them “at the same time”.

We take a deeper look at the paths in all components with the c1-transitions (see
also Figure 4.1). In the second case where at least one c1-transition (from state s1 to
t1) is taken, we must have the following situation in each component: y is reachable
from x iff there is a path from x to s1, then the c1 transition is taken which leads us
to t1 and there is a path from t1 to y.

This must also be the case in the third case, but here we must also have a path
from t1 back to s1. To simplify notation, we consider here only the case that there
is at most one path from t1 back to s1. This situation is shown in Figure 4.1. To
capture the general situation “more paths from t1 back to s1” (or to be more precise
paths of different lengths), the following construction has to be generalized which
we skip to improve readability. However, the generalization is straightforward and
we give hints at the corresponding points how it can be realized. Note that for the
paths from t1 back to s1, we may have at most k different path lengths because we
count modulo k.

xcase 1: y
Σ∗l

xcase 2: s1 t1 y
Σ∗l

c1

Σ∗l

xcase 3: s1 t1 y
Σ∗l

c1

Σ∗lΣ∗l

Figure 4.1: Path Using One Synchronization Transition per Component

For a component, let Pathl
i,k(x, y) denote that there is a path from x to y which uses

only asynchronous transitions (i.e., from Σl) and which has the length i (mod k).

1Recall that we have a c̄1-transition in the product if all components take a c1-transition.
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4.3 Finitely Synchronized Products and Counting over the Path Length

We can express the cases 1,2 and 3 from above by FO(Reg1R)-formulas αi1(x, y),
αi1i2(x, y) and αi1i2i3(x, y) for i1, i2, i3 ∈ {0, . . . , k− 1}:

• αi1(x, y) := Pathl
i1,k(x, y),

• αi1i2(x, y) := ∃s1∃t1(Pathl
i1,k(x, s1) ∧ Rc1(s1, t1) ∧ Pathl

i2,k(t1, y)) and

• αi1i2i3 := ∃s1∃t1(Pathl
i1,k(x, s1) ∧ Rc1(s1, t1) ∧ Pathl

i3,k(t1, s1) ∧ Pathl
i2,k(t1, y)).

For the generalization to more paths from t1 back to s1, we would have here k− 1
additional cases for all paths of different path lengths modulo k.

The interface information for Pathl,k(x̄, ȳ) in the product is defined analogously
to the last section by an interface information tuple with the formulas αi1(x, y),
αi1i2(x, y) and αi1i2i3(x, y) and an MSO formula β(X0, . . . , Xk−1, X00, . . . , Xk−1k−1,
X000, . . . , Xk−1k−1k−1) expressing that there are subsets Y0, . . . , Yk−1k−1k−1 that form
a partition and (by β′ defined below) that the path lengths sum up correctly:

∃Y0 . . . ∃Yk−1k−1k−1 : Y0 ⊆ X0 ∧ · · · ∧Yk−1k−1k−1 ⊆ Xk−1k−1k−1∧
βPartition(Y0, . . . , Yk−1k−1k−1; I) ∧ β′(Y0, . . . , Yk−1k−1k−1)

(We consider here only the case that all components are synchronized. For the
general case where τ defines the components which are synchronized the condition
βτ also has to be satisfied.)

For the definition of the formula β′(Y0, . . . , Yk−1k−1k−1), we use functions f1, f2

and f3 which map tuples (i1), (i1, i2) and (i1, i2, i3; j) for the length of the segments
of the asynchronous paths in a component and the repetition j of the path from
t1 back to s1 to the sum of these paths (without counting the repetition of the
synchronized c1-transition – this is done later together for all components). The
first index i1 is used for the path x to s1 (respectively y), the index i2 for t1 to y and
i3 for t1 to s1.

For i1, i2, i3 ∈ {0, . . . , k− 1} and j ∈ {1, . . . , k− 1}, the functions f1, f2 and f3 are
defined as:

• f1(i1) := i1 (mod k),

• f2(i1, i2) := i1 + i2 (mod k) and

• f3(i1, i2, i3; j) := i1 + i2 + (i3 ∗ j (mod k)).

Because we count modulo k we get all possible path lengths by repeating the
path from t1 to s1 at most k − 1 times, so j ≤ k − 1 is sufficient. Furthermore, j
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4 Composition for Products and FO Logic extended by Paths with Counting

cannot be 0 as the case that there is no path back from t1 to s1 or there is one, but it
is not taken is already covered by the second case.

For the three cases, we get the three following solutions. The intuition for l0, . . . ,
lk−1k−1k−1 is that these are the number of components which have a path length of
f1(0), . . . , f3(k− 1, k− 1, k− 1; j):

• L1 = {(l0, . . . , lk−1) | f1(0) · l0 + · · ·+ f1(k− 1) · lk−1 = l (mod k)}

• L2 = {(l00, . . . , lk−1k−1) | f2(0, 0) · l00 + · · ·+ f2(k − 1, k − 1) · lk−1k−1 + 1 =

l (mod k)}

• L3 = {(l000, . . . , lk−1k−1k−1) | ∃j : f3(0, 0, 0; j) · l000 + · · ·+ f3(k− 1, k− 1, k−
1; j) · lk−1k−1k−1 + j = l (mod k)}

The “+1” in the second case and the “+j” in the third one count the number of
times the c1-transition is taken – once for all components. Note that the usage of
only f3(i1, i2, i3; j) for the same j ensures that the c1-transition is taken the same
number of times in all components.

We build the CMSO formula β′ as in the asynchronous case:

β′(Y0, . . . , Yk−1) =∨
(l0,...,lk−1)∈L1

Cardl0,k(Y0) ∧ · · · ∧Cardlk−1,k(Yk−1)∨

∨
(l00,...,lk−1k−1)∈L2

Cardl00,k(Y00) ∧ · · · ∧Cardlk−1k−1,k(Yk−1k−1)∨

∨
(l000,...,lk−1k−1k−1)∈L3

Cardl000,k(Y000) ∧ · · · ∧Cardlk−1k−1k−1,k(Yk−1k−1k−1)

Induction step:
We now discuss how the construction works for more than one synchronized
transition. Recall that q denotes the total number of synchronized transitions in
the product. Furthermore, recall the cases from Figure 4.1. For r synchronized
transitions labeled by c̄1, . . . , c̄r−1, c̄r in the product for labels c1, . . . , cr−1, cr in the
components, we have that y is reachable from x if either we have a path from x to y
using at most the r− 1 transitions (labeled by c1, . . . , cr−1) or we have paths from x to
sr, tr to y and potentially from tr back to sr which use at most these r− 1 transitions.
Let Πr−1 denote the paths using the at most the r − 1 synchronized transitions
and Π0 asynchronous paths, then we get the general inductive description for
Πr, r ∈ [q] shown in Figure 4.2.

56



4.4 Limits of the Composition Technique for Products

xcase 1: y
Πr−1

xcase 2: sr tr y
Πr−1

cr

Πr−1

xcase 3: sr tr y
Πr−1

c1

Πr−1
Πr−1

Figure 4.2: Path Using r Synchronization Transitions per Component

Note that, as for only one synchronized transition, this is a simplified view which
considers only one path back from tr to sr for all r ∈ [q]. The generalization is
analogous to the case in the induction base. Thus, by induction, it is possible to
generate an interface information tuple for all paths using at most q synchronized
transitions of the product by the technique as described above.

4.4 Limits of the Composition Technique for Products

In this section, we show the limits of the composition technique for products. For
this, let us recall the products and logics we already discussed. We present an
overview of the combinations of these logics for which the composition technique
is applicable in Table 4.1 in the summary of this chapter.

We introduced synchronized products with asynchronous transitions (where all
components act independently of each other) and synchronized transitions where
(some of) the components act at the same time. We considered the restriction to
finitely synchronized products in which the number of synchronized transitions in the
product is finite. Furthermore, as a special case (of both) we presented asynchronous
products with no synchronized transitions at all. In all these cases, the product had
a finite or an infinite number of components.

As logics, we introduced modal logic and first-order logic and the following
extensions thereof (starting with the least expressive one):

• reachability via any path (R),

• regular reachability over a unary alphabet (Reg1R) which amounts to modulo
counting over the path length or

• regular reachability (RegR), i.e., reachability by paths which are labeled by
any word in the language of a regular expression.
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4 Composition for Products and FO Logic extended by Paths with Counting

Now, we also discuss the extension of modal logic by the CTL quantifier EG and
propositional dynamic logic over a unary alphabet (1PDL) which can be seen as an
extension of ML(Reg1R) by tests.

In the previous section, we showed that the composition technique is applicable
for FO(Reg1R) and finitely synchronized products (in which the product may
have a finite or an infinite number of components). We now show that both the
generalization on the product level to unrestricted (i.e., not necessarily finitely)
synchronized products and on the logic level to either FO(RegR) logic or 1PDL fail.

For the synchronized product, we recapitulate a proof by Rabinovich in [Rab07]
in which he showed that the direct product – a special case of the synchronized
product – leads to a failure of the composition technique if the logic can express
reachability, e.g., for ML(R) and FO(R). For the logics ML(RegR) and 1PDL, we
adapt his technique to show that the composition theorem fails even for asyn-
chronous products.

The remainder of this subsection is structured as follows. We first introduce the
schema to proof the failure of the composition technique. Then, we apply it to
generate counterexamples for the cases described above.

Lemma 4.5 (Schema to prove the failure of the composition technique [Rab07]).
The composition technique fails for a type2 of products and a logic L if we can find
a formula ψ in L and two (infinite) families of transition systems C = {Ck | k ∈N}
and D = {Dl | l ∈ N} with common initial state s0 such that we have ∀k ∈ N :
(Ck × Dk, (s0, s0)) |= ψ and ∀k, l ∈N with k 6= l : (Ck × Dl , (s0, s0)) 6|= ψ.

We now present the proof of this schema by adapting3 the proof of Rabinovich
shown in [Rab07] to interface information tuples.

For easier presentation, we show the proof for binary products and C = D. The
main ideas of the proof are the following.

• Towards a contradiction, we assume that a composition theorem holds which
assigns an interface information tuple to ψ.

• We define an equivalence relation on the family C of transition systems: all
transitions systems which satisfy the same set of component formulas from
the interface information tuple are in the same equivalence class. As there
are only finitely many component formulas (and thus also finitely many sets
of component formulas) one class contains at least two elements – in fact, it
contains infinitely many elements.

2Type means asynchronous, direct or (finitely) synchronized.
3We have to adapt his schema as he uses a simpler form of interface information which can only be

used for finite products.
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• Thus, two different transition systems satisfy the same formulas. Using the
composition technique their product has to satisfy ψ. This gives a contradic-
tion to the precondition.

Proof (by contradiction). We assume that we have a composition theorem for a binary
product with index set I = {i1, i2} out of the family C – i.e., Ci1 × Ci2 – and a
logic which can express ψ. Then, this theorem states that ψ holds if we have
for the interface information tuple 〈ψ1, . . . , ψl ; β(X1, . . . , Xl)〉 that (I, I1, . . . , Il) |=
β(X1, . . . , Xl) holds with Ik = {i ∈ I | Ci |= ψk}.

As β(X1, . . . , Xl) specifies for each i ∈ I whether ψj, j ∈ [l], has to hold, we
can rewrite this interface information to a simpler form: there exist formulas
ψ1

1 . . . , ψ1
m and ψ2

1, . . . , ψ2
m with m = 2l and ψ1

k , ψ2
k are Boolean combinations of the

{ψj | j ∈ [m]} such that we have:

∨
j∈[2m]

(Ci1 |= ψ1
j ∧ Ci2 |= ψ2

j )

We define an equivalence relation on the set C as follows: Ci ∼ Ci′ :⇔ ∀j ∈ [m] :
((Ci, s0) |= ψ1

j ⇔ (Ci′ , s0) |= ψ2
j ). As the set [m] is finite, we have only finitely many

equivalence classes and thus, one equivalence class contains at least two elements
Ck and Ck′ .

From the precondition, we have (Ck × Ck, (s0, s0)) |= ψ and (Ck′ × Ck, (s0, s0)) |=
¬ψ. However, from the assumption that we have a composition theorem in this
case and Ck′ ∼ Ck, we get also (Ck′ × Ck, (s0, s0)) |= ψ. This is a contradiction. Thus,
the assumption was wrong, i.e., the composition technique fails for this binary
product Ci1 × Ci2 .

We now consider the mentioned extensions of the products and the logics. First,
we discuss the unrestricted synchronized product. The simplest form of a syn-
chronized product is the direct product. We show the failure of the composition
technique in this case if the logic can express reachability.

Theorem 4.6. The composition technique fails for direct products and any logic
which can express reachability.

Proof (by Rabinovich). The proof is shown by giving a formula ψ and transition
systems which meet the requirements of Theorem 4.5. Let ψ = EF〈b〉tt. We define

C as the set of transition systems of the form 1 a−→ 2 a−→ . . . a−→ k b−→ k + 1. It is
formally defined as C = {Ck | k ∈ N} with Ck = {Sk, Rk

a, Rk
b} and Sk := [k + 1],

Ra = {(i, i + 1) | i ∈ {1, . . . , k− 1}} and Rb := {(k, k + 1)}. In any direct product
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Ck × Ck, we have exactly one path (1, 1) a−→ (2, 2) a−→ . . . a−→ (k, k) b−→ (k + 1, k + 1).
For any direct product Ck × Ck′ with k 6= k′, we can assume w.l.o.g. k′ > k. Then,
we have a path (1, 1) a−→ (2, 2) a−→ . . . a−→ (k, k) which cannot be extended because

we have k b−→ k + 1 in the first but only k′ b−→ k′ + 1 in the second component. Thus,
EF〈b〉tt holds for Ck × Ck and does not hold for Ck × C′k for k 6= k′ with k, k′ ∈ N.
This meets the requirements of Theorem 4.5. Thus, the composition technique fails.
An example for k = 3 and k′ = 5 is shown in Figure 4.3.

We immediately get the following corollary.

Corollary 4.7. The composition technique fails for ML(R) and FO(R) for synchro-
nized products.

a a

a a

b

(1) Same index – C3×C3

a a a a

a a a a

b

(2) Different indices – C3 × C5

Figure 4.3: Products C3 × C3 and C3 × C5 for the Proof that the Composition Tech-
nique Fails for Direct Products and Reachability

We now consider the extensions on the logic level: reachability by words in the
language of arbitrary regular expressions and afterwards logic 1PDL which extends
Reg1R by tests.

Theorem 4.8. The composition technique fails for any logic which can express
regular reachability over an alphabet with at least two elements and asynchronous
products.

Proof. We use the formula 〈(ab)∗〉(p1 ∧ p2), which expresses that there exists a path
to a state where (p1 ∧ p2) holds and this path is either empty or labelled with a and
b in alternation and ends with a b-transition.

The theorem is again proven by applying Lemma 4.5. We use a formula ψ which
expresses that there exists a path which is labeled with a and b in alternation and
that ends in a state with no outgoing transitions. We define two families of transition
systems C = {Ck | 2 ≤ k ∈ N} and D = {Dl | 2 ≤ l ∈ N}, where Ck and Dl are
simply a copy of the natural numbers up to k, respectively l with the successor
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relation labeled by a, respectively b. They are defined as Ck := {[k], Rk
a} and

Dl := {[l], Rl
b}with Rk

a := {(i, i + 1) | i ∈ [k− 1]} and Rl
b := {(i, i + 1) | i ∈ [l− 1]}.

The formula ψ is defined as 〈(ab)∗〉ϕ where ϕ expresses that there are no outgoing
transitions: ϕ = [a]ff ∧ [b]ff.

By definition the asynchronous product Ck × Dl forms a grid as shown in Fig-
ure 4.4. The formula ϕ holds only at the last state (k, l). In Figure 4.4, we see that
there is a path labeled with a and b in alternation to the last state for the product
C4 × D4, but not in C4 × D6. This is now shown for all k, l ≥ 2.

b b b b

b b b b

b b b b

a

a

a

a

a

a

a

a

a

a

a

a

(1) Same index – C4 × D4

b b b b b b

b b b b b b

b b b b b b

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

(2) Different indices – C4 × D6

Figure 4.4: Products C4 × D4 and C4 × D6 for the Proof that the Composition Tech-
nique Fails for Asynchronous Products and Regular Reachability

For k ≥ 2, we observe that there is a path (1, 1) a−→ (1, 2) b−→ (2, 2) a−→ . . . a−→
(k− 1, k) b−→ (k, k) in the product Ck × Dk. This path ends in the last state (k, k) of
the product. Thus, the formula ψ holds for Ck × Dk, k ≥ 2.

W.l.o.g., we only look at the product Ck × Dl for l > k. Here, we observe that
the path from above also exists, but at the state (k, k) we only have an outgoing
a-transition to (k, k + 1). At this state we either have no outgoing transition (for
l = k + 1) or only a-transitions (for l > k + 1). Thus, there is no path starting in
(1, 1) with a and b in alternation which ends with a b in the last state (k, l) of the
product.

Thus, we have proven Ck × Dk |= ψ for all k ≥ 2 and Ck × Dl 6|= ψ for all k 6= l
with k, l ≥ 2. By applying Theorem 4.5, we have shown that the composition
technique fails for asynchronous products and any logic which can express regular
reachability.

We immediately get the following corollary.

Corollary 4.9. The composition technique fails for ML(RegR) and FO(RegR) for
asynchronous products.
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We now know that the composition technique is applicable for ML(Reg1R) (and
FO(Reg1R)) but not for ML(RegR). We show that allowing simple tests in the
regular expressions over a unary alphabet – i.e., 1PDL – also leads to a failure of
the composition technique.

Theorem 4.10. The composition technique fails for 1PDL and asynchronous prod-
ucts.

Again, we use Lemma 4.5 to show the proof. We reuse the construction of
Rabinovich which he used to show that the composition technique fails for any
logic which can express the CTL quantifier EG and asynchronous products.

