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Titel, Zusammenfassung u. Aufbau der Arbeit

Numerische Untersuchung von Modellen zum elektrokinetischen

Fließgeschehen und dem Transport geladener, gelöster

Substanzen in periodischen porösen Medien

Zusammenfassung. Gegenstand der vorliegenden Dissertationsschrift ist die Unter-

suchung von Modellen zum Fließgeschehen wässriger Elektrolytlösungen innerhalb eines

porösen Mediums mit periodischer Struktur, die den Transport geladener, gelöster Stoffe

berücksichtigen. Als Modell liegt das nichtstationäre Stokes-Nernst-Planck-Poisson-System

(SNPP-System) zu Grunde.

Die Qualitätsbeurteilung entsprechender gemittelter Modelle ist von allgemeinem In-

teresse, da Simulationen, welche die Geometrie der porösen Matrix auf der Porenskala auflö-

sen, unter ökonomischen Gesichtspunkten nicht praktikabel sind. Die verschiedenen, zu un-

tersuchenden, gemittelten Modelle beschreiben in Abhängigkeit der gewählten Skalierung

mit variabler Präzision das effektive makroskopische Verhalten der betrachteten elektroki-

netischen Phänomene. Die zugrundeliegenden partiellen Differentialgleichungen beinhalten

effektive Tensoren, deren analytische Darstellung durch die Mittelung von Lösungen von

Hilfsproblemen gewonnen wird. Diese sogenannten Zellprobleme sind auf kleinen Gebie-

ten definiert, welche die periodische Struktur der porösen Matrix widerspiegeln.

Ein Schwerpunkt dieser Arbeit liegt sowohl in der qualitativen als auch quantitati-

ven Untersuchung des Homogenisierungsprozesses mittels umfangreicher numerischer Stu-

die, d. h. der Konvergenzeigenschaften des SNPP-Systems für verschwindende Mikrostruk-

tur. Zu diesem Zweck werden numerische Verfahren vorgeschlagen, welche in der La-

ge sind, das nichtstationäre, vollgekoppelte / nichtlineare SNPP-System sowie die entspre-

chenden gemittelten Systeme präzise und effizient zu lösen. Die Diskretisierung erfolgt
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Titel, Zusammenfassung und Aufbau der Arbeit

vollimplizit in der Zeit; während im Ort zweidimensionale gemische Finite Elemente be-

nutzt werden, die lokal massenerhaltend bezüglich der Konzentrationen der geladenen Teil-

chen sind. Bezüglich der Diskretisierungsparameter sind die Verfahren von optimaler Ord-

nung. Dies wird zum einen numerisch gezeigt und zum anderen rigoros durch eine a-priori-

Fehlerabschätzung bewiesen.

Schließlich befasst sich die Arbeit mit der numerischen Umsetzung einer Erweiterung

des SNPP-Systems, welches Anlagerungs- und Auflösungsprozesse an der Oberfläche der

betrachteten, lokal-periodischen porösen Matrix einbezieht. Die hierdurch entstehende ver-

änderliche Mikrostruktur beieinflusst das Fließgeschehen und somit auch den Stofftransport.

Die Lösung des zugehörigen Zweiskalenmodells, welches jene Abhängigkeiten zwischen

den Skalen umfasst, wird auf beiden Skalen durch gemischte Finite Elemente approximiert.

Simulationen veranschaulichen das Zusammenspiel zwischen Stofftransport, veränderlicher

Mikrostruktur und Fließgeschehen.

Aufbau der Arbeit nach Kapiteln. In Kapitel 2 werden die mathematischen Model-

le, die Gegenstand der numerischen und analytischen Untersuchungen in der vorliegen-

den Arbeit sind, vorgestellt. Zunächst wird das in Abschnitt 1.1 eingeführte, dimensions-

lose SNPP-System in einen Zweiskalenkontext unter Verwendung einer periodischen Mi-

krostruktur eingebettet. Durch Einbezug von Skalierungsparametern erhält man eine Fa-

milie von skalierten SNPP-Systemen. Es werden »äquivalente«, gemittelte partielle Dif-

ferentialgleichungssyteme aufgeführt, welche das effektive makroskopische Verhalten der

betrachteten Phänomene sinnvoll beschreiben. Die Art dieser Homogenisierungsergebnisse,

die als Darcy-Nernst-Planck-Poisson-Systeme (DNPP-Systeme) bezeichnet werden, hän-

gen von den gewählten Skalierungsparametern ab. Diese beinhalten unter anderem effekti-

ve Tensoren, die man durch die Mittelung der Lösungen von sogenannten Zellproblemen

erhält. Letztere sind auf kleinen Gebieten definiert, welche die periodische Geometrie des

Feststoffanteils der porösen Matrix abbilden. Schließlich wird der Zusammenhang zwischen

der Geometrie der porösen Matrix und den effektiven Tensoren veranschaulicht.

In Kapitel 3 wird eine voll-zeitimplizite gemischte Finite-Element-Diskretisierung aus-

gearbeitet, die Raviart-Thomas-Elemente beliebiger Ordnung verwendet. Das Hauptresultat

dieses Kapitels ist eine a-priori-Abschätzung für den Gesamtdiskretisierungsfehler des be-

trachteten Systems. Der zugehörige Beweis greift auf ein bestehendes Existenzresultat für

das SNPP-System in nichtgemischter Form zurück. Daher ist es zunächst erforderlich zu zei-

gen, dass die Lösung der gemischten Formulierung ebenfalls Lösung der nichtgemischten

ist. Mit dem nun zur Verfügung stehenden Existenzresultat werden a-priori-Abschätzungen

xii



für die Teilsysteme gezeigt, welche in Kombination schließlich den Beweis des Haupttheo-

rems liefern.

Kapitel 4 stellt ein implementierbares volldiskretes numerisches Verfahren vor, wel-

ches die Lösung des skalierten SNPP-Systems sowie die assoziierter SNPP-Systeme in

zwei Raumdimensionen zu approximieren vermag. Zunächst werden zwei Linearisierungs-

schemata – ein iteratives Splitting- und ein Newton-Verfahren – vorgestellt und anhand

des zeitdiskreten SNPP-Systems erläutert. Einer auf die praktische Anwendbarkeit bezo-

genen Diskussion folgend, fällt die Wahl auf das iterative Splitting-Schema, das insbe-

sondere auch analog auf die homogenisierten Systeme anwendbar ist. Durch dieses zer-

fallen die nichtlinearen, zeitdiskreten Systeme in lineare Teilsysteme, die entweder von

Konvektions-Diffusions-Typ oder von Stokes-Typ sind. Erstere werden im Raum mittels

Raviart-Thomas-Elemente niedrigster Ordnung, letztere mittels Taylor-Hood-Elemente dis-

kretisiert. Das resultierende numerische Gesamtverfahren ist voll-zeitimplizit und bezüglich

chemischer Spezies lokal massenerhaltend.

In Kapitel 5 wird das Verifizierungsverfahren MMS auf die Implementierungen der im

vorherigen Kapitel vorgestellten Diskretisierungsverfahren angewendet. Die numerischen

Schemata für die vollgekoppelten / nichtlinearen SNPP- und DNPP Systeme werden verifi-

ziert, indem die anhand der Konvergenzabschätzungen für die linearen Teilsysteme zu er-

wartenden optimalen Gitterkonvergenzordnungen numerisch belegt werden. Insbesondere

wird dadurch implizit auch die Konvergenz des inbegriffenen iterativen Splitting-Schemas

nachgewiesen. Zudem wird durch die numerisch bestimmten Konvergenzraten gezeigt, dass

die in Kapitel 3 gezeigte a-priori-Fehlerabschätzung des SNPP-Systems für Raviart-Thomas

Elemente niedrigster Ordnung gültig ist.

Die Verifikation der Diskretisierungsverfahren aller betrachteten Systeme stellt die

Grundlage für die numerische Untersuchung aller zur Diskussion stehenden Systeme in

Kapitel 6 dar. Gegenstand dieses Kapitels ist der Vergleich der Lösungen der auf der Po-

renskala gültigen SNPP-Systeme mit denen der entsprechenden DNPP-Systeme, welche auf

einer gemittelten Skala definiert sind. Aus diesem Grund muss zuvor ein geeignetes Test-

szenario erarbeitet werden, welches insbesondere die Definition des perforierten Gebiets,

auf welchem die SNPP-Probleme formuliert sind, beinhaltet. Anhand von anschließenden

Simulationen wird das Lösungsverhalten hinsichtlich derer physikalischen Bedeutung für

verschiedene Skalierungen diskutiert. Der Kern dieses Kapitels stellt sowohl die qualitative

als auch quantitative Untersuchung der Konvergenzraten dar, mit denen die Lösungen der

Porenskalenmodelle gegen die der entsprechenden effektiven Modelle konvergieren. Um die
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Titel, Zusammenfassung und Aufbau der Arbeit

auf verschiedenen Gittern definierten Lösungen zu vergleichen, wird ein Verfahren benutzt,

welches auf einem Gitter definierte diskrete Lösungen auf ein anderes Gitters projiziert.

Kapitel 7 befasst sich mit der numerischen Simulation eines Zweiskalenszenarios, wel-

ches die effektive Kolloiddynamik in einer aus einer Phase bestehenden Flüssigkeit inner-

halb eines porösen Mediums beschreibt. Das zugrundeliegende Porenskalenproblem ist eine

Erweiterung des bekannten SNPP-Systems, das Anlagerungs- und Ablösungsprozesse be-

rücksichtigt, die eine veränderliche Mikrostruktur der porösen Matrix nach sich ziehen. Die

in diesem Kapitel vorgestellte numerische Zweiskalenmethode greift auf die Diskretisierun-

gen von Kapitel 4 zurück. Abschließende Simulationen zeigen das Zusammenspiel zwischen

Stofftransport, sich veränderlicher Mikrostruktur und Fließgeschehen.

Für die Simulationen der in dieser Dissertationsschrift betrachteten Modelle wurde das

numerische Werkzeug HyPHM geschrieben, dessen Umfang im Anhang A aufgeführt ist.

Bereits publizierte Beiträge. Teile der vorliegenden Dissertationsschrift konnten bereits

in den Zeitschriftenartikeln F. Frank, N. Ray, & P. Knabner (2011) »Numerical investigati-

on of homogenized Stokes–Nernst–Planck–Poisson systems« und N. Ray, T. van Noorden,

F. Frank, & P. Knabner (2012c) »Multiscale modeling of colloid and fluid dynamics in po-

rous media including an evolving microstructure« publiziert werden. Die dort präsentierten

numerischen Ergebnisse stammen vom Autor dieser Dissertationsschrift und basieren auf

den im Weiteren beschriebenen algorithmischen und numerischen Konzepten und Imple-

mentierungsstrategien. Die Homogenisierungsresultate wurden maßgeblich von Nadja Ray

im Rahmen ihrer Promotion erarbeitet (siehe Ray 2013).
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Abstract

We consider the dynamics of dilute electrolytes and of dissolved charged particles within

a periodic porous medium at the pore scale, which is described by the non-stationary Stokes–

Nernst–Planck–Poisson (SNPP) system.

Since simulations that resolve the geometry of the solid matrix at the pore scale are

not feasible in practice, a major interest lies in the quality assessment of corresponding

averaged models. Depending on the chosen scaling, the different averaged models under

investigation reasonably describe to a greater or lesser extent the effective macroscopic be-

havior of the phenomena considered. The underlying partial differential equations include

effective tensors, the closed-form expression of which is provided by averaging of the so-

lutions of auxiliary problems. These so-called cell problems are defined on small domains

reflecting the periodic geometry of the solid matrix.

The main objectives are both the qualitative and the quantitative investigation of ho-

mogenization processes by means of an extensive numerical study, i. e., of the conver-

gence properties of the SNPP systems for vanishing microstructure. To this end, numer-

ical schemes are proposed that are capable of solving accurately and efficiently the non-

stationary, fully coupled / nonlinear SNPP system and also the corresponding averaged sys-

tems. The discretization is performed fully implicitly in time, while using mixed finite el-

ements in two space dimensions, which are locally mass conservative with respect to the

concentration of charged particles. The schemes are of optimal order in the discretization

parameters, which is demonstrated numerically and also shown rigorously by an a priori

error estimate for the overall discretization error.

Subsequently, the thesis proceeds with the numerical realization of an extension to the

SNPP system allowing for attachment and detachment processes on the surface of the con-

sidered locally periodic solid matrix. The resulting evolving microstructure has an impact

on the liquid flow and thus consequently on the solute transport. The corresponding two-

scale model, which contains these inter-scale dependencies, is approached numerically us-

ing mixed finite elements on both scales. Simulations illustrate the interplay between solute

transport, evolving microstructure, and liquid flow.
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Chapter1
Introduction

Section 1.1 gives a brief phenomenological description of the non-stationary Stokes–Nernst–

Planck–Poisson (SNPP) system consisting of coupled / nonlinear partial differential equa-

tions. This continuum model is well-accepted for the description of the dynamics of dilute

electrolytes and dissolved charged particles in small channels and thus also within a porous

medium at the pore scale (cf., e. g., Kirby 2010; Masliyah & Bhattacharjee 2006; Probstein

2003). The SNPP system and derived or related systems are still topic of recent publications,

especially in the mathematical disciplines of numerics (Allaire et al. 2013; Bauer et al. 2011,

2012; Johannesson 2009; Paz-García et al. 2011), of numerical analysis (Prohl & Schmuck

2009, 2010), of analysis (Berg & Findlay 2011; Herz et al. 2012; Roubíček 2005a, 2006;

Schmuck 2009), and of homogenization theory (Allaire et al. 2010, 2013; Looker & Carnie

2006; Moyne & Murad 2002, 2006; Ray et al. 2012a; Schmuck 2011, 2013).

At the end of Section 1.1, a nondimensionalization procedure of the SNPP system leads

to the dimensionless SNPP system revealing characteristic numbers that describe the ratio of

the magnitudes of the different physical processes incorporated in the model. Subsequently,

powers of the scale parameter ε take the place of the characteristic quantities, which give

rise to introduce the scaled SNPP system. This system depends on the chosen scaling param-

eters α, β, γ, and thus represents an entire family of scaled systems. Ray et al. (2012a) used

a periodic homogenization procedure to derive averaged systems that are valid on the field

scale. The description of these systems is postponed to Chapter 2. The scaled SNPP system

together with three averaged systems (for three fixed sets of (α, β, γ)) are the main objects

of the numerical investigations in this work. In order to give the reader a better insight of the

homogenization process and of the nature of homogenized models in general, Section 1.2

briefly introduces the formal method of two-scale asymptotic expansion. The chapter closes

with an outline of this thesis in Section 1.3.
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Chapter 1 Introduction

Guideline for the reader. Where relevant, we state the dimensions of physical quantities

by their associated SI units. Lists of the SI units and derived units, of the physical quanti-

ties, and of the mathematical symbols that are used in this thesis are found in Appendix B.

Numbered theorems, hypotheses, definitions and so on are emphasized in italics. Proofs to

theorems, propositions or lemmas are closed with the symbol �, numbered examples and

remarks with the symbol △.

We consider two distinct continuum scales within this thesis: the pore scale and the

field scale. Depending on the context, if we speak of microscopic quantities we refer to the

pore scale, whereas the terms macroscopic, effective, homogenized, and upscaled refer to

the field scale.

1.1 Pore-Scale Model and Nondimensionalization

Phenomenological description of the pore-scale model. We consider a rigid porous

medium saturated with a single Newtonian liquid acting as a solvent, which we assume to

be isothermal, incompressible, and electrically neutral. We call the solid part of the medium

the solid matrix—one may think of concrete, ceramics, metal foam, or soil for instance. We

assume further that the pore space of the porous medium is connected.

For the following considerations, we take the presence of an applied or induced electric

field E [V m−1] into account. The movement of a viscous Newtonian liquid at low Reynolds

numbers Re [−] (cf. (1.12b)) fulfills laminar flow conditions that are allowed to be postulated

when dealing with small channels as provided by the solid matrix. If in addition Re ≪ 1, the

liquid velocity field u [m s−1] and the pressure distribution p [Pa] is described fairly precise

by the momentum equation for Stokes flow:

−µ∆u + ∇p = fE [Pa m−1] . (1.1)

Here, µ [Pa s], the dynamic viscosity of the liquid, is a constant, since the liquid was con-

sidered Newtonian. The quantity fE [N m−3] denotes the electric body force per unit volume

acting on the liquid. This force density comprises the charge density ρE [C m−3], which is

described in more detail below (cf. (1.9)), and the electric field E, which both are time and

space dependent quantities:

fE = ρE E [N m−3] . (1.2)

Equation (1.2) is termed the Lorentz relation.
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1.1 Pore-Scale Model and Nondimensionalization

If we further consider the liquid to be incompressible then the liquid’s mass den-

sity ρ [kg m−3] is constant with respect to time and space. This yields the incompressibility

condition

∇ · u = 0 [s−1] (1.3)

that together with the previous equations yields the Stokes equations {(1.1), (1.3)}.
For this section, we consider an arbitrary number of possibly charged chemical

species (cf. McNaught & Wilkinson 1997) in the liquid, ranging from nano-size

to colloidal size, all of which are represented by their molar densities /molar

concentrations ci [mol m−3]. The integers zi denote the respective charge numbers / valences

(zi is equal to zero for uncharged species). Note that by using this approach, the particles

are not treated as “matter” in the classical meaning, since the particles’ volumes are

neglected, while only the particles’ molar masses are considered. Nevertheless, the

approach is acceptable provided that dilute solutions are considered, as done in this work.

