1 Introduction to the Theory of Stellar Evolution
Giacomo Beccari and Giovanni Carraro
1.1 The Pre-Main Sequence Phase 1
1.2 The Main Sequence ... 3
1.3 The Combustion of Hydrogen in a Shell: The Sub and Red Giant Branches ... 4
1.4 The Helium-Burning in the Core: The Horizontal Branch 8
1.5 Two Burning Shells: The AGB 10
1.6 The Final Stages of the Evolution of the Stars 13
References.. 16

2 Blue Straggler Stars: Early Observations That Failed to Solve the Problem
Russell D. Cannon
2.1 Introduction .. 17
2.2 The Classical Blue Stragglers 19
2.2.1 Globular Clusters ... 19
2.2.2 The Older Open Clusters 20
2.2.3 Younger Open Clusters and BSSs in the Field 23
2.3 Early Ideas on the Origin of Blue Stragglers 24
2.3.1 Blue Stragglers and Algol-Type Eclipsing Binaries 24
2.3.2 Other Possible Explanations for BSSs 25
2.4 Expanding the Definition of BSSs, 1970–1990 26
Conclusions .. 26
References.. 27

3 The Blue Stragglers of the Old Open Cluster NGC 188
Robert D. Mathieu and Aaron M. Geller
3.1 Blue Stragglers in Open Clusters 29
3.1.1 The Open Cluster NGC 188 30
3.1.2 The WIYN Open Cluster Study and Radial Velocities 30
3.2 Observational Findings from the Blue Stragglers in NGC 188
3.2.1 Binary Frequency
3.2.2 Orbital Period and Eccentricity Distributions
3.2.3 Secondary-Star Mass Distribution
3.2.4 Detection of White Dwarf Companions
3.2.5 Stellar Rotational Velocities
3.2.6 Spatial Distribution
3.2.7 Blue-Straggler Masses
3.2.8 Insights from Two Notable Blue Straggler Systems
3.2.9 Summary

3.3 Blue Straggler Formation Within an N-Body Model of NGC 188
3.3.1 The NGC 188 N-Body Model
3.3.2 Formation Channels for Blue Stragglers in the NGC 188 Model
3.3.3 Implications for the Origins of the NGC 188 Blue Stragglers
3.3.4 Outstanding Questions and Missing Pieces in the N-Body Model
3.3.5 Efficiency of Mass Transfer in the N-Body Model
3.3.6 Summary of Findings from N-Body Modeling of NGC 188