Proof. We define a family of transition systems Ck = {[3 · k], Ra, Q0, Q1, Q2} with
transition relation Ra defined as the successor relation and predicates Qr which
hold at all states that are divisible by 3 with remainder r. As product Ck × Cl , we
get a grid with states (i, j) for i ∈ [k], j ∈ [l] and predicates Q̄1

r , Q̄2
r which state

that the first, respectively second component is in a state which is divisible by 3
with remainder r (see also Figure 4.5). We define a formula last := ¬〈a〉tt and a
formula ϕ which defines the black diagonals in the figure by forcing that either
both components have the same remainder r or that the first has remainder r and
the second r + 1(mod 3). This condition is defined as ϕ = (p1

0 ∧ (p2
0 ∨ p2

1)) ∨ (p1
1 ∧

(p2
1 ∨ p2

2)) ∨ (p1
2 ∧ (p2

2 ∨ p2
0)). We now use the 1PDL-formula ψ = 〈(aϕ?)∗〉last

which describes that there is an (a-labeled) path of black states to the last state.
Note that ψ simulates the CTL-condition E(ϕU(ϕ ∧ last)) and (as we have finite
transition systems) also EGϕ. For the product Ck×Ck we have a path of black states
from (1, 1) to the last state (k, k). Thus, the formula ψ holds. We now look at Ck×Cl

with k 6= l. W.l.o.g., we can assume k < l. In this product, we also have a path of
black states from (1, 1) to (k, k). This path can be extended to (k, k + 1). However,
from (k, k + 1) we have no outgoing transition to a black state and (k, k + 1) is not
the last state. (Both situations are shown in Figure 4.5 for k = l = 2, respectively
k = 2 and l = 3.) Thus, the formula ψ is not satisfied at the initial state (1, 1).
We meet the requirements for Lemma 4.5 and can conclude that the composition
technique fails for asynchronous products and 1PDL.

4.5 Summary

In this chapter, we looked at the composition technique for synchronized products
and various extensions of ML and FO logic. For the products, we looked at the spe-
cial cases asynchronous products and finitely synchronized products. On the logic
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4.5 Summary

(1) Same index – C2 × C2 (2) Different indices – C2 × C3

Figure 4.5: Products C2 × C2 and C2 × C3 for the Proof that the Composition Tech-
nique Fails for Asynchronous Products and 1PDL

side, we discussed (normal) reachability (R), reachability with modulo counting
over the path length (Reg1R) and regular reachability (RegR). An overview of the
results can be found in Table 4.1.

On the positive side, i.e., where the composition technique is applicable, we
extended results of Feferman and Vaught, Rabinovich and Wöhrle and Thomas.
Feferman and Vaught showed the applicability for all types of products and FO
logic (which includes ML). Rabinovich extended this for asynchronous products
to ML(R) and Wöhrle and Thomas extended the results to finitely synchronized
products and FO(R). Our contribution in this chapter was on the one hand the
extension to finitely synchronized products and ML(Reg1R) or FO(Reg1R). On the
other hand, we allowed the number of components in our products to be finite or
infinite.

On the negative side, we extended results of Rabinovich. He showed the failure
in the following cases: direct products (which are a special case of synchronized
products) and logics which can express reachability, and asynchronous products
and logics which can express the CTL-quantifier EG. We used his proof schema to
show that both the extension of ML(Reg1R) or FO(Reg1R) to ML(RegR) or FO(RegR)
with alphabets with at least two letters and the extension of 1PDL without tests –
which is the same as ML(Reg1R) – to include tests lead to a failure of the composition
technique.

Thus, in this chapter, we have given an overview about the frontiers of the
composition technique for products – i.e., where the composition technique is still
applicable and where it fails. This overview is also shown in Table 4.1. However,
in the positive cases, a major drawback of the composition technique remains: as
shown in Section 3.4 both for sums and products, already in the simplest cases, the
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4 Composition for Products and FO Logic extended by Paths with Counting

ML or FO logic extended by 1PDL

– R Reg1R RegR EG
asynchronous

√1/
√1 √2/

√4 √4/
√4 –4/ – –2/– –4/ –

finitely synchronized
√1/
√1 √3/

√4 √4/
√4 – / – – /– – / –

synchronized
√1/
√1 –2/ – – / – – / – – /– – / –

Table 4.1: Overview over results for products with finite/infinite number
of components

1 proven 1959 by Feferman and Vaught [FV59]
2 proven 2007 by Rabinovich [Rab07]
3 proven 2004 by Wöhrle and Thomas [WT07]
4 proven 2009 by the author of this thesis and Thomas [FT09]

size of the decomposition – especially the number of formulas for the components
– grows non-elementary in the size of the input formula and it has been shown
that this is a lower bound. The proof in [GJL12] mainly relies on the fact that the
structures can have an unbounded out-degree of transitions at each state.

In the case of (disjoint ordered) sums, we overcome this situation in the next chap-
ters for special structures, namely words and finite branching trees and LTL/CTL
over these structures.
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5 Composition for Sums of Words and
LTL

In Section 3.3, we discussed Shelah’s composition theorem [She75, Tho97a] for MSO
logic over disjoint ordered sums of labeled orderings1 which yields a decomposition
with a non-elementary size. In Section 3.4, we presented the result of Göller, Jung
and Lohrey, that this complexity is in general unavoidable – even for FO3 logic and
finite sums. The goal of this chapter is to improve the complexity of the composition
theorem for a special logic: We consider linear temporal logic (LTL) over ordered
disjoint sums of labeled orderings, i.e., models of words. It is well-known that in
this case LTL is expressively equivalent to FO(<) logic (Kamp’s Theorem [Kam68]).
We show a composition theorem for words and LTL which has only exponential
complexity. To be more precise, the size of the decomposition of a formula is in
O(2n2

) if n is the size of the formula. Our result is an improved version of [Fel12].
We are mainly interested in decomposing LTL formulas on ω-words. However,

our theorem allows the composed word to be finite or infinite as it works with a
finite or infinite number of components. Each component must be a finite word
with one exception: the last component may be infinite in the case where we have a
finite number of components.

5.1 Composition Idea

We explain the idea of the composition in a simple setting: we consider the disjoint
ordered sum of two components which simply amounts to the concatenation of
two words. We look at the formulas sUt and Gr in this setting. For sUt in the sum,
obviously, one of the following two cases has to hold: either sUt holds in the first
component or we have Gs in the first component and sUt in the second component
(see also Figure 5.1).

For Gr in the sum, we must have Gr in both components. These simple ideas
form the basis of the composition theorem. However, for general formulas ϕUψ

1Recall that building an ordered disjoint sum over labeled orderings can be seen as the concatenation
of words over a k-ary Boolean alphabet.
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5 Composition for Sums of Words and LTL

(sUt, tt)
s s s t
•

(Gs, sUt)
s s s s s s s s t
•

Figure 5.1: The Formula sUt in a Sum of Two Components

the idea from sUt is not sufficient. If we consider the formula ϕUt where ϕ is a
composed formula, in general, ϕ has to hold at a set T of states. As an example, we
consider the formula Gr. (This is also shown in Figure 5.2 in which we use black
dots to mark the positions where ϕ has to hold.)

1. If t holds directly at the first state of the first component, we should not have
any further conditions as ϕUt is already fulfilled in the sum.

2. If t holds at some later state of the first component, we must have Gr for all
states before this state and Gr at the second component.

3. As in the previous example, we may have Gϕ = (G)Gr in the first component
and GrUt in the second one.

(1) (t, tt)
t

(2) (GrUt, Gr)
r r r r r r

t
r r r r r

• • •

(3) ((G)Gr, GrUt)
r r r r r r r r r r r

t

• • • • • •

Figure 5.2: The Formula GrUt in a Sum of Two Components

Note that in the cases (2) and (3), the subformula ϕ (here Gr) has to hold at sets
T2, respectively T3, of states in the first component which are indicated by the black
dots in Figure 5.2. We now consider another formula ϕ in δ = ϕUt: ϕ = rUs.
Here, for each of the states from T2, respectively T3, we must have rUs in the sum.
For the decomposition into components, this gives us for each of these states the
possibilities from Figure 5.1: either rUs holds in the first component or we have
Gr in the first and rUs in the second one. Thus, for the set of these states we may
have for all states the first possibility or the second possibility or a combination as
shown in Figure 5.3.

(G((rUs) ∨ Gr)Ut, rUs)
r r r r rs

t
r s

• • • •

Figure 5.3: One Case for (rUs)Ut in a Sum of Two Components
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5.2 Technical Preliminaries

This leads to an inductive construction: If we consider the general case δ = ϕUψ

and assume that we already know that ϕ̄, ψ̄ are possible formulas for the first
component for the subformulas ϕ, ψ of δ, we get the formulas ψ̄, ϕ̄Uψ̄, Gϕ̄ and
(ϕ̄Uψ̄)∨Gϕ̄ for the first component. We will see that these cases are sufficient. This
idea is now used to develop an algorithm for the composition theorem.

5.2 Technical Preliminaries

We use interface information tuples 〈δ1, . . . , δm; β(X1, . . . , Xm)〉 to express the con-
ditions which have to hold in the components. For this, we first introduce how
the formulas δ1, . . . , δm for the components are defined and afterwards, when they
have to hold via the formula β(X1, . . . , Xm).

We inductively define the set of component formulas for a given formula δ – denoted
by cf(δ). For “atomic” formulas ϕ ∈ {p,¬p | p ∈ V}, we simply get cf(ϕ) = {ϕ}.
For δ = ϕUψ, these are the four possibilities from above for given ϕ̄ ∈ cf(ϕ) and
ψ̄ ∈ cf(ψ). The intuition for the set cf(δ) is that it sums up all possibilities for the
component with index i why the formula δ holds in the sum starting at index i if
the “correct”2 formulas hold in the later components. As mentioned above, we
have:

• cf(ϕUψ) = {ψ̄, ϕ̄Uψ̄, Gϕ̄, (ϕ̄Uψ̄) ∨ Gϕ̄ | ϕ̄ ∈ cf(ϕ), ψ̄ ∈ cf(ψ)}

For “Finally” as special case of “Until”, we get cf(Fϕ) = {tt} ∪ {Fϕ̄ | ϕ̄ ∈ cf(ϕ)}.
For Gϕ, we simply have cf(Gϕ) = {Gϕ̄ | ϕ̄ ∈ cf(ϕ)}. The idea for ϕ ∨ ψ is quite
similar: If δ = ϕ ∨ ψ should hold at a set of states (e.g. as in δUt), we can either
have ϕ at all of these states, ψ at all of these states or at some ϕ and at some ψ. For
ϕ ∧ ψ we simply must have ϕ ∧ ψ at all of the states. Thus, we get:

• cf(ϕ ∨ ψ) = {ϕ̄, ψ̄, ϕ̄ ∨ ψ̄ | ϕ̄ ∈ cf(ϕ), ψ̄ ∈ cf(ψ)} and

• cf(ϕ ∧ ψ) = {ϕ̄ ∧ ψ̄ | ϕ̄ ∈ cf(ϕ), ψ̄ ∈ cf(ψ)}.

With the equivalence ψRϕ = ϕU(ϕ ∧ ψ) ∨ Gϕ, we get:

• cf(ψRϕ) = {ϕ̄U(ϕ̄ ∧ ψ̄), Gϕ̄, (ϕ̄U(ϕ̄ ∧ ψ̄)) ∨ Gϕ̄ | ϕ̄ ∈ cf(ϕ), ψ̄ ∈ cf(ψ)}.

Finally, we consider δ = Xϕ: For δ at one state or a set of states, we have to
distinguish if the last state is among those states (1) or not (2) or if the last state is
the only state of the current component (3). For (1), we get the formula ¬last→ X ϕ̄

2The condition which are the “correct” formulas will be defined later via β.
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5 Composition for Sums of Words and LTL

which forces Xϕ for all but the last state and we have to ensure that ϕ also holds at
the first state of the next component. For (2), we take the formula ¬last∧ X ϕ̄ which
excludes the last state and forces Xϕ on the other states. For (3), we simply take the
formula last.

• cf(Xϕ) = {¬last∧ X ϕ̄,¬last→ X ϕ̄, last | ϕ̄ ∈ cf(ϕ)}

For the definition of the formula β, we will inductively define conditions in which
components these formulas have to hold. For this, we also have to refer to the
component formulas of the subformulas of δ. We define ecf(δ) – called the extended
component formulas of δ – as the set which contains the component formulas for
all subformulas of δ. Formally, we have ecf(δ) =

⋃
δ̂∈CL(δ) cf(δ̂).

Note that the modal depth of the formulas in cf(δ) (and thus, also in ecf(δ)) is at
most the modal depth of δ.

5.3 LTL Composition Theorem

We now present the composition theorem for LTL. It reduces the truth of an LTL
formula γ in an ordered disjoint sum to the truth values of the formulas of ecf(γ)
in the components and information about which of these formulas hold in which
components.

Theorem 5.1. Given a signature σ and an index ordering (I,<) with index set I
(usually N), the following statement holds: For every σ-LTL formula γ of modal
depth r, we can compute an interface information tuple 〈γ1, . . . , γm; β(X1, . . . , Xm)〉
with σ-LTL formulas γj of modal depth at most r – interpreted in the components –
and an FO formula βγ(X1, . . . , Xm) – interpreted in the index ordering – such that
for every disjoint sum w of σ-components wi (i ∈ I):

w |= γ⇔ (I,<, I1, . . . , Im) |= βγ(X1, . . . , Xm)

where Ik = {i ∈ I | wi |= γk} for k ∈ [m].
Let s be the size of γ, then the size of the decomposition is at most 2s2

.

We want to emphasize that we only use an FO-formula for the index structure for
didactic reasons: on one hand, to use the same notation as in the previous chapters
and, on the other hand, to make it easier for the reader to distinguish between
component formulas and formulas over the index structure. The theorem also
holds if we exchange the FO formula by an LTL formula, in particular, also the size
of the decomposition does not change. The reason is that, in fact, the FO formula
just expresses Until-, Release- and Next-conditions in FO logic.
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We first show the construction and estimate the size of the generated decom-
position afterwards. Instead of proving Theorem 5.1 directly, we show a more
general result. For this, let h be a component index and T an arbitrary set of states
in this component. We consider the part of the ordered sum that starts at h and a
state u ∈ T. We show that the equivalence from Theorem 5.1 holds for this part of
the sum if we adapt the interpretation of the sets Ik. For this, we need additional
notations:

Let w≥h[u] denote the ordered disjoint sum starting at the index h ∈ I and the
state u. For a set T of states in the current component, let I≥h,T

k be the set Ik restricted
to the components from the h + 1-th component onwards and from all u ∈ T in the
h-th component onwards, i.e., I≥h,T

k := {i ∈ I | i > h + 1∧wi |= γk} ∪ {i ∈ I | i =
h ∧ ∀u ∈ T : (wh, u) |= γk}. The generalization of the equivalence in Theorem 5.1 is
that we have for any set T of states in the current component:

∀u ∈ T : w≥h[u] |= γ⇔ (I,<, I≥h,T
1 , . . . , I≥h,T

m ) |= βγ(X1, . . . , Xm)

For the proof, we construct interface information tuples 〈δ1, . . . , δk; βδ(X1, . . . , Xk)〉,
inductively for all subformulas δ of the given formula γ. The formula βδ(X1, . . . , Xk)

will be an FO formula with free MSO variables X1, . . . , Xk. We use an enumer-
ation of the set ecf(δ) as the formulas δ̄1, . . . , δ̄k. We allow to use Xδ̄ instead
of Xj if δ̄ is the j-th formula in that enumeration. To define βδ(X1, . . . , Xk), we
use a parametrized formula βδ(X1, . . . , Xk, h) (or shortly βδ(h)) and auxiliary for-
mulas αδ,δ̄(X1, . . . , Xk, h) (abbreviated by αδ,δ̄(h)) and then set βδ(X1, . . . , Xm) :=
βδ(X1, . . . , Xm, 0).

• The formula βδ(h) will be satisfied if the sum satisfies δ from the component
with index h onwards. It expresses LTL conditions over the index structure.
For compatibility with the previous chapters, we use FO logic to express this
condition.

• It states that one δ̄ of the set cf(δ) of component formulas has to hold in the
current component and that the correct conditions for this component formula
have to hold at the successor component. These conditions are stored in the
auxiliary formulas αδ,δ̄(h). Formally, we have βδ(h) =

∨
δ̄∈cf(δ)(Xδ̄(h)∧ αδ,δ̄(h)).

Example 5.1. For better understanding, we present these formulas for the case
δ = rUs. The formula βrUs(h) expresses an Until-condition over the component
indices, namely that from h onwards, we have components where Gr (or (rUs)∨Gr)
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5 Composition for Sums of Words and LTL

holds until a component for which rUs (or s) holds. The formulas αδ,s(h) and
αδ,rUs(h) are simply tt because the subformulas r, s are atomic and thus, have no
conditions for later components. The formulas αδ,Gr(h) and αδ,(rUs)∨Gr(h) state that
rUs still has to be satisfied later.

The generalization of Theorem 5.1 is now proven by a simultaneous induction
over the subsums starting at any component and the subformulas of the given
formula. Note that we add components to the sum at the front, i.e., we reduce the
truth of a formula δ in the sum starting at the h-th component to the truth values of
subformulas of it at components with an index ≥ h.

To get an inductive proof, we show that the induction base holds for the atomic
formulas and any subsum starting at any component.

Induction base:
The induction base states for any component index h and any set of states T in this
component, that the atomic formula p holds in the (infinite) sum starting from h
and a set of states T iff it holds in the component with index h at the set of states
T. This is obviously true. Thus, we set βp(Xp, h) = Xp(h), αp,p = tt. Formally, we
have for any set T in the current component:

∀u ∈ T : w≥h[u] |= p⇔ (I,<, I≥h,T
p ) |= βp(Xp).

