Contents

List of Contributors
Preface

1 Proteins Separation and Purification by Expanded Bed Adsorption and Simulated Moving Bed Technology
Ping Li, Pedro Ferreira Gomes, José M. Loureiro, and Alirio E. Rodrigues
1.1 Introduction
1.2 Protein Capture by Expanded Bed Technology
1.2.1 Adsorbent Materials
1.2.2 Expanded Bed Adsorption/Desorption of Protein
1.2.3 Modeling of the Expanded Bed
1.3 Proteins Separation and Purification by Salt Gradient Ion Exchange SMB
1.3.1 Adsorption Isotherms and Kinetics of BSA and Myoglobin on Ion Exchange Resins
1.3.2 Salt Gradient Formation and Process Design for IE-SMB Chromatography
1.3.3 Separation Region of Salt Gradient IE-SMB Chromatography
1.3.4 Proteins Separation and Purification in Salt Gradient IE-SMB with Open Loop Configuration
1.4 Conclusion
References

2 BioSMB Technology as an Enabler for a Fully Continuous Disposable Biomanufacturing Platform
Marc Bisschops
2.1 Introduction
2.2 Integrated Continuous Bioprocessing
2.3 Multicolumn Chromatography
3 Impact of Continuous Processing Techniques on Biologics Supply Chains 53

Aloke Das

3.1 Introduction 53
3.1.1 The Biologics Industry 53
3.1.2 The Biologics Value Chain 54
3.1.3 Downstream Purification Costs 54

3.2 Chromatography Techniques Used in Downstream Purification of Biomolecules 55
3.2.1 Need for Continuous Manufacturing in Downstream Purification 56
3.2.2 The Multicolumn Countercurrent Solvent Gradient Purification Chromatography System 58

3.3 Next-Generation Biologic Products – Bispecific Monoclonal Antibodies 59
3.3.1 Major Biopharma Companies and Their Interest in Bispecific Mabs 59
3.3.2 Challenges in Purification of Bispecific Monoclonal Antibodies 60
3.4 Improving the Downstream Processing of Bispecific Mabs by Introduction of MCSGP in the Value Chain 61
3.4.1 Advantages of Utilizing MCSGP Process in Bispecific Mabs Purification as Compared to Batch Chromatography 61
3.4.2 Impact of MCSGP System on Biologic Supply Chains 62
3.4.3 Impact on Patent Approval Structure of Biologic Drugs 62
3.4.3.1 For a Manufacturer Who Already has a Biologic Drug in the Market 62
3.4.3.2 For a Manufacturer Who is Developing a Biologic Drug 62
3.4.4 Impact on Big Biopharma Companies 63
3.4.5 Impact on the Chromatography Market 64
3.4.6 Limitations of the MCSGP System 64

3.5 Conclusion 64

3.6 Further Research 65

Acknowledgments 66

3.A Appendix/Additional Information 66
3.A.1 Regulatory Structure for Bispecific Monoclonal Antibodies 67
3.A.1.1 Regulatory Compliance Comparison between US, EU, and Emerging Economies 67

References 68
4 Integrating Continuous and Single-Use Methods to Establish a New Downstream Processing Platform for Monoclonal Antibodies 71
Christopher Gillespie, Mikhail Kozlov, Michael Phillips, Ajish Potty, Romas Skudas, Matthew Stone, Alex Xenopoulos, Alison Dupont, Jad Jaber, and William Cataldo

4.1 Introduction 71
4.2 Harvest and Clarification 74
4.2.1 The Challenge and Technology Selection 74
4.2.1.1 Centrifugation 76
4.2.1.2 Filtration 76
4.2.1.3 Impurity Precipitation 77
4.2.2 Summary 77
4.3 Capture 78
4.3.1 Background 78
4.3.1.1 Protein A Chromatography 78
4.3.2 Chromatographic Methods 79
4.3.2.1 Slurried Bed Methods 79
4.3.2.2 Continuous Chromatography 79
4.3.3 Capture Case Studies 82
4.3.3.1 Continuous Protein A Chromatography Capture Case Study 82
4.3.3.2 Effect of Clarification Method on Protein A Performance 83
4.4 Polishing 84
4.4.1 Background 84
4.4.2 Technology Selection Strategy 86
4.4.3 Complete Flow-Through Polishing Case Study 87
4.5 Cost of Goods Analysis 89
4.5.1 Methodology 89
4.5.2 Clarification 89
4.5.3 Capture 90
4.5.4 Polishing 91
4.5.5 Overall 91
4.6 Summary 92
References 93