The motion of species i is described by the total molar flux ji [mol m−2 s−1]. This quantity is

a measure for the amount of moles passing locally though a small area per time interval.

The relation between time evolution and spatial spreading of the ith chemical species is

given by the mass conservation equation

∂tci + ∇ · ji = ri(c) [mol m−3 s−1] . (1.4)

Here, we considered in addition reaction rates ri [mol m−3 s−1] acting on the vector of all

concentrations c, and thus the governing equations of change for chemical species are cou-

pled in general. In many mathematical models, the reaction rates are of empirical nature and

represent the amount of different types of transformation of matter, such as growth or de-

cay, biological processes, sorption to the solid matrix, etc. (cf. Prechtel 2005, and references

cited therein).

The molar flux ji appearing in (1.4) originates from the three following

hydrophysical processes that we take into account: Brownian motion of particles leads to

a balancing of concentration differences on the continuum scale. The involving diffusive

flux jdiffusion
i [mol m−2 s−1] is assumed to obey Fick’s law for diffusion, which postulates that

this flux is directly proportional to the negative concentration gradient with an empirical

constant Di [m2 s−1] that is called diffusivity or diffusion coefficient:

jdiffusion
i = −Di ∇ci [mol m−2 s−1] .
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Chapter 1 Introduction

The quantity Di is a scalar depending only on the particle size of the ith species, provided

that an isothermal, homogeneous liquid is considered. In addition to diffusion, mass is trans-

ported due to liquid movement. The associated molar flux is called the advective flux

jadvection
i = u ci [mol m−2 s−1]

with u being the liquid velocity according to {(1.1), (1.3)}. Eventually, when charged species

are subjected to an electric field E, an additional mass transfer takes place along or against

the field direction. This transfer is called electromigration, electric drift, or electrophoresis,

and the associated molar flux reads

j
migration
i = vi zi F E ci [mol m−2 s−1] ,

where F [C mol−1] is the Faraday constant (cf. Tab. B.2, p. 142). The proportionality fac-

tor vi [mol s kg−1] is called the electrical mobility of the ith species, which is a measure

for the ability to be moved through the liquid in response to an electric field. The mobility

directly relates to the diffusivity of a considered species by the Nernst–Einstein equation

Di = R T vi [m2 s−1] (1.5)

with gas constant R [J K−1 mol−1] and temperature T [K]. The process of advective transport,

sometimes together with electromigration, is often also called convection. The molar fluxes

due to diffusion, advection, and migration are additive, i. e., ji = jdiffusion
i + jadvection

i + j
migration
i ,

and altogether, we arrive with (1.5), F = e NA, and R = kB NA (cf. Tab. B.2, p. 142) at the

formulas for the total molar fluxes

ji = −Di ∇ci +

(

u +
Di zi e

kB T
E

)

ci [mol m−2 s−1] . (1.6)

Especially when electromigration is taken into account, the system {(1.4), (1.6)} is called the

Nernst–Planck equations.

The electric field E is the negative gradient of the electric potential φ [V] (also electric

field potential, electrostatic potential, voltage), or vice versa, φ is the solution of the equation

E = −∇φ [V m−1] . (1.7)

Defined as the gradient of a scalar, the vector field E is curl free.
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1.1 Pore-Scale Model and Nondimensionalization

Charge carried by chemical species acts on the electric field as a source or a sink due

to Gauss’s law for electricity:

∇ · (ǫ E) = ρE [V] , (1.8)

where ǫ [C V−1 m−1] denotes the electric permittivity of the liquid that is constant for our

assumptions. In an electrolyte solution consisting of a neutral solvent, the charge density ρE,

which already appeared in {(1.1), (1.2)} is given by

ρE = F
∑

i

zi ci [C m−3] . (1.9)

Inserting (1.7) into (1.8) yields an equation of Poisson type; and as found in the literature

(see below), we refer to the system {(1.7), (1.8)} as the Poisson equation. On the surface

of the solid matrix we prescribe either a surface potential φD [V] or a surface charge den-

sity σ [C m−2] claiming that ǫE · ν = σ holds, where ν [−] denotes the unit normal on the

surface (cf. Rem. 2.2).

The system of fully coupled, nonlinear partial differential equations {(1.1), (1.3), (1.6),

(1.4), (1.7), (1.8)} is called the Stokes–Nernst–Planck–Poisson (SNPP) system. We refer the

interested reader to the monographies of Kirby (2010), Masliyah & Bhattacharjee (2006),

and Probstein (2003) for more detailed information. One well-established simplification

mainly used in the mathematical analysis of the SNPP system (cf. Samson et al. 1999, and

references cited therein), but not used in this thesis, is the hypothesis of an electroneutrality

condition
∑

i

zi ci = 0 [mol m−3] . (1.10)

The system under consideration in this work, which is valid on the pore scale, is

a nondimensional formulation of the above SNPP system for the special case of two op-

positely charged species with the same valence (the liquid is in this case called a symmetric

elecrolyte). Prior to the nondimensionalization procedure, various types of possible bound-

ary conditions are defined and discussed.

Boundary conditions. The SNPP system {(1.1), (1.3), (1.6), (1.4), (1.7), (1.8)} is defined

on a time–space cylinder. In order to complete the mathematical problem, besides initial

conditions for ci describing the concentration distribution in the spatial domain at the time

level at which the physical processes begin, additional conditions must be imposed at the
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boundaries of the considered domain. These boundary conditions either prescribe the values

or the spatial derivatives of the unknowns of the SNPP system and have to be compliant with

the conservation description. The boundary conditions used in this thesis are well-known in

literature and will be made explicit whenever needed.

For the physical meanings of the various boundary conditions for the Stokes subsys-

tems, we refer the interested reader to the monographies of Elman et al. (2005, Chap. 5),

Gross & Reusken (2011, Sec. 1.2), and Remark 4.17. Boundary conditions for the Darcy

equation that emerges from the Stokes equations by means of a homogenization proce-

dure (cf. Sec. 2.2) are treated in Logan (2001, Sec. 5.2.2), Kinzelbach (1992, Sec. 2.3),

Bear (1972, Sec. 7.1), Domenico & Schwartz (1998, Sec. 4.4), and Spitz & Moreno (1996,

Sec. 2.4). In Logan (2001, Sec. 2.7.2), Kinzelbach (1992, pp. 32, 177, 206), Domenico &

Schwartz (1998, Sec. 14.3), and Spitz & Moreno (1996, Sec. 3.4), the different types of

boundary conditions for transport processes are discussed (cf. also Rem. 4.7 for Neumann

conditions), while a discussion on boundary conditions of the Poisson subsystem is found

in Kirby (2010, Sec. 5.1.7) and in Remark 2.2.

Nondimensionalization. Instead of treating the SNPP system as described above, we

consider a representative nondimensionalized model containing dimensionless unknowns

in combination with resubstitution laws for the reconstruction of the original physical un-

knowns. The SNPP system in dimensionless form is valid for arbitrary but fixed (pore)

scales, as long as the assumptions made in the derivation of the model above are not vio-

lated. One key advantage here is that the nondimensionalized model reveals so-called char-

acteristic numbers describing the ratio between the physical phenomena modeled by the

SNPP system (e. g., between advective and diffusive transport). In Chapter 2, the character-

istic numbers will be substituted by variable scaling parameters, and thus, various effective

models are obtained in a homogenization procedure. The monographies of Probstein (2003,

Sec. 3.5) and Kirby (2010, Appx. E) give a well-formulated introduction to the nondimen-

sionalization technique.

Let L [m] be a characteristic length, tc [s] be a characteristic time, U [m s−1] a char-

acteristic velocity, and C [mol m−3] a characteristic concentration. In order to rewrite sys-

tem {(1.1), (1.3), (1.6), (1.4), (1.7), (1.8)} (relations (1.2), (1.9) substituted) in terms of di-

mensionless variables, the following scalings are used:

t = tc t∗ , x = L x∗ ,
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1.1 Pore-Scale Model and Nondimensionalization

u = U u∗ , ji = C U j∗i , E =
kB T

e L
E∗ ,

p − p0 = ρU2 p∗ , ci = C c∗i , φ − φ0 =
R T

F
φ∗ =

kB T

e
φ∗ .

Here, the asterix marks the respective reduced dimensionless variables. The data p0 and φ0

define a convenient reference state. Even though the choice of scaling is an arbitrary one

in the mathematical sense, a physical meaningful scaling was chosen (see references cited

above). Taking into account that ∂t = ∂t∗/tc, ∇ = ∇∗/L, and ∆ = ∆∗/L2 by the chain rule, we

arrive at the following nondimensionalized SNPP system:

− 1

Re
∆∗u∗ + ∇∗p∗ =

R T C

ρU2

(
∑

zi c∗i

)

E∗ [−] , (1.11a)

∇
∗ · u∗ = 0 [−] , (1.11b)

j∗i = −
1

Pe
∇
∗c∗i +

(

u∗ +
zi

Pe
E∗

)

c∗i [−] , (1.11c)

St
∂c∗i
∂t∗
+ ∇∗ · j∗i =

L

C U
ri(C c∗) [−] , (1.11d)

E∗ = −∇∗φ∗ [−] , (1.11e)

∇
∗ · E∗ = F2 C L2

R T ǫ

(
∑

zi c∗i

)

[−] . (1.11f)

In (1.11), the following characteristic numbers are used:

mass Péclet number Pei ≔
L U

Di
, (1.12a)

Reynolds number Re ≔
ρU L
µ

=
U L
ν

, (1.12b)

Strouhal number St ≔
L

tc U
. (1.12c)

We define the natural characteristic time tc with relation to the velocity by U = L/tc, which

yields a Strouhal number equal to one. With r∗i (c∗) := L
C U ri(C c∗), we write the second part

of (1.11d) as
∂c∗i
∂t∗
+ ∇∗ · j∗i = r∗i (c∗) . (1.12d)

The characteristic quantities have to be defined prior to the solving of the nondimensional-

ized system. In practice, these quantities are often chosen in a way that the nondimensional-

ized initial and / or boundary data equal one in some regions. After solving a dimensionless
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Chapter 1 Introduction

problem, the original physical unknowns are obtained again by resubsitution using the scal-

ing equations defined above. Note that the obtained nondimensional model is not unique,

in the sense that there is some freedom of expressing characteristic scales in terms of other

ones (cf. Buckingham π theorem, Buckingham 1914).

1.2 The Concept of Periodic Homogenization

The main tasks of periodic homogenization is the study and the averaging of partial differ-

ential equations with rapidly oscillating coefficients. The underlying differential equations

may describe, e. g., inhomogeneous materials with an idealized periodic microstructure. By

means of a limiting process, effective partial differential equations are obtained describing

the average macroscopic behavior of the considered quantities. These equations contain ef-

fective “smooth” coefficients, which are determined by means of the solutions of auxiliary

problems defined on so-called cells representing the local heterogeneities of the microscale.

This work deals indeed with the numerical investigation of homogenization results, of

the original, non-homogenized models, and of homogenization processes in general. How-

ever, the application of homogenization methods is not part of this thesis. Nevertheless we

illustrate the basic concepts by giving a short example of how the method of two-scale

asymptotic expansion is applied and further accompany this with visualizations of prob-

lem solutions. This homogenization technique is a simple one and is only of formal nature.

However, the technique is often used as a first step in the proofs of rigorous homogenization

methods (see end of this section) in order to “guess” the averaged limit problems. For a short

introduction into the method of two-scale asymptotic expansion, we refer to the lecture notes

of G. Allaire (Allaire 2010a,b). For a brief overview of upscaling methods in general, we

refer the reader to the thesis of Ray (2013, Sec. 3.1.1 ff.)

Example 1.1 (Two-scale asymptotic expansion). Let the domain Ωε ⊂ �2 be a disk with

boundary ∂Ω and with an associated characteristic material property that is periodic in each

spatial direction as illustrated in Figure 1.1. This characteristic property shall be represented

by a representative unit cell Y = ]0, 1 [2. We define the parameter ε≪ 1—to which we refer

to as the scale parameter in the following—equal to the length of one period in Ωε. The

physical model that we consider in this example is the stationary Darcy equation,

uε = −Kε(x)∇hε in Ωε , (1.13a)

∇ · uε = f in Ωε , (1.13b)
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1.2 The Concept of Periodic Homogenization

K
K1 K2

ε

ε 1

1

Ωε ΩY

Figure 1.1. The domain Ωε with oscillating, piecewise constant hydraulic conductivity Ki

(K1 black areas, K2 white areas), the representative unit cell Y containing a sec-
tion of Ωε, and the domain Ω associated with an averaged hydraulic conductivity K.

which itself can be derived from the steady-state Navier–Stokes equations (Bear & Cheng

2010, Sec. 4.2.2) or the Stokes equations (Allaire 2010a, Sec. 1.1) by the method of two-

scale asymptotic expansion. The problem (1.13) is supplemented with appropriate boundary

conditions of Dirichlet type and / or Neumann type on ∂Ω (cf. Sec. 1.1). This system of

equations describes the averaged horizontal liquid movement (i. e., orthogonally to gravita-

tional direction) within a saturated porous medium for an incompressible liquid (cf., e. g.,

Bear & Cheng 2010, Sec. 4.1; Spitz & Moreno 1996, Sec. 2.2.2; Domenico & Schwartz

1998, Sec. 3.3). Here, uε [m s−1] stands for the liquid velocity—the so-called Darcy flux

or specific discharge—hε [m] for the piezometric head, Kε [m s−1] for the hydraulic con-

ductivity (often also denoted by the symbol kf), which is a function of the permeability of

the solid matrix and of the viscosity of the considered liquid, and f [s−1] for a source / sink

or well / drain (assumed here to be a constant). Alternatively, the system (1.13) may also

describe the displacement hε of an elastic plate or membrane fixed at its boundary and sub-

jected to a transversal load of intensity f (Chen 2005, Sec. 1.1.1; Ern & Guermond 2004,

Sec. 3.3.1).

In our example, the data for (1.13) are chosen as follows: let f :≡ 1 and the coeffi-

cient Kε be piecewise constant:

Kε(x) :≡






K1 ,
⌊

2x1/ε
⌋

+
⌊

2x2/ε
⌋

is an even integer

K2 , otherwise






,
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Chapter 1 Introduction

where ⌊·⌋ denotes the floor function. The oscillating coefficient Kε = Kε(x) is εY-periodic

in Ωε. We define the hydraulic conductivity K on the unit cell Y as

K
(

x

ε

)

≔ Kε(x)

and denote its Y-periodic extension with the same symbol. Next, we postulate that the solu-

tion of (1.13) can be expressed in terms of power series in ε :

uε(x) =
∞∑

k=0

εk uk

(

x,
x

ε

)

and hε(x) =
∞∑

k=0

εk hk

(

x,
x

ε

)

(1.14)

with uε, hε being Y-periodic in the second argument. In addition to the “macroscopic vari-

able” x, a “microscopic variable” y is defined, connected to x by y ≔ x/ε.

The system (1.13) is interpreted as series of problems in ε yielding a series of solu-

tions {(uε, hε)}ε that possibly converges toward a limiting solution for ε→ 0. The formal

homogenization by two-scale asymptotic expansion amounts to find an effective equation

that admits this limit as its solution. In the following, the effective equation for (u0, h0) as

given in (1.14) is derived. One has to be aware of the fact that—since (1.14) is a heuristic

assumption—it is not guaranteed that (u0, h0) approximates limε→0(uε, hε) reasonably accu-

rate.

With the aim to separate both scales and to derive an effective equation, the

ansatz (1.14) is inserted into (1.13), taking into account the chain rule

∇x ·
(

uk(x, y)
)

=
(

∇x · uk + ε
−1
∇y · uk

)

(x, y)

(analogously ∇xhk) and identifying the coefficients of the resulting series in ε to zero. Thus,

the flux equation of order ε−1 associated with (1.13a) reads

0 = −K(y)∇yh0(x, y) .

Hence, h0 is a macroscopic quantity, i. e., h0(x, y) ≡ h0(x). The flux equation of order ε0

together with the scalar equation of order ε−1 yield the mixed system

u0(x, y) = −K(y)
(

∇yh1(x, y) + ∇xh0(x)
)

, (1.15a)

∇y · u0(x, y) = 0 . (1.15b)
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ε = 1 ε = 1/2 ε = 1/4

ε = 1/8 ε = 1/16 ε→ 0

Figure 1.2. Distribution of the piezometric head for ε = 1, 1/2, . . . , 1/16 and for the limit ε→ 0.