Induction hypothesis:
The induction hypothesis states for any set T of states of the current component
(with index h) that for all u ∈ T the sum starting from h satisfies the formula ϕ

iff the formula βϕ(X1, . . . , Xm) holds in the index structure with the sets I≥h,T
l for

l ∈ [m]. Formally, we have for any set T of states in the component with index h:

∀u ∈ T : w≥h[u] |= ϕ⇔ (I,<, I≥h,T
1 , . . . , I≥h,T

m ) |= βϕ(X1, . . . , Xm).

To simplify notation, from now on, we use I≥h,T as abbreviation for the sets
I≥h,T
1 , . . . , I≥h,T

m . Furthermore, we omit the MSO variables, e.g., we simply write βϕ

instead of βϕ(X1, . . . , Xm).

Induction step:
As mentioned above, in the induction step for a formula δ and a component index
h, we assume that the induction hypothesis holds for any proper subformula ϕ

of δ and the sum starting from index ≥ h. Formally, we have the order (h′, ϕ) <

(h, δ) ⇔ h′ ≥ h ∧ ϕ @ δ for the induction. (Note that the order of h is reversed as
we add components at the front of the sum.)
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5.3 LTL Composition Theorem

ϕUψ

We start with a detailed construction and proof for the formula δ = ϕUψ. The
other cases will be presented with less detail as they are quite similar. We first
introduce the formulas βδ and αδ,δ̄ and prove correctness and completeness of the
construction afterwards. For δ = ϕUψ, by definition of the Until-operator, we have
for any state u which lies in the current component of the sum that ϕUψ is satisfied
iff there is a state v where ψ holds and on all states up to (but excluding) v the
formula ϕ holds. The state v may be either in the current component or in a later
component.

For the first case, we either have ψ directly at u or later (but still in the current
component). This gives us the cases ψ̄, ϕ̄Uψ̄ of cf(δ) for the current component.

For the second case, we must either have ϕ on all states of the sum which belong
to the current component or – for δ on more than one state u – for some states
ϕUψ is satisfied directly and for some at a later component. This gives us the cases
Gϕ̄, (ϕ̄Uψ̄) ∨ Gϕ̄ of cf(δ) for the current component. (Furthermore, ϕUψ still has
to be satisfied from the next component onwards.)

The formula βδ(h) states that we must have the second case for all components
with the indices from h up to z where the first case holds. Additionally, the condi-
tions αϕ,ϕ̄, αψ,ψ̄ for the subformulas ϕ̄ and ψ̄ have to hold for the component indices
where they are used.

βδ(h) = ∃z ≥ h[[βψ(z)

∨
∨

ϕ̄∈cf(ϕ)

∨
ψ̄∈cf(ψ)

(Xϕ̄Uψ̄(z) ∧ αϕ,ϕ̄(z) ∧ αψ,ψ̄(z))]

∧∀x, h ≤ x < z : [∨
ϕ̄∈cf(ϕ)

(XGϕ̄(x) ∧ αϕ,ϕ̄(x))

∨
∨

ϕ̄∈cf(ϕ)

∨
ψ̄∈cf(ψ)

(X(ϕ̄Uψ̄)∨Gϕ̄(x) ∧ αϕ,ϕ̄(x) ∧ αψ,ψ̄(x))]]

For δ itself as subformula, we get the conditions αδ,δ̄:

αδ,ψ̄(h) = αψ,ψ̄(h)

αδ,ϕ̄Uψ̄(h) = αϕ,ϕ̄(h) ∧ αψ,ψ̄(h)
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αδ,Gϕ̄(h) = αϕ,ϕ̄(h) ∧ βδ(h + 1)

αδ,(ϕ̄Uψ̄)∨Gϕ̄(h) = αϕ,ϕ̄(h) ∧ αψ,ψ̄(h) ∧ βδ(h + 1)

Note that by this construction βδ(h) =
∨

δ̄∈cf(δ)(Xδ̄(h) ∧ αδ,δ̄(h)) holds. To show
this, consider the cases z = h and h > z in the equation for βδ(h). Before we
show the correctness and completeness of the construction of βδ(h), we discuss
two examples using only the Until-operator:

Example 5.2. We first consider δ = rUs. As component formulas, we have
cf(rUs) = {s, Gr, rUs, (rUs) ∨ Gr}. For atomic propositions, we have αp,p(h) = tt

and get

βδ(h) = ∃z ≥ h[[Xs(z) ∨ XrUs(z)] ∧ ∀x, h ≤ x < z[XGr(x) ∨ X(rUs)∨Gr(x)]].

This means, that we have components with Gr (or (rUs) ∨ Gr) until we have a
component with rUs (or s). Obviously, this is the case iff we have rUs in the sum.
(In this case the formulas in brackets are superfluous.) The conditions for δ as a
subformula of some other formula are as follows:

αδ,s(h) = αδ,rUs(h) = tt and αδ,Gr(h) = αδ,(rUs)∨Gr(h) = βδ(h + 1)

In other words, δ has to be satisfied at the next component iff we have Gr or
(rUs) ∨ Gr at the current component.
We consider another example: We use the formula δ from above inside another
formula. Let γ = δUt = (rUs)Ut. Here, we get as component formulas cf(γ) =
F1 ∪ F2 ∪ F3 ∪ F4 with

• F1 = {t},

• F2 = {sUt, (rUs)Ut, GrUt, ((rUs) ∨ Gr)Ut},

• F3 = {Gs, G(rUs), G(Gr), G((rUs) ∨ Gr)} and

• F4 = {(sUt)∨Gs, ((rUs)Ut)∨G(rUs), ((Gr)Ut)∨G(Gr), (((rUs)∨Gr)Ut)∨
G((rUs) ∨ Gr)}.

The formula βγ(h) states that we have component indices x where a formula from
F3 or F4 holds until we have a component index z where a formula from F1 or
F2 holds. Furthermore, the components following after x, respectively z, have to
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satisfy the conditions for the subformulas, e.g., if GrUt holds at the component z,
rUs still has to be satisfied from z + 1 onwards. Thus, we get

βγ(h) = ∃z ≥ h[[Xt(z) ∨ XsUt(z) ∨ X(rUs)Ut(z) ∨ (X(Gr)Ut(z) ∧ βδ(z + 1))

∨(X((rUs)∨Gr)Ut(z) ∧ βδ(z + 1))]

∧∀x, h ≤ x < z[XGs(x) ∨ XG(rUs)(x) ∨ (XG(Gr)(x) ∧ βδ(x + 1))

∨(XG((rUs)∨Gr)(x) ∧ βδ(x + 1)) ∨ αF4 ]]

where αF4 contains the sets for the formulas of F4.

We now show the correctness and completeness of the choice of the interface
information tuple for δ = ϕUψ. Let sz denote the size of the component with index
z. Let h be a component of w and T a set of states in this component. We first look
at δ at the first state of the current component. Taking into account that w≥h is a
composed word, we get the following situation:

• There exists a component index z ≥ h and a state k ≤ sz in that component
such that the sum w≥z satisfies ψ at state k and all states before that state in
the same component satisfy ϕ.

• Furthermore, for all components with index x up to z (and x ≥ h), we have
for all states in these components that ϕ holds.

Formally, this is the following statement:

∃z ≥ h[ (∃k ≤ sz : w≥z[k] |= ψ ∧ ∀i, i < k : w≥z[i] |= ϕ)

∧∀x, h ≤ x < z : ∀i ≤ sx : w≥x[i] |= ϕ]

We can apply the induction hypothesis for ϕ and ψ as these are proper subformu-
las of δ. Using βϕ(z) =

∨
ϕ̄∈cf(ϕ)(Xϕ̄(z) ∧ αϕ,ϕ̄(z)) and βψ(z) =

∨
ψ̄∈cf(ψ)(Xψ̄(z) ∧

αψ,ψ̄(z)), we get:

∃z ≥ h[(∃k (I,<,I≥z,{k}) |= βψ(z) ∧ (I,<,I≥z,J1
z ) |= βϕ(z))

∧∀x, h ≤ x < z : ∀i (I,<,I≥x,J2
x ) |= βϕ(x)]
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with J1
z := {i ∈ domwz | i < k} and J2

x := {i ∈ domwx | i ≤ sx}. Separating k = 1
and k > 1, we get:

∃z ≥ h[ ((I,<,I≥z,{1}) |=
∨

ψ̄∈cf(ψ)

(Xψ̄(z) ∧ αψ,ψ̄(z))

∨ (I,<,I≥z,{1}) |=
∨

ϕ̄∈cf(ϕ)

∨
ψ̄∈cf(ψ)

(Xϕ̄Uψ̄(z) ∧ αϕ,ϕ̄(z) ∧ αψ,ψ̄(z)))

∧∀x, h ≤ x < z : (I,<,I≥x,{1}) |=
∨

ϕ̄∈cf(ϕ)

(XGϕ̄(x) ∧ αϕ,ϕ̄(x))]

Note that this is equivalent to (I,<,I≥z,{1}) |= βδ(h). On the one hand, if
the formula from above holds, also βδ(h) holds as it only has one other further
possible condition in the disjunction. On the other hand, if βδ(h) holds and we
have for one x with h ≤ x < z the possibility

∨
ϕ̄∈cf(ϕ)

∨
ψ̄∈cf(ψ) X(ϕ̄Uψ̄)∨Gϕ̄(x) ∧

αϕ,ϕ̄(x) ∧ αψ,ψ̄(x) then also
∨

ϕ̄∈cf(ϕ)(XGϕ̄(x) ∧ αϕ,ϕ̄(x)) holds or we already have∨
ϕ̄∈cf(ϕ)

∨
ψ̄∈cf(ψ)(Xϕ̄Uψ̄(z) ∧ αϕ,ϕ̄(z) ∧ αψ,ψ̄(z)).

We now look at the subwords starting at any u ∈ T, i.e., at all words w≥h[u]. The
formula ϕUψ holds for w≥h[u] for all u ∈ T iff for every single u ∈ T, one of the
following cases hold:

• We already have ϕUψ in the current component, i.e., there is a state k ≥ u
such that ψ holds and on all states from u up to k the formula ϕ holds or

• from u onwards, we have ϕ on all states of the current component and the
formula δ holds from the next component onwards.

Formally, this means that we have:

(∃k, u ≤ k ≤ sh : w≥h[k] |= ψ ∧ ∀i, u ≤ i < k : w≥h[i] |= ϕ)

∨(∀u ≤ i ≤ sh : w≥h[i] |= ϕ ∧w≥h+1 |= δ).

We apply the induction hypothesis for ϕ and ψ and the sum from index h on-
wards. Furthermore, we use the result proven above for δ at the first state of the
sum starting at the next component. With βϕ(z) =

∨
ϕ̄∈cf(ϕ)(Xϕ̄(z) ∧ αϕ,ϕ̄(z)) and

βψ(z) =
∨

ψ̄∈cf(ψ)(Xψ̄(z) ∧ αψ,ψ̄(z)), we get:

(∃k, u ≤ k ≤ sh (I,<,I≥h,{k}) |= βψ(h) ∧ (I,<,I≥h,J1
h ) |= βϕ(h))

∨ ((I,<,I≥h,J2
h ) |= βϕ(h) ∧ (I,<,I≥h+1,{1}) |= βδ(h + 1))
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5.3 LTL Composition Theorem

with J1
h := {i ∈ domwh | u ≤ i < k} and J2

h := {i ∈ domwh | u ≤ i ≤ sh}.
Separating k = u and k > u, we get:

(I,<,I≥h,{u}) |=
∨

ψ̄∈cf(ψ)

(Xψ̄(h) ∧ αψ,ψ̄(h))

∨ (I,<,I≥h,{u}) |=
∨

ϕ̄∈cf(ϕ)

∨
ψ̄∈cf(ψ)

(Xϕ̄Uψ̄(h) ∧ αϕ,ϕ̄(h) ∧ αψ,ψ̄(h))

∨ [(I,<,I≥h,{u}) |=
∨

ϕ̄∈cf(ϕ)

(XGϕ̄(h) ∧ αϕ,ϕ̄(h) ∧ βδ(h + 1))

Recall that these conditions have to hold for all u ∈ T. If we now consider all
these states, i.e., the set T, we may have any combination of the disjuncts from
above (including the case that all satisfy the same disjunct). Thus, we get:

(I,<,I≥h,T) |=
∨

ψ̄∈cf(ψ)

(Xψ̄(h) ∧ αψ,ψ̄(h))

∨(I,<,I≥h,T) |=
∨

ϕ̄∈cf(ϕ)

∨
ψ̄∈cf(ψ)

(Xϕ̄Uψ̄(h) ∧ αϕ,ϕ̄(h) ∧ αψ,ψ̄(h))

∨(I,<,I≥h,T) |=
∨

ϕ̄∈cf(ϕ)

(XGϕ̄(h) ∧ αϕ,ϕ̄(h) ∧ βδ(h + 1))

∨(I,<,I≥h,T) |=
∨

ϕ̄∈cf(ϕ)

∨
ψ̄∈cf(ψ)

(X(ϕ̄Uψ̄)∨Gϕ̄(h) ∧ αϕ,ϕ̄(h) ∧ αψ,ψ̄(h) ∧ βδ(h + 1))

As βδ(h + 1) has to hold at the first state of the (h + 1)-th component, we can use
the formula for βδ(h+ 1) from above. Now we can use the expansion law for “Until”
(see Section 2.2) and take the four conditions from above into the Until-condition
over the index structure in βδ(h + 1) and thus get (I,<,I≥h,T) |= βδ(h).

We continue the induction with the other cases of subformulas. As the proof
principle is similar in these cases, we skip the formal proof and only present the
construction of the formulas βδ and αδ,δ̄.

Gϕ

For δ = Gϕ, we must have for all components the formula Gϕ̄ and everywhere the
conditions for ϕ for the next component. We get

βδ(h) = ∀x ≥ h :
∨

ϕ̄∈cf(ϕ)

XGϕ̄(x) ∧ αϕ,ϕ̄(x)
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5 Composition for Sums of Words and LTL

and αδ,Gϕ̄(h) = αϕ,ϕ̄(h) ∧ βδ(h + 1).

ψRϕ

We could use the equivalence ψRϕ = ϕU(ϕ ∧ ψ) ∨ Gϕ for the Release operator.
However, this would introduce a preprocessing of the given formula which would
increase the formula size. Thus, we give a direct construction analogously to the
Until-case:

βδ(h) = ∃z ≥ h[[
∨

ϕ̄∈cf(ϕ)
ψ̄∈cf(ψ)

(Xϕ̄U(ϕ̄∧ψ̄)(z) ∧ αϕ,ϕ̄(z) ∧ αψ,ψ̄(z))]

∧∀x, h ≤ x < z : [
∨

ϕ̄∈cf(ϕ)

(XGϕ̄(x) ∧ αϕ,ϕ̄(x))

∨
∨

ϕ̄∈cf(ϕ)
ψ̄∈cf(ψ)

X(ϕ̄U(ϕ̄∧ψ̄))∨Gϕ̄(x) ∧ αϕ,ϕ̄(x) ∧ αψ,ψ̄(x))]]

∨∀x ≥ h : [
∨

ϕ̄∈cf(ϕ)

(XGϕ̄(x) ∧ αϕ,ϕ̄(x))

∨
∨

ϕ̄∈cf(ϕ)
ψ̄∈cf(ψ)

X(ϕ̄U(ϕ̄∧ψ̄))∨Gϕ̄(x) ∧ αϕ,ϕ̄(x) ∧ αψ,ψ̄(x))]

As auxiliary formulas, we get:

αδ,ϕ̄U(ϕ̄∧ψ̄)(h) = αϕ,ϕ̄(h) ∧ αψ,ψ̄(h)

αδ,Gϕ̄(h) = αϕ,ϕ̄(h) ∧ βδ(h + 1)

αδ,(ϕ̄U(ϕ̄∧ψ̄))∨Gϕ̄(h) = αϕ,ϕ̄(h) ∧ αψ,ψ̄(h) ∧ βδ(h + 1)

ϕ ∨ ψ

For the disjunction δ = ϕ ∨ ψ at a set T of states of the current component, we have
to consider three cases: ϕ on all of these states, ψ on all of these states and that there
are states in T where ϕ holds and on the other ones ψ holds. Thus, we get:

βδ(h) = βϕ(h) ∨ βψ(h) ∨ (
∨

ϕ̄∈cf(ϕ)

∨
ψ̄∈cf(ψ)

Xϕ̄∨ψ̄(h) ∧ αϕ,ϕ̄(h) ∧ αψ,ψ̄(h))

and αδ,ϕ̄(h) = αϕ,ϕ̄(h), αδ,ψ̄(h) = αψ,ψ̄(h) and αδ,ϕ̄∨ψ̄(h) = αϕ,ϕ̄(h) ∧ αψ,ψ̄(h).
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ϕ ∧ ψ

For the conjunction δ = ϕ ∧ ψ, we have to satisfy both the conditions for ϕ and ψ.
We get:

βδ(h) = (
∨

ϕ̄∈cf(ϕ)

∨
ψ̄∈cf(ψ)

Xϕ̄∧ψ̄(h) ∧ αϕ,ϕ̄(h) ∧ αψ,ψ̄(h))

and αδ,ϕ̄∧ψ̄(h) = αϕ,ϕ̄(h) ∧ αψ,ψ̄(h).

Xϕ

For the Next-operator δ = Xϕ, note that there are two cases why a formula ϕ holds
at the next state of the sum:

• Either the current state u is the last state of the current component, then ϕ has
to hold at the sum starting from the next component

• or the current state is not the last one, then ϕ simply has to hold at the next
state of the current component.

