Contents

1 INTRODUCTION 10

1.1. The chiari malformation type 1 (CM1) in humans 10
1.2. Classification 10
1.3. The chiari-like malformation (CLM) in the Cavalier King Charles Spaniel (CKCS) 12
1.4. Morphological comparison of the chiari malformation type 1 (CM1) and the chiari-like malformation (CLM) 13
1.4.1. Herniation of the cerebellum 13
1.4.2. Posterior cerebral fossa 13
1.4.3. Body posture 14
1.4.4. Diversity of dog breeds 15
1.5. Prevalence of the chiari malformation type 1 (CM1) in humans 15
1.6. Prevalence of the chiari like malformation (CLM) in the Cavalier King Charles Spaniel (CKCS) 16
1.7. Genetics 16
1.8. Genetic analysis of the chiari like malformation (CLM) in the Cavalier King Charles Spaniel (CKCS) 17
1.9. Pathomorphogenesis of chiari malformation type 1 (CM1) in humans 18
1.10. Pathogenesis of the chiari like malformation (CLM) in the Cavalier King Charles Spaniel (CKCS) 19
1.11. Association of chiari malformation type 1 (CM1) and chiari like malformation (CLM) with syringomyelia (SM). 20
1.12. Normal movement of the cerebrospinal fluid

1.13. Pathophysiology of syringomyelia (SM) in humans with chiari malformation type 1

1.14. Development of syringomyelia (SM) in the Cavalier King Charles Spaniel (CKCS)

1.15. Clinical symptoms of chiari malformation type 1 (CM1) and syringomyelia (SM) in humans

1.16. Clinical symptoms in the Cavalier King Charles Spaniel (CKCS)

1.17. Association of syringomyelia and clinical signs in dogs

1.18. Critical evaluation of the definition of chiari malformation type 1 (CM1) and chiari like malformation (CLM)

1.19. Morphogenesis of experimentally induced chiari malformations

1.20. Shortcomings of the concept of an underdeveloped caudal fossa as the underlying cause for a cerebellar herniation

2. BASIC SCIENCES

2.1. Development of the cranial base and occipital bone in mammals

2.2. Chondrocranium

2.3. Genetic control of the growth in the synchondrosis

2.4. Hormonal influence on growth of the mammalian cranial base

2.5. Mechanical forces

3.1. Allometric brain and skull growth in mammals

3.2. Skull allometry

4. AIMS OF THE STUDY
5. RESULTS

5.1. Computerized tomographic determination of the volumes of the cranial cavities in brachycephalic dogs in comparison with Cavalier King Charles Spaniels with Chiari like malformation.

5.2. Cephalometric measurements and determination of the general skull shape of Cavalier King Charles Spaniels.

5.3. Volumetric analysis of the skull and brain in Cavalier King Charles Spaniels in comparison to dogs of different size. Martin J. Schmidt, Kerstin

5.4. Comparison of the relative occipital bone volume between Cavalier King Charles Spaniels with and without syringohydromyelia and French Bulldogs.

5.5. Volume reduction of the jugular foramina in Cavalier King Charles Spaniels with syringomyelia.

5.6. Ultrasonographic anatomy of the cranio-cervical junction in normal brachycephalic dogs and dogs with chiari-like malformation.
5.7. Association between cephalometric parameters and the occurrence of syringomyelia in Cavalier King Charles Spaniels.

5.8. Temporal course of the closure of the cranial base synchondroses in the first 18 month of life in mesaticephalic and brachycephalic dogs compared to Cavalier King Charles Spaniels.

5.9. A potential role for substance P and interleukin 6 detected in the cerebrospinal fluid of Cavalier King Charles Spaniels for clinical symptoms associated with syringomyelia?

6 DISCUSSION
6.1 Comparative morphology as a method in modern veterinary science
6.2. Implications of the morphological findings of the brain and skull of the Cavalier King Charles Spaniel
6.3. The role of brachycephaly in the pathogenesis of the chiari like malformation in the Cavalier King Charles Spaniel
6.4. Achondroplasia in dogs
6.5. Impairment of the skull base growth in other diseases than achondroplasia
6.6. Neuroinflammatory basis of pain in the Cavalier King Charles Spaniel
7 Summary and Outlook

Acknowledgements