We continue with the decomposition of the variables u0 and h1 in a product term with a mi-

croscopic and a macroscopic factor. To this end, we define the following auxiliary problem,

the so-called cell problem: for j ∈ {1, 2}, seek (ξ j, ζ j) such that

ξ j = −K(y)
(

∇yζ j + e j

)

in Y , (1.16a)

∇y · ξ j = 0 in Y (1.16b)

with (ξ j, ζ j) componentwise periodic in Y and −
∫

Y
ζ j(y) dy = 0, j ∈ {1, 2}, e j being the jth

unit vector in �2. Note that the constraint −
∫

Y
ζ j(y) dy = 0 ensures uniqueness of the un-

knowns ζ j. The values of these average integrals can be chosen arbitrarily, since only the

flux unknowns ξ j are of concern when computing the averaged coefficient of the homog-

enized problem (cf. (1.20)). Owing to the linearity of (1.15), the pair (u0, h1) can now be

expressed in terms of the cell solutions (ξ j, ζ j) :

(

u0, h1
)

(x, y) =
2∑

j=1

(

ξ j, ζ j
)

(y) ∂x jh0(x) ⇔





u0

h1




(x, y) =





ξ1 ξ2

ζ1 ζ2




(y)∇xh0(x) . (1.17)
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This can easily be confirmed by inserting u0 and h1 from (1.17) into (1.15) and using the

equations (1.16) of the cell problem. Eventually, the scalar equation of order ε0 reads

∇x · u0(x, y) + ∇y · u1(x, y) = f . (1.18)

Owing to the periodicity of the unit cell Y , we find that

∫

Y
∇y · u1(x, y) dy =

∫

∂Y
u1(x, y) · ν dsy = 0

due to the divergence theorem. Thus, taking the Y-average of (1.18) yields the effective

scalar equation

∇x · ū0(x) = |Y | f = f in Ω , (1.19a)

where we define ū0 ≔ −
∫

Y
u0(x, y) dy. We also take the Y-average of u0 in (1.17) in order to

obtain the effective flux equation

ū0(x) = −K∇xh0(x) in Ω (1.19b)

with K, the hydraulic conductivity tensor, defined by the negative Y-average of the consist-

ing of columns ξ j, where ξ j are the solutions of the cell problem (1.16):

K = − −
∫

Y

[

ξ1

∣
∣
∣ξ2

]

dy . (1.20)

In Equations (1.19a) and (1.19b) we write Ω instead of Ωε to emphasize the invariance of

the associated conductivity K with respect to ε (although the two domains are identical in

the mathematical sense).

In conclusion, the system (1.19) is just as the original system (1.13) of Darcy type, but

includes an effective hydraulic conductivity coefficient K rather than an oscillating one. Note

that the right-hand side of (1.13b) and the boundary conditions of (1.13) keep unaffected in

the homogenization process, since the right hand-side, the boundary data, and the boundary

itself, respectively, do not depend on the scaling parameter ε.

Figure 1.2 illustrates the two-dimensional distribution of the piezometric head in Ωε

due to (1.13) for decreasing scale parameter ε and the limit distribution of the effective

equations (1.19). In the computations, a homogeneous Dirichlet condition for the piezomet-

ric head is chosen on the boundary ∂Ω and the values K1 = 5E − 2 and K2 = 1 are used.

The computed hydraulic conductivity tensor K is approximately equal to 2.16 I, I denoting
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the unit matrix in �2. In fact, the tensor reduces to a scalar, since there is no preferential

flow direction due to the checkerboard-like ordered conductivity distribution (i. e., we have

obtained an isotropic medium in the homogenization process). △

In the following chapter, the mathematical models that are the object of the numerical inves-

tigations in Chapters 3 to 6 are presented. The three included averaged models were derived

by Ray et al. (2012a) with the method of two-scale convergence, which was introduced

by Nguetseng (1989) and further developed by Allaire (1992). In contrast to the method of

two-scale asymptotic expansion, this method is rigorous in the mathematical sense, i. e., the

existence of the two-scale limit is implicitly proven.

1.3 Outline of the Thesis

All mathematical models that are the object of the numerical and analytical investigations

of this work are outlined in Chapter 2. Initially, the dimensionless SNPP system that was

introduced in Section 1.1 is embedded into a periodic two-scale framework. A family of

scaled SNPP systems is obtained by the inclusion of a set of scaling parameters. We state

“equivalent” averaged systems of the partial differential equations that may reasonably de-

scribe the effective macroscopic behavior of the phenomena considered. The type of these

homogenization results that we refer to as Darcy–Nernst–Planck–Poisson (DNPP) systems

depends on the choice of the chosen scaling parameters. They incorporate, inter alia, effec-

tive tensors that are obtained by averaging the solutions of so-called cell problems defined

on small domains representing the periodic geometry of the solid part of the porous matrix.

The correlation between the geometry of the solid part and the effective tensors is illustrated.

A fully time-implicit mixed finite element discretization of one specific DNPP system

using Raviart–Thomas elements of arbitrary order is elaborated in Chapter 3. The main re-

sult of this chapter is an a priori estimate of the overall discretization error of the considered

system. Its proof exploits an established existence result for the DNPP system in non-mixed

form. Therefore, it is necessary to show the implication of the solution of the mixed formu-

lation toward the solution of the non-mixed formulation. With this existence result at hand,

a priori error estimates for the subsystems are shown and their combination concludes the

proof of the main theorem.

Chapter 4 presents an implementable fully discrete numerical scheme capable of ap-

proximating the solutions of the scaled SNPP systems and the associated DNPP systems in

two space dimensions. First, two linearization schemes—an iterative splitting scheme and

13



Chapter 1 Introduction

the Newton scheme—are explained by taking the example of the time-discrete SNPP sys-

tem. A discussion on their practical usability reveals that the iterative splitting scheme is the

method of choice, which is also applicable for the homogenized systems in an analogous

way. By means of this, the nonlinear, time-discrete systems decompose into linear subsys-

tems that are either of convection–diffusion type or of Stokes type. Problems of the first

type are discretized in space using lowest-order Raviart–Thomas elements, while the latter

are discretized using mixed finite elements due to Taylor and Hood. The overall numerical

scheme is fully time-implicit and is locally mass conservative with respect to the chemical

species.

In Chapter 5, the method of manufactured solutions is applied to the implemented

discretization schemes illustrated in the previous chapter. The overall numerical schemes

for the fully coupled / nonlinear SNPP system and DNPP systems are verified by capturing

numerically the optimal grid convergence orders that are expected based on convergence es-

timates for the linear subproblems. In particular, this also verifies implicitly the convergence

of the iterative splitting scheme. In addition, the numerically estimated orders of conver-

gence show that the a priori error estimate for the DNPP system of Chapter 3 is valid for

lowest order Raviart–Thomas elements.

The verification of the discretization schemes for all systems under consideration is

the basis for the numerical investigations that follow in Chapter 6. This chapter aims at

the comparison of solutions of the SNPP systems, which are valid on the pore scale, with

those of their associated averaged-scale DNPP systems. On that account, a suitable test

scenario has to be defined in advance, in particular including the definition of a perforated

domain on which the SNPP problems are defined. Based on subsequent simulations, the

behavior of the solutions with regard to their physical meanings is discussed for different

scalings. The crucial part of this chapter is the qualitative and also the quantitative study

of the convergence rates according to which the pore-scale solutions converge toward their

upscaled equivalents. For this purpose, a grid-to-grid projection algorithm is used in order

to compare the solutions, which are defined on different grids.

Chapter 7 is dedicated to the numerical simulation of a two-scale scenario describing

colloidal dynamics and single-phase liquid flow within a porous medium at an averaged

scale. The underlying pore-scale SNPP problem is an extension to the one already known

taking into account attachment and detachment processes, which result in an evolving mi-

crostructure of the solid matrix. The numerical two-scale scheme presented in this chapter

draws on the discretizations of Chapter 4. Concluding simulations reveal the interplay be-

tween solute transport, evolving microstructure, and liquid flow.

14



1.3 Outline of the Thesis

In order to perform simulations of the models considered in this work, the numerical

toolbox HyPHM was newly written, which is outlined in Appendix A.
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Chapter2
Mathematical Models under Consideration

This chapter starts with the introduction of a periodic two-scale framework, in which

the dimensionless SNPP system is embedded. Based on this, we state “equivalent”

averaged systems of partial differential equations that reasonably describe the effective

macroscopic behavior of the phenomena considered. These systems that we refer to

as Darcy–Nernst–Planck–Poisson (DNPP) systems, are the recent homogenization

results of Ray et al. (2012a) (see also Ray 2013), obtained by the method of two-scale

convergence.

In Section 2.1, we first describe the postulated idealized periodic geometry of the con-

sidered underlying solid matrix and proceed with the introduction of the scaled SNPP sys-

tem describing the dynamics of charged particles at the pore scale. The introduced scalings

by powers of the scale parameter ε realize a weighting of the different electrokinetic pro-

cesses that is adjusted by scaling parameters α, β, γ. In Section 2.2, we summarize the ho-

mogenization results of Ray et al. (2012a), who used the method of two-scale convergence

for the rigorous transition to the limit ε → 0 of the transient, nonlinear scaled SNPP sys-

tem for different choices of scaling parameters. The derived DNPP systems incorporate,

inter alia, effective tensors, which are obtained by averaging the solutions of so-called cell

problems defined on small domains that represent the periodic geometry of the solid part of

the porous matrix. In addition to that, we discuss the correlation between pore geometry and

effective tensors.

2.1 The Pore-Scale Problem / The SNPP System

Geometric setting. We consider a bounded domain Ω ⊂ �d, d ∈ {2, 3} with the exterior

boundary ∂Ω and an associated periodic microstructure defined by the unit cell Y = ]0, 1 [d,

see Figure 2.1. The representative unit cell Y with the exterior boundary ∂Y is decomposed

into two open sets: the liquid part Yl and the solid part Ys such that Y = Y l ∪ Ys and
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ε

Ys

Ωε

Yl

YΩ

Yε
s,i

Yε
l,i

Γε,i

Γε

Yε
i

∂Ω

∂Y

Γ

Figure 2.1. Periodic representation of a porous medium (left) and of the standard unit cell Y
(right).

Yl ∩ Ys = ∅ (the symbol denotes the topological closure). Furthermore, let |Yl| denote the

(Lebesgue) measure of Yl. The interior boundary Γ within the unit cell is defined by Γ ≔

Y l ∩ Ys. In particular, we assume that the interior boundary Γ does not intersect the exterior

boundary ∂Y of the unit cell Y and that the liquid part is connected. The characteristic ratio

of pore size that is determined by the size of the underlying microstructure and the domain

size |Ω| is denoted by ε. We call ε ≪ 1 the scale parameter and assume the macroscopic

domain Ω to be covered by a regular mesh of size ε consisting of ε-scaled and shifted

cells Yε
i that are divided into an analogously scaled liquid part, solid part, and boundary.

Let us denote those by Yε
l,i, Yε

s,i, and Γε,i, respectively. The liquid part / pore space, the solid

part / porous matrix, and the interior boundary Γε of the porous medium are defined by

Ωε ≔

⋃

i

Yε
l,i , Ω\Ωε ≔

⋃

i

Yε
s,i , and Γε ≔

⋃

i

Γε,i ,

respectively. Consequently, since we assume that Ω is completely covered by ε-scaled unit

cells Yε
i and, in particular, since the solid part is not allowed to intersect the exterior bound-

ary, ∂Ω∩Γε = ∅ holds. We mark all functions defined on Ωε with the index ε and denote the

outward unit normal by ν. Furthermore, the open time interval ]0, T [ is abbreviated by J,

T > 0 denoting the end time.
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2.1 The Pore-Scale Problem /The SNPP System

Model equations. Recall the dimensionless SNPP system (1.11) describing the dynamics

of charged particles within a porous medium at the pore scale in a continuum mechani-

cal sense. For the remainder of this thesis, we restrict our considerations to a symmetric

electrolyte solution that is composed of one positively and one negatively charged species

represented by associated positive (+) and negative (−) molar concentrations c±ε , respec-

tively. The notation ± (and ∓) is used as an abbreviation in order to formulate equations

for both positively and negatively charged particles in one line (all the corresponding upper

signs have to be interpreted as the first equation and all the lower signs as the second equa-

tion). In addition, we consider a simple mass-conserving reaction r±(c+ε , c
−
ε ) ≔ ∓ c+ε ± c−ε

(cf. (1.12d), p. 7) that couples both transport problems. This reaction translates to the stoi-

chiometric equation A+ ⇋ A− with rate coefficients equal to one.

A nondimensionalization result (cf. Sec. 1.1; Ray 2013, Sec. 2.1.3 and Rem. 4.1; van

de Ven 1989, p. 83ff.) motivates the following scalings of the different terms with respect to

the scale parameter ε introducing the scaling parameters α, β, γ ∈ �+0 . The resulting family

of scaled SNPP systems has the following form:

Problem 2.1 (Family of SNPP problems).

−ε2 ∆uε + ∇pε = εβ Eε (c+ε − c−ε ) in J × Ωε , (2.1a)

∇ · uε = 0 in J × Ωε , (2.1b)

uε = 0 on J × Γε , (2.1c)

j±ε = −∇c±ε +
(

uε ± εγ Eε

)

c±ε in J × Ωε , (2.1d)

∂tc
±
ε + ∇ · j±ε = ∓(c+ε − c−ε ) in J × Ωε , (2.1e)

j±ε · ν = 0 on J × Γε , (2.1f)

Eε = −εα ∇φε in J × Ωε , (2.1g)

∇ · Eε = c+ε − c−ε in J × Ωε , (2.1h)





Eε · ν

φε

=

=

εσ , α = 0

φD , α = 2






on J × Γε . (2.1i)

The system (2.1) is completed with exterior boundary conditions on J×∂Ω and initial condi-

tions for c±ε on {0} ×Ωε that are specified in Section 6.1. This family of pore-scale problems

is similar to the problem of Example 1.1 on p. 8 with the difference that the fine-scale de-

pendency is essentially produced by the periodic solid matrix and not by the coefficients

per se.
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Chapter 2 Mathematical Models under Consideration

Remark 2.2 (Interior boundary conditions for the Poisson problem). For the parame-

ters α = 0 and α = 2, the Poisson subsystem {(2.1g), (2.1h)} is supplemented with an in-

terior boundary condition of Neumann and of Dirichlet type, respectively (cf. (2.1i)). This

boundary condition is associated either with the surface charge density σ or with the sur-

face potential φD, which correspondingly relates to the so-called ζ-potential of the solid

matrix (for a detailed discussion, see Kirby 2010, Sec. 5.1.7). In applications, these data can

be obtained, for instance, by measurements. For simplicity, we assumeσ, φD : J×Γε → � to

be given constants. This assumption can be relaxed in a straightforward way using standard

assumptions for the regularity of the functions σ, φD. △

2.2 The Homogenized Problems / The DNPP Systems

Cell problems. The DNPP systems under consideration are the homogenization results of

the family of SNPP systems (2.1) for the limit ε → 0. By using the following definition of

cell problems and effective tensors that is an equivalent reformulation of Ray et al.’s (2012,

Def. 4.4), we are able to quote the main homogenization theorems (cf. Thm. 2.5, Thm. 2.8).

Definition 2.3 (Effective tensors and cell problems). Let e j denote the jth unit vector

in �d. The space-averaged (stationary) macroscopic diffusion / permittivity tensor is

represented by a matrix D ∈ �d,d that is composed of the negative Y-average of the column

vectors q1, . . . , qd as follows:

D = −
∫

Yl

[

q1

∣
∣
∣ . . .

∣
∣
∣qd

]

dy , (2.2a)

where (q j, u j), j ∈ {1, . . . , d} solve the stationary cell problems

q j = −∇u j − e j in Yl ,

∇ · q j = 0 in Yl , (2.2b)

q j · ν = 0 on Γ

with (q j, u j) componentwise periodic in Y and −
∫

Yl
u j dy = 0, j ∈ {1, . . . , d}.
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2.2 The Homogenized Problems /The DNPP Systems

The space-averaged (stationary) macroscopic permeability tensor is represented by a

matrix K ∈ �d,d that is composed of the Y-average of the column vectors w1, . . . ,wd as

follows:

K =

∫

Yl

[

w1

∣
∣
∣ . . .

∣
∣
∣wd

]

dy , (2.3a)

where (w j, π j), j ∈ {1, . . . , d} solve the stationary cell problems

−∆w j + ∇π j = e j in Yl ,

∇ · w j = 0 in Yl , (2.3b)

w j = 0 on Γ

with (w j, π j) componentwise periodic in Y and −
∫

Yl
π j dy = 0, j ∈ {1, . . . , d}.

Furthermore, let (η, ϕ) be the solution of the following stationary cell problem:

∇ · η = 1 in Yl ,

η = −∇ϕ in Yl , (2.4)

ϕ = 0 on Γ

with (η, ϕ) componentwise periodic in Y .

The tensors defined in (2.2a) and (2.3a) are symmetric and positive definite (Cioranescu &

Donato 1999; Hornung 1997). Note that the cell problems (2.2b), (2.3b), (2.4) are given here

in the mixed formulation as opposed to the original form in Ray et al. (2012a). This is owed

to the numerical solution approach presented in this thesis that is applied to these equations,

which is based on the mixed formulation (cf. Chap. 4).

Next, we state an example that provides the reader an insight of how solutions of cell

problems look and of the correlation between cell geometry and effective tensors.