For a set T of states, again, we have to consider the combination of these cases, i.e.,
ϕ holds at the next component and for all states in T excluding the last one, ϕ has
to hold at the next state. Formally, we have:

βδ(h) =(
∨

ϕ̄∈cf(ϕ)

(X¬last∧X ϕ̄(h) ∧ αϕ,ϕ̄(h)))

∨(Xlast(h) ∧ βϕ(h + 1))

∨(
∨

ϕ̄∈cf(ϕ)

X¬last→X ϕ̄(h) ∧ αϕ,ϕ̄(h) ∧ βϕ(h + 1))

As auxiliary formulas, we get αδ,X¬last∧X ϕ̄
(h) = αϕ,ϕ̄(h), αδ,last(h) = βϕ(h + 1) and

αδ,X¬last→X ϕ̄
(h) = αϕ,ϕ̄(h) ∧ βϕ(h + 1).

5.4 Size of the Decomposition

We now show that the size of the decomposition is indeed exponential. For this, we
have to estimate the size of the generated LTL component formulas, their number
and the size of the FO formula.

Size of the component formulas:
From the definition of the set cf(δ), we get s(δ̄) ≤ s(ϕ̄) + c for the cases of ϕ̄, X ϕ̄, Fϕ̄
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5 Composition for Sums of Words and LTL

and Gϕ̄ and s(δ̄) ≤ s(ϕ̄) + s(ψ̄) + c for the other cases and some c ∈N. Thus, for
the input formula γ, we have s(γ̄) ≤ c ∗ s(γ) for a c ∈N and all γ̄ ∈ ecf(γ).

Number of the component formulas:
From the construction of the set cf(δ), we get |cf(δ)| ≤ c ∗ |cf(ϕ)| and |cf(δ)| ≤
c ∗ |cf(ϕ)| ∗ |cf(ψ)| for δ ∈ {Xϕ, Fϕ, Gϕ}, respectively δ ∈ {ϕUψ, ψRϕ, ϕ ∧ ψ, ϕ ∨
ψ}. This also holds for the set of extended component formulas. Thus, we have
|ecf(γ)| ∈ O(2s(γ)).

Size of the MSO formula:
We first observe that in all cases of (direct) subformulas ϕ, ψ of δ, we have for the
auxiliary formulas αδ,δ̄ that |αδ,δ̄| ≤ |αϕ,ϕ̄|+ |αψ,ψ̄|+ |βδ| ≤ 2 ∗ |βδ| (with |αψ,ψ̄| := 0
for δ ∈ {Xϕ, Fϕ, Gϕ}). For δ = ϕUψ, we get the following size by the definition
of βδ: |βδ| ≤ c ∗ |βψ|+ 2 ∗∑ϕ̄∈cf(ϕ),ψ̄∈cf(ψ)(|βϕ|+ |βψ|+ 1) + ∑ϕ̄∈cf(ϕ)(|βϕ|+ 1) for
a c ∈ N. Obviously, this is in O(c ∗ |cf(ϕ)| ∗ |cf(ψ)| ∗ (|βϕ|+ |βψ|)) for a c ∈ N.
By using similar arguments, we get the same bound for the other cases of (direct)
subformulas. Thus, the size of βγ is at most |cf(γ)||s(γ)| ∈ O(2|s(γ)|∗log2(|cf(γ)|)). With
|cf(γ)| ∈ O(2s(γ)) from above, we get |βγ| ∈ O(|2(s(δ))2 |).
We conclude, that the size of the decomposition is s(γ̄) ∗ |cf(γ)|+ |βγ| ∈ O(2(s(γ))

2
).

As the theorem works only for LTL formulas in NNF, we need a preprocessing for
general LTL formulas to convert it. However, this conversion is known to be linear.
Thus, in total, we have the same complexity.

5.5 Summary and Further Remarks

In this chapter, we have seen a composition technique for LTL over composed
words. On the one hand, we looked at the setting in which all components were
finite words and there were finitely or infinitely many components. On the other
hand, we considered a finite number of components where the last component
was an infinite word. We did not consider that the composed words may have a
special structure. Especially in the second setting, one may look at the case where
the composed word is in a regular language. Thus, one could use that there is at
least one word which can be written as uvω for finite words u, v [Büc62, Tho97b].

We have shown in the last section that the size of the decomposition is at most
exponential in the size of the given formula. A natural question which arises is
whether this upper bound can be further improved.

One direction to generalize the LTL composition technique is to look at more
general index structures and components. A natural idea is the generalization to
trees instead of words. Here, we may either allow one successor component or
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several. The second possibility results in a tree as index structure. This setting
is considered in the next chapter with CTL over these sum trees. We show a
composition theorem which generates – as the one in this chapter – a decomposition
which is exponential in the size of the given formula.
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CTL

In this chapter, we generalize the composition theorem of the last chapter to CTL
over a sum of trees. We look at a sum tree, defined via an index tree with (marked)
trees as labels for the nodes, as in Definition 2.6. We reduce the truth of a CTL
formula in the sum to truth values of CTL formulas for the components (the
“component formulas”) and a CTL+X−1 formula in the index structure which
expresses which component formulas have to hold at which component (described
by an interface information tuple).

The idea of the composition theorem is a generalization of the idea for the case
of LTL formulas over a disjoint ordered sum of words as considered in the last
chapter: Again, we first convert the given formula to negation normal form and
inductively define a set of component formulas. For paths in the sum tree, this set
expresses all possibilities of how the fragments of these paths can look like in the
components. Generalizing the set for the LTL formulas is straight-forward: They
are simply adapted to compensate for the fact that paths may go in more than one
direction and that we have either existential (E) or universal (A) quantification over
these possibilities.

Then, we inductively define formulas for the index structure which express the
allowed combinations of these fragments of the paths for the different components
for all types of subformulas. Here, we need some more effort than in the LTL case
– in particular we need a logic for the index tree which is more expressive than
CTL, namely CTL+X−1. For notational convenience, we explain the idea of the
construction for the formulas E(rUs) and A(rUs) in a simplified setting: a sum tree
for an index tree of height 1 with index nodes ε, 1 and 2 and corresponding trees
tε, t1, t2.
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6 Composition for Sums of Trees and CTL

6.1 Composition Idea

Idea for E(rUs)

We first look at the formula E(rUs) at the root of the sum tree. Here, we may have
the following cases, also shown in Figure 6.1(1)–(3):

(1) The formula E(rUs) may hold at tε.

(2) There may be a path fragment in tε labeled with r which ends in a leaf labeled
with c1 – i.e., E(rUc1) holds in tε – and which is continued in t1 by E(rUs).
(Recall that for the construction of the sum, the c1-labeled node in tε is replaced
with the tree t1.)

(3) We may have the analogous situation of case (2) but with E(rUc2) at tε and
E(rUs) in t2.
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Figure 6.1: E(rUs) at One Node – Cases (1)–(3) and Example for Set of Nodes – (4)
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As in the last chapter, we have to consider that δ := E(rUs) is used inside
another formula as, e.g., in AXδ or in E(δUt). Here, in general, E(rUs) has to hold
at more than one node of tε. If E(rUs) should hold at a set T of nodes of the tree
tε, we get all combinations of the cases above. For example, T may be partitioned
into two subsets T1, T2, where we have E(rUc1) for T1 and E(rUc2) for T2 as
shown in Figure 6.1(4), which amounts to E(rU(c1 ∨ c2)) in tε for T. Furthermore,
both conditions for the successors have to be fulfilled, in this example, we must
have E(rUs) at t1 and t2. Considering all combinations of the cases (1)–(3) gives
us the following component formulas for tε: E(rUs), E(rUc1), E(rUc2), E(rU(c1 ∨
s)), E(rU(c2 ∨ s)), E(rU(c1 ∨ c2)), E(rU(c1 ∨ c2 ∨ s)). (We must have E(rUs) for the
successor ti if ci occurs in the component formula for tε for i ∈ {1, 2}.) We further
add the formula s to the list of these formulas. The reason is that we want to have a
uniform construction which also works for formulas like E(ϕUs) instead of E(rUs).
(For E(ϕUs) we have: If s holds already at the root, we should not force inductively
any conditions for ϕ at the next component(s).)

So far, this is a straight-forward generalization of the case rUs in LTL. We now
look at E(rUs) for an index tree of arbitrary height. Here, for E(rUs) in the sum
tree, we have to describe that there exists an index path (fragment) such that for
each index the tree at this index satisfies one of the component formulas from above.
The first idea is that there is an index path and an index on this path for which the
component has to fulfill E(rUs) (or s) and the components before have to satisfy
one of the other component formulas. So far, this describes an EU-condition over
the index tree. However, this condition is not sufficient as the index path always has
to continue in “correct” direction: If we are able to get to a c1 node in a component
on the index path, the index path has to continue to the left (and analogously for c2

to the right).

We explain this compatibility condition in more detail by an example shown
in Figure 6.2. For simplicity, we consider E(rUs) only at one node, i.e., we only
need the component formulas s, E(rUs),E(rUc1) and E(rUc2). A path (fragment)
in the sum tree which satisfies rUs is divided into parts in the components which
satisfy rUc1 or rUc2 and a part which satisfies s or rUs. So all components along
the path in the index tree satisfy E(rUc1) or E(rUc2) up to a component in which s
or E(rUs) holds as shown in Figure 6.2.

Additionally, we must have E(rUc1), E(rUc2) or E(rUs) at the right successor
t2 of the root as we have E(rUc2) at the root itself. Analogous conditions have
to hold for the whole path fragment: To express conditions like “the index path
continues to the right with E(rUc1) or E(rUc2) if we have E(rUc2) at the tree of
the current index” over the whole index path fragment (up to the component where
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E(rUc2)
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E(rUc2)

E(rUs)

Figure 6.2: Example of an Index Tree with Annotated Formulas for E(rUs)

E(rUs) holds), we use the past operator X−1 (from CTL+X−1). Because of the tree
structure the past operator X−1 allows to address the unique previous node for the
nodes on the index path fragment described by the EU-condition. Note that it is
not possible to access the next node on a given index path fragment by using EX or
AX quantifiers. We use a CTL+X−1 formula which expresses conditions like: If the
current index h (on the index path fragment) is a right successor and the tree at the
predecessor fulfills E(rUc2), then we must have one of the component formulas
E(rUc1) or E(rUc2) in the tree at the current index h.

Idea for A(rUs)

We now explain the idea for A(rUs) in the sum tree. Again, we first consider the
setting that the index tree only contains the nodes ε, 1 and 2. There are three reasons,
why a single path fulfills rUs in the sum: It may lie completely in tε or it may be
spread over tε and t1, respectively tε and t2. If we express these reasons in CTL for
all paths in the sum tree, we get the following cases for the components:

(1) We may have rUs for all paths of tε.

(2) All paths of tε may satisfy rUc1 and A(rUs) holds at the root of t1.

(3) All paths of tε may satisfy rUc2 and A(rUs) holds at the root of t2.

(4) Furthermore, we may have any combination of these cases where the set of
paths is divided into subsets which fulfill one of the conditions above. Here the
conditions for the successors have to be combined.
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Figure 6.3: A(rUs) Cases (1)–(3) and Example for Combination – (4)

In Figure 6.3(1)–(3), we show the first three cases. Furthermore, in Figure 6.3(4),
we see an example for the last case: In tε, we have on some paths rUs and on the
other paths rUc1 (expressed by A(rU(s∨ c1))). Here, we must have the combination
of the conditions for the successors, which means here A(rUs) at t1.

Together, this gives us the following component formulas: s, A(rUs), A(rUc1),
A(rUc2), A(rU(c1 ∨ s)), A(rU(c2 ∨ s)), A(rU(c1 ∨ c2)), A(rU(c1 ∨ c2 ∨ s)). (Again
we added s to the list – the reason is the same as for E(rUs).) We can use the same
component formulas if we consider δ = A(rUs) at more than one node as in the
formula AXδ. Consider, e.g., that δ shall hold at two nodes u1, u2 of the sum tree.
One reason for this is A(rUs) at u1 in tε and A(rUc1) at u2 (and A(rUs) at the root
of t2). This is already captured by A(rU(s ∨ c1)) both at u1 and u2 as it results in
the same conditions for the successor trees t1 and t2.

Let us now consider the formula A(rUs) for an index tree of arbitrary height.
We have to ensure that every single path in the sum tree on which rUs holds
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corresponds to path fragments with rUc1 or rUc2 and a path fragment rUs in the
components. Our task is to describe this condition for the set of all paths using the
component formulas from above.

We call the component formulas s and A(rUs) complete. The other formulas
(which contain at least one c1 or c2) are called incomplete. To satisfy rUs on all paths,
it is sufficient if we have on all index paths incomplete formulas up to a component
which satisfies a complete formula. However, this is not the only possible reason
why A(rUs) holds in the sum tree.

Consider the following example (shown in Figure 6.4): A(rU(c2 ∨ s)) holds at
t2. Here, it suffices to check conditions only for the right successor tree t22. (Note
that in a tree where A(rU(c2 ∨ s)) holds, there may be a path with rUs which can
be extended to a c1 node. Thus, we may have a left successor tree.) In general,
whenever a component index on an index path satisfies A(rU(c2 ∨ s)) or A(rUc2)

the left successor tree does not need to fulfill any further condition.

ε

1

11 12

2

21

211 212

22

A(rU(c1 ∨ c2 ∨ s))

A(rU(c1∨c2)) A(rU(c2 ∨ s))

A(rUs)A(rUs)A(rUs)

Figure 6.4: Example of an Index Tree with Annotated Formulas for A(rUs)

So basically, we allow to abort index paths earlier for a left successor if we
have A(rU(c2 ∨ s)) or A(rUc2) at the tree for the current index. This and the dual
case (right successor and c1) can be expressed using CTL+X−1 logic: We allow
incomplete formulas until we either have a component which satisfies a complete
formula or we are at an index which is a left successor and we have A(rU(c2 ∨ s))
or A(rUc2) at the predecessor (like t21 with the predecessor t2 in Figure 6.4).
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Outline

Having shown the basic ideas for A(rUs) and E(rUs), we now present the outline
of this chapter:

1. We first present the general inductive definition of the component formulas,
i.e., for atomic and negated atomic formulas and for AXϕ, EXϕ, A(ϕUψ),
E(ϕUψ), A(ψRϕ) and E(ψRϕ). (Note that we need both the E- and A-
quantified formulas as we use negation normal form.) As in last chapter,
we first define the component formulas and then the extended component for-
mulas which inductively contain the component formulas for the subformulas
of the given formula.

2. We present the composition theorem, which allows to reduce the truth of a
CTL formula in the sum tree to truth values of the (CTL) component formulas
and a CTL+X−1 formula over the index tree. For this, we show the construc-
tion of the index formula and present detailed constructions for every type
of CTL formula δ and a formal proof for the cases E(ϕUψ) and A(ϕUψ). As
in the previous chapter, the index formula βδ is defined by inductively using
auxiliary formulas αδ,δ̄. Recall that the auxiliary formula αδ,δ̄ contains the con-
ditions why δ holds in the sum tree for the case that we have the component
formula δ̄ at the current component. Furthermore, βδ is equivalent to the
disjunction over “δ̄ at the current component” and αδ,δ̄ holds.

3. We estimate the size and the number of component formulas and the size of
the CTL+X−1 formula in the composition theorem.

For better readability, we restrict ourselves to sum trees build by an index tree
with at most {c1, c2}-marked trees, i.e., the index tree is at most binary branching.
The generalization to at most n-marked trees as components is straight-forward.

6.2 Technical Preliminaries

We present the set of component formulas cf(δ) for a given CTL formula δ. We
always use δ̄ to denote a formula from cf(δ). For atomic formulas δ = r, we define
cf(δ) = {r} and for δ = ¬r, we set cf(δ) = {¬r}. Using the given component
formulas for ϕ and ψ, we get for E(ϕUψ) and A(ϕUψ) an inductive version of the
component formulas from the examples E(rUs), respectively A(rUs):

• cf(E(ϕUψ)) = {ψ̄, E(ϕ̄Uψ̄), E(ϕ̄Uc1), E(ϕ̄Uc2), E(ϕ̄U(c1∨ ψ̄)), E(ϕ̄U(c2∨ ψ̄)),
E(ϕ̄U(c1 ∨ c2)), E(ϕ̄U(c1 ∨ c2 ∨ ψ̄)) | ϕ̄ ∈ cf(ϕ), ψ̄ ∈ cf(ψ)}
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• cf(A(ϕUψ)) = {ψ̄, A(ϕ̄Uψ̄), A(ϕ̄Uc1), A(ϕ̄Uc2), A(ϕ̄U(c1 ∨ ψ̄)), A(ϕ̄U(c2 ∨
ψ̄)), A(ϕ̄U(c1 ∨ c2)), A(ϕ̄U(c1 ∨ c2 ∨ ψ̄)) | ϕ̄ ∈ cf(ϕ), ψ̄ ∈ cf(ψ)}

We now look at the cases E(ψRϕ) and A(ψRϕ). Before we begin, we repeat
some useful formula transformations that introduce negation, but which we only
use for the component formulas. Recall the Weak-Until operator W: E(ϕ̄Wψ̄) holds
if “E((ϕ̄Uψ̄) ∨ Gϕ̄)” holds. The latter is no CTL formula, but it can1 be defined
as ¬A((ϕ̄ ∧ ¬ψ̄)U(¬ϕ̄ ∧ ¬ψ̄)) (see Section 2.2, e.g., [BK08]). Furthermore, the R-
operator can be expressed in terms of the W-operator: E(ψ̄Rϕ̄) is equivalent to
E(ϕ̄W(ϕ̄ ∧ ψ̄)). The dual transformations hold for the A-quantified formulas.