Conclusions
References

4 Field Blue Stragglers and Related Mass Transfer Issues
George W. Preston
4.1 Introduction
4.1.1 Historical Developments in First Part of the Twentieth Century
4.2 Identification of BSS
4.2.1 The Metal-Poor Halo
4.2.2 FBS of the Thick/Thin Disc
4.3 Group Properties of Metal-Poor FBS
4.3.1 Colour Boundaries
4.3.2 Specific Frequencies
4.3.3 The Distinguishing Characteristics of FBS Binary Orbits
4.4 Galactic Distribution
4.4.1 Smooth Halo Field
4.4.2 The Galactic Bulge
4.4.3 Halo Streams
4.5 Metal-Rich A-Type Stars Above the Galactic Plane: Another Inconvenient Truth
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5 Variable BSS in Dwarf Galaxies</td>
<td>145</td>
</tr>
<tr>
<td>6.6 The Progeny of BSS</td>
<td>147</td>
</tr>
<tr>
<td>Conclusions</td>
<td>149</td>
</tr>
<tr>
<td>References</td>
<td>150</td>
</tr>
<tr>
<td>7 Mass Transfer by Stellar Wind</td>
<td>153</td>
</tr>
<tr>
<td>Henri M.J. Boffin</td>
<td></td>
</tr>
<tr>
<td>7.1 Stars in Couple</td>
<td>153</td>
</tr>
<tr>
<td>7.2 Wind Mass Transfer</td>
<td>157</td>
</tr>
<tr>
<td>7.2.1 The Bondi–Hoyle–Lyttleton Model</td>
<td>157</td>
</tr>
<tr>
<td>7.3 Wind Accretion in Binary Systems</td>
<td>160</td>
</tr>
<tr>
<td>7.3.1 Chemical Pollution</td>
<td>163</td>
</tr>
<tr>
<td>7.3.2 Orbital Parameters Evolution</td>
<td>164</td>
</tr>
<tr>
<td>7.3.3 Spin-Up of Accretor</td>
<td>165</td>
</tr>
<tr>
<td>7.3.4 Angular Momentum Loss</td>
<td>165</td>
</tr>
<tr>
<td>7.4 The Zoo of Peculiar Stars</td>
<td>168</td>
</tr>
<tr>
<td>7.4.1 Barium and Related Stars</td>
<td>168</td>
</tr>
<tr>
<td>7.4.2 Symbiotic Stars and the Case of SS Lep</td>
<td>171</td>
</tr>
<tr>
<td>7.4.3 The Fellowship of the Ring</td>
<td>173</td>
</tr>
<tr>
<td>7.4.4 Evidence for Wind Accretion Before Common-Envelope Evolution</td>
<td>175</td>
</tr>
<tr>
<td>References</td>
<td>176</td>
</tr>
<tr>
<td>8 Binary Evolution: Roche Lobe Overflow and Blue Stragglers</td>
<td>179</td>
</tr>
<tr>
<td>Natalia Ivanova</td>
<td></td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>179</td>
</tr>
<tr>
<td>8.2 Stability of the Mass Transfer: The Global Condition</td>
<td>181</td>
</tr>
<tr>
<td>8.3 Roche Lobe Response</td>
<td>182</td>
</tr>
<tr>
<td>8.4 Donor’s Response</td>
<td>183</td>
</tr>
<tr>
<td>8.4.1 Timescales</td>
<td>183</td>
</tr>
<tr>
<td>8.4.2 Envelope’s Structure</td>
<td>185</td>
</tr>
<tr>
<td>8.5 The Donor’s Response and the Consequences for the Mass Transfer Stability</td>
<td>189</td>
</tr>
<tr>
<td>8.5.1 Initial Stability</td>
<td>189</td>
</tr>
<tr>
<td>8.5.2 Stability of the Ensuing Mass Transfer</td>
<td>190</td>
</tr>
<tr>
<td>8.5.3 Stable or Not Stable?</td>
<td>191</td>
</tr>
<tr>
<td>8.5.4 Three-Dimensional Problem</td>
<td>192</td>
</tr>
<tr>
<td>8.6 The Accretor’s Response and Consequences for Mass Transfer Stability</td>
<td>193</td>
</tr>
<tr>
<td>8.6.1 The Stream’s Angular Momentum</td>
<td>193</td>
</tr>
<tr>
<td>8.6.2 The Accretor’s Response</td>
<td>194</td>
</tr>
<tr>
<td>8.6.3 Donor’s Entropy and the Accretor’s Response</td>
<td>195</td>
</tr>
<tr>
<td>8.7 How Well Do We Understand Stable Mass Transfer?</td>
<td>195</td>
</tr>
</tbody>
</table>
8.8 RLOF and Blue Stragglers Formation ... 197
8.8.1 Case A and Early Case B ... 197
8.8.2 Late Case B/Case C ... 199
8.8.3 Role of Globular Cluster Dynamics on the RLOF ... 200
References ... 201

9 Formation Channels for Blue Straggler Stars ... 203
Melvyn B. Davies
9.1 Introduction .. 203
9.2 Stellar Collisions ... 204
9.3 Post-Collision Evolution ... 209
9.4 Encounters Involving Binary Stars .. 210
9.5 Making Blue Stragglers via Binary Evolution ... 214
9.6 Comparing Primordial and Collisional Formation Rates in Clusters 217
References ... 222

10 Dynamical Processes in Globular Clusters ... 225
Stephen L.W. McMillan
10.1 Introduction ... 225
10.2 Virial Equilibrium ... 226
10.2.1 The Virial Theorem ... 226
10.2.2 Length and Time Scales .. 227
10.3 Relaxation ... 228
10.3.1 Two-Body Scattering ... 229
10.3.2 Strong Encounters ... 230
10.3.3 Distant Encounters ... 230
10.3.4 Comparison of Timescales .. 232
10.3.5 Cluster Dynamical Evolution ... 233
10.3.6 Internal Heating ... 235
10.4 Multiple Stellar Populations .. 238
10.5 Modeling Star Clusters .. 239
10.5.1 Continuum Methods ... 240
10.5.2 Monte Carlo Methods .. 241
10.5.3 N-Body Methods ... 242
10.5.4 Hardware Acceleration .. 243
10.5.5 The Kitchen Sink .. 244
10.5.6 The AMUSE Software Framework ... 245
References .. 246