Example 2.4 (Permeability tensors for various geometries). Figure 2.2 visualizes the

solutions of the family of cell problems (2.3b) (d = 2) for a representitive cell Y with solid

part Ys as used in Allaire et al. (2013). This geometric setting violates the assumptions

made in Section 2.1, but nevertheless produces a macroscopic domain with a connected

liquid part and the setting is indeed feasible for numerical computations. The set of

equations (2.3b) suggests interpreting the solution of the cell problems as velocities of

a Stokes flow driven by body force densities pointing into the two coordinate directions. In
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Chapter 2 Mathematical Models under Consideration

Figure 2.2. Illustration of the two cell solutions (w j, π j) in Yl satisfying (2.3b).

particular, the tensor as defined in (2.3b) (and also the one defined in (2.2b)) is a function

only of the solid part’s geometry.

Some values of the effective tensor K are listed in Figure 2.3. Those are computed ac-

cording to (2.3a) for d = 2 by solving the two cell problems (2.3b) numerically for different

cell geometries. The representative cell Y in Figure 2.3 (a) contains a solid part Ys with the

shape of a square. Since this cell is symmetric in both coordinate axes, the computed tensor

simplifies virtually to a scalar. This tensor is invariant in shiftings of Ys within Y due to the

periodic setting (cf. Fig. 2.3 (b)). Doubling the volume of the solid part Ys entails a smaller-

scaled tensor (cf. Fig. 2.3 (c)). The cell in (d) contains the geometry as already illustrated

in Figure 2.2. Note that the volume |Ys| of the solid part in (d) equals that in (c). Two crucial

observations are made: on the one hand, the magnitude of the tensor is much smaller, on the

other hand the tensor is no longer isotropic. The latter fact is obvious, since the geometry as

in (d) prefers a Stokes flow in x2 direction compared to that in x1 direction (cf. Fig. 2.2). The

reduction of the magnitude of the tensor is explained by the increase of the solid’s surface, at

which the Stokes velocity tends to zero due to the no-slip boundary condition on Γ as given

in (2.3b). Eventually, (e) and (f) illustrate the dependency of the tensor K on the directional

alignment of a fixed obstacle.

Note that all computed tensors are indeed symmetric and positive definite as stated by

the theory. △
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1.307 0

0 1.307









1.307 0

0 1.307









.238 0

0 .238









.038 0

0 .050









.248 0

0 2.576









.870 −.175

−.175 .870





3/4 (a) 3/4 (b) 1/2 (c) 1/2 (d) 3/4 (e) 3/4 (f)

Figure 2.3. Computed permeability tensors for different cell geometries (cf. Expl. 2.4). Here,
the regions of the cells that are highlighted in color illustrate the liquid parts Yl. The
listed tensors are scaled and have to be mutliplied by a factor of 100. The third row
lists the porosity |Yl| of the cells (cf. comment after Thm. 2.5).

2.2.1 Homogenized Limit Systems for a Neumann Condition on the

Interior Boundary Γε in Poisson’s Equation

For this paragraph, we consider the case of α = 0, i. e., we assume a Neumann boundary con-

dition for the electric potential on the interior boundary Γε (cf. (2.1i)). This corresponds to

a physical problem in which the surface charge density of the porous medium is prescribed.

The next theorem is a homogenization result of Ray et al. (2012a) in mixed form:

Theorem 2.5 (Homogenization result 1). Let α = 0 and let (uε, pε, c+ε , c
−
ε , φε) be a weak

solution of Problem 2.1. Then the two-scale limits φ0, c±0 , and the Yl-average ū0 of the two-

scale limit u0 satisfy the following averaged equations:

ū0 = −K

(

∇p0 −






D−1E0(c+0 − c−0 ) , β = 0

0 , β > 0






)

in J × Ω , (2.5a)

∇ · ū0 = 0 in J × Ω , (2.5b)

j±0 ≔ − D∇c±0 + ū0c±0 ±






E0 c±0 , γ = 0

0 , γ > 0






in J × Ω , (2.5c)

|Yl| ∂tc
±
0 + ∇ · j±0 = ∓ |Yl| (c+0 − c−0 ) in J × Ω , (2.5d)

E0 ≔ − D∇φ0 in J × Ω , (2.5e)

∇ · E0 = |Yl|
(

c+0 − c−0
)

+ σ̄ in J × Ω (2.5f)

with σ̄ ≔ −
∫

Γ
σ dsy.
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Proof. See Ray et al. (2012a, Thms. 4.6, 4.8, 4.10). �

The ratio of pore volume (which equals the liquid volume in our setting by assumption,

see Section 1.1) to the total volume is called the porosity (cf., e. g., Domenico & Schwartz

1998, Sec. 2.1). Since we consider a macroscopic domain completely covered with unit cells

of the same geometry, the porosity equals |Yl|. Note that the exterior boundary conditions

on J × ∂Ω that complete the system (2.5) are the same as the ones chosen in Problem 2.1.

Remark 2.6 (Problem specifications). For β = 0, we derive an extended Darcy’s law

(cf. {(2.5a), (2.5b)}; we call this an “extended Darcy’s law” due to the presence of the drift

term D−1E0(c+0 − c−0 ), active for β = 0). Along with the pressure gradient, an additional

forcing term occurs due to the electric potential. In the case of β > 0, the electric potential

has no influence on the macroscopic velocity, which is then determined by a standard

Darcy’s law.

Table 2.1 gives an overview of the different types of limit systems that are obtained

for a (fixed) scaling parameter of α = 0. The four cases, which depend on the choice of the

parameters β and γ can be classified as follows: for γ = 0, the transport of the concentra-

tions is given by the Nernst–Planck equations. In the case of γ > 0, the electric potential

has no direct influence on the macroscopic concentrations. The equations for the concen-

trations simplify to a convection–diffusion–reaction system. Depending on the choice of β,

the upscaling procedure yields either a fully coupled system of effective partial differential

equations or provides averaged equations that are coupled only in one direction. △

Remark 2.7 (Effective coefficients). The family of auxiliary cell problems (2.2b) yields

the effective coefficient D. Hence, the diffusion tensor in (2.5c) and the permittivity tensor

in (2.5e) are identical. This is due to the constant parameters such as the electric permittivity

and the diffusivity that we have suppressed for ease of presentation. △

2.2.2 Homogenized Limit Systems for a Dirichlet Condition on the

Interior Boundary Γε in Poisson’s Equation

In this paragraph, we consider the case of α = 2, i. e., we assume a Dirichlet boundary

condition for the electric potential on the interior boundary Γε (cf. (2.1i)). This corresponds

to a physical problem in which the surface potential of the porous medium is prescribed. In
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β = 0 β >0

γ = 0

extended Darcy’s law

Nernst–Planck equations

Poisson equation

Darcy’s law

Nernst–Planck equations

Poisson equation

γ > 0

extended Darcy’s law

advection–diffusion equations

Poisson equation

Darcy’s law

advection–diffusion equations

Poisson equation

Table 2.1. The different types of limit systems for fixed scaling parameter α = 0.

geoscience applications, this boundary condition relates to the specification of the so-called

ζ-potential. For technical reasons, Ray et al. (2012a) demanded that the volume additivity

constraint

c+ε (t, x) + c−ε (t, x) = 1 for a. e. (t, x) ∈ J × Ωε (2.6)

holds in the case of a Dirichlet boundary condition in (2.1i), which is a common assumption

for the system (2.1) (cf., e. g., Roubíček 2005b). Note that this constraint is not necessary

in the case of a Neumann boundary condition in (2.1i). We define the transformed electric

potential φε − φD ≕ φhom
ε : Ωε → �. Since φD is a constant in space, φhom

ε satisfies the

following set of equations:

Eε = −ε2
∇φhom

ε in J × Ωε ,

∇ · Eε = c+ε − c−ε in J × Ωε ,

φhom
ε = 0 in J × Γε .

Theorem 2.8 (Homogenization result 2). Let α = 2 and let (uε, pε, c+ε , c
−
ε , φε) be a weak

solution of Problem 2.1. Then the two-scale limits φhom
0 , c±0 , and the Yl-average ū0 of the

two-scale limit u0 satisfy the following averaged equations for β ≥ 1, γ ≥ 1:

ū0 = −K∇p0 in J × Ω , (2.7a)

∇ · ū0 = 0 in J × Ω , (2.7b)

j±0 ≔ − D∇c±0 + ū0 c±0 in J × Ω , (2.7c)

|Yl| ∂tc
±
0 + ∇ · j±0 = ∓ |Yl| (c+0 − c−0 ) in J × Ω , (2.7d)

φ̄hom
0 = |Yl|

(

−
∫

Yl

ϕ dy

)

(c+0 − c−0 ) in J × Ω , (2.7e)

where ϕ is the partial solution of the cell problem (2.4).
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Proof. See Ray et al. (2012a, Thms. 4.12, 4.14, 4.16). �

Note that the exterior boundary conditions on J × ∂Ω that complete the pore-scale sys-

tem (2.1) are not affected by the homogenization process and thus are similar to the ones for

the averaged systems (2.7) and (2.5).

Remark 2.9 (Problem specifications). The transport of the concentrations is determined

by a convection–diffusion–reaction system and the liquid flow is obtained by a standard

Darcy’s law. The electric potential is directly given in terms of the concentration fields

whereas no back coupling to liquid flow and transport occurs. Note that no explicit represen-

tation of the electric field E0 is given here and that the actual averaged electric potential φ̄0

can be obtained as follows:

φ̄0 = φhom
0 + φD =

∫

Yl

φhom
0 + φD dy = |Yl|

(

−
∫

Yl

ϕ dy

)

(c+0 − c−0 ) + |Yl| φD . (2.8)
△
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For the numerical analysis, from the three DNPP systems under investigation, we con-

sider the one that contains the highest number of nonlinear coupling terms. This is the

homogenization result for the scaling parameters α = β = γ = 0, i. e., the system (2.5)

(cf. Thm. 2.5, p. 23). For the sake of presentation, we set the (constant and stationary) quan-

tity |Yℓ| equal to one without loss of generality and complete the problem with boundary

conditions on ∂Ω:

ū0 = −K∇p0 +KD−1E0(c+0 − c−0 ) in J × Ω , (3.1a)

∇ · ū0 = 0 in J × Ω , (3.1b)

j±0 = −D∇c±0 + ū0c±0 ± E0c±0 in J × Ω , (3.1c)

∂tc
±
0 + ∇ · j±0 = r±(c+0 , c

−
0 ) in J × Ω , (3.1d)

E0 = −D∇φ0 in J × Ω , (3.1e)

∇ · E0 = c+0 − c−0 + σ̄ in J × Ω , (3.1f)

ū0 · ν = 0 on J × ∂Ω , (3.1g)

c±0 = 0 on J × ∂Ω , (3.1h)

φ0 = φD on J × ∂Ω , (3.1i)

c±0 = c±,00 on {0} × Ω (3.1j)

with c±,00 satisfying the boundary conditions (3.1h). The assumptions on the data of (3.1) are

slightly relaxed with respect to the original homogenization result and will be specified fur-

ther in Hypotheses 3.12. For the remainder of this chapter, we write (u, p, j+, c+, j−, c−, E, φ)

instead of (ū0, p0, j+0 , c
+
0 , j−0 , c

−
0 , E0, φ0).

In Section 3.1, we first recall some definitions and properties of used function spaces,

their norms, and some elementary inequalities. Furthermore, we introduce notations that

are used in Section 3.2, where an a priori error estimate of optimal order is shown for
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the time-implicit mixed finite element discretization of system (3.1). More precisely, if

(u, p, j+, c+, j−, c−, E, φ) denotes the solution of the (weak) continuous formulation and

(un
h, pn

h, j+,nh , c+,nh , j−,nh , c−,nh , En
h, φ

n
h) the solution of the respective fully discrete formulation

after n time steps, we prove an a priori estimate for the L2(Ω) discretization error at the

time level tn, roughly of the form

max
m∈{1,...,n}

‖um
h − u(tm)‖2 + max

m∈{1,...,n}
‖pm

h − p(tm)‖2 +
∑

i∈{+,−}
τ

m∑

m=1

‖ ji,m
h − ji(tm)‖2

+
∑

i∈{+,−}
max

m∈{1,...,n}
‖ci,m

h − ci(tn)‖2 + max
m∈{1,...,n}

‖Em
h − E(tm)‖2 + max

m∈{1,...,n}
‖φm

h − φ(tm)‖2

≤ C (u, p, j+, c+, j−, c−, E, φ)
(

τ2 + h2k+2
)

,

provided that the solution of the continuous problem is sufficiently smooth. Here, C is a con-

stant depending on derivatives of the continuous unknowns, on the boundary data, on the

initial data, and on the smoothness of the domain Ω, but not on the time step size τ, nor on

the mesh size h. The integer k stands for the chosen order of approximation spaces according

to Raviart and Thomas.

3.1 Preliminaries and Notation

Throughout this chapter, let Ω ⊂ �d, d ∈ {2, 3} be a polygonally bounded, convex domain

with boundary ∂Ω (i. e., in particular ∂Ω is of class C0,1 (“Lipschitz boundary”)), where ν

denotes, as usual, the outward unit normal. The (open) time interval ]0, T [ with initial time

zero and end time T > 0 is denoted by J.

Sobolev spaces. We use the standard notation for Sobolev spaces (Adams & Fournier

2003; Evans 2010). Let Lp(Ω) denote the space of Lebesgue-measurable functions, which

pth power is Lebesgue-integrable on Ω, i. e., for which the norm

‖v‖Lp(Ω) ≔






(∫

Ω
|v(x)|p dx

)1/p
, 1 ≤ p < ∞

ess supx∈Ω |v(x)| , p = ∞






is finite. Moreover, in the quotient space L2(Ω)/�, two elements of L2(Ω) are identified

if and only if their difference is constant. Let Hk(Ω) be the set of k-times differentiable

functions in L2(Ω) with weak derivatives in L2(Ω), equipped with the usual scalar prod-
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uct ( · , · )Hk(Ω), k ∈ �0 (cf. Wu et al. 2006, Def. 1.3.2; Ern & Guermond 2004, Thm. B.27).

Let the space H1/2(∂Ω) contain those functions on the boundary ∂Ω for which the norm

‖v‖2H1/2(∂Ω) ≔

∫

∂Ω

|v(x)|2 dx +

∫

∂Ω

∫

∂Ω

|v(x) − v(y)|2
|x − y|d+1

dx dy

is finite and let H−1/2(∂Ω) denote its dual space (cf. Adams 1975, Chap. 7, p. 208).

We define by Hk(Ω) ≔ (Hk(Ω))d = Hk(Ω;�d) the space of vector-valued functions

u = (v1, . . . , vd)T : Ω→ �d, which components are in Hk(Ω) equipped with the norm and

the scalar product

‖u‖2
Hk(Ω) ≔

d∑

i=1

‖vi‖2Hk(Ω) and (u , w)Hk(Ω) ≔

d∑

i=1

(vi , wi)Hk(Ω) , (3.2)

respectively. Furthermore, let Hk,div(Ω) ≔ {u ∈ Hk(Ω); ∇ · u ∈ Hk(Ω)} for k ∈ �0. With the

scalar product

(u1 , u2)Hk,div(Ω) = (u1 , u2)Hk(Ω) + (∇ · u1 , ∇ · u2)Hk(Ω)

for u1, u2 ∈ Hk,div(Ω) and induced norm ‖ · ‖2
Hk,div(Ω)

= (· , ·)Hk,div(Ω), the space Hk,div(Ω) is

a Hilbert space.

In general, we denote by (· , ·)V the scalar product in the Hilbert space V and by 〈· , ·〉V ′,V
the duality pairing between V and its dual V ′. In proofs, we occasionally suppress the

subindex for V = L2(Ω) or L2(Ω) and simply write ‖ · ‖ and (· , ·) .

We continue with the definition of spaces containing time-dependent functions. With V

being a Banach space, the space Lp(J; V) consists of Bochner-measurable, V-valued func-

tions such that the norm

‖v‖Lp(J;V) ≔






(∫

J
‖v(t, ·)‖pV dt

)1/p
, 1 ≤ p < ∞

ess supt∈J ‖v(t, ·)‖V , p = ∞






is finite, which makes Lp(J; V) a Banach space. For the case of V = Lp(Ω), we identify

Lp(J × Ω) = Lp(J; V).

An overview of notation used in this context is found in Table B.8 on p. 147.

Theorem 3.1 (Trace and normal trace). Let Ω be a domain as considered above.

(i) The trace operator γ0 : H1(Ω) ∋ w 7→ w|∂Ω ∈ H1/2(∂Ω) is a linear and continuous

mapping, i. e., γ0 ∈ L(H1(Ω); H1/2(∂Ω)). Furthermore, γ0 is surjective.
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(ii) The normal trace operator γν : Hdiv(Ω) ∋ u 7→ u · ν|∂Ω ∈ H−1/2(∂Ω) is a linear and

continuous mapping, i. e., γν ∈ L(Hdiv(Ω); H−1/2(∂Ω)). In particular,

‖u · ν‖H−1/2(∂Ω) ≤ ‖γν‖ ‖u‖Hdiv(Ω) (3.3)

holds with ‖γν‖ = ‖γν‖L(Hdiv(Ω);H−1/2(∂Ω)) = 1. Furthermore, γν is surjective.

Proof. See Girault & Raviart (1986, Thm. 1.5, Thm. 2.5, and Cor. 2.8). �

A useful consequence is the following formula for partial integration.