We start with the component formulas for E(ψRϕ) and explain the idea for ϕ = r
and ψ = s. We only look at the component formulas for the current component.
In general, these formulas (and their subformulas) imply conditions for the next
components (as already shown in the introduction for E(rUs)) – this will be checked
later via the formulas for the index tree. We first consider E(ψRϕ) at one node
in the current component and discuss the possible cases which are also shown in
Figure 6.5.
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Figure 6.5: E(sRr) at One Node

First, we may have a path with r on all nodes which is completely in the current
component. Thus, we get the formula EGϕ̄. Second, we may have sRr on a path
completely inside the current component, resulting in E(ψ̄Rϕ̄). Third and fourth,
we may have a path labeled by r which ends either in c1 or in c2 (and which
will be continued in the left, respectively the right successor). Thus, we get the
formulas E(ϕ̄Uc1) and E(ϕ̄Uc2). If we look at more than one node, we get all
combinations of the four cases above. We have to check that these combinations
are still expressible in CTL. For this, we consider two representative examples.
For EGϕ̄ on some and E(ϕ̄Uc1) on the other nodes, we can use the W-operator to
combine these cases and get E(ϕ̄Wc1). For the combination E(ψ̄Rϕ̄) and E(ϕ̄Uc1),
we use E(ψ̄Rϕ̄) = E(ϕ̄W(ϕ̄ ∧ ψ̄)) and get E(ϕ̄W((ϕ̄ ∧ ψ̄) ∨ c1)).

In total, we get the following component formulas:

1Note that we can use negation on the level of component formulas.
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• cf(ψRϕ) = {EGϕ̄, E(ψ̄Rϕ̄), E(ϕ̄Uc1), E(ϕ̄Uc2), E(ϕ̄Wc1), E(ϕ̄Wc2), E(ϕ̄U
(c1 ∨ c2)), E(ϕ̄W(c1 ∨ c2)), E(ϕ̄W((ϕ̄∧ ψ̄)∨ c1)), E(ϕ̄W((ϕ̄∧ ψ̄)∨ c2)), E(ϕ̄W
((ϕ̄ ∧ ψ̄) ∨ c1 ∨ c2)) | ϕ̄ ∈ cf(ϕ), ψ̄ ∈ cf(ψ)}.

We continue with the component formulas for A(ψRϕ) and show the first four
examples in Figure 6.6. The first case is that we may have r on all paths of the
current tree. This gives us the component formula AGϕ̄. Second, we may have
sRr on all paths of the current tree, which gives us A(ψ̄Rϕ̄) and is equivalent to
A(ϕ̄W(ϕ̄ ∧ ψ̄)). In the cases that all paths have to be continued either only in the
left or only in the right successor, we get A(ϕ̄Uc1), respectively A(ϕ̄Uc2).
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Figure 6.6: A(sRr) – First Four Cases

Furthermore, we can have any combination of these cases, e.g., some paths may
have Gr and some rUc1. Using the W-operator, we get A(ϕ̄Wc1) in this case. With
the equivalence A(ψ̄Rϕ̄) = A(ψ̄W(ϕ̄ ∧ ψ̄)), the combination of “some paths sRr
and some rUc1” can be expressed by A(ϕ̄W((ϕ̄ ∧ ψ̄) ∨ c1)). In total, we get the
following component formulas for A(ψRϕ):

• cf(ψRϕ) = {AGϕ̄, A(ψ̄Rϕ̄), A(ϕ̄Uc1), A(ϕ̄Uc2), A(ϕ̄Wc1), A(ϕ̄Wc2), A(ϕ̄U
(c1∨ c2)), A(ϕ̄W(c1∨ c2)), A(ϕ̄W((ϕ̄∧ ψ̄)∨ c1)), A(ϕ̄W((ϕ̄∧ ψ̄)∨ c2)), A(ϕ̄W
((ϕ̄ ∧ ψ̄) ∨ c1 ∨ c2)) | ϕ̄ ∈ cf(ϕ), ψ̄ ∈ cf(ψ)}.

The constructions for the formulas EXϕ and AXϕ are straight-forward: for EXs at
one node, we may either have a successor directly labeled with s or with c1 or with
c2 (and in the latter two cases s at the tree of the left, respectively the right successor
of the index tree). At more than one node we may have all possible combinations
of these cases. For AXs at one node, we either get directly s on all successors –
resulting in the component formula AX ϕ̄ – or on all successors c1, respectively c2 –
resulting in AXc1, respectively AXc2 – or any combination, e.g., AX(ϕ̄ ∨ c2). The
same conditions occur for more than one node. Thus, we get:

• cf(EXϕ) = {EX ϕ̄, EXc1, EXc2, EX(ϕ̄ ∨ c1), EX(ϕ̄ ∨ c2), EX(c1 ∨ c2), EX(ϕ̄ ∨
c1 ∨ c2) | ϕ̄ ∈ cf(ϕ)} and
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• cf(AXϕ) = {AX ϕ̄, AXc1, AXc2, AX(ϕ̄∨ c1), AX(ϕ̄∨ c2), AX(c1∨ c2), AX(ϕ̄∨
c1 ∨ c2) | ϕ̄ ∈ cf(ϕ)}.

For disjunction and conjunction, we get analogous conditions as in the last
chapter:

• cf(ϕ ∧ ψ) = {ϕ̄ ∧ ψ̄ | ϕ̄ ∈ cf(ϕ), ψ̄ ∈ cf(ψ)} and

• cf(ϕ ∨ ψ) = {ϕ̄, ψ̄, ϕ̄ ∨ ψ̄ | ϕ̄ ∈ cf(ϕ), ψ̄ ∈ cf(ψ)}.

The extended component formulas inductively sum up the component formulas
for the subformulas and are defined as in the last chapter: ecf(δ) =

⋃{cf(ϕ) | ϕ ∈
CL(δ)}.

6.3 CTL Composition Theorem

We now present the composition theorem for CTL.

Theorem 6.1. Given a signature σ, the following statement holds: For every σ-
CTL formula γ of modal depth r, we can compute an interface information tuple
〈γ1, . . . , γm; β〉 with CTL σ-formulas γj of modal depth at most r – interpreted in
the components – and a CTL+X−1 formula β – interpreted in the index tree – such
that for every sum tree tS of an index tree tI with (at most n-marked) σ-trees tz

(:=valtI
(z)) for z ∈ domtI

as components, we have:

ts |= γ⇔ (tI , S̃1, . . . , S̃n, I1, . . . , Im) |= β

where β contains the following predicate symbols:

• S1, . . . , Sn where Sj is interpreted by S̃j which expresses that the current node
is a j-th successor of its parent node and

• Pγ1 , . . . , Pγm where Pγk is interpreted by the set Ik := {z ∈ domtI
| tz |= γk}.

The proof of this composition theorem is structured analogously to the one from
the last chapter. We use an induction over the subformulas of the given formula γ

and over the “sub-sums” – the sums of trees starting from an index of the original
sum – to construct interface information tuples. In the induction base, we give
interface information tuples for the atomic and negated atomic formulas at any sub-
sum (as these formulas only talk about the current component). In the induction
step, we use the induction hypothesis for a subformula and the same or a smaller
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sum. We give formal proofs for the cases E(ϕUψ) and A(ϕUψ). Furthermore, we
present detailed explanations for all types of subformulas. We conclude this section
by estimating the size of the constructed interface information tuples.

Before we start with the induction, we present some notation: For the inductive
construction of the interface information tuples 〈δ1, . . . , δk; βδ〉 (δ E γ), we use
an enumeration of the (extended) component formulas ecf(δ) from the previous
section as δ1, . . . , δk. To ease notation, we write Pδ̄ for δ̄ ∈ ecf(δ) instead of Pδj ,
j ∈ [k].

We need a more general version of the equivalence in Theorem 6.1 in order to use
it in the induction: We show the equivalence for all parts of the sum tree starting at
the current component (with index h) and any set2 T of nodes in the component
th. For every u ∈ T, we consider the part of the sum tree which starts in the h-th
component at the node u. To express the equivalence for these parts, we have to
adapt the interpretation of the sets Iδ̄ s.t. they also “start” at T. This is formally
done as follows.

Let twh
I denote the part of the index tree which starts at component th, defined by

domtwh
I

:= {v | hv ∈ domtI
}, valtwh

I
(v) := valtI

(hv) and v w v′ in twh
I :⇔ hv w hv′

in tI . Furthermore, let twh
s be the part of the sum tree ts which starts at the h-th

component, i.e., twh
s is the sum tree of the trees valtwh

I
(z), z ∈ domtwh

I
. Using the

abbreviation tz for valtI
(z), we define the set Iwh,T

δ̄
as {z A h | tz |= δ̄} ∪ {h | ∀u ∈

T : th[u] |= δ̄}, i.e., it contains all indices after h of trees which satisfy the formula δ̄

and the index h if δ̄ holds for all states of the set T in the h-th tree from the node u
onwards. We show the following generalization of the equivalence in Theorem 6.1
for any set T of nodes in the current component:

∀u ∈ T : twh
s [u] |= δ⇔ (tI , S̃1, S̃2, {Iwh,T

δ̄
| δ̄ ∈ ecf(δ)}) |= βδ.

For the construction of the formula βδ in the interface information tuples, we use
(as in the last chapter) auxiliary formulas αδ,δ̄ for δ̄ ∈ ecf(δ) that store the conditions
for the case that δ̄ holds at the current component and get βδ =

∨
δ̄∈cf(δ)(Pδ̄ ∧ αδ,δ̄).

We now show that this generalized equivalence holds by induction.

Induction base:
For a predicate δ = r or negated predicate δ = ¬r, we have cf(δ) = {δ} and set
βδ = Pδ. We have for all nodes u ∈ T: twh

s [u] |= δ iff for all u ∈ T: th[u] |= δ. This is
equivalent to (tI , {S̃i | i ∈ [n]}, Iwh,T

δ ) |= Pδ.

2The equivalence is shown for any set T of nodes in the current component of the tree, because the
“context” may, e.g., force δ at a path like in E(δUs) or at several successors like in AXδ.
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Induction hypothesis:
Let th be the current component, T a set of nodes in th and δ the current formula.
The induction hypothesis states that the equivalence

∀u ∈ T : twy
s [u] |= ϕ⇔ (tI , S̃1, S̃2, {Iwy,T

ϕ̄ | ϕ̄ ∈ ecf(ϕ)}) |= βϕ

holds in the following setting: ϕ is a proper subformula of δ and the part of the
sum may be the same or smaller, i.e.3 h v y holds

Induction step:

E(ϕUψ)

We first discuss that E(ϕUψ) holds in the sum at one node u which belongs to the
current component th and afterwards at a set T of nodes which belong to the current
component. The following cases were already shown in Figure 6.1 for ϕ = r and
ψ = s. For the first case, by definition of E(ϕUψ), we either have ψ directly at the
node u (a special case of case 1) or a path starts in u and there is a node v on that
path where ψ holds and on all nodes up to v the formula ϕ holds. The node v lies
in the sum tree at a node which belongs to either the current component th (case 1)
or some component after it, starting in either the left or the right successor (cases 2
and 3).

We are given the component formulas ϕ̄ ∈ cf(ϕ) and ψ̄ ∈ cf(ψ) and the formulas
βϕ =

∨
ϕ̄∈cf(ϕ)(Pϕ̄ ∧ αϕ,ϕ̄), respectively βψ =

∨
ψ̄∈cf(ψ)(Pψ̄ ∧ αψ,ψ̄). We now sum up

the possibilities for the components for E(ϕUψ) at one node u in the sum. We define
β1

δ as the disjunction over these possibilities.
For the special case of (1), we can directly apply the induction hypothesis as ψ is

a proper subformula of δ. Thus, the formula βψ is satisfied with the interpretation

Iwh,{u}
ψ̄

and we have that (tI , S̃1, S̃2, {Iwh,{u}
δ̄

| δ̄ ∈ ecf(δ)}) |= ∨
ψ̄∈cf(ψ)(Pψ̄ ∧ αψ,ψ̄).

Thus, we get
∨

ψ̄∈cf(ψ)(Pψ̄ ∧ αψ,ψ̄) as first possibility for β1
δ.

For case (1), the path fragment from u to v lies completely in (the part of the sum
which belongs to) the current component. We can use the induction hypothesis
for ψ at {v} and the induction hypothesis for ϕ at the set of all nodes x from
u up to v. Let J1 denote this set. Then, we have that βψ =

∨
ψ̄∈cf(ψ)(Pψ̄ ∧ αψ,ψ̄)

is satisfied for the interpretation Iwh,{v} and βϕ =
∨

ϕ̄∈cf(ϕ)(Pϕ̄ ∧ αϕ,ϕ̄) for Iwh,J1 .
This gives us ϕ̄Uψ̄ on the path for the current component, respectively E(ϕ̄Uψ̄)

as component formula and both αϕ,ϕ̄ and αψ,ψ̄ have to hold. Thus, we have that∨
ϕ̄∈cf(ϕ)

∨
ψ̄∈cf(ψ)(PE(ϕ̄Uψ̄) ∧ αϕ,ϕ̄ ∧ αψ,ψ̄) holds. This is the second possibility for β1

δ.

3If y is later in the index tree, the sum tree starting at y is smaller.
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In case (2), the node v (of the path) lies in the left successor component (with
index h1) or in a later component. In particular, this means that (in the sum)
we have ϕ on the part of the path which belongs to the h-th component. Using
the induction hypothesis for the set of nodes of this part, we get E(ϕ̄Uc1) as
component formula (and αϕ,ϕ̄ has to hold) because in the h-th component the part
of the path ends with a c1-marked node. Additionally, the remainder of the path
starting at the first node of the remainder sum from index h1 onwards has to fulfill
ϕUψ. Thus, we must have E(ϕUψ) at the root of this remainder sum. If we can
show that this is equivalent to “β1

δ holds at the left successor th1”, this gives us∨
ϕ̄∈cf(ϕ)(PE(ϕ̄Uc1) ∧ αϕ,ϕ̄ ∧ EX(S1 ∧ β1

δ)). Case (3) is analogous. The cases (2) and (3)
give us the third and fourth possibility for β1

δ.
Note that we still have to give a construction for β1

δ. The ideas for this construc-
tion were already shown in the introduction: The path fragment from u to v is
distributed over several components whose indices form a path fragment in the
index tree. The first condition is that each component on this index path (fragment)
has to fulfill a component formula which allows the path to be continued – i.e.,
which contains a c1 or a c2 – until a component where either ψ̄ or E(ϕ̄Uψ̄) holds. We
describe conditions γδ,incomplete for the formulas which still can be continued and
γδ,complete for the other formulas. Both are defined via the following γ-formulas.

γδ,ψ =
∨

ψ̄∈cf(ψ)

(Pψ̄ ∧ αψ,ψ̄)

γδ,ϕψ =
∨

ϕ̄∈cf(ϕ)

∨
ψ̄∈cf(ψ)

(PE(ϕ̄Uψ̄) ∧ αϕ,ϕ̄ ∧ αψ,ψ̄)

γδ,1 =
∨

ϕ̄∈cf(ϕ)

(PE(ϕ̄Uc1) ∧ αϕ,ϕ̄)

γδ,2 =
∨

ϕ̄∈cf(ϕ)

(PE(ϕ̄Uc2) ∧ αϕ,ϕ̄)

We set γδ,incomplete := γδ,1 ∨ γδ,2 and γδ,complete := γδ,ψ ∨ γδ,ϕψ. The intuitive
description of “an index path labeled with incomplete formulas until a complete
formula” is simply E(γδ,incompleteUγδ,complete). However, as mentioned in the in-
troduction, this index path has to fulfill a second condition up to the complete
formula: It has to proceed to the left (respectively the right) if the path in the current
component ends with a c1 (respectively with c2). This can be achieved by forcing
conditions on the path fragment like “if the current index is a left successor then
the predecessor has to fulfill a component formula which can end with c1” defined
as γδ,back1 := S1 → X−1γδ,1, respectively γδ,back2 := S2 → X−1γδ,2. Due to the past
quantifier, these conditions have to start at a successor of the current index. Thus,
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in total, we get:

β1
δ =γδ,complete ∨ [γδ,incomplete∧

EX[E(γδ,incomplete ∧ γδ,back1 ∧ γδ,back2)U(γδ,complete ∧ γδ,back1 ∧ γδ,back2)]]

We now consider E(ϕUψ) at a set T of nodes. Recall the cases (1)–(3) from
above. At a set T of nodes, we get any combination of these cases. We discuss
only one combination as the others are analogous: for some nodes of T the case
(1) and for the other the case (3) holds. Then, all nodes of T satisfy the compo-
nent formula E(ϕ̄U(ψ̄ ∨ c2)) and we have both auxiliary formulas αϕ,ϕ̄ and αψ,ψ̄:∨

ϕ̄∈cf(ϕ)
∨

ψ̄∈cf(ψ)(PE(ϕ̄U(ψ̄∨c2)) ∧ αϕ,ϕ̄ ∧ αψ,ψ̄ ∧ EX(S2 ∧ β1
δ)).

In total, for E(ϕUψ) at one node in the sum tree (especially at the root), we get
β1

δ =
∨

δ̄∈cf1(δ)(Pδ̄ ∧ αδ,δ̄) with cf1(δ) = {ψ̄, E(ϕ̄Uψ̄), E(ϕ̄Uc1), E(ϕ̄Uc2)} and the
auxiliary formulas defined below. Furthermore, for a set T of nodes in the sum
tree, we get βδ =

∨
δ̄∈cf(δ)(Pδ̄ ∧ αδ,δ̄) and again the auxiliary formulas from below.

In both cases β1
δ is defined as above.