5 Modeling of Protein Monomer/Aggregate Purification by Hydrophobic Interaction Chromatography: Application to Column Design and Process Optimization 97
Mark-Henry Kamga, Hae Woo Lee, Namjoon Kim, and Seongkyu Yoon

5.1 Introduction 97
5.2 Mathematical Model 99
5.2.1 The Rate-Limiting Step in the HIC Process 99
5.2.2 Dimensional Considerations 100
5.2.2.1 Adsorption Capacity vs. Concentration of Vacant Sites (q_{mi} vs. C_v) 100
5.2.2.2 Concentration of Protein Adsorbed on Resin (q_l vs. C_{la}) 100

References 93
5.2.3 Mathematical Model 101
5.3 Experimentation 103
5.3.1 Protein Solutions 103
5.3.2 Determination of Adsorption and Desorption Kinetic Constants 104
5.3.3 Column Chromatography 104
5.4 Results and Discussion 105
5.4.1 Kinetic Constants 105
5.4.2 Protein Denaturation 107
5.4.3 Model vs. Experimental Results 108
5.4.4 Applications 109
5.5 Conclusion 112
Acknowledgments 112
References 113

6 Continuous Animal Cell Perfusion Processes: The First Step Toward Integrated Continuous Biomanufacturing 115
Leda R. Castilho
6.1 Introduction 115
6.2 The Basics of Perfusion Processes 116
6.3 Cell Banking and Inoculum Development in the Context of Perfusion Processes 117
6.4 Culture Conditions 120
6.5 Cell Retention Devices 125
6.5.1 Gravitational Settlers 126
6.5.2 Centrifuges 130
6.5.3 Hydrocyclones 131
6.5.4 Acoustic (Ultrasonic) Separators 134
6.5.5 Tangential Flow-Filtration 134
6.5.6 ATF Systems 136
6.5.7 Floating Membrane Devices 138
6.5.8 Spin-Filters 138
6.5.9 Rotating Cylindrical Filters (Vortex-Flow Filters or External Spin-Filters) 140
6.5.10 Rotating Disc Filters (Controlled-Shear Filters) 141
6.6 Integrated Perfusion–Purification Processes for Continuous Biomanufacturing 142
6.7 Concluding Remarks 144
References 145

7 Perfusion Process Design in a 2D Rocking Single-Use Bioreactor 155
Nico M.G. Oosterhuis
7.1 Introduction 155
7.2 Production Costs 155
7.3 Equipment Requirements for a Single-Use Perfusion Process 157
8 Advances in the Application of Perfusion Technologies to *Drosophila* S2 Insects Cell Culture 165

Lars Poulsen and Willem A. de Jongh

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Introduction</td>
<td>165</td>
</tr>
<tr>
<td>8.2 Case Study 1: Acoustic Separation</td>
<td>167</td>
</tr>
<tr>
<td>8.2.1 The Perfusion Setup (BioSep)</td>
<td>167</td>
</tr>
<tr>
<td>8.2.2 Results and Discussion</td>
<td>168</td>
</tr>
<tr>
<td>8.2.2.1 Development</td>
<td>168</td>
</tr>
<tr>
<td>8.2.2.2 Cell Count in the Bioreactor</td>
<td>168</td>
</tr>
<tr>
<td>8.2.2.3 Effects of BioSep Settings on Cell Loss and Viability</td>
<td>169</td>
</tr>
<tr>
<td>8.2.2.4 Controlling the Cell Concentration Through Bleed Rate Control</td>
<td>169</td>
</tr>
<tr>
<td>8.2.2.5 Effect of Total Dilution Rate on Culture Viability</td>
<td>170</td>
</tr>
<tr>
<td>8.2.2.6 Development of the Perfusion Rate Profile</td>
<td>170</td>
</tr>
<tr>
<td>8.2.2.7 Initial Testing of Robustness of Upstream Process in 1.5 l Fermentations</td>
<td>170</td>
</tr>
<tr>
<td>8.2.2.8 Scaling Up and Consistency in 4.5 l Fermentations</td>
<td>171</td>
</tr>
<tr>
<td>8.2.2.9 Process Scale-Up</td>
<td>174</td>
</tr>
<tr>
<td>8.3 Conclusions for Case Study 1</td>
<td>174</td>
</tr>
<tr>
<td>8.3.1 ATF Technology</td>
<td>176</td>
</tr>
<tr>
<td>8.3.2 Methods</td>
<td>177</td>
</tr>
<tr>
<td>8.3.3 Results</td>
<td>177</td>
</tr>
<tr>
<td>8.3.3.1 Cell Counts Achieved Using Perfusion Technology</td>
<td>177</td>
</tr>
<tr>
<td>8.3.3.2 Effect of Feed Strategy</td>
<td>178</td>
</tr>
<tr>
<td>8.3.3.3 Yield Improvements Achieved Using Fed-Batch and Concentrated Perfusion</td>
<td>179</td>
</tr>
<tr>
<td>8.3.3.4 Protein Stability</td>
<td>179</td>
</tr>
<tr>
<td>8.3.4 Conclusions for Case Study 2</td>
<td>180</td>
</tr>
<tr>
<td>8.4 Final Remarks</td>
<td>181</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>181</td>
</tr>
<tr>
<td>References</td>
<td>181</td>
</tr>
</tbody>
</table>