11 The Multiple Origin of Blue Straggler Stars: Theory vs. Observations 251
Hagai B. Perets
11.1 Introduction .. 251
11.2 The Observed Properties of BSSs ... 252
11.2.1 Physical Properties ... 252
11.2.2 Population Characteristics ... 254
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3 Models for Blue Straggler Star Formation</td>
<td>256</td>
</tr>
<tr>
<td>11.3.1 Collisions in Dense Clusters</td>
<td>256</td>
</tr>
<tr>
<td>11.3.2 Binary Evolution</td>
<td>258</td>
</tr>
<tr>
<td>11.3.3 Triple Evolution</td>
<td>261</td>
</tr>
<tr>
<td>11.4 Long Term Dynamical Evolution of BSSs in Clusters</td>
<td>264</td>
</tr>
<tr>
<td>11.4.1 Mass Segregation in Clusters</td>
<td>264</td>
</tr>
<tr>
<td>11.4.2 Dynamical Evolution of BSSs Binaries</td>
<td>265</td>
</tr>
<tr>
<td>11.5 Blue Straggler Stars: Observations vs. Theory</td>
<td>266</td>
</tr>
<tr>
<td>11.5.1 Globular Clusters</td>
<td>266</td>
</tr>
<tr>
<td>11.5.2 Open Clusters</td>
<td>270</td>
</tr>
<tr>
<td>11.5.3 Field BSSs</td>
<td>272</td>
</tr>
<tr>
<td>11.6 Summary</td>
<td>273</td>
</tr>
<tr>
<td>References</td>
<td>274</td>
</tr>
<tr>
<td>12 Models of Individual Blue Stragglers</td>
<td>277</td>
</tr>
<tr>
<td>Alison Sills</td>
<td></td>
</tr>
<tr>
<td>12.1 Introduction</td>
<td>277</td>
</tr>
<tr>
<td>12.2 Collisional Models</td>
<td>278</td>
</tr>
<tr>
<td>12.3 Binary Mass Transfer Models</td>
<td>286</td>
</tr>
<tr>
<td>12.4 Parametrised Models</td>
<td>290</td>
</tr>
<tr>
<td>12.5 Future Directions</td>
<td>291</td>
</tr>
<tr>
<td>References</td>
<td>293</td>
</tr>
<tr>
<td>13 Blue Stragglers in Globular Clusters: Observations, Statistics and Physics</td>
<td>295</td>
</tr>
<tr>
<td>Christian Knigge</td>
<td></td>
</tr>
<tr>
<td>13.1 Straw-Man Models for Blue Straggler Formation</td>
<td>295</td>
</tr>
<tr>
<td>13.2 All Theory Is Grey: Binary Coalescence and Dynamical Encounters in Practice</td>
<td>298</td>
</tr>
<tr>
<td>13.3 The Search for the Smoking Gun Correlation I:</td>
<td>300</td>
</tr>
<tr>
<td>The Near Constancy of Blue Straggler Numbers</td>
<td></td>
</tr>
<tr>
<td>13.4 Do Clusters Deplete Their Reservoir of Binary Blue Straggler Progenitors?</td>
<td>302</td>
</tr>
<tr>
<td>13.5 The Search for the Smoking Gun Correlation II:</td>
<td>305</td>
</tr>
<tr>
<td>The Core Mass Correlation</td>
<td></td>
</tr>
<tr>
<td>13.6 Alternative Constraints on Formation Channels</td>
<td>307</td>
</tr>
<tr>
<td>13.6.1 Radial Distributions</td>
<td>308</td>
</tr>
<tr>
<td>13.6.2 Double Blue Straggler Sequences</td>
<td>309</td>
</tr>
<tr>
<td>13.7 The Search for the Smoking Gun Correlation III:</td>
<td>310</td>
</tr>
<tr>
<td>Once More, with Binary Fractions</td>
<td></td>
</tr>
<tr>
<td>13.8 Summary and Outlook</td>
<td>315</td>
</tr>
<tr>
<td>References</td>
<td>316</td>
</tr>
</tbody>
</table>
14 Blue Stragglers in Clusters and Integrated Spectral Properties of Stellar Populations.. 317
Yu Xin and Licai Deng
14.1 Introduction.. 317
14.2 M67: Setting Up the Scheme .. 320
14.3 ISEDs of Galactic Open Clusters.. 321
14.4 The Massive Star Clusters in the LMC and SMC 322
14.5 Building Up an Empirical SSP Library 325
 14.5.1 A General BSS Distribution Function in Stellar Populations... 326
 14.5.2 Building the Empirical SSP Library................................. 333
14.6 Discussions and Prospectives... 339
References.. 341

Index.. 343