αδ,ψ̄ = αψ,ψ̄

αδ,E(ϕ̄Uψ̄) = αϕ,ϕ̄ ∧ αψ,ψ̄

αδ,E(ϕ̄Uc1) = αϕ,ϕ̄ ∧ EX(S1 ∧ β1
δ)

αδ,E(ϕ̄Uc2) = αϕ,ϕ̄ ∧ EX(S2 ∧ β1
δ)

αδ,E(ϕ̄U(c1∨ψ̄)) = αϕ,ϕ̄ ∧ αψ,ψ̄ ∧ EX(S1 ∧ β1
δ)

αδ,E(ϕ̄U(c2∨ψ̄)) = αϕ,ϕ̄ ∧ αψ,ψ̄ ∧ EX(S2 ∧ β1
δ)

αδ,E(ϕ̄U(c1∨c2)) = αϕ,ϕ̄ ∧ EX(S1 ∧ β1
δ) ∧ EX(S2 ∧ β1

δ)

αδ,E(ϕ̄U(c1∨c2∨ψ̄)) = αϕ,ϕ̄ ∧ αψ,ψ̄ ∧ EX(S1 ∧ β1
δ) ∧ EX(S2 ∧ β1

δ)

Formal proof for E(ϕUψ). Also for the formal proof, we stick to at most {c1, c2}-
marked trees. The generalization to marked trees with at most n special symbols is
straight-forward.

Let h be an index and T be a set of nodes in the marked tree th. Recall that twh
s is

the part of the sum tree ts which starts at the h-th component. For a node u ∈ T, we
denote the set of paths starting in u by Πu. We use the abbreviation S̃ = {S̃1, S̃2}
for the interpretation of the predicate symbols S1, S2 by the left and right successors
S̃1, S̃2.
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Recall that Iwh,T
δ̄

is defined as the set {z A h | tz |= δ̄} ∪ {h | ∀u ∈ T : th[u] |= δ̄},
i.e., it contains all component indices after h which satisfy the formula δ̄ and h if δ̄

holds in it at the node u.
We have to show that the formula E(ϕUψ) holds at a set T of nodes of the

sum tree starting at component th iff the index tree with the interpretation Iwh,T
δ̄

(δ̄ ∈ cf(δ)) satisfies the formula βδ. This is done in two steps: We first show that
E(ϕUψ) holds at the root of the sum tree starting at component th iff Iwh,ε

δ̄
(δ̄ ∈ cf(δ))

satisfies β1
δ. Afterwards, we show the general case for an arbitrary set T in the h-th

component for which we use the result from the first step for the direct successor
components th1 and th2.

We have twh
s [ε] |= E(ϕUψ) iff there is a node k such that twh

s [k] |= ψ and for all i,
i @ k twh

s [k] |= ϕ holds. Using the induction hypothesis for ϕ and ψ, we get:

• (tI , S̃, {Iwh,{ε}
ψ̄

| ψ̄ ∈ ecf(ψ)}) |= ∨
ψ̄∈cf(ψ)(Pψ̄ ∧ αψ,ψ̄) or

• there is a node k in the current tree th, such that (tI , S̃, {Iwh,{k}
ψ̄

| ψ̄ ∈ ecf(ψ)}) |=∨
ψ̄∈cf(ψ)(Pψ̄ ∧ αψ,ψ̄) and we have (tI , S̃, {Iwh,J1

ϕ̄ | ϕ̄ ∈ ecf(ϕ)}) |= ∨
ϕ̄∈cf(ϕ)(Pϕ̄ ∧

αϕ,ϕ̄) for J1 := {i ∈ domth
| i @ k} or

• there is an index z w h1 and a node k in the tree tz s.t. (tI , S̃, {Iwz,{k}
ψ̄

|
ψ̄ ∈ ecf(ψ)}) |= ∨

ψ̄∈cf(ψ)(Pψ̄ ∧ αψ,ψ̄) and (tI , S̃, {Iwz,J2
ϕ̄ | ϕ̄ ∈ ecf(ϕ)}) |=∨

ϕ̄∈cf(ϕ)(Pϕ̄ ∧ αϕ,ϕ̄) for J2 := {i ∈ domtz
| i @ k} and

for all indices y with h v y @ z, we have a last ci-labeled node k′ and for
J3 := {i ∈ domty

| i @ k′}: (tI , S̃, {Iwy,J3
ϕ̄ | ϕ̄ ∈ ecf(ϕ)}) |= ∨

ϕ̄∈cf(ϕ)(Pϕ̄ ∧ αϕ,ϕ̄)

holds or

• we have the same situation as above but with h2 instead of h1.

Recall the definition of γδ,complete = γδ,ψ ∨γδ,ϕψ and γδ,incomplete = γδ,1 ∨γδ,2 with
γδ,ψ, γδ,ϕψ, γδ,1 and γδ,2 from above. From the four cases above, we first observe
that γδ,complete ∨ γδ,incomplete has to hold at the current component. Furthermore,
there has to be an index path fragment with components in which γδ,incomplete holds
until a component where γδ,complete holds. Moreover, on this path the left successor
has to lie on the path if the formula γδ,1 holds at the current tree and the right
successor if γδ,2 holds. This is equivalent to the statement that we are at the left
(respectively right) successor, i.e., S1 (respectively S2) holds, and at the predecessor
of this successor – i.e., at the current index – we have the formula γδ,1 (respectively
γδ,2).

Thus, we get conditions γδ,back1 = S1 → X−1γδ,1 and γδ,back2 = S2 → X−1γδ,2 on
the path. Together, we get γδ,complete ∨ [γδ,incomplete ∧ EX(E(γδ,incomplete ∧ γδ,back1 ∧
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γδ,back2)U(γδ,complete ∧ γδ,back1 ∧ γδ,back2))]. Thus, we have (tI , S̃, {Iwh,{ε}
δ̄

| δ̄ ∈
ecf(δ)}) |= β1

δ.
It remains to show the result for a set T of nodes. We have ∀u ∈ T : twh

s [u] |=
E(ϕUψ) iff ∀u ∈ T there is a node k w u such that twh

s [k] |= ψ and for all i, u v i @ k:
twh
s [i] |= ϕ holds.

Using the induction hypothesis, we get for every u ∈ T:

• (tI , S̃, {Iwh,{u}
ψ̄

| ψ̄ ∈ ecf(ψ)}) |= ∨
ψ̄∈cf(ψ)(Pψ̄ ∧ αψ,ψ̄) or

• there is a node k w u in the current tree th s.t. (tI , S̃, {Iwh,{k}
ψ̄

| ψ̄ ∈ ecf(ψ)}) |=∨
ψ̄∈cf(ψ)(Pψ̄ ∧ αψ,ψ̄) and (tI , S̃, {Iwh,J1

ϕ̄ | ϕ̄ ∈ ecf(ϕ)}) |= ∨
ϕ̄∈cf(ϕ)(Pϕ̄ ∧ αϕ,ϕ̄) for

J1 := {i ∈ domth
| u v i @ k} or

• we have E(ϕUψ) at the root of the sum starting at index h1 – thus, from above,
we know that (tI , S̃, {Iwh1,{ε}

δ̄
| δ̄ ∈ ecf(δ)}) |= β1

δ holds – and we have a
maximal c1-labeled node k′ and (tI , S̃, {Iwz,J1

ϕ̄ | ϕ̄ ∈ ecf(ϕ)}) |= ∨
ϕ̄∈cf(ϕ)(Pϕ̄ ∧

αϕ,ϕ̄) with J1 := {i ∈ domth
| u v i @ k′} or

• we have the same situation as above but with h2 instead of h1.

These cases are equivalent to: (tI , S̃, {Iwh,T
ψ̄
| ψ̄ ∈ ecf(ψ)}) satisfies the disjunction

over the following cases.

1.
∨

ψ̄∈cf(ψ)(Pψ̄ ∧ αψ,ψ̄)

2.
∨

ϕ̄∈cf(ϕ)
∨

ψ̄∈cf(ψ)(PE(ϕ̄Uψ̄) ∧ αϕ,ϕ̄ ∧ αψ,ψ̄)

3.
∨

ϕ̄∈cf(ϕ)(PE(ϕ̄Uc1) ∧ αϕ,ϕ̄ ∧ EX(S1 ∧ β1
δ))

4.
∨

ϕ̄∈cf(ϕ)(PE(ϕ̄Uc2) ∧ αϕ,ϕ̄ ∧ EX(S2 ∧ β1
δ))

5.
∨

ϕ̄∈cf(ϕ)
∨

ψ̄∈cf(ψ)(PE(ϕ̄U(c1∨ψ̄)) ∧ αϕ,ϕ̄ ∧ αψ,ψ̄ ∧ EX(S1 ∧ β1
δ))

6.
∨

ϕ̄∈cf(ϕ)
∨

ψ̄∈cf(ψ)(PE(ϕ̄U(c2∨ψ̄)) ∧ αϕ,ϕ̄ ∧ αψ,ψ̄ ∧ EX(S2 ∧ β1
δ))

7.
∨

ϕ̄∈cf(ϕ)(PE(ϕ̄U(c1∨c2)) ∧ αϕ,ϕ̄ ∧ EX(S1 ∧ β1
δ) ∧ EX(S2 ∧ β1

δ))

8.
∨

ϕ̄∈cf(ϕ)
∨

ψ̄∈cf(ψ)(PE(ϕ̄U(c1∨c2∨ψ̄)) ∧ αϕ,ϕ̄ ∧ αψ,ψ̄ ∧ EX(S1 ∧ β1
δ) ∧ EX(S2 ∧ β1

δ))

Note that at the next component(s) only β1
δ has to hold as δ has to hold at the first

node of the sum tree from the component th1, respectively th2. Thus, we can use the
result from the first step.
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A(ϕUψ)

For A(ϕUψ), the possible cases were already shown in the example in Figure 6.3 for
ϕ = r and ψ = s. Again, we first consider A(ϕUψ) at one node u of the sum. We
either have ψ directly at u (a special case of (1)) or for all paths of the sum starting
at u there exists a node v at which ψ holds and up to this node ϕ holds. These paths
– or, to be more precise, the fragments of these paths on which ϕUψ holds – may
all lie completely in the part of the sum which belongs to the current component
(case 1). They may also all end in the left successor or a later component of it
(case 2). Analogously, they may all end in the right or a later component (case 3).
Furthermore, some may end in the current component, some in a later component
to the left and some in a later component to the right. This gives us all combinations
of the cases (1),(2) and (3).

The special case of (1) is the same as above for E(ϕUψ): We get
∨

ψ̄∈cf(ψ)(Pψ̄ ∧ αψ,ψ̄)

as possibility for βδ. For case (1), for all paths starting at u the node v (where ψ

holds in the sum) lies in the current component. Let J denote the set of these nodes
v. We can apply the induction hypothesis for J. So βψ holds for the interpretation
Iwh,J
ψ̄

. Furthermore, for the set X of nodes x until the nodes of J, the formula
ϕ holds in the sum and we can apply the induction hypothesis for ϕ and this
set in th. Together, we have ϕ̄Uψ̄ for every path in the component th and get∨

ϕ̄∈cf(ϕ)
∨

ψ̄∈cf(ψ)(PA(ϕ̄Uψ̄) ∧ αϕ,ϕ̄ ∧ αψ,ψ̄) as possibility for βδ.

In case (2), all paths proceed to the left successor. In particular, this means that we
have ϕ on the parts of the paths of the sum which belong to the current component
and can use the induction hypothesis for ϕ and the set of nodes of these parts in
th. Apart from this, every4 path in the component th has to end in a c1 as the path
in the sum continues to the left successor. Thus, we get the component formula
A(ϕ̄Uc1). Furthermore, as every path continues in (the root of) the left successor,
we must have A(ϕUψ) in the remainder sum from the root of the component with
index h1 onwards. Assuming that we have already shown that this means βδ holds
from th1 onwards, we get for this case

∨
ϕ̄∈cf(ϕ)(PA(ϕ̄Uc1) ∧ αϕ,ϕ̄ ∧ EX(S1 ∧ βδ)). The

case (3) is analogous.

We consider only one of the remaining cases as the arguments are similar for
all combinations of the cases (1), (2) and (3). If the set of paths is divided into
paths which go to the left and right successor, we have a combination of the cases
(2) and (3), i.e., ϕ̄Uc1 or ϕ̄Uc2 holds for the parts of all the paths in the current
component, giving the component formula A(ϕ̄U(c1 ∨ c2)). Furthermore, both

4Recall that we only consider paths starting at u.
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successor components have to satisfy βδ, which gives us
∨

ϕ̄∈cf(ϕ)(PA(ϕ̄U(c1∨c2)) ∧
αϕ,ϕ̄ ∧ EX(S1 ∧ βδ) ∧ EX(S2 ∧ βδ)).

Looking at the formula A(ϕUψ) at a set of nodes gives no further combinations
as we already have all combinations of the cases (1), (2) and (3) and, furthermore,
combining the special case of (1) with one of the others leads to a known combina-
tion. This can be seen by considering, e.g., the situation “the special case of (1) on
some nodes and (2) on the other nodes”. This gives the component formulas ψ̄ and
A(ϕ̄Uc1) for which we can use the component formula A(ϕ̄U(c1 ∨ ψ̄)) which has
the same conditions for the successor components.

In total, we get βδ =
∨

δ̄∈cf(δ)(Pδ ∧ αδ,δ̄) with the following auxiliary formulas:

αδ,ψ̄ = αψ,ψ̄

αδ,A(ϕ̄Uψ̄) = αϕ,ϕ̄ ∧ αψ,ψ̄

αδ,A(ϕ̄Uc1) = αϕ,ϕ̄ ∧ EX(S1 ∧ βδ)

αδ,A(ϕ̄Uc2) = αϕ,ϕ̄ ∧ EX(S2 ∧ βδ)

αδ,A(ϕ̄U(c1∨ψ̄)) = αϕ,ϕ̄ ∧ αψ,ψ̄ ∧ EX(S1 ∧ βδ)

αδ,A(ϕ̄U(c2∨ψ̄)) = αϕ,ϕ̄ ∧ αψ,ψ̄ ∧ EX(S2 ∧ βδ)

αδ,A(ϕ̄U(c1∨c2)) = αϕ,ϕ̄ ∧ EX(S1 ∧ βδ) ∧ EX(S2 ∧ βδ)

αδ,A(ϕ̄U(c1∨c2∨ψ̄)) = αϕ,ϕ̄ ∧ αψ,ψ̄ ∧ EX(S1 ∧ βδ) ∧ EX(S2 ∧ βδ)

We still have to give the construction for βδ (without referring to βδ itself at the
next components). As for the formula E(ϕUψ), we define formulas γδ,incomplete

and γδ,complete with the same meanings as above. For their definition, we use the
following formulas:

γδ,ψ =
∨

ψ̄∈cf(ψ)

(Pψ̄ ∧ αψ,ψ̄)

γδ,ϕψ =
∨

ϕ̄∈cf(ϕ)

∨
ψ̄∈cf(ψ)

(PA(ϕ̄Uψ̄) ∧ αϕ,ϕ̄ ∧ αψ,ψ̄)

γδ,1 =
∨

ϕ̄∈cf(ϕ)

(PA(ϕ̄Uc1) ∧ αϕ,ϕ̄)

γδ,2 =
∨

ϕ̄∈cf(ϕ)

(PA(ϕ̄Uc2) ∧ αϕ,ϕ̄)

γδ,1ψ =
∨

ϕ̄∈cf(ϕ)

∨
ψ̄∈cf(ψ)

(PA(ϕ̄U(c1∨ψ̄)) ∧ αϕ,ϕ̄ ∧ αψ,ψ̄)
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γδ,2ψ =
∨

ϕ̄∈cf(ϕ)

∨
ψ̄∈cf(ψ)

(PA(ϕ̄U(c2∨ψ̄)) ∧ αϕ,ϕ̄ ∧ αψ,ψ̄)

γδ,12 =
∨

ϕ̄∈cf(ϕ)

(PA(ϕ̄U(c1∨c2)) ∧ αϕ,ϕ̄)

γδ,12ψ =
∨

ϕ̄∈cf(ϕ)

∨
ψ̄∈cf(ψ)

(PA(ϕ̄U(c1∨c2∨ψ̄)) ∧ αϕ,ϕ̄ ∧ αψ,ψ̄)

We set γδ,incomplete := γδ,1 ∨ γδ,2 ∨ γδ,12 ∨ γδ,1ψ ∨ γδ,2ψ ∨ γδ,12ψ and γδ,complete :=
γδ,ψ ∨ γδ,ϕψ. As explained in the introduction, it suffices if all index paths have
components in which incomplete formulas hold until a complete formula holds.
However, an index path may “end” earlier if a component formula does not force a
continuation in this direction of the index path as shown in Figure 6.4. This is, e.g.,
the case if we have A(ϕ̄U(c1 ∨ ψ̄)) at a component and go to the right successor
in the index tree. We express these additional abort conditions by γδ,back1 :=
S1 ∧ X−1(γδ,2 ∨ γδ,2ψ) and γδ,back2 := S2 ∧ X−1(γδ,1 ∨ γδ,1ψ). (We start checking
these conditions only at the successor of the current component because we use the
past quantifier.) In total, we get:

βδ = γδ,complete ∨ [γδ,incomplete ∧ AX[A(γδ,incompleteU

(γδ,complete ∨ γδ,back1 ∨ γδ,back2))]]

Formal proof for case A(ϕUψ). For this formal proof, we use the same notation as
in the case E(ϕUψ): We denote the current component by th and use T for a set of
nodes in th. Furthermore, we use twh

s for the part of the sum tree ts from index h
onwards. We use Πu for the set of paths starting in u and S̃ for {S̃i | i ∈ [2]}. Recall
again the definition of Iwh,T

δ̄
as {z A h | tz |= δ̄} ∪ {h | ∀u ∈ T : tz[u] |= δ̄}.

We now show that for all nodes u ∈ T of the current component (with index h),
the sum tree twh

s starting at the node u of the component th satisfies the formula
δ = A(ϕUψ) iff the formula βδ is satisfied in the index tree with the interpretation
Iwh,T
δ̄

.