Corollary 3.2 (Green). Let u ∈ Hdiv(Ω). Then u · ν|∂Ω ∈ H−1/2(∂Ω) and there holds

∀w ∈ H1(Ω), (∇ · u , w)L2(Ω) + (u , ∇w)L2(Ω) = 〈u · ν , w〉H−1/2(∂Ω),H1/2(∂Ω) . (3.4)

If, in addition, u · ν|∂Ω ∈ L2(∂Ω), we can identify the duality pairing in (3.4) by
∫

∂Ω
u · νw =

(u · ν , w)L2(∂Ω). Then, in particular, 〈· , ·〉H−1/2(∂Ω),H1/2(∂Ω) is a continuous extension of the inner

product (· , ·)L2(∂Ω), since (H1/2(∂Ω), L2(∂Ω),H−1/2(∂Ω)) is a Gelfand triple (cf. Roubíček

2005b, Sec. 7.2).

With Theorem 3.1 we are able to define the following constrained ansatz spaces:

Hdiv
a (Ω) ≔

{

u ∈ Hdiv(Ω); u · ν = a on ∂Ω
}

, H1
b(Ω) ≔

{

w ∈ H1(Ω); w = b on ∂Ω
}

,

where a ∈ H−1/2(∂Ω) and b ∈ H1/2(∂Ω). The spaces Hdiv
0 (Ω) and H1

0(Ω) therefore consist of

functions with vanishing normal trace and vanishing trace, respectively.

In the error analysis presented in Section 3.2, we require the following version of the

discrete Gronwall lemma:

Lemma 3.3 (Discrete Gronwall). Let (ak)k∈�, (bk)k∈� be nonnegative sequences of real

numbers, (bn) non-decreasing, and c be a (fixed) positive constant. If (an) satisfies

∀ n ∈ �, an ≤ bn + c
n−1∑

m=1

am ,

then

∀n ∈ �, an ≤ (1 + c)nbn .
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Proof. See Girault & Raviart (1979, Lem. 2.4). �

Note that the sum is zero for n = 1 by definition.

We recall some elementary inequalities that are frequently used in the numerical anal-

ysis in this work. For further generalizations, we refer to the monographies of Adams &

Fournier (2003) and Wu et al. (2006).

Young inequality. For positive numbers a, b, there holds for all δ > 0 that

ab ≤ δ

2
a2 +

1

2δ
b2 .

Minkowski inequality. Let 1 ≤ p < ∞. If f , g ∈ Lp(Ω), then f + g ∈ Lp(Ω) and

‖ f + g‖Lp(Ω) ≤ ‖ f ‖Lp(Ω) + ‖g‖Lp(Ω) .

The discrete version for sequences of real numbers (ak)k∈�, (bk)k∈� reads:





∑

k

|ak + bk|p




1/p

≤




∑

k

|ak|p




1/p

+





∑

k

|bk|p




1/p

.

Hölder inequality. Let 1 ≤ p, q, r ≤ ∞ and 1
p +

1
q =

1
r . If f ∈ Lp(Ω), g ∈ Lq(Ω), then

f g ∈ Lr(Ω) and

‖ f g‖Lr(Ω) ≤ ‖ f ‖Lp(Ω) ‖g‖Lq(Ω) .

In particular, r = 1, p = q = 2 yields the Cauchy–Schwarz inequality:

( f , g)L2(Ω) ≤ ‖ f g‖L1(Ω) ≤ ‖ f ‖L2(Ω) ‖g‖L2(Ω) .

The discrete version for sequences of real numbers (ak)k∈�, (bk)k∈� reads:





∑

k

|akbk|r




1/r

≤




∑

k

|ak|p




1/p 



∑

k

|bk|q




1/q

.

Jensen inequality. We only state the special case for powers and uniform distributions

here. Let p ≥ 1 and let f : Ω→ �+0 . Then

(

−
∫

f

)p

≤ −
∫

f p and

(

−
∫

f

)1/p

≥ −
∫

f 1/p ,
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where −
∫

· denotes the integral mean (cf. Tab. B.7, p. 146). The discrete version for ak ∈ �+0
reads:





1

n

n∑

k=1

ak





p

≤ 1

n

n∑

k=1

ap
k and





1

n

n∑

k=1

ak





1/p

≥ 1

n

n∑

k=1

a1/p
k .

Triangulation of the domain. Let Th be a regular family of decompositions (Ciarlet 1991,

(H1), p. 131) into closed d-simplices T of characteristic size h (also called fineness or mesh

size) such that Ω = ∪T . For the treatment of curved domains in the context of finite el-

ement methods for second-order problems we refer to Ciarlet (1991, Chap. VI). Let EΩ
denote the set of interior edges (faces for d = 3), E∂Ω the set of exterior edges (faces for

d = 3), EΩ ∪ E∂Ω ≕ E = {E}, and νE the unit normal on E under global orientation that, for

E ∈ E∂Ω, points outward Ω (cf. Fig. 3.1). Triangulation and grid related symbols are found

in Table B.6 on p. 145.

Local discrete spaces. We denote by �k(T ) the space of polynomials of degree at most k

on a simplex T ∈ Th and define by

��k(T ) ≔ �k(T )d ⊕ x�k(T )

= {uh : T → �d; uh(x) = a x + b , a ∈ �k(T ) , b ∈ �k(T )d} (3.5)

the local Raviart–Thomas space of order k (Nédélec 1980; Raviart & Thomas 1977; Thomas

1977). We state some properties of the local discrete spaces in the following lemma.

Lemma 3.4 (Properties of local discrete spaces).

(i) dim��k(T ) = d
(

k+d
k

)

+
(

k+d−1
k

)

.

(ii) dim�k(T ) =
(

k+d
d

)

.

(iii) Let uh ∈ ��k(T ), then ∀E ⊂ T , uh · νE ∈ �k(E).

(iv) Let uh ∈ ��k(T ) such that ∇ · uh = 0, then uh ∈ �k(T )d.

(v) �k−1(T )d ⊂ ��k−1(T ) ⊂ �k(T )d for k ≥ 1.

Proof. For properties (i)–(iv) see Durán (2008, Lem. 3.1), for property (v) see Roberts &

Thomas (1991). �
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Definition 3.5 (Jump). Consider an interior edge (or face) E ∈ EΩ and two d-simpli-

ces T1, T2 ∈ Th sharing E, i. e., E = T1 ∩ T2. Let νE be the unit normal on E under global

orientation (cf. Fig. 3.1). For a vector-valued quantity w ∈ ∏

T∈Th
Hdiv(T ), we define the

jump ~·�E on E by

~w�E ≔ γνE (w|T1) − γνE (w|T2) .

Now consider an exterior edge E ∈ E∂Ω. Recall that νE denotes the unit normal exterior to Ω

in this case. We define ~w�E ≔ γνE (w|T⊃E) .

T1 T2

E

νE

Figure 3.1. Two adjacent triangles T1, T2 sharing an edge E which has an oriented unit nor-
mal νE.

Global discrete spaces. We define by

�k(Th) ≔ {wh : Ω→ �; ∀T ∈ Th, wh|T ∈ �k(T )} (3.6)

the global polynomial space on the triangulation Th, which is discontinuous on interior

edges / faces. Clearly, �k(Th) ⊂ L2(Ω). The global Raviart–Thomas space of order k is de-

fined by

��k(Th) ≔ Hdiv(Ω) ∩
∏

T∈Th

��k(T )

=
{

uh : Ω→ �d; ∀T ∈ Th, uh|T ∈ ��k(T ); ∀E ∈ EΩ, ~uh�E = 0
}

. (3.7)

Thus, the constraint ~uh�E = 0—i. e., the normal components of uh are continuous across

the interior edges—ensures that��k(Th) ⊂ Hdiv(Ω) (Raviart & Thomas 1977, p. 297). Note

that in general, these functions are not continuous in each component.

We refer to Definition 4.14 for closed-form expressions of the basis functions and the

degrees of freedom for ��0(Th) in two space dimensions.

Global interpolation operators. Let the projectors Πk
h : Hdiv(Ω) ∩∏

T∈Th
H1(T ) ∋ u 7→

Πk
hu ∈ ��k(Th) and Pk

h : L2(Ω) ∋ w 7→ Pk
hw ∈ �k(Th) be the global interpolation operators
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due to Raviart and Thomas (Brezzi & Fortin 1991; Durán 2008). Clearly, Πk
h and Pk

h are

each the identity operator on ��k(Th) and �k(Th), respectively. The projector Pk
h is defined

as follows:

Definition 3.6 (Projector properties 1). Let Pk
h be the orthogonal L2(Ω) projector on

�k(Th), i. e.,

∀wh ∈ �k(Th),
(

Pk
hw , wh

)

L2(Ω)
= (w , wh)L2(Ω) (3.8)

for w ∈ L2(Ω).

The projector Πk
h is defined by means of local ��k(T ) projections, the definition of which

can be found, e. g., in Durán (2008). The projector has the following property:

Lemma 3.7 (Projector properties 2). The projector Πk
h fulfills the following orthogonal-

ity: for u ∈ Hdiv(Ω) ∩∏

T∈Th
H1(T ) given,

∀wh ∈ �k(Th),
(

∇ ·Πk
hu , wh

)

L2(Ω)
= (∇ · u , wh)L2(Ω) . (3.9)

Proof. See (Durán 2008, Lem. 3.5). �

In other words, (Pk
h − I)w and ∇ · (Πk

h − I)u are orthogonal to �k(Th).

Lemma 3.8 (Commuting diagram property). The following diagram commutes:

Hdiv(Ω) ∩∏

T∈Th
H1(T ) L2(Ω)

��k(Th) �k(Th)

∇·

∇·

Πk
h Pk

h

Proof. See Durán (2008, (38)) and also Ern & Guermond (2004, Lem. 1.41 and

Prop. 1.98). �

In short, this means that ∇ ·Πk
h = Pk

h ∇· and, in particular, that ∇ ·��k(Th) = �k(Th). Note

that the divergence operator in Lemma 3.8 is surjective:
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Lemma 3.9. Given wh ∈ �k(Th), there exists uh ∈ ��k(Th) such that ∇ · uh = wh and

‖uh‖Hdiv(Ω) ≤ CΩ‖wh‖L2(Ω) (3.10)

holds with a constant CΩ depending only on Ω.

Proof. See Raviart & Thomas (1977, Thm. 4, p. 310) or Chen (2005, Lem. 3.7, p. 164). �

With this result we can write (3.8) as

∀uh ∈ ��k(Th),
(

Pk
hw , ∇ · uh

)

L2(Ω)
= (w , ∇ · uh)L2(Ω) . (3.11)

The��k(Th) and �k(Th) finite element spaces have the following approximation properties:

Lemma 3.10 (Projection errors). For any u ∈ Hl,div(Ω) and w ∈ Hl(Ω), there exist con-

stants C > 0 independent of h such that for l ∈ {1, . . . , k + 1},

‖∇ · (Πk
h − I)u‖L2(Ω) ≤ Chl|∇ · u|Hl(Ω) ,

‖(Πk
h − I)u‖L2(Ω) ≤ Chl|u|Hl(Ω) ,

‖(Pk
h − I)w‖L2(Ω) ≤ Chl|w|Hl(Ω) .

Proof. See Brezzi & Fortin (1991, Prop. 3.9, p. 132) and Quarteroni & Valli (1994,

Sec. 3.4.2, Eqn. (3.5.24)). �

Time discretization. Let 0 ≕ t0 < t1 < . . . < tN ≔ T be an equidistant decomposition of

the time interval J and let τ ≔ T/N denote the time step size. The assumption of even time

step sizes in this chapter is for an easy presentation and not necessary for the analysis that

follows.

For fully discrete functions vn
h, n ∈ {1, . . . ,N}, we define the backward difference quo-

tient by

∂vn
h ≔

vn
h − vn−1

h

τ
. (3.12)

Analogously, for a continuous function, we set ∂v(tn) ≔
(

v(tn) − v(tn−1)
)

/τ.

With the definition (3.12), the well-known Taylor expansion with integral remainder

yields the following useful identities entering the proof of Proposition 3.24:
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Corollary 3.11 (FTC /Taylor). Let v ∈ H1( ]tn−1, tn[ ). Then

∂v(tn) =
1

τ

∫ tn

tn−1

∂tv(s) ds = −
∫ tn

tn−1

∂tv(s) ds . (3.13a)

Let v ∈ H2( ]tn−1, tn [). Then

(∂t − ∂)v(tn) =
1

τ

∫ tn

tn−1

(s − tn−1) ∂ttv(s) ds = −
∫ tn

tn−1

(s − tn−1) ∂ttv(s) ds . (3.13b)

3.2 Discretization and Convergence Analysis

The hypotheses imposed on the data of system (3.1) are as follows:

Hypotheses 3.12 (Hypotheses on the data).

(H1) The inverse of the coefficient D ∈ �d,d is bounded and positive definite, i. e., there

exist strictly positive constants Dα, D∞, such that

∀ξ ∈ �d , ξ · D−1 ξ ≥ Dα|ξ|2 ,
∀ξ1, ξ2 ∈ �d , ξ1 · D−1 ξ2 ≤ D∞|ξ1||ξ2| .

(H2) The hypothesis (H1) holds for the coefficient K with the constants Kα, K∞.

(H3) The nonlinear coefficients r± are globally Lipschitz continuous.

(H4) The initial data c±,0 are bounded and nonnegative, i. e.,

c±,0 ∈ L∞(Ω) and c±,0(x) ≥ 0 for a. e. x ∈ Ω .

(H5) The coefficient φD is bounded in H1(J; H1/2(∂Ω)).

(H6) The coefficient σ̄ is bounded in L∞(J × Ω).

Note that the symmetry and positive definiteness of the matrices in hypotheses (H1) and (H2)

imply the symmetry and positive definiteness of their inverses (e. g., Knabner & Barth 2012,

Thm. 4.135).

Some of the items in Hypotheses 3.12 are naturally satisfied:
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Remark 3.13 (Satisfied hypotheses of the DNPP problem). The homogenization result

(2.5) (cf. Thm. 2.5, p. 23) naturally satisfies some of the assumptions on the data: the sym-

metry and positive definiteness of the upscaled tensors D and K as postulated in (H1) and

(H2) holds for Problem 3.14 (cf. Def. 2.3 and Cioranescu & Donato (1999) and Hornung

(1997)). Being defined as −
∫

Γ
σ dsy , the boundedness of the coefficient σ̄ directly follows

from the boundedness of σ on the interior cell boundary Γ. △

The error analysis of this section deals with the discretization of the following mixed weak

continuous problem that is derived by multiplication of the flux equations of (3.1) by the

inverse tensors and by using the Green formula (3.4):

Problem 3.14 (Mixed weak continuous DNPP problem). Let the data D, K, r±, c±,0, φD,

σ̄ be given and let the hypotheses (H1)–(H6) hold. Seek (u, p, j+, c+, j−, c−, E, φ) with u ∈
L2(J; Hdiv

0 (Ω)), p ∈ L2(J; L2(Ω)/�), j± ∈ L2(J; Hdiv(Ω)), c± ∈ L∞(J × Ω) ∩ H1(J; L2(Ω)),

E ∈ L∞(J; Hdiv(Ω)), φ ∈ L∞(J; L2(Ω)) such that for a. e. t ∈ J,

∀u ∈ Hdiv(Ω), −
(

K−1u(t) , u
)

+ (∇ · u , p(t)) = −
(

D−1E(t)
(

c+(t) − c−(t)
)

, u
)

, (3.14a)

∀w ∈ L2(Ω), (∇ · u(t) , w) = 0 , (3.14b)

∀u ∈ Hdiv(Ω), −
(

D−1 j±(t) , u
)

+ (∇ · u , c±(t)) +
(

D−1(u(t) ± E(t)
)

c±(t) , u
)

= 0 , (3.14c)

∀w ∈ L2(Ω), (∂tc±(t) , w) + (∇ · j±(t) , w) = (r±(c+(t), c−(t)) , w) , (3.14d)

∀u ∈ Hdiv(Ω), −
(

D−1E(t) , u
)

+ (∇ · u , φ(t)) = 〈u · ν , φD(t)〉H−1/2(∂Ω),H1/2(∂Ω) , (3.14e)

∀w ∈ L2(Ω), (∇ · E(t) , w) = (c+(t) − c−(t) + σ̄(t) , w) (3.14f)

with c± satisfying ∀w ∈ L2(Ω),
(

c±(0) − c±,0 , w
)

= 0.

We call the solution of Problem 3.14 the true solution in contrast to the solution of the below

defined discrete problem, which we call the discrete solution.

The formulation of the fully discrete counterpart of Problem 3.14 contains the follow-

ing cut-off operator (Barbeiro & Wheeler 2010; Sun & Wheeler 2005; Sun et al. 2002):

Definition 3.15 (Cut-off operator). For w ∈ Lp(Ω), 1 ≤ p ≤ ∞ and fixed M ∈ �+, let

M : Lp(Ω) ∋ w 7→ M(w) ∈ L∞(Ω) be an operator such that for a. e. x ∈ Ω,

M(w)(x) = min
{

|w(x)|, M
}

holds.
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Lemma 3.16 (Properties of the cut-off operator). Let 1 ≤ p ≤ ∞. The following state-

ments hold:

(i) ∀w ∈ Lp(Ω), ‖M(w)‖L∞(Ω) ≤ M .