9 Single-Use Systems Support Continuous Bioprocessing by Perfusion Culture 183

William G. Whitford

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Introduction</td>
<td>183</td>
</tr>
<tr>
<td>9.2 Potential Advantages in Continuous Processing</td>
<td>187</td>
</tr>
<tr>
<td>9.2.1 Improved Product Quality</td>
<td>187</td>
</tr>
<tr>
<td>9.2.2 Ease in Process Development</td>
<td>188</td>
</tr>
</tbody>
</table>
9.2.3 Improved Scalability 188
9.2.4 Increased Profitability 189
9.2.5 Sustainability 190
9.3 Challenges in Adoption of Continuous Processing 190
9.4 Continuous Biomanufacturing 194
9.5 Single-Use Systems 196
9.6 Hybrid Systems 202
9.7 Perfusion Culture 203
9.8 Single-Use in Continuous Biomanufacturing 205
9.9 Roller Bottles 213
9.10 Mechanically Agitated Suspension Reactors 213
9.11 Hollow Fiber Media Exchange 214
9.12 Packed Bed Bioreactors 215
9.13 Hollow Fiber Perfusion Bioreactors 217
9.14 Continuous Flow Centrifugation 218
9.15 Acoustic Wave Separation 220
9.16 Conclusion 222
References 222

10 Multicolumn Countercurrent Gradient Chromatography for the Purification of Biopharmaceuticals 227
Thomas Müller-Späth and Massimo Morbidelli
10.1 Introduction to Multicolumn Countercurrent Chromatography 227
10.2 Introduction to Multicolumn Simulated Moving Bed (SMB) Chromatography 230
10.3 Capture Applications 232
10.3.1 Introduction 232
10.3.2 Process Principle 234
10.3.3 Application Examples 236
10.4 Polishing Applications 237
10.4.1 Introduction 237
10.4.2 Multicolumn Countercurrent Solvent Gradient Purification Principle 239
10.4.3 Multicolumn Countercurrent Solvent Gradient Purification Process Design 242
10.4.4 Multicolumn Countercurrent Solvent Gradient Purification Case Study 243
10.5 Discovery and Development Applications 247
10.6 Scale-Up of Multicolumn Countercurrent Chromatography 249
10.7 Multicolumn Countercurrent Chromatography as Replacement for Batch Chromatography Unit Operations 249
10.8 Multicolumn Countercurrent Chromatography in Continuous Manufacturing 251
10.9 Process Analytical Tools for Multicolumn Countercurrent Processes 252
References 253
11 Monoclonal Antibody Continuous Processing Enabled by Single Use 255
Mark Brower, Ying Hou, and David Pollard
11.1 Introduction 255
11.1.1 Single-Use Revolution to Enable Process Intensification and Continuous Processing 256
11.1.2 Principles of Continuous Multicolumn Chromatography for Biological Production (BioSMB) 260
11.2 Continuous Downstream Processing for Monoclonal Antibodies Unit Operation Development 263
11.2.1 Surge Vessels and Balancing Flows 265
11.2.2 Primary Recovery: Centrifugation and Depth Filtration 266
11.2.3 Bulk Purification: Continuous Multicolumn Chromatography – BioSMB Protein A Capture and Viral Inactivation 270
11.2.3.1 Protein A Loading Zone Optimization 271
11.2.3.2 Protein A Elution Zone Considerations 275
11.2.3.3 Viral Inactivation 277
11.2.4 Fine Purification: Flow-Through Anion Exchange Chromatography (AEX) 280
11.2.4.1 Effects of Sample Flow Rate on AEX Membrane Chromatography 281
11.2.4.2 Effect of Sample Loading Amount on AEX Membrane Chromatography 281
11.2.4.3 Scaling-Up Membrane Chromatography for Continuous Processing 283
11.2.5 Fine Purification: Continuous Multicolumn Chromatography – BioSMB Cation Exchange Chromatography 284
11.2.5.1 Cation Exchange Loading Zone Optimization 284
11.2.5.2 Cation Exchange Elution Zone Considerations 285
11.2.6 Formulation: Continuous Ultrafiltration 287
11.3 Pilot-Scale Demonstration of the Integrated Continuous Process 291
11.4 Summary 293
References 294