We have:

∀u ∈ T : twh
s [u] |= A(ϕUψ)

⇔∀u ∈ T ∀π ∈ Πu : (twh
s [u], π) |= ϕUψ

⇔∀u ∈ T ∀π ∈ Πu ∃k on π : twh
s [k] |= ψ ∧ ∀i on π with u v i @ k : twh

s [i] |= ϕ
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Using the induction hypothesis for the h-th component for the subformulas ϕ, ψ,
this is equivalent to: For all u ∈ T and for all paths π ∈ Πu, we have:

1. For the node u, we directly have (twh
I , S̃, {Iwh,{u}

ψ̄
| ψ̄ ∈ cf(ψ)}) |= βψ or

2. (for all these paths) there exists a node k which lies in th s.t. (twh
I , S̃, {Iwh,K

ψ̄
|

ψ̄ ∈ cf(ψ)}) |= βψ where K is the set of these nodes k. Furthermore, we have
(twh

I , S̃, {Iwh,J
ϕ̄ | ϕ̄ ∈ cf(ϕ)}) |= βϕ holds for J := {j | ∃k ∈ K : u v j @ k} or

3. (for all these paths π) there exists a k on π which lies in a tree tz for a z w h1.
Then, for all π there is a last node k′ in the tree th with th[k′] |= Pc1 . Let K′

denote the set of these k′. Then, for J defined as {i | ∃k′ ∈ K′ : u v i @ k′} we
have (tI , S̃, {Iwh,J

ϕ̄ | ϕ̄ ∈ cf(ϕ)}) |= βϕ. Furthermore, for the remainder of the
path π (starting from the next component th1) ϕUψ holds. With π0 denoting
this remainder, we have (twh1

s [ε], π0) |= ϕUψ or

4. the case (3) with z w h2 and c2 instead of c1 or,

5. as every path (starting from any node u ∈ T) may satisfy one of the four
conditions, we get also all combinations of these conditions5 for all paths
starting at all u ∈ T.

We now consider all these paths and assume that we have already shown that βδ

holds from th1 onwards. Recall that βϕ =
∨

ϕ̄∈cf(ϕ)(Pϕ̄∧ αϕ,ϕ̄) and βψ =
∨

ψ̄∈cf(ψ)(Pψ̄∧
αψ,ψ̄). We get that (twh

I , S̃, {Iwh,T
δ̄
| δ̄ ∈ ecf(δ)}) satisfies one of the following condi-

tions.

•
∨

ψ̄∈cf(ψ)(Pψ̄ ∧ αψ,ψ̄)

•
∨

ϕ̄∈cf(ϕ)
∨

ψ̄∈cf(ψ)(PA(ϕ̄Uψ̄) ∧ αϕ,ϕ̄ ∧ αψ,ψ̄)

•
∨

ϕ̄∈cf(ϕ)(PA(ϕ̄Uc1) ∧ αϕ,ϕ̄ ∧ EX(S1 ∧ βδ))

•
∨

ϕ̄∈cf(ϕ)(PA(ϕ̄Uc2) ∧ αϕ,ϕ̄ ∧ EX(S2 ∧ βδ))

•
∨

ϕ̄∈cf(ϕ)(PA(ϕ̄U(c1∨c2)) ∧ αϕ,ϕ̄ ∧ EX(S1 ∧ βδ) ∧ EX(S2 ∧ βδ))

•
∨

ϕ̄∈cf(ϕ)
∨

ψ̄∈cf(ψ)(PA(ϕ̄U(c1∨ψ̄)) ∧ αϕ,ϕ̄ ∧ αψ,ψ̄ ∧ EX(S1 ∧ βδ))

•
∨

ϕ̄∈cf(ϕ)
∨

ψ̄∈cf(ψ)(PA(ϕ̄U(c2∨ψ̄)) ∧ αϕ,ϕ̄ ∧ αψ,ψ̄ ∧ EX(S2 ∧ βδ))

•
∨

ϕ̄∈cf(ϕ)
∨

ψ̄∈cf(ψ)(PA(ϕ̄U(c1∨c2∨ψ̄)) ∧ αϕ,ϕ̄ ∧ αψ,ψ̄ ∧ EX(S1 ∧ βδ) ∧ EX(S2 ∧ βδ))

5Recall that combining the first condition with the third and/or fourth condition leads to the same
as combining the second with the third and/or fourth condition. Thus, it suffices to consider the
first condition alone and any combination of the other three.
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We still have to show the construction of βδ. For this, recall the definition of the
γ-formulas.

• γδ,ψ :=
∨

ψ̄∈cf(ψ)(Pψ̄ ∧ αψ,ψ̄)

• γδ,ϕψ :=
∨

ϕ̄∈cf(ϕ)
∨

ψ̄∈cf(ψ)(PA(ϕ̄Uψ̄) ∧ αϕ,ϕ̄ ∧ αψ,ψ̄)

• γδ,1 :=
∨

ϕ̄∈cf(ϕ)(PA(ϕ̄Uc1) ∧ αϕ,ϕ̄)

• γδ,2 :=
∨

ϕ̄∈cf(ϕ)(PA(ϕ̄Uc2) ∧ αϕ,ϕ̄))

• γδ,12 :=
∨

ϕ̄∈cf(ϕ)(PA(ϕ̄U(c1∨c2)) ∧ αϕ,ϕ̄)

• γδ,1ψ :=
∨

ϕ̄∈cf(ϕ)
∨

ψ̄∈cf(ψ)(PA(ϕ̄U(c1∨ψ̄)) ∧ αϕ,ϕ̄ ∧ αψ,ψ̄)

• γδ,2ψ :=
∨

ϕ̄∈cf(ϕ)
∨

ψ̄∈cf(ψ)(PA(ϕ̄U(c2∨ψ̄)) ∧ αϕ,ϕ̄ ∧ αψ,ψ̄)

• γδ,12ψ :=
∨

ϕ̄∈cf(ϕ)
∨

ψ̄∈cf(ψ)(PA(ϕ̄U(c1∨c2∨ψ̄)) ∧ αϕ,ϕ̄ ∧ αψ,ψ̄)

We use γδ,incomplete := γδ,1 ∨ γδ,2 ∨ γδ,12 ∨ γδ,1ψ ∨ γδ,2ψ ∨ γδ,12ψ and γδ,complete :=
γδ,ψ ∨ γδ,ϕψ. For A(rUs) in the sum tree, we get an universal “Until” condition of
the form “incomplete formulas on all paths until complete formulas” over the index
tree. We first observe that γδ,complete ∨ γδ,incomplete has to hold at the first component
(with index h). Furthermore, we must still have δ at the sum tree from the left
successor onwards (but not necessary from the right one) if we have γδ,1 or γδ,1ψ at
the current component. Analogously, we must have δ at the right successor sum if
we have γδ,2 or γδ,2ψ and δ has to hold in both sums for γδ,12 or γδ,12ψ.

If we now consider the left, respectively the right, successor as the current tree,
the conditions above are equivalent to:

• We need no condition, because we are at a right successor and γδ,1 or γδ,1ψ

holds at the predecessor

• or we need no condition, because we are we are at a left successor and γδ,2 or
γδ,2ψ holds at the predecessor

• or δ still has to hold.

We get the following universal “Until” condition: βδ = γδ,complete ∨ [γδ,incomplete ∧
AX A(γδ,incompleteU(γδ,complete∨γδ,back1∨γδ,back2))] with γδ,back1 = S1∧X−1(γδ,2∨
γδ,2ψ) and γδ,back2 = S2 ∧ X−1(γδ,1 ∨ γδ,1ψ). Thus, we have (twh

I , S̃, {Iwh,T
δ̄

| δ̄ ∈
ecf(δ)}) |= βδ.
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E(ψRϕ)

The basic ideas for E(ψRϕ) and A(ψRϕ) in the sum are quite similar to the ideas
from E(rUs) and A(rUs). For δ = E(ψRϕ) at one node u, a path must start in the
current component at u which satisfies one of following cases in the sum tree (see
also Figure 6.6):

(1) All nodes of the path lie in (the part of the sum which belongs to) the current
component and satisfy ϕ,

(2) all nodes of the path6 lie in the current component and the path satisfies ψRϕ,

(3) the path continues in the left successor component, all nodes of the path satisfy
ϕ in the part of the sum belonging to the current component and E(ψUϕ) is
fulfilled at the root of the remainder sum or

(4) the third case but for the right successor.

Again, we can use for cases (1) and (2) the induction hypothesis for the subformulas
ϕ, respectively ψ, for all nodes that lie on the path in the current component. For
cases (3) and (4), we can use the induction hypothesis for ϕ for the nodes on the
part of the path in the current component. Furthermore, at the remainder sum, we
also have δ at one node – the root. If we can show that this is equivalent to β1

δ, we
get for β1

δ the recursive definition:

(1)
∨

ϕ̄∈cf(ϕ)(PEGϕ̄ ∧ αϕ,ϕ̄)

(2)
∨

ϕ̄∈cf(ϕ)
∨

ψ̄∈cf(ψ)(PE(ψ̄Rϕ̄) ∧ αϕ,ϕ̄ ∧ αψ,ψ̄)

(3)
∨

ϕ̄∈cf(ϕ)(PE(ϕ̄Uc1) ∧ αϕ,ϕ̄ ∧ EX(S1 ∧ β1
δ))

(4)
∨

ϕ̄∈cf(ϕ)(PE(ϕ̄Uc2) ∧ αϕ,ϕ̄ ∧ EX(S2 ∧ β1
δ))

We still have to find a definition of β1
δ without using β1

δ itself. Again, we use
γ-formulas to define β1

δ:

• γδ,ϕ :=
∨

ϕ̄∈cf(ϕ)(PEGϕ̄ ∧ αϕ,ϕ̄)

• γδ,ϕψ :=
∨

ϕ̄∈cf(ϕ)
∨

ψ̄∈cf(ψ)(PE(ψ̄Rϕ̄) ∧ αϕ,ϕ̄ ∧ αψ,ψ̄)

• γδ,1 :=
∨

ϕ̄∈cf(ϕ)(PE(ϕ̄Uc1) ∧ αϕ,ϕ̄)

6To be more precise if ψRϕ (but not Gϕ) holds, only the fragment of the path which satisfies this
formula has to lie in the current component.
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• γδ,2 :=
∨

ϕ̄∈cf(ϕ)(PE(ϕ̄Uc2) ∧ αϕ,ϕ̄)

Let γδ,complete be γδ,ϕ ∨ γδ,ϕψ and γδ,incomplete := γδ,1 ∨ γδ,2. Recall that E(ψRϕ)

means that there is a path which is either labeled with ϕ until ϕ ∧ ψ holds or it is
completely labeled with ϕ. For the first case, we know how to define β1

δ as an Until-
condition over the index tree from the already discussed case E(ϕUψ). We have to
add the possibility that the path fulfills ϕ all the time. This can have two reasons:
either there is an index path which finally goes to (or through) a component where
EGϕ holds – this is already captured by the Until-condition over the index tree –
or there is an infinite index path which allows on every component that the path
is continued via an incomplete formula. The second condition can be expressed
using the W-operator. Thus, we get the following formula for β1

δ:

β1
δ =γδ,complete ∨ [γδ,incomplete∧

EX[E(γδ,incomplete ∧ γδ,back1 ∧ γδ,back2)W(γδ,complete ∧ γδ,back1 ∧ γδ,back2)]]

with γδ,back1 := S1 → X−1γδ,1 and γδ,back2 := S2 → X−1γδ,2.
At a set T of nodes, again, we may have all combinations of the cases (1)–(4)

from above. For example, for the combination (1) and (3), for some u ∈ T the
path satisfies ϕ on all nodes and lies completely in the h-th component and for the
other nodes of the set T the paths continue in the left successor. Thus, we have
to express for the current component the CTL∗-condition A(Gϕ̄ ∨ (ϕ̄Uc1)) which
is equivalent to A(ϕ̄Wc1) and can be converted to a CTL formula as explained in
Section 2.2. Again, the conditions for the next components have to be combined.
For combinations like (2) and (3), we further use the equivalence of E(ψ̄Rϕ̄) and
E(ϕ̄W(ϕ̄ ∧ ψ̄)).

Thus, in total, we get βδ =
∨

δ̄∈cf(δ)(Pδ̄ ∧ αδ,δ̄) with the following auxiliary formu-
las:

αδ,EGϕ̄ = αϕ,ϕ̄

αδ,E(ψ̄Rϕ̄) = αϕ,ϕ̄ ∧ αψ,ψ̄

αδ,E(ϕ̄Uc1) = αϕ,ϕ̄ ∧ EX(S1 ∧ β1
δ)

αδ,E(ϕ̄Uc2) = αϕ,ϕ̄ ∧ EX(S2 ∧ β1
δ)

αδ,E(ϕ̄Wc1) = αϕ,ϕ̄ ∧ EX(S1 ∧ β1
δ)

αδ,E(ϕ̄Wc2) = αϕ,ϕ̄ ∧ EX(S2 ∧ β1
δ)

αδ,E(ϕ̄U(c1∨c2)) = αϕ,ϕ̄ ∧ EX(S1 ∧ β1
δ) ∧ EX(S2 ∧ β1

δ)

αδ,E(ϕ̄W(c1∨c2)) = αϕ,ϕ̄ ∧ EX(S1 ∧ β1
δ) ∧ EX(S2 ∧ β1

δ)
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αδ,E(ϕ̄W(c1∨(ϕ̄∧ψ̄))) = αϕ,ϕ̄ ∧ αψ,ψ̄ ∧ EX(S1 ∧ β1
δ)

αδ,E(ϕ̄W(c2∨(ϕ̄∧ψ̄))) = αϕ,ϕ̄ ∧ αψ,ψ̄ ∧ EX(S2 ∧ β1
δ)

αδ,E(ϕ̄W(c1∨c2∨(ϕ̄∧ψ̄))) = αϕ,ϕ̄ ∧ αψ,ψ̄ ∧ EX(S1 ∧ β1
δ) ∧ EX(S2 ∧ β1

δ)

A(ψRϕ)

For δ = A(ψRϕ), we must have one of the following cases in the sum tree starting
at the current component at node u:

(1) All paths of the sum lie in the current component and satisfy ϕ on all nodes,

(2) all paths of the sum7 lie in the current component and satisfy ψRϕ,

(3) all paths continue to the left successor component and all nodes on these paths
in the part of the sum belonging to the current component satisfy ϕ and δ is
fulfilled at the root of the remainder sum,

(4) the third case but for the right successor or

(5) any combination of the cases (1)–(4) for the set of all paths.

Again, we can use for cases (1) and (2) the induction hypothesis for the subformulas
ϕ, respectively ψ, for all nodes that lie on the paths (fragments). For cases (3) and
(4), we can use the induction hypothesis for ϕ for the nodes on the part of the paths
in the current component. Furthermore, if we assume that βδ holds at the next
component iff δ holds in the remainder sum, we get that βδ =

∨
δ̄∈cf(δ)(Pδ̄ ∧ αδ,δ̄)

holds with the following auxiliary formulas:

αδ,AGϕ̄ = αϕ,ϕ̄

αδ,A(ψ̄Rϕ̄) = αϕ,ϕ̄ ∧ αψ,ψ̄

αδ,A(ϕ̄Uc1) = αϕ,ϕ̄ ∧ EX(S1 ∧ βδ)

αδ,A(ϕ̄Uc2) = αϕ,ϕ̄ ∧ EX(S2 ∧ βδ)

αδ,A(ϕ̄Wc1) = αϕ,ϕ̄ ∧ EX(S1 ∧ βδ)

αδ,A(ϕ̄Wc2) = αϕ,ϕ̄ ∧ EX(S2 ∧ βδ)

αδ,A(ϕ̄U(c1∨c2)) = αϕ,ϕ̄ ∧ EX(S1 ∧ βδ) ∧ EX(S2 ∧ βδ)

αδ,A(ϕ̄W(c1∨c2)) = αϕ,ϕ̄ ∧ EX(S1 ∧ βδ) ∧ EX(S2 ∧ βδ)

7To be more precise, again, for ψRϕ and not Gϕ, only the fragments of the paths which satisfy this
formula have to lie in the current component.
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αδ,A(ϕ̄W(c1∨(ϕ̄∧ψ̄))) = αϕ,ϕ̄ ∧ αψ,ψ̄ ∧ EX(S1 ∧ βδ)

αδ,A(ϕ̄W(c2∨(ϕ̄∧ψ̄))) = αϕ,ϕ̄ ∧ αψ,ψ̄ ∧ EX(S2 ∧ βδ)

αδ,A(ϕ̄W(c1∨c2∨(ϕ̄∧ψ̄))) = αϕ,ϕ̄ ∧ αψ,ψ̄ ∧ EX(S1 ∧ βδ) ∧ EX(S2 ∧ βδ)

Analogously to the case A(ϕUψ), we define γ-formulas:

• γδ,ϕ :=
∨

ϕ̄∈cf(ϕ)(PAGϕ̄ ∧ αϕ,ϕ̄)

• γδ,ϕψ :=
∨

ϕ̄∈cf(ϕ)
∨

ψ̄∈cf(ψ)(PA(ψ̄Rϕ̄) ∧ αϕ,ϕ̄ ∧ αψ,ψ̄)

• γδ,1 :=
∨

ϕ̄∈cf(ϕ)(PA(ϕ̄Uc1) ∧ αϕ,ϕ̄)

• γδ,2 :=
∨

ϕ̄∈cf(ϕ)(PA(ϕ̄Uc2) ∧ αϕ,ϕ̄)

• γδ,12 :=
∨

ϕ̄∈cf(ϕ)(PA(ϕ̄U(c1∨c2)) ∧ αϕ,ϕ̄)

• γδ,1ϕ :=
∨

ϕ̄∈cf(ϕ)(PA(ϕ̄Wc1) ∧ αϕ,ϕ̄)

• γδ,2ϕ :=
∨

ϕ̄∈cf(ϕ)(PA(ϕ̄Wc2) ∧ αϕ,ϕ̄)

• γδ,12ϕ :=
∨

ϕ̄∈cf(ϕ)(PA(ϕ̄W(c1∨c2)) ∧ αϕ,ϕ̄)

• γδ,1ϕψ :=
∨

ϕ̄∈cf(ϕ)
∨

ψ̄∈cf(ψ)(PA(ϕ̄W(c1∨(ϕ̄∧ψ̄))) ∧ αϕ,ϕ̄ ∧ αψ,ψ̄)

• γδ,2ϕψ :=
∨

ϕ̄∈cf(ϕ)
∨

ψ̄∈cf(ψ)(PA(ϕ̄W(c2∨(ϕ̄∧ψ̄))) ∧ αϕ,ϕ̄ ∧ αψ,ψ̄)

• γδ,12ϕψ :=
∨

ϕ̄∈cf(ϕ)
∨

ψ̄∈cf(ψ)(PA(ϕ̄W(c1∨c2∨(ϕ̄∧ψ̄))) ∧ αϕ,ϕ̄ ∧ αψ,ψ̄)

We set γδ,complete := γδ,ϕ ∨ γδ,ϕψ and γδ,incomplete as the disjunction over the other
formulas. We use the abort conditions γδ,back1 := S1 ∧ X−1(γδ,2 ∨ γδ,2ϕ ∨ γδ,2ϕψ)

and γδ,back2 := S2 ∧ X−1(γδ,1 ∨ γδ,1ϕ ∨ γδ,1ϕψ). In total, we get:

βδ = γδ,complete ∨ [γδ,incomplete ∧ AX[A(γδ,incompleteW

(γδ,complete ∨ γback1 ∨ γback2))]]

ϕ ∨ ψ

As in the LTL composition theorem, for the disjunction δ = ϕ∨ ψ at a set T of states
of the current component, we have to consider three cases: ϕ on all of these states,
ψ on all of these states and that there are states in T where ϕ holds and on the other
ones ψ holds. Thus, we get:
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βδ = βϕ ∨ βψ ∨ (
∨

ϕ̄∈cf(ϕ)

∨
ψ̄∈cf(ψ)

Pϕ̄∨ψ̄ ∧ αϕ,ϕ̄ ∧ αψ,ψ̄)

and αδ,ϕ̄ = αϕ,ϕ̄, αδ,ψ̄ = αψ,ψ̄ and αδ,ϕ̄∨ψ̄ = αϕ,ϕ̄ ∧ αψ,ψ̄.