(ii) Let w ∈ L∞(Ω). If M satisfies ‖w‖L∞(Ω) ≤ M, thenM(w) = w .

(iii) The operatorM(·) is globally Lipschitz continuous on Lp(Ω) with a Lipschitz con-

stant equal to one, i. e.,

∀v, w ∈ Lp(Ω), ‖M(v) −M(w)‖Lp(Ω) ≤ ‖v − w‖Lp(Ω) .

Proof. The properties (i) and (ii) are obvious. Property (iii) follows from the pointwise

Lipschitz continuity |M(v)(x) −M(w)(x)| ≤ |v(x) − w(x)| for a. e. x ∈ Ω taking the essential

supremum on both sides for p=∞ and taking both sides to the power p and integration

over Ω for 1 ≤ p < ∞. A sketch of the proof of the pointwise property (iii), i. e., for p = ∞,

is given in Sun et al. (2002). �

The cut-off operatorM is a crucial tool in the error analysis that follows. However, the as-

sociated numerical scheme is not defined properly yet as long as no explicit expression for

the cut-off level M is given that does not depend on the true solution itself. Especially, it has

to be ensured that M is chosen sufficiently large such that the property (ii) of Lemma 3.16

holds for the partial true solutions c±(t). This means, in particular, that an L∞ a priori es-

timate is necessary providing an L∞ bound depending only on the data. To this end, we

show that solutions of Problem 3.14 also solve Problem 3.17 in order to allow the exploita-

tion of the estimate (iii) of Theorem 3.18 yielding the demanded explicit bound. The so

obtained validity of Theorem 3.18 yields furthermore the existence and uniqueness of solu-

tions of Problem 3.14 and also the nonnegativity of concentrations.

Before we continue with discretization of Problem 3.14, which is based on the mixed

formulation of system (3.1), we cite an existence result of Herz et al. (2012) that yields

an explicit bound for
∑

i∈{+,−} ‖c±‖L∞(J×Ω). The weak problem under investigation of Herz et

al. (2012) derives from the non-mixed formulation of {(3.1c), (3.1d), (3.1e), (3.1f)} and reads

as follows:

Problem 3.17 (Non-mixed weak continuous DNPP problem). Let the data D, K, r±,

c±,0, φD, σ̄ be given and let the hypotheses (H1)–(H6) hold. Seek (u, p, c+, c−, φ) with
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u ∈ L2(J; Hdiv
0 (Ω)), p ∈ L2(J; L2(Ω)/�), c± ∈ L∞(J × Ω) ∩ L2(J; H1

0(Ω)) ∩ H1(J; H−1(Ω)),

φ ∈ L∞(J; H2(Ω) ∩ H1
φD

(Ω)) such that for a. e. t ∈ J,

∀u ∈ Hdiv
0 (Ω), −

(

K−1u(t) , u
)

+ (∇ · u , p(t)) = ((c+(t) − c−(t))∇φ , u) , (3.15a)

∀w ∈ L2(Ω), (∇ · u(t) , w) = 0 , (3.15b)

∀z ∈ H1
0(Ω),

〈

∂tc
±(t) , z

〉

H−1(Ω),H1
0(Ω) +

(

D∇c±(t) , ∇z
) − (

u(t) c±(t) , ∇z
)

± (

D c±(t)∇φ(t) , ∇z
)

=
(

r±(c+(t), c−(t)) , z
)

,

(3.15c)

∀w ∈ L2(Ω), (∇ · D∇φ(t) , w) = (c+(t) − c−(t) + σ̄(t) , w) (3.15d)

with c± satisfying ∀w ∈ L2(Ω),
(

c±(0) − c±,0 , w
)

= 0.

We summarize the most important results of Herz et al. (2012) in the following theorem:

Theorem 3.18 (Existence, uniqueness, nonnegativity, and L∞ stability). Let (u, p, c+,

c−, φ) be the solution of Problem 3.17 and let (H1)–(H6) hold. Then the following

statements hold:

(i) The solution (u, p, c+, c−, φ) of Problem 3.17 uniquely exists.

(ii) The partial solutions c± are nonnegative, i. e.,

c±(t, x) ≥ 0 for a. e. (t, x) ∈ J × Ω .

(iii) The following estimate holds for arbitrary end time T ∈ ]0,∞[ :

∑

i∈{+,−}
‖ci‖L∞(J×Ω) ≤ C(c±,0, σ̄, Ω, T ) , (3.16)

with C(c±,0, σ̄, Ω, T ) > 0 depending only on ‖c±,0‖L∞(Ω), on ‖σ̄‖L∞(J×Ω), on coeffi-

cients of the Sobolev embedding theorem, and on the end time T .

Proof. See Herz et al. (2012, Thms. 3.4, 3.10, 3.11 and Remarks 2.2, 3.7). Item (iii) can

be deduced as follows: from (Herz et al. 2012, Thm. 3.5) we have

∑

i∈{+,−}
‖ci‖L∞(J×Ω) ≤ CM

∑

i∈{+,−}
‖ci‖L2(J×Ω) + 4

∑

i∈{+,−}
‖ci,0‖L∞(Ω)
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with a constant CM > 0 depending only on ‖σ̄‖L∞(J×Ω) and on coefficients of the Sobolev

embedding theorem. Application of Gronwall’s lemma to the parabolic estimate (Herz et al.

2012, Remark 3.6)

d

dt

∑

i∈{+,−}
‖ci(t)‖L2(Ω) +

∑

i∈{+,−}
‖∇ci(t)‖L2(Ω) ≤

2

Dα

‖σ̄‖L∞(J×Ω)

∑

i∈{+,−}
‖ci(t)‖L2(Ω)

yields

∀t ∈ J ,
∑

i∈{+,−}
‖ci(t)‖L2(Ω) ≤ exp

(

2T
Dα

)
∑

i∈{+,−}
‖ci,0‖L2(Ω) ,

which, inserted in the first equation, closes the proof. �

Proposition 3.19 (Mixed solution is non-mixed solution). Let (u, p, j+, c+, j−, c−, E, φ)

be a solution of Problem 3.14. Then the partial solution (u, p, c+, c−, φ) is a solution

of Problem 3.17. In particular, c± ∈ L2(J; H1
0(Ω)) and φ ∈ L∞(J; H2(Ω) ∩ H1

φD
(Ω)) holds.

Proof. In this proof we frequently use the fact that the tensors D and K have an in-

verse D−1 and K−1, respectively, due to (H1), (H2). We denote by D(Ω) the space of in-

finitely differentiable functions with compact support on Ω, and by D′(Ω) the space of dis-

tributions (cf. Ern & Guermond 2004, Sec. B.2).

We test (3.14e) with u ∈ D(Ω)d ⊂ Hdiv(Ω):

∀u ∈ D(Ω)d ,
(

D−1E(t) , u
) (3.14e)
= (φ(t) , ∇ · u) = −〈∇φ(t) , u〉D′(Ω)d ,D(Ω)d , (3.17)

which is the defining equation for ∇φ(t), i. e., ∇φ(t) in the distributional sense is a function:

−∇φ(t) = D−1E(t) for a. e. t ∈ J. Since ‖D−1E‖L∞(J;L2(Ω)) ≤ ‖D−1‖L∞(Ω) ‖E‖L∞(J;L2(Ω)) < ∞ due

to (H1) and L2(Ω) ⊃ Hdiv(Ω), it follows that ∇φ ∈ L∞(J; L2(Ω)). From φ ∈ L∞(J; L2(Ω))

given, we consequently infer that φ ∈ L∞(J; H1(Ω)). Owing toD(Ω) ⊂ L2(Ω) dense (cf. Ern

& Guermond 2004, Thm. B.14; Wu et al. 2006, Cor. 1.1.1), the variational equation

∀u ∈ L2(Ω) ,
(

D−1E(t) , u
)

= −(∇φ(t) , u) (3.18)

holds. Next, we show that φ(t) = φD(t) for a. e. t ∈ J, which was demanded implicitly

in Problem 3.17 by the constrained ansatz space H1
φD

(Ω) and explicitly in Problem 3.14 by
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a boundary integral: using the fact that (3.18) also holds for u ∈ Hdiv(Ω) ⊂ L2(Ω) and

application of Green’s formula yields

∀u ∈ Hdiv(Ω) , 〈u · ν , φ(t)〉H−1/2(∂Ω),H1/2(∂Ω)
(3.4)
= (φ(t) , ∇ · u) + (∇φ(t) , u)

(3.18)
= (φ(t) , ∇ · u) −

(

D−1E(t) , u
) (3.14e)
= 〈u · ν , φD(t)〉H−1/2(∂Ω),H1/2(∂Ω) .

In order to prove that φ(t) is also in H2(Ω), we test (3.14f) with w ∈ D(Ω) ⊂ L2(Ω):

∀w ∈ D(Ω) ,
(

c+(t) − c−(t) + σ̄(t) , w
) (3.14f)
= (∇ · E(t) , w)

= −(E(t) , ∇w)
(3.18)
= (D∇φ(t) , ∇w) = −〈∇ · D∇φ(t) , w〉D′(Ω),D(Ω) ,

which shows that the distributional divergence of D∇φ(t) is a function. Because c± and σ̄

are element of L∞(J; L2(Ω)) ⊃ L∞(J×Ω) from assumption and due to (H6), respectively, we

conclude—taking the previous considerations into account—that φ ∈ L∞(H2(Ω) ∩ H1
φD

(Ω)).

Thus φ(t) is a partial solution of (3.15d) for a. e. t ∈ J.

With (3.18) and owing to c± ∈ L∞(J × Ω), the mixed variational subsystems {(3.15a),

(3.15b)} and {(3.14a), (3.14b)} coincide. Hence, (u(t), p(t)) ∈ Hdiv
0 (Ω) × L2(Ω)/� is also

a partial solution of {(3.15a), (3.15b)}.
It remains to show that c±(t) are partial solutions of the non-mixed variational equa-

tion (3.15c). We test (3.14c) with u ∈ D(Ω)d ⊂ Hdiv(Ω):

∀u ∈ D(Ω)d ,
(

D−1
(

j±(t) − (

u(t) ± E(t)
)

c±(t)
)

, u
) (3.14c)
=

(

c±(t) , ∇ · u)

= −〈∇c±(t) , u
〉

D′(Ω)d ,D(Ω)d , (3.19)

i. e., ∇c±(t) in the distributional sense is a function. Using the Minkowski and the Hölder

inequalities, we obtain

∥
∥
∥
∥D−1

(

j±(t) − (

u(t) ± E(t)
)

c±(t)
)∥∥
∥
∥

L2(Ω)

(H1)
≤ ‖D−1‖L∞(Ω)

(

‖ j±(t)‖L2(Ω) + ‖u(t) ± E(t)‖L2(Ω)‖c±(t)‖L∞(Ω)

)

< ∞ .

Hence, ∇c±(t) ∈ L2(Ω) and thus c±(t) ∈ H1(Ω) for a. e. t ∈ J. In particular, (3.19) also holds

in the L2(Ω) sense. With this result, c± ∈ L2(J; H1(Ω)) is easily shown:

‖c±‖2L2(J;H1(Ω)) =

∫

J
‖c±(s)‖2H1(Ω) ds = ‖c±‖2L2(J×Ω) +

∫

J
‖∇c±(s)‖2

L2(Ω) ds
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(3.19)
= ‖c±‖2L2(J×Ω) +

∫

J

∥
∥
∥
∥D−1

(

j±(s) − (

u(s) ± E(s)
)

c±(s)
)∥∥
∥
∥

2

L2(Ω)
ds

≤ ‖c±‖2L2(J×Ω) + ‖D
−1‖2L∞(Ω)‖ j± −

(

u ± E
)

c±‖2
L2(J×Ω)

≤ ‖c±‖2L2(J×Ω) + 2‖D−1‖2L∞(Ω)

(

‖ j±‖2
L2(J×Ω) + ‖u ± E‖2

L2(J×Ω)‖c
±(t)‖2L∞(J×Ω)

)

< ∞ ,

where, inter alia, the discrete Jensen inequality was used. Equation (3.14c) also holds for u ∈
D(Ω)d ⊂ Hdiv

0 (Ω). We test (3.14c) with u = DT
∇w, where w ∈ D(Ω), use (H1), and apply

Green’s formula to the first and the second term:

∀w ∈ D(Ω) ,
(

∇ · j±(t) , w
)

=
(

D∇c±(t) , ∇w
) − (

(u(t) ± E(t))c±(t) , ∇w
)

. (3.20)

Note that the second scalar product is meaningful due to the above shown regularity. Since

D(Ω) ⊂ L2(Ω), we may substitute (3.20) into (3.14d):

∀w ∈ D(Ω) ,
(

∂tc
±(t) , w

)

+
(

D∇c±(t) , ∇w
) − (

(u(t) ± E(t))c±(t) , ∇w
)

=
(

r±(c+(t), c−(t)) , w
)

(3.21)

for a. e. t ∈ J. SinceD(Ω) ⊂ H1
0(Ω) dense with respect to ‖ · ‖H1(Ω) (Evans 2010, Sec. 5.2.2),

(3.21) also holds for w ∈ H1
0(Ω). Using that E(t) = −D∇φ(t) holds in L2(Ω) for a. e. t ∈ J,

as shown above, and noting that

∀w ∈ H1
0(Ω) ,

(

∂tc
±(t) , w

)

=
〈

∂tc
±(t) , w

〉

H−1(Ω),H1
0 (Ω) ,

since ∂tc±(t) ∈ L2(Ω) by the definition of Problem 3.14 and (H1
0(Ω), L2(Ω),H−1(Ω)) is a

Gelfand triple, it follows that the partial solutions c±(t) of Problem 3.14 solve the non-mixed

variational equation (3.15c) of Problem 3.17. �

From Proposition 3.19 it follows immediately the following corollary:

Corollary 3.20. Theorem 3.18 also holds true for the solution (u, p, j+, c+, j−, c−, E, φ)

of Problem 3.14.

We continue with the formulation of the fully discrete problem. Recall (3.12)—the definition

of the backward difference quotient. We assume that the (stationary) upscaled coefficients,

namely D, K, and σ̄ are sufficiently precisely precomputed such that a discretization error in
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these coefficients is negligible. The discrete boundary data φn
D,h is considered to be a “good

approximation” of φD(tn).

Owing to Corollary 3.20, the use of the cut-off operatorM according to Definition 3.15

is now admissible for the definition of the fully discrete weak problem:

Problem 3.21 (Mixed weak discrete DNPP problem). Let c±,0h ≔ Pk
hc±,0. For n ∈ {1, . . . ,

N}, seek (un
h, pn

h, j+,nh , c+,nh , j−,nh , c−,nh , En
h, φ

n
h) ∈ (��k(Th) × �k(Th))4 such that

∀uh ∈ ��k(Th), −
(

K−1un
h , uh

)

+
(

∇ · uh , pn
h

)

= −
(

D−1En
hM(c+,nh − c−,nh ) , uh

)

, (3.22a)

∀wh ∈ �k(Th),
(

∇ · un
h , wh

)

= 0 , (3.22b)

∀uh ∈ ��k(Th),−
(

D−1 j±,nh , uh
)

+
(

∇ · uh , c±,nh

)

+
(

D−1(un
h ± En

h)M(c±,nh ) , uh
)

= 0 , (3.22c)

∀wh ∈ �k(Th),
(

∂c±,nh , wh

)

+
(

∇ · j±,nh , wh

)

=
(

r±(c+,nh , c−,nh ) , wh

)

, (3.22d)

∀uh ∈ ��k(Th), −
(

D−1En
h , uh

)

+
(

∇ · uh , φn
h

)

=
(

uh · ν , φn
D,h

)

L2(∂Ω)
, (3.22e)

∀wh ∈ �k(Th),
(

∇ · En
h , wh

)

=
(

c+,nh − c−,nh + σ̄ , wh

)

, (3.22f)

where the cut-off level M for the cut-off operatorM is chosen equal to the right-hand side

of (3.16) in Theorem 3.18 (iii).

The cutting off of the terms in {(3.22a), (3.22c)} is necessary here in order to bound the

respective scalar products uniformly in h. Note that it would also be possible to cut off the

fluxes un
h and En

h. However, we could not access analytical results that provide L∞ a priori

estimates for u or E.

In the context of a priori error analysis it is admissible to make further assumptions on

the regularity of the true solution that is to be approximated.

Hypotheses 3.22 (Hypotheses on the true solution and on the initial data).

Let l1, . . . , l6 ∈ {1, . . . , k + 1} be fixed integers (k as in Prob. 3.21).

(H7) For the partial true solution (u, p) it additionally holds that

u ∈ L2(J; L∞(Ω)) ∩ H1(J; Hl1(Ω)), p ∈ H1(J; Hl2(Ω)).

(H8) For the partial true solutions ( j±, c±) it additionally holds that

j± ∈ H1(J; Hl3(Ω)), c± ∈ H2(J; L2(Ω)) ∩ H1(J; Hl4(Ω)).

(H9) For the partial true solution (E, φ) it additionally holds that

E ∈ L2(J; L∞(Ω)) ∩ H1(J; Hl5,div(Ω)), φ ∈ H1(J; Hl6(Ω)).
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(H10) For the initial data c±,0 it additionally holds that c±,0 ∈ Hl4 (Ω).

