Introduction

1. Why Physics Needs Economics or Finance?
 1.1 What Are Physical Ideas?
 1.2 What Are Physical Methods?

2. Why Economics or Finance Needs Physics?

3. Physics + Economics or Finance → Econophysics

4. Dividing Econophysics into Two Branches: Empirical Econophysics and Experimental Econophysics

5. Methodology of Experimental Econophysics

Fundamentals

1. Hayek Hypothesis
2. How to Design Computer-Aided Controlled Experiments
3. El Farol Bar Problem and Minority Game
 3.1 El Farol Bar Problem
 3.2 Minority Game
4. How to Design Agent-Based Models
 4.1 Modeling by Abstracting Real-World Systems
 4.2 Modeling Through Borrowing from Physical Models
 4.3 How to Test the Reliability of Agent-Based Models
5. Information Theory
 5.1 Initial Remarks
 5.2 Shannon Entropy: Historical Beginning and the Unit of Information
 5.3 When Information Meets Physics: The Principle of Maximum Entropy and the Fight with Maxwell’s Demon
 5.4 Discussion
5.7.4 Part IV: A Closed CAS—Simulations Based on Agent-Based Modeling ... 78
5.7.5 Part V: An Alternative Approach to Analyzing Preferences of Normal Agents and Imitating Agents in the Agent-Based Modeling: Analysis of the Shannon Information Entropy 79
5.7.6 Part VI: A Different Agent-Based Modeling in Which Imitating Agents Follow the Majority, Rather than the Best Agent: An Open CAS Versus a Closed One .. 82

6 Contrarian Behavior: Beyond the Known Helpful Role 83
6.1 Opening Remarks .. 83
6.2 Controlled Experiments .. 84
6.3 Agent-Based Modeling .. 88
6.4 Simulation Results .. 89
6.5 Theoretical Analysis ... 91
6.5.1 The properties of the transition point, (M_1 / M_2) ... 92
6.5.2 Finding the expressions of \(\sum_{i}^{N_n} (L_i)_{max} \)
and \(\sum_{c}^{N_c} \langle x_c \rangle \) ... 93
6.6 Conclusions ... 95
6.7 Supplementary Materials .. 97
6.7.1 About the Experiment .. 97
6.7.2 Leaflet to the Experiment ... 98

7 Hedge Behavior: Statistical Equivalence of Different Systems 99
7.1 Opening Remarks ... 99
7.2 Controlled Experiments .. 100
7.3 Agent-Based Simulations ... 106
7.4 Theoretical Analysis .. 111
7.4.1 The Properties of Critical Points. 111
7.4.2 Solve \(\sum_{i}^{N_n} (L_i)_{max}, \sum_{h}^{N_h} \langle x_h \rangle \) and \(\sum_{c}^{N_c} \langle x_c \rangle \) ... 112
7.5 Conclusions ... 113
7.6 Supplementary Materials .. 114
7.6.1 Leaflet to the experiment ... 114

8 Cooperation: Spontaneous Emergence of the Invisible Hand 115
8.1 Opening Remarks ... 115
8.2 Controlled Experiments .. 117
8.3 Agent-Based Modeling .. 120
8.4 Results .. 121
8.5 Discussion and Conclusions ... 123
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Business Cycles: Competition Between Suppliers and Consumers</td>
<td>9.1 Opening Remarks, 9.2 The Design of an Artificial Market, 9.3 Human Experiments and Results Analyses, 9.4 Agent-Based Modeling and Results Analyses, 9.5 Conclusions, 9.6 Supplementary Materials</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.3.1 Scenario of Human Experiments, 9.3.2 Smoothing Regression, 9.3.3 Frequency Spectrum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.4.1 Agents' Decision-Making Process, 9.4.2 Stationarity Analysis, 9.4.3 Phase Transitions</td>
</tr>
<tr>
<td>10</td>
<td>Partial Information: Equivalent to Complete Information</td>
<td>10.1 Opening Remarks, 10.2 Agent-Based Modeling, 10.3 Controlled Experiments, 10.4 Results, 10.5 Discussion and Conclusions</td>
</tr>
<tr>
<td>11</td>
<td>Risk Management: Unusual Risk-Return Relationship</td>
<td>11.1 Opening Remarks, 11.2 Controlled Experiments, 11.3 Agent-Based Modelling, 11.4 Comparison Between Experimental and Simulation Results, 11.5 Comparison among Experimental, Simulation, and Theoretical Results, 11.6 Discussion and Conclusions</td>
</tr>
<tr>
<td>12</td>
<td>Prediction: Pure Technical Analysis Might not Work Satisfactorily</td>
<td>12.1 Opening Remarks, 12.2 Controlled Experiments, 12.2.1 Experiment Design, 12.2.2 Experimental Process</td>
</tr>
</tbody>
</table>