ϕ ∧ ψ

For the conjunction δ = ϕ ∧ ψ, we have to satisfy both the conditions for ϕ and ψ.
We get:

βδ = (
∨

ϕ̄∈cf(ϕ)

∨
ψ̄∈cf(ψ)

Pϕ̄∧ψ̄ ∧ αϕ,ϕ̄ ∧ αψ,ψ̄)

and αδ,ϕ̄∧ψ̄ = αϕ,ϕ̄ ∧ αψ,ψ̄.

EXϕ

We first discuss EXϕ at one node u of the sum. Here, we must have a successor
v at which ϕ holds. The node v (of the sum) may either belong to the current
component (case (1)) or the left or the right successor component (cases (2) and (3)).
For the case (1), we can use the induction hypothesis for ϕ at the current component
and simply get

∨
ϕ̄∈cf(ϕ)(PEX ϕ̄ ∧ αϕ,ϕ̄). For the case (2), we can use the induction

hypothesis for ϕ at the (root of the) left successor. Furthermore, we must have a
connection point c1 in the current component at a successor of the node u, i.e., EXc1

has to hold. We get PEXc1 ∧ EX(S1 ∧ βϕ). The case (3) is analogous. For EXϕ at a
set T of nodes, we may also have any combination of the cases (1), (2) and (3). Thus,
we get βδ =

∨
δ̄∈cf(δ)(Pδ̄ ∧ αδ,δ̄) with the auxiliary formulas:

• αδ,EX ϕ̄ = αϕ,ϕ̄

• αδ,EXc1 = EX(S1 ∧ βϕ)

• αδ,EXc2 = EX(S2 ∧ βϕ)

• αδ,EX(c1∨c2) = EX(S1 ∧ βϕ) ∧ EX(S2 ∧ βϕ)

• αδ,EX(c1∨ϕ̄) = αϕ,ϕ̄ ∧ EX(S1 ∧ βϕ)

• αδ,EX(c2∨ϕ̄) = αϕ,ϕ̄ ∧ EX(S2 ∧ βϕ)

• αδ,EX(c1∨c2∨ϕ̄) = αϕ,ϕ̄ ∧ EX(S1 ∧ βϕ) ∧ EX(S2 ∧ βϕ)
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AXϕ

For AXϕ at one node u in the sum tree, we have one of the following situations:

(1) All successors of u lie in the part of the sum which belongs to the current
component and fulfill ϕ,

(2) all successors of u lie in the part of the sum which belongs to the left successor
and fulfill ϕ,

(3) the second case for the right successor or

(4) any combination of these cases for the set of all successors.

We get the same cases for EXϕ at a set T of nodes. Using the induction hypothesis
for ϕ in the current component, respectively the successor components, we get that
βδ =

∨
δ̄∈cf(δ)(Pδ̄ ∧ αδ,δ̄) is fulfilled with the following auxiliary formulas:

• αδ,AX ϕ̄ = αϕ,ϕ̄

• αδ,AXc1 = EX(S1 ∧ βϕ)

• αδ,AXc2 = EX(S2 ∧ βϕ)

• αδ,AX(c1∨c2) = EX(S1 ∧ βϕ) ∧ EX(S2 ∧ βϕ)

• αδ,AX(c1∨ϕ̄) = αϕ,ϕ̄ ∧ EX(S1 ∧ βϕ)

• αδ,AX(c2∨ϕ̄) = αϕ,ϕ̄ ∧ EX(S2 ∧ βϕ)

• αδ,AX(c1∨c2∨ϕ̄) = αϕ,ϕ̄ ∧ EX(S1 ∧ βϕ) ∧ EX(S2 ∧ βϕ)

6.4 Size of the Decomposition

We now show that the size of the decomposition is indeed exponential in the size
of the input formula. For this, we have to estimate the size of the generated CTL
component formulas, their number and the size of the CTL+X−1 formula. We show
the complexity for the general case where the branching of the index tree is at most
n, i.e., each tree has at most the special symbols c1, . . . , cn. Note that this leads in
the induction step to component formulas which distinguish between each possible
subset of c1, . . . , cn: e.g., for the formula A(ϕUψ) the paths in the sum which have
to satisfy ϕUψ may go to any combination of the next n components.

Size of the component formulas:
From the definition of the set cf(δ), we get in all cases s(δ̄) ≤ c ∗ s(ϕ̄) + c ∗ s(ψ̄) +
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c + n for some constant c ∈N (and s(ψ) = 0 if it does not occur in δ). Thus, for the
input formula γ, we have s(γ̄) ∈ O(n ∗ s(γ)) for γ̄ ∈ cf(γ).

Number of the component formulas:
From the construction of the set cf(δ), we get in the induction step |cf(δ)| ≤
c ∗ 2n ∗ |cf(ϕ)| ∗ |cf(ψ)| in all cases of subformulas (and |cf(ψ)| = 0 if it does
not occur in δ). Thus, we have |ecf(γ)| ∈ O(2n∗s(γ)).

Size of the CTL+X−1 formula:
We first observe that in all cases of (direct) subformulas ϕ, ψ of δ, we have for the
auxiliary formulas αδ,δ̄ that |αδ,δ̄| ≤ |αϕ,ϕ̄|+ |αψ,ψ̄|+ |βδ| ≤ 2 ∗ |βδ|.

We estimate the size of the CTL+X−1 formula only for the case δ = E(ϕUψ). The
other cases are quite similar. Note that in general (for at most n successors), βδ

is defined as γcomplete ∨ [γincomplete ∧ EX[E(γincomplete ∧ γback)Uγcomplete ∧ γback]]

with γback = γback1 ∧ · · · ∧ γbackn and γbacki is defined analogously to γback1 and
γback2.

Let γany := γcomplete ∨ γincomplete. We get |βδ| ≤ c ∗ (|γany|+ n ∗ |γbacki|) with
some constant c ∈N. We first observe that γany is a disjunction over 2 ∗ 2n formulas,
as we have the formula γψ and at most the formulas γi1 ...ik and γi1 ...ikψ for every8

subset {i1, . . . , ik} ⊆ P([n]). Thus, we can estimate |γany| by 2n+1 times the largest
of these formulas which has the size |cf(ϕ)| ∗ |cf(ψ)| ∗ (n + |αϕ,ϕ̄| + |αψ,ψ̄|). As
γbacki is defined by Si → X−1(λ) where λ is a disjunction over all formulas with i
fixed, we have γbacki ≤ c ∗ |γany|.

We get |βδ| ∈ O(2n+2 ∗ |cf(ϕ)| ∗ |cf(ψ)| ∗ (|βϕ|+ |βψ)) for the induction step. In
total, we have |βγ| ∈ O((|cf(γ)| ∗ 2n+2)s(γ)) and by using |cf(γ)| ∈ O(2n∗s(γ)) that
|βγ| ∈ O(2n∗s(γ)2

).

6.5 Summary and Further Results

In this section, we have shown a generalization of the LTL composition theorem to
CTL over composed trees. Although the proof is much more involved, the results
are quite similar. We also get a decomposition which is exponential in the size of
the given formula. The main difference is that we need the more powerful logic
CTL+X−1 in the index tree and that the decomposition is also exponential in the
branching of the index tree, i.e., in the maximal number of successor indices of the
index tree.

The proof of the CTL composition theorem was shown for the setting where
we concatenated the same special symbols ci of the marked trees with the same

8To be more precise, for the empty set, we only have γϕψ.
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successor. Note that we get the same result if we allow different trees at the ci

positions which are CTL equivalent as we only check CTL formulas on these trees.

We take a deeper look at the composition technique for generalizations of the
logic CTL. We consider the logics ACTL∗ and ECTL∗ which are the fragments of
CTL∗ that only allow universal, respectively existential, quantification over paths.
We discuss the natural approach to generalize the results from Chapters 5 and 6
to ACTL∗ and ECTL∗ by using the composition technique on a single path and
writing “A”, respectively “E” in front of the component formulas.

Note that a fixed path in the sum tree actually describes a word. Thus, for each
single path, we have a composition theorem which is analogous to the LTL case.
(Formally, we have to take into account that the definition of the sum tree uses
the special symbols c1 and c2 to concatenate the component trees. Thus, e.g., for a
formula ϕUψ instead of the component formula Gϕ̄ we get ϕ̄Uc1, ϕ̄Uc2. The given
path decides whether the formulas with c1 or c2 have to be taken.)

We first look at the extension ACTL∗. If we look at universal quantification
over a (composed) path formula like (rUs)Ut – i.e., in this example, at the formula
A((rUs)Ut) – the component formulas have to be state formulas. The natural
approach is to simply use the “A”-quantified version of the given path formulas
for each single path. We present arguments why this natural generalization fails (at
least) for infinite sums of trees. (There may be a more intelligent way to generalize
the composition technique of CTL to ACTL∗.) Recall the tree from Figure 2.5.
This tree can be represented as the sum tree for the index tree which is simply a
copy of the natural numbers where each node is labeled with the following tree:
It consists of the leftmost path of the tree from Figure 2.5 and a c1 successor at
the right successor of the root. Recall that the formula AFGp holds in the tree
from Figure 2.5, but the formula AFAGp not. The reason is that the rightmost
path satisfies FGp but not FAGp because every node on this path has a successor
with p and one with ¬p. This path is now distributed over all (infinitely many)
components. Intuitively, the composition approach from above fails because every
component formula is quantified over all paths and this does not allow to express
that we have (finally) only p on the rightmost branch. Note that this argument
depends on the infinite index structure. However, for finite index structure, we
may be able to use a formula from [Boj08] to also show the failure for this approach.
(This formula expresses that all paths are labeled by (ab)∗a(ab)∗cω. It is used to
show that there are formulas which are definable in LTL and CTL but which need
the existential path quantifier in CTL.)

We now look at the extension ECTL∗. Recall the composition theorem for a fixed
path. Note that this gives us inductively a set of component formulas which have
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to hold at each component. Consider, e.g., the formula (rUs) ∧ (tUv) on the fixed
path. Then, we get for the subformula rUs the condition “components with rUc1,
respectively rUc2, until a component with rUs” and the analogous condition for
tUv. (As above, the fixed path decides whether, in the current component, we take
(rUc1 and tUc1) or (rUc2 and tUc2).) If we now want to express conditions for the
state formula E((rUs) ∧ (tUv)), we cannot simply write an “E” in front of every
component formula, because we have to ensure that the conditions rUc1 and tUc1,
respectively the other two, are checked on the same path fragment. Thus, we have to
use more complex component formulas which also consider combinations of the
known component formulas – here, we would need at least the additional formula
E(rUc1 ∧ tUc1). This poses two problems: First, it is not clear how the composition
technique works over these combinations of formulas and second, if we can find
a composition theorem for this case, the size of the decomposition may become
larger.

It may be a challenging task to overcome these problems for the logics ACTL∗

and ECTL∗. However, we may be able to find constructions for other interesting
fragments of CTL∗ as, e.g., CTL+X−1, or a direct construction for formulas of the
form AFGϕ and AGFϕ.
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In this thesis, we discussed the composition technique in the field of model-
checking. It allows to deduce the truth of a logic formula in a product or sum
of components from information about the truth values of formulas in these com-
ponents. We analysed two main questions:

1. For which combinations of logics and types of structures, respectively their
product or sum, is the composition technique applicable?

2. How much information about the components do we need?

For the first question, the classical results by Feferman and Vaught, respectively
Shelah, give us, on the one hand, a composition theorem for products and FO logic
and, on the other hand, for (disjoint ordered) sums of ordering and MSO logic.
In the field of model-checking, FO logic is too weak to express many interesting
properties like, e.g., reachability. Thus, our focus for the first question lied on
products. We extended the known results by Rabinovich, respectively Wöhrle
and Thomas, to show a composition theorem for finitely synchronized products
of transition systems and FO logic with reachability by modulo counting paths
(FO(Reg1R)). We also extended their results by capturing not only a finite number
but also an infinite number of components. Using a proof schema of Rabinovich,
we further showed that various other extensions of the logic (especially regular
reachability) lead to a failure of the composition technique – in most cases already
for the special cases of asynchronous or direct products of simple transition systems
(basically a copy of the natural numbers with some predicates). An overview of
these results was shown in Table 4.1.

For the second question, the bad news was that, in general, the non-elementary
size of the decomposition is unavoidable [GJL12]. However, this left (and still
leaves) possible improvements for special logics and special structures, in particular,
for structures with a bounded out-degree of outgoing transitions as the proof
in [GJL12] relies on the unbounded degree. We discussed two such cases: LTL over
a disjoint ordered sum of words and CTL over a disjoint ordered sum of (marked)
trees. In both cases, we found a composition theorem with only1 exponential

1“Only” in comparison to the non-elementary complexity in general.
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size of the decomposition. We exploited the structure of LTL, respectively CTL:
each subformula “looks only in the future”, i.e., it is interpreted in the current
component or/and later components. This allowed us to get a construction based
on a simultaneous induction over both the subformulas of the given formula and
the parts of the sum starting at a component.

Outlook and Further Research

Concerning the composition technique for the products, we have seen a compre-
hensive overview of the frontiers of the applicability of the composition technique.
Furthermore, in the cases where the composition technique is applicable, the non-
elementary size of the decomposition limits its applicability. A possible way to
overcome both situations would be to adapt the idea we used for sums: to look at
special logics and special structures instead of arbitrary transition systems. How-
ever, here, the situation becomes more complicated as it is not clear how to deduce
the truth of a formula from truth values of formulas in smaller “subproducts” as
it was done in the case of disjoint ordered sums. Moreover, for the cases where
the composition theorem fails, it fails already in the case of very simple transition
systems. All together, it might be a quite challenging task to find further results on
products.

For the composition technique for disjoint ordered sums, on the one hand, we
could try to further extend the results to interesting fragments of CTL∗. In particular,
it would be interesting to capture the past quantifier (X−1) and see if CTL+X−1

would be still sufficient in the index tree. (Here, we might need to restrict the
marked trees to have only one node per ci symbol.) Other past quantifiers might
be a bigger challenge due to the “looking forward” structure of the proof. On the
other hand, we might also look at other index structures, e.g., ring structures and
directed acyclic graphs instead of trees.
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C subformula relation, page 20

v prefix relation (in a tree model), page 13

A structure, page 11

〈α1, . . . , αk; β〉 interface information tuple, page 31

βPartition(I1, . . . , In; I) MSO formula: I1, . . . , Ik form partition of I, page 21

Cardj,k(X) CMSO formula expressing X has j (mod k) elements, page 22

cf(δ) (set of) component formulas for δ, page 67

CL(δ) closure of the formula δ, page 20

dom(A) domain of the structure A, page 11

Ind index structure, page 12

K transition system, page 16

L(π) labeling sequence of the predicates of a path π, page 17

l(π) labeling sequence of the transitions of π, page 17

md(ϕ) modal depth of CTL or LTL formula ϕ, page 24

[n] the set {1, . . . , n}, page 11

N natural numbers (without 0), page 11
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k with remainder l, page 21

π path (fragment), page 17
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qd(δ) quantifier depth of a formula δ, page 20

R relation symbols (of a signature σ), page 11

Ra (binary) relation, page 12
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t tree model, page 13
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w word model, page 12
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