Proposition 3.23. Let (E, φ, c+, c−) and (En
h, φ

n
h, c
+
h , c
−
h ) be partial solutions of Problem 3.14

and Problem 3.21, respectively. Then, if in addition the regularity requirements of (H9) are

satisfied, there exist constants C > 0 independent of h such that for n ∈ {1, . . . ,N},

‖∇ · (En
h − E(tn))‖2L2(Ω) ≤ C

(

h2l5 |∇ · E(tn)|2
Hl5 (Ω)

+
∑

i∈{+,−}
‖ci,n

h − ci(tn)‖2L2(Ω)

)

, (3.23a)

‖En
h − E(tn)‖2

L2(Ω) + ‖φ
n
h − φ(tn)‖2L2(Ω) ≤ C

(

h2l5 |E(tn)|2
Hl5 ,div(Ω)

+ h2l6 |φ(tn)|2
Hl6 (Ω)

+
∑

i∈{+,−}
‖ci,n

h − ci(tn)‖2L2(Ω) + ‖φ
n
D,h − φD(tn)‖2H1/2(∂Ω)

)

. (3.23b)

Proof. Since we deal with a fixed time level here, we suppress the time index n and the

argument for the evaluation at tn. We write Eh instead of En
h, and E instead of E(tn) etc. for

the sake of presentation.

We start with the proof of (3.23a). Subtraction of {(3.14e), (3.14f)} from {(3.22e),

(3.22f)} yields the error equations

−
(

D−1(Eh − E) , uh
)

+ (∇ · uh , φh − φ) =
〈

uh · ν , φD,h − φD
〉

H−1/2(∂Ω),H1/2(∂Ω) , (3.24a)

(∇ · (Eh − E) , wh) =
(

c+h − c+ , wh
) − (

c−h − c− , wh
)

(3.24b)

for all uh ∈ ��k(Th) and for all wh ∈ �k(Th). We choose wh = Pk
h

(

∇ · (Eh − E)
) Lem. 3.8
=

∇ ·Πk
h(Eh − E) ∈ �k(Th) in (3.24b) and use the identity ∇ · (Eh − E) = ∇ ·Πk

h(Eh − E) +

∇ · (Πk
h − I)E to see that

(

∇ · (Eh − E) , ∇ ·Πk
h(Eh − E)

)

=
(

c+h − c+ , ∇ ·Πk
h(Eh − E)

)

−
(

c−h − c− , ∇ ·Πk
h(Eh − E)

)

⇔ ‖∇ · (Eh − E)‖2 =
(

∇ · (Eh − E) , ∇ · (Πk
h − I)E

)

+
(

∇ · (Eh − E) , c+h − c+
)

− (

∇ · (Eh − E) , c−h − c−
) −

(

∇ · (Πk
h − I)E , c+h − c+

)

+
(

∇ · (Πk
h − I)E , c−h − c−

)

.

Denoting the terms by I to V , we infer from the inequalities of Cauchy–Schwarz and of

Young that

I ≤ δ

2
‖∇ · (Eh − E)‖2 + 1

2δ
‖∇ · (Πk

h − I)E‖2 , II ≤ δ

2
‖∇ · (Eh − E)‖2 + 1

2δ
‖c+h − c+‖2 ,

|III| ≤ δ

2
‖∇ · (Eh − E)‖2 + 1

2δ
‖c−h − c−‖2 , |IV | ≤ δ

′

2
‖∇ · (Πk

h − I)E‖2 + 1

2δ′
‖c+h − c+‖2 ,

V ≤ δ
′

2
‖∇ · (Πk

h − I)E‖2 + 1

2δ′
‖c−h − c−‖2
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for all δ, δ′ > 0. Hence, we obtain the estimate

(

1 − 3

2
δ

)

‖∇ · (Eh − E)‖2 ≤
(

1

2δ
+ δ′

)

‖∇ · (Πk
h − I)E‖2 +

(

1

2δ
+

1

2δ′

)
∑

i∈{+,−}
‖ci

h − ci‖2

with the constraint that 0 < δ < 2/3. Using the projection error estimate of Lemma 3.10 it

follows (3.23a).

We continue with the proof of (3.23b). With the projector properties (3.9) and (3.11),

the error equations (3.24) can be written as

−
(

D−1(Eh − E) , uh
)

+
(

∇ · uh , Pk
h(φh − φ)

)

=
〈

uh · ν , φD,h − φD
〉

H−1/2(∂Ω),H1/2(∂Ω) ,
(

∇ ·Πk
h(Eh − E) , wh

)

=
(

c+h − c+ , wh
) − (

c−h − c− , wh
)

for all uh ∈ ��k(Th) and for all wh ∈ �k(Th). Choose uh = Πk
h(Eh − E) ∈ ��k(Th) and

wh = Pk
h(φh − φ) ∈ �k(Th) and subtract the resulting equations to obtain

(

D−1(Eh − E) , Πk
h(Eh − E)

)

=
(

c+h − c+ , Pk
h(φh − φ)

)

−
(

c−h − c− , Pk
h(φh − φ)

)

−
〈

Πk
h(Eh − E) · ν , φD,h − φD

〉

H−1/2(∂Ω),H1/2(∂Ω)
.

The use of the identities Eh−E = Πk
h(Eh−E)+(Πk

h− I)E and φh−φ = Pk
h(φh−φ)+(Pk

h− I)φ,

the ellipticity of D−1 (cf. (H1)) yields

Dα‖Eh − E‖2 ≤
(

D−1(Eh − E) , (Πk
h − I)E

)

+
(

φh − φ , c+h − c+
)

−
(

(Pk
h − I)φ , c+h − c+

)

− (

φh − φ , c−h − c−
)

+
(

(Pk
h − I)φ , c−h − c−

)

− 〈

(Eh − E) · ν , φD,h − φD
〉

H−1/2(∂Ω),H1/2(∂Ω) +
〈

(Πk
h − I)E · ν , φD,h − φD

〉

H−1/2(∂Ω),H1/2(∂Ω)
.

We estimate the terms on the right side, which are denoted by I to VII. Due to the bounded-

ness of D−1 in L∞(Ω) (cf. (H1)), it follows by the Hölder inequality that

I ≤ δ

2
D∞‖Eh − E‖2 + 1

2δ
D∞‖(Πk

h − I)E‖2 , II ≤ δ

2
‖φh − φ‖2 +

1

2δ
‖c+h − c+‖2 ,

|III| ≤ δ′

2
‖(Pk

h − I)φ‖2 + 1

2δ′
‖c+h − c+‖2 , |IV | ≤ δ

2
‖φh − φ‖2 +

1

2δ
‖c−h − c−‖2 ,

V ≤ δ′

2
‖(Pk

h − I)φ‖2 + 1

2δ′
‖c−h − c−‖2
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for all δ, δ′ > 0. We estimate the terms VI and VII by

|VI| ≤ ‖(Eh − E) · ν‖H−1/2(∂Ω)‖φD,h − φD‖H1/2(∂Ω)

(3.3)
≤ ‖Eh − E‖Hdiv(Ω)‖φD,h − φD‖H1/2(∂Ω)

≤ δ

2
‖Eh − E‖2

Hdiv(Ω)
+

1

2δ
‖φD,h − φD‖2H1/2(∂Ω)

=
δ

2
‖Eh − E‖2 + δ

2
‖∇ · (Eh − E)‖2 + 1

2δ
‖φD,h − φD‖2H1/2(∂Ω) , (3.25)

where the last identity holds due to the definition of the Hdiv(Ω) norm. Analogously,

VII ≤ δ′

2
‖(Πk

h − I)E‖2 + δ
′

2
‖∇ · (Πk

h − I)E‖2 + 1

2δ′
‖φD,h − φD‖2H1/2(∂Ω) .

Setting δ′ ≔ 1 we recapitulatory obtain

2Dα‖Eh − E‖2 ≤ δ‖∇ · (Eh − E)‖2 + ‖∇ · (Πk
h − I)E‖2 + δ(D∞ + 1)‖Eh − E‖2

+

(

1

δ
D∞ + 1

)

‖(Πk
h − I)E‖2 + 2δ‖φh − φ‖2 + 2‖(Pk

h − I)φ‖2

+

(

1

δ
+ 1

)
∑

i∈{+,−}
‖ci

h − ci‖2 +
(

1

δ
+ 1

)

‖φD,h − φD‖2H1/2(∂Ω) (3.26)

with the constraint 0 < δ < 2Dα/(D∞ + 1). Having the estimate (3.26) for ‖Eh − E‖ at

hand, an estimate for ‖φh −φ‖ needs to be derived: according to Lemma 3.9, we may choose

uh ∈ ��k(Th) in (3.24a) such that ∇ · uh = Pk
h(φh − φ) ∈ �k(Th):

(

Pk
h(φh − φ) , φh − φ

)

= (∇ · uh , φh − φ)

(3.24a)
=

(

D−1(Eh − E) , uh
)

+
〈

uh · ν , φD,h − φD
〉

H−1/2(∂Ω),H1/2(∂Ω) .

Using the identity φh − φ = Pk
h(φh − φ) + (Pk

h − I)φ, we obtain

‖φh − φ‖2 =
(

D−1(Eh − E) , uh
)

+
〈

uh · ν , φD,h − φD
〉

H−1/2(∂Ω),H1/2(∂Ω) +
(

(Pk
h − I)φ , φh − φ

)

and estimate the terms on the right side, which are denoted by VIII, IX, X. Since D−1 is

bounded due to (H1),

VIII ≤ 1

2δ′′
D∞‖Eh − E‖2 + δ

′′

2
D∞‖uh‖2
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holds. Using ‖uh‖ ≤ ‖uh‖Hdiv(Ω)

Lem. 3.9
≤ CΩ‖Pk

h(φh − φ)‖ and the Minkowski inequality together

with (a + b)2 ≤ 2a2 + 2b2 (discrete Jensen), we arrive at

VIII ≤ 1

2δ′′
D∞‖Eh − E‖2 + δ′′C2

ΩD∞‖φh − φ‖2 + δ′′C2
ΩD∞‖(Pk

h − I)φ‖2 .

We can treat the boundary term in IX as in (3.25):

IX ≤ δ′′

2
‖uh‖2Hdiv(Ω)

+
1

2δ′′
‖φD,h − φD‖2H1/2(∂Ω) .

Analogously to VIII, by estimating ‖uh‖2Hdiv(Ω)
,

IX ≤ δ′′C2
Ω‖φh − φ‖2 + δ′′C2

Ω‖(Pk
h − I)φ‖2 + 1

2δ′′
‖φD,h − φD‖2H1/2(∂Ω)

holds. Eventually, we estimate X by

|X| ≤ δ′′

2
‖φh − φ‖2 +

1

2δ′′
‖(Pk

h − I)φ‖2

and obtain in total

(

2 − (

2C2
Ω(D∞ + 1) + 1

)

δ′′
)

‖φh − φ‖2 ≤
1

δ′′
D∞‖Eh − E‖2 + 1

δ′′
‖φD,h − φD‖2H1/2(∂Ω)

+

(

2δ′′C2
Ω(D∞ + 1) +

1

δ′′

)

‖(Pk
h − I)φ‖2 (3.27)

with the constraint 0 < δ′′ < 1/(C2
Ω

(D∞ + 1) + 1/2). By setting δ′′ ≔ 1/C1 ≔ 1/
(

2C2
Ω

(D∞ +

1) + 1
)

and substituting ‖φh − φ‖2 into (3.26), we obtain

(

2Dα − δ
(

3D∞ + 1 + 4C2
ΩD∞(D∞ + 1)

))‖Eh − E‖2 ≤ δ‖∇ · (Eh − E)‖2

+ ‖∇ · (Πk
h − I)E‖2 +

(

1

δ
D∞ + 1

)

‖(Πk
h − I)E‖2 + 2

(

1 + δ
(

1 − 1

C1
+C1

)
)

‖(Pk
h − I)φ‖2

+

(

1

δ
+ 1

)
∑

i∈{+,−}
‖ci

h − ci‖2 +
(

1

δ
+ 1 + 2δC1

)

‖φD,h − φD‖2H1/2(∂Ω) (3.28)

with the constraint 0 < δ < 2Dα/
(

3D∞ + 1 + 4C2
Ω

D∞(D∞ + 1)
)

. Fixing δ, inserting the

estimate (3.28) into (3.27), and summing up the resulting equation with (3.28) yields

‖Eh − E‖2 + ‖φh − φ‖2 ≤ C
(

‖∇ · (Eh − E)‖2 + ‖∇ · (Πk
h − I)E‖2 + ‖(Πk

h − I)E‖2
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+ ‖(Pk
h − I)φ‖2 +

∑

i∈{+,−}
‖ci

h − ci‖2 + ‖φD,h − φD‖2H1/2(∂Ω)

)

with a constant C depending on Dα, D∞, and CΩ. We conclude the inequality (3.23b) by

using (3.23a), the projection error estimate of Lemma 3.10, and the definition of the Hdiv(Ω)

seminorm. �

Although the estimate (3.23a) is no longer used in the analysis that follows, it was required

in the proof for (3.23b), which will enter the proof for Theorem 3.26.

Proposition 3.24. Let (u, p, j+, c+, j−, c−, E, φ) and (un
h, pn

h, j+,nh , c+,nh , j−,nh , c−,nh , En
h, φ

n
h) be

solutions of Problem 3.14 and Problem 3.21, respectively. Then, if in addition the regularity

requirements of (H8) and (H10) are satisfied, there exists a constant C > 0 independent

of h and τ such that for sufficiently small τ, for n ∈ {1, . . . ,N},

‖c±,nh − c±(tn)‖2L2(Ω) + τ

n∑

m=1

‖ j±,mh − j±(tm)‖2
L2(Ω) ≤ C

(

τ2‖∂ttc
±‖2L2(]0,tn[×Ω)

+ h2l3τ

n∑

m=1

| j±(tm)|2
Hl3 (Ω)

+ h2l4
(

|c±,0|2
Hl4 (Ω)

+

∫ tn

0

|∂tc
±(s)|2

Hl4 (Ω)
ds + τ

n∑

m=1

|c±(tm)|2
Hl4 (Ω)

)

+ τ

n∑

m=1

(

‖Em
h − E(tm)‖2

L2(Ω) + ‖u
m
h − u(tm)‖2

L2(Ω) + ‖c
∓,m
h − c∓(tm)‖2L2(Ω)

)
)

. (3.29)

Some ideas of the proof that follows stem from the work of F. A. Radu (Radu 2004; Radu

& Wang 2011; Radu et al. 2010).

Proof (of Proposition 3.24). In this proof we abbreviate c±(tn) by c±,n (and also analo-

gously further quantities) keeping in mind that c± is a function existing everywhere in J.

Subtraction of {(3.14c), (3.14d)} from {(3.22c), (3.22d)} yields the following error equations

for n ∈ {1, . . . ,N}:

−
(

D−1( j±,nh − j±,n) , uh
)

+
(

∇ · uh , c±,nh − c±,n
)

+
(

D−1((un
h ± En

h)M(c±,nh ) − (un ± En)c±,n
)

, uh
)

= 0 ,
(

∂c±,nh − ∂tc±,n , wh

)

+
(

∇ · ( j±,nh − j±,n) , wh

)

=
(

r±(c+,nh , c−,nh ) − r±(c+,n, c−,n) , wh

)

for all uh ∈ ��k(Th) and for all wh ∈ �k(Th). We proceed analogously to the proof of (3.23b)

in order to eliminate the divergence terms by using the projector properties {(3.9), (3.11)} and
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choosing uh = Πk
h( j±,nh − j±,n) ∈ ��k(Th) and wh = Pk

h(c±,nh − c±,n) ∈ �k(Th). The resulting

equation reads

(

∂c±,nh − ∂tc
±,n , Pk

h(c±,nh − c±,n)
)

+
(

D−1( j±,nh − j±,n) , Πk
h( j±,nh − j±,n)

)

=
(

D−1((un
h ± En

h)M(c±,nh ) − (un ± En)c±,n
)

, Πk
h( j±,nh − j±,n)

)

+
(

r±(c+,nh , c−,nh ) − r±(c+,n, c−,n) , Pk
h(c±,nh − c±,n)

)

. (3.30)

In the following, we make a frequent use of the identities

j±,nh − j±,n = Πk
h( j±,nh − j±,n) + (Πk

h − I) j±,n , (3.31a)

c±,nh − c±,n = Pk
h(c±,nh − c±,n) + (Pk

h − I)c±,n . (3.31b)

Following the idea of Arbogast et al. (1996), we use the identity (3.31b), the projector prop-

erty (3.8), and the fact that ∂ commutes with Pk
h to decompose the time derivative term as

follows:

(

∂c±,nh − ∂tc
±,n , Pk

h(c±,nh − c±,n)
)

=
(

∂(c±,nh − c±,n) , c±,nh − c±,n
)

−
(

∂(Pk
h − I)c±,n , c±,nh − c±,n

)

+
(

(∂ − ∂t)c
±,n , Pk

h(c±,nh − c±,n)
)

.