12 Continuous Production of Bacteriophages 297
Aleš Podgornik, Nika Janež, Franc Smrekar, and Matjaž Peterka
12.1 Bacteriophages 297
12.1.1 Life Cycle 299
12.1.2 Determination of Bacteriophage Properties 303
12.2 Bacteriophage Cultivation 305
12.2.1 Chemostat 306
12.2.2 Cellstat 310
12.2.3 Cellstat Productivity 314
12.2.4 Bacteriophage Selection 322
12.2.5 Technical Challenges 323
12.3 Continuous Purification of Bacteriophages 325
12.3.1 Centrifugation 326
12.3.2 Precipitation and Flocculation 326
12.3.3 Filtration 327
12.3.4 Chromatographic and Other Adsorption Methods 328
12.4 Conclusions 329
References 329

13 Very High Cell Density in Perfusion of CHO Cells by ATF, TFF, Wave Bioreactor, and/or CellTank Technologies – Impact of Cell Density and Applications 339
Véronique Chotteau, Ye Zhang, and Marie-Francoise Clincke
13.1 Introduction 339
13.2 Equipment 340
13.3 Results and Discussion 342
13.3.1 Perfusion Using ATF or TFF in Wave-Induced Bioreactor 342
13.3.1.1 Cell Growth 342
13.3.1.2 IgG Production 344
13.3.2 Perfusion Using CellTank 346
13.3.2.1 Cell Growth 346
13.3.2.2 IgG Production 347
13.3.3 Very High Cell Density 347
13.3.4 Cryopreservation from Very High Cell Density Perfusion 350
13.4 Conclusions 353
Acknowledgments 354
References 354

14 Implementation of CQA (Critical Quality Attribute) Based Approach for Development of Biosimilars 357
Sanjeev K. Gupta
14.1 Background 357
14.2 Biosimilar Product Development 358
14.3 Attributes/Parameters in Biopharmaceuticals 359
14.3.1 Critical Quality Attributes 359
14.3.2 Critical Process Parameters (CPP) 359
14.3.3 The ICH Q8 “Minimal Approach” to Pharmaceutical Development 359
14.3.4 Quality-by-Design 360
14.4 Quality Attributes and Biosimilars Development 361
14.5 Quality, Safety, and Efficacy of Biosimilars 362
14.6 Implementing CQA Approach for Biosimilar Development 364
14.6.1 Identification of the CQA 364
14.6.2 CQA-Based Clone Selection and Upstream Process Development 365
14.6.3 Factors Affecting CQAs of the Biologics 366
16.3 Todays Facility Designs 418
16.3.1 Construction and Design Types 418
16.3.2 Process Location and Flow 422
16.4 Future Processing and Facility Requirements 424
16.4.1 Upstream Technologies 424
16.4.2 Downstream Technologies 426
16.4.3 Single-Use Engineering and Design 427
16.4.4 Facilities and Process Design 428

References 431

17 Evaluating the Economic and Operational Feasibility of Continuous Processes for Monoclonal Antibodies 433
\textit{Suzanne S. Farid, James Pollock, and Sa V. Ho}
17.1 Introduction 433
17.2 Background on Continuous Processing 434
17.2.1 Perfusion Culture 434
17.2.2 Semicontinuous Chromatography 436
17.3 Tool Description 438
17.4 Case Study 1: Fed-batch Versus Perfusion Culture for Commercial mAb Production 440
17.5 Case Study 2: Semicontinuous Affinity Chromatography for Clinical and Commercial Manufacture 446
17.6 Case Study 3: Integrated Continuous Processing Flowsheets 450
17.7 Conclusions 452
Acknowledgments 452
References 453

18 Opportunities and Challenges for the Implementation of Continuous Processing in Biomanufacturing 457
\textit{Sadettin S. Ozturk}
18.1 Introduction 457
18.2 A Brief History of Continuous Processing in Biomanufacturing 458
18.3 Opportunities for Continuous Processing in Biomanufacturing 459
18.3.1 Higher Process Yields 459
18.3.2 Higher Process Efficiencies 461
18.3.3 Compact and Flexible Facilities 461
18.3.4 Stable and Consistent Production 462
18.3.5 Better Product Quality 462
18.4 Challenges for Implementing Continuous Processing in Biomanufacturing 462
18.4.1 Process Complexity 463
18.4.1.1 Cell Retention 463
18.4.1.2 High Cell Density 466
18.4.1.3 Longer Run Times 467
18.4.2 Process Scalability in a Continuous Perfusion Process 470