With this decomposition the combined error equation (3.30) becomes

(

∂(c±,nh − c±,n) , c±,nh − c±,n
)

+ Dα‖ j±,nh − j±,n‖2

≤
(

∂(Pk
h − I)c±,n , c±,nh − c±,n

)

−
(

(∂ − ∂t)c
±,n , Pk

h(c±,nh − c±,n)
)

+
(

D−1( j±,nh − j±,n) , (Πk
h − I) j±,n

)

+
(

D−1((un
h ± En

h)M(c±,nh ) − (un ± En)c±,n
)

, Πk
h( j±,nh − j±,n)

)

+
(

r±(c+,nh , c−,nh ) − r±(c+,n, c−,n) , Pk
h(c±,nh − c±,n)

)

, (3.32)

where the identity (3.31a) and the ellipticity of D−1 due to (H1) was used. Next, consider

the term (∂(c±,nh − c±,n) , c±,nh − c±,n). Using the definition of ∂ and the identity 2(a − b)a =

a2 − b2 + (a − b)2, we see that if we replace n by m, for the sum from one to n multiplied

by 2τ, there holds

2τ
n∑

m=1

(

∂(c±,mh − c±,m) , c±,mh − c±,m
)

= 2
n∑

m=1

(

(c±,mh − c±,m) − (c±,m−1
h − c±,m−1) , c±,mh − c±,m

)
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=

n∑

m=1

(

‖c±,mh − c±,m‖2 − ‖c±,m−1
h − c±,m−1‖2

)

+

n∑

m=1

‖(c±,mh − c±,m) − (c±,m−1
h − c±,m−1)‖2

= ‖c±,nh − c±,n‖2 − ‖c±,0h − c±,0‖2 +
n∑

m=1

‖(c±,mh − c±,m) − (c±,m−1
h − c±,m−1)‖2 .

We multiply (3.32) by 2τ, replace n by m, sum from one to n, and use the last result with the

last term dropped, to obtain

‖c±,nh − c±,n‖2 + 2Dατ

n∑

m=1

‖ j±,mh − j±,m‖2 ≤ ‖c±,0h − c±,0‖2

+ 2τ
n∑

m=1

(

∂(Pk
h − I)c±,m , c±,mh − c±,m

)

− 2τ
n∑

m=1

(

(∂ − ∂t)c
±,m , Pk

h(c±,mh − c±,m)
)

+ 2τ
n∑

m=1

(

D−1( j±,mh − j±,m) , (Πk
h − I) j±,m

)

+ 2τ
n∑

m=1

(

D−1((um
h ± Em

h )M(c±,mh ) − (um ± Em)c±,m
)

, Πk
h( j±,mh − j±,m)

)

+ 2τ
n∑

m=1

(

r±(c+,mh , c−,mh ) − r±(c+,m, c−,m) , Pk
h(c±,mh − c±,m)

)

. (3.33)

We denote the terms on the right side of (3.33) by I to VI. By definition of c±,0h (cf. Prob. 3.21)

we immediately obtain

I = ‖(Pk
h − I)c±,0‖2 .

We continue by estimating II to VI in terms of time truncation and projection errors. With

the Cauchy–Schwarz and the Young inequality we estimate the second term:

II ≤ δ2τ

n∑

m=1

‖c±,mh − c±,m‖2 + 1

δ2
τ

n∑

m=1

‖∂(Pk
h − I)c±,m‖2 .

We apply the Taylor identity (3.13a) and the Jensen inequality and use the fact that Pk
h

commutes with time derivative and time integration:

τ

n∑

m=1

‖∂(Pk
h − I)c±,m‖2 = τ

n∑

m=1

∥
∥
∥
∥
∥
∥

1

τ

∫ tm

tm−1

(Pk
h − I) ∂tc

±(s) ds

∥
∥
∥
∥
∥
∥

2
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≤
n∑

m=1

∫ tm

tm−1

‖(Pk
h − I) ∂tc

±(s)‖2 ds =

∫ tn

0
‖(Pk

h − I) ∂tc
±(s)‖2 ds

and thus, collectively,

II ≤ δ2τ

n∑

m=1

‖c±,mh − c±,m‖2 + 1

δ2
‖(Pk

h − I) ∂tc
±‖2L2(]0,tn[×Ω) .

Analogously, for the third term we obtain

|III| ≤ δ3τ

n∑

m=1

‖Pk
h(c±,mh − c±,m)‖2 + 1

δ3
τ

n∑

m=1

‖(∂ − ∂t)c
±,m‖2 .

We apply the Taylor identity (3.13b) and the Jensen inequality to estimate the time truncation

error term:

τ

n∑

m=1

‖(∂ − ∂t)c
±,m‖2 = τ

n∑

m=1

∥
∥
∥
∥
∥
∥

1

τ

∫ tm

tm−1

(s − tm−1) ∂ttc
±(s) ds

∥
∥
∥
∥
∥
∥

2

≤
n∑

m=1

∫ tm

tm−1

‖(s − tm−1) ∂ttc
±(s)‖2 ds

≤ τ2
n∑

m=1

∫ tm

tm−1

‖∂ttc
±(s)‖2 ds = τ2‖∂ttc

±‖2L2(]0,tn[×Ω) .

With the Minkowski inequality together with (a + b)2 ≤ 2a2 + 2b2 (discrete Jensen) we

eventually obtain

|III| ≤ 2δ3τ

n∑

m=1

‖c±,mh − c±,m‖2 + 2δ3τ

n∑

m=1

‖(Pk
h − I)c±,m‖2 + 1

δ3
τ2‖∂ttc

±‖2L2(]0,tn[×Ω) .

Proceeding as usual, the boundedness of D−1 due to (H1) immediately reveals

IV ≤ δ4D∞τ
n∑

m=1

‖ j±,mh − j±,m‖2 + 1

δ4
D∞τ

n∑

m=1

‖(Πk
h − I) j±,m‖2 .

We continue estimating the term V . We derive the following estimate using (H1), the bound-

edness of um and Em in L∞(Ω) due to (H7) and (H9), and Lem. 3.16:

∥
∥
∥ D−1((um

h ± Em
h )M(c±,mh ) − (um ± Em)c±,m

) ∥∥
∥
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≤ D∞
(

‖(um
h − um)M(c±,mh ) ± (Em

h − Em)M(c±,mh )‖ + ‖(um ± Em)
(M(c±,mh ) −M(c±,m)

)‖
)

≤ D∞
(

M‖um
h − um‖ + M‖Em

h − Em‖ +C5‖c±,mh − c±,m‖
)

with C5 ≔ ‖um ± Em‖L∞(Ω). The above estimate yields the estimate for the fifth term:

V ≤ 2D∞ τ
n∑

m=1

(

δ5

(

‖ j±,mh − j±,m‖2 + ‖(Πk
h − I) j±,m‖2

)

+
1

δ5

(

M2‖um
h − um‖2 + M2‖Em

h − Em‖2 + C2
5‖c
±,m
h − c±,m‖2

)
)

.

Lastly, we estimate the sixth term VI. Due to the Lipschitz continuity of r± (cf. (H3)) the

inequality

‖r±(c+,mh , c−,mh ) − r±(c+,m, c−,m)‖ ≤ rL

∥
∥
∥
∥
∥

(
c+,mh

c−,mh

)

−
(

c+,m

c−,m

)∥∥
∥
∥
∥
≤ rL‖c+,mh − c+,m‖ + rL‖c−,mh − c−,m‖

holds, where rL denotes the Lipschitz constant. The latter inequality holds due to the defini-

tion of the L2(Ω) norm (3.2). With the identity (3.31b) and the Cauchy–Schwarz inequality

then follows

(

r±(c+,mh , c−,mh ) − r±(c+,m, c−,m) , Pk
h(c±,mh − c±,m)

)

≤ rL

(

‖c+,mh − c+,m‖ + ‖c−,mh − c−,m‖
) (

‖(Pk
h − I)c±,m‖ + ‖c±,mh − c±,m‖

)

= rL

(

‖c+,mh − c+,m‖ ‖(Pk
h − I)c±,m‖ + ‖c+,mh − c+,m‖ ‖c±,mh − c±,m‖

+ ‖c−,mh − c−,m‖ ‖(Pk
h − I)c±,m‖ + ‖c−,mh − c−,m‖ ‖c±,mh − c±,m‖

)

.

Application of the Young inequality yields

VI ≤
( 1

δ6
+ δ6

)

2rL τ

n∑

m=1

‖c±,mh − c±,m‖2 + δ62rL τ

n∑

m=1

‖c∓,mh − c∓,m‖2

+
1

δ6
2rL τ

n∑

m=1

‖(Pk
h − I)c±,m‖2 .

With the estimates of II to VI, it follows from (3.33) that

‖c±,nh − c±,n‖2 +
(

2Dα−δ4D∞−2δ5D∞
)

τ

n∑

m=1

‖ j±,mh − j±,m‖2
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≤ ‖(Pk
h − I)c±,0‖2 + 1

δ2
‖(Pk

h − I) ∂tc
±‖2L2(]0,tn[×Ω) +

1

δ3
τ2‖∂ttc

±‖2L2(]0,tn[×Ω)

+ 2
(δ2

2
+δ3+

C2
5

δ5
D∞+rL

(

δ6+
1

δ6

))

τ

n∑

m=1

‖c±,mh − c±,m‖2 + D∞
( 1

δ4
+2δ5

)

τ

n∑

m=1

‖(Πk
h − I) j±,m‖2

+ 2
(

δ3 +
rL

δ6

)

τ

n∑

m=1

‖(Pk
h − I)c±,m‖2 + 2

δ5
D∞M2 τ

n∑

m=1

‖Em
h − Em‖2

+
2

δ5
D∞M2 τ

n∑

m=1

‖um
h − um‖2 + 2δ6rLτ

n∑

m=1

‖c∓,mh − c∓,m‖2

with the constraint that δ4, δ5 > 0 have to be chosen small enough. The discretization error

in c± at time level tn on the right side can be absorbed for sufficiently small τ. In doing so,

application of Lemma 3.3 (discrete Gronwall) yields

‖c±,nh − c±,n‖2 + τ
n∑

m=1

‖ j±,mh − j±,m‖2 ≤ C

(

‖(Pk
h − I)c±,0‖2 + ‖(Pk

h − I) ∂tc
±‖2L2(]0,tn[×Ω)

+ τ2‖∂ttc
±‖2L2(]0,tn[×Ω) + τ

n∑

m=1

‖(Πk
h − I) j±,m‖2 + τ

n∑

m=1

‖(Pk
h − I)c±,m‖2

+ τ

n∑

m=1

‖Em
h − Em‖2 + τ

n∑

m=1

‖um
h − um‖2 + τ

n∑

m=1

‖c∓,mh − c∓,m‖2
)

.

Conclude by accounting for the initial conditions (3.1j) and by using the projection error

estimates of Lemma 3.10. �

Proposition 3.25. Let (u, p, j+, c+, j−, c−, E, φ) and (un
h, pn

h, j+,nh , c+,nh , j−,nh , c−,nh , En
h, φ

n
h) be

solutions of Problem 3.14 and Problem 3.21, respectively. Then, if in addition the regularity

requirements of (H7) and (H9) are satisfied, there exist constants C > 0 independent of h

such that for n ∈ {1, . . . ,N},

‖un
h − u(tn)‖2

L2(Ω) ≤ C
(

h2l1 |u(tn)|2
Hl1 (Ω)

+ h2l5 |E(tn)|2
Hl5 ,div(Ω)

+ h2l6 |φ(tn)|2
Hl6 (Ω)

+
∑

i∈{+,−}
‖ci,n

h − ci(tn)‖2L2(Ω) + ‖φ
n
D,h − φD(tn)‖2H1/2(∂Ω)

)

, (3.34a)

‖pn
h − p(tn)‖2L2(Ω) ≤ C

(

h2l1 |u(tn)|2
Hl1 (Ω)

+ h2l2 |p(tn)|2
Hl2 (Ω)
+ h2l5 |E(tn)|2

Hl5 ,div(Ω)

+ h2l6 |φ(tn)|2
Hl6 (Ω)

+
∑

i∈{+,−}
‖ci,n

h − ci(tn)‖2L2(Ω) + ‖φ
n
D,h − φD(tn)‖2H1/2(∂Ω)

)

. (3.34b)
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Proof. The proof can be accomplished analogously to that of Proposition 3.23 with minor

modifications. Once again, we suppress the time index n and the argument for the evaluation

at the time level tn. Due to {(3.14a), (3.14b)}, {(3.22a), (3.22b)} the error equations read

−
(

K−1(uh − u) , uh
)

+ (∇ · uh , ph − p) = −
(

D−1(EhM(c+h − c−h ) − E(c+ − c−)
)

, uh
)

, (3.35a)

(∇ · (uh − u) , wh) = 0 (3.35b)

for all uh ∈ ��k(Th) and for all wh ∈ �k(Th). The arising force term in (3.35a)

requires a special treatment. Recalling the chosen cut-off level M for the cut-off

operatorM (cf. Prob. 3.21), Lemma 3.16, and (H9), we see that

‖EhM(c+h − c−h ) − E(c+ − c−)‖ ≤ M ‖Eh − E‖ + ‖E‖L∞(Ω)

∑

i∈{+,−}
‖ci

h − ci‖ . (3.36)

The choice of wh = Pk
h(ph − p) ∈ �k(Th) in (3.35b) and the projector property (3.9) yields

(

∇ ·Πk
h(uh − u) , Pk

h(ph − p)
)

= 0 . (3.37)

Choosing the test function uh = Πk
h(uh − u) ∈ ��k(Th) in (3.35a), using (3.11) and (3.37),

we obtain

(

K−1(uh − u) , Πk
h(uh − u)

)

=
(

D−1(EhM(c+h − c−h ) − E(c+ − c−)
)

, Πk
h(uh − u)

)

.

With the identity uh − u = Πk
h(uh − u) + (Πk

h − I)u, (H1), (H2), (3.36), and the Hölder

inequality, we arrive at the estimate

Kα‖uh − u‖2 ≤ K∞‖uh − u‖ ‖(Πk
h − I)u‖

+ D∞
(

M ‖Eh − E‖ + ‖E‖L∞(Ω)

∑

i∈{+,−}
‖ci

h − ci‖
) (

‖uh − u‖ + ‖(Πk
h − I)u‖

)

.

Application of Young’s inequality, (3.23b), and the projection error estimates of Lemma 3.10

yields (3.34a).

With a similar treatment of the additional force term, the error estimate (3.34b) is ob-

tained analogously to the second part of the proof of (3.23b). �
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3.2 Discretization and Convergence Analysis

Theorem 3.26 (A priori error estimate). Let (u, p, j+, c+, j−, c−, E, φ) and (un
h, pn

h, j+,nh ,

c+,nh , j−,nh , c−,nh , En
h, φ

n
h) be solutions of Problem 3.14 and Problem 3.21, respectively.

Then, if in addition the regularity requirements of (H7)–(H10) are satisfied, there exists

a constant C > 0 independent of h and τ such that for sufficiently small τ,

max
m∈{1,...,N}

‖um
h − u(tm)‖2 + max

m∈{1,...,N}
‖pm

h − p(tm)‖2 +
∑

i∈{+,−}
τ

N∑

m=1

‖ ji,m
h − ji(tm)‖2

+
∑

i∈{+,−}
max

m∈{1,...,N}
‖ci,m

h − ci(tn)‖2 + max
m∈{1,...,N}

‖Em
h − E(tm)‖2 + max

m∈{1,...,N}
‖φm

h − φ(tm)‖2

≤ C

(
∑

i∈{+,−}
τ2‖∂ttc

i‖2L2(J×Ω) + h2l1 |u(tn)|2
Hl1 (Ω)

+ h2l2 |p(tn)|2
Hl2 (Ω)

+ h2l3
∑

i∈{+,−}
| ji(tm)|2

Hl3 (Ω)
+ h2l4

∑

i∈{+,−}

(

|ci,0|2
Hl4 (Ω)

+

∫

J
|∂tc

i(s)|2
Hl4 (Ω)

ds + |ci(tm)|2
Hl4 (Ω)

)

+ h2l5 |E(tn)|2
Hl5 ,div(Ω)

+ h2l6 |φ(tn)|2
Hl6 (Ω)

+ max
m∈{1,...,N}

‖φm
D,h − φD(tm)‖2H1/2(∂Ω)

)

. (3.38)

Proof. We sum up (3.29) for both signs, eliminate the discretization errors of c± on the

right-hand side as performed at the end of the proof of Proposition 3.24, and call the resulting

inequality (3.39). Substitution of
∑

i∈{+,−} ‖ci,n
h − ci(tn)‖2

L2(Ω)
from (3.39) into {(3.23b), (3.34a),

(3.34b)} and summation yields

‖un
h − u(tn)‖2 + ‖pn

h − p(tn)‖2 + ‖En
h − E(tn)‖2 + ‖φn

h − φ(tn)‖2

≤ C

(

τ2
∑

i∈{+,−}
‖∂ttc

i‖2L2(]0,tn[×Ω) + h2l1 |u(tn)|2
Hl1 (Ω)

+ h2l2 |p(tn)|2
Hl2 (Ω)

+ h2l3
∑

i∈{+,−}
τ

n∑

m=1

| ji(tm)|2
Hl3 (Ω)

+ h2l4
∑

i∈{+,−}

(

|ci,0|2
Hl4 (Ω)

+

∫ tn

0

|∂tc
i(s)|2

Hl4 (Ω)
ds + τ

n∑

m=1

|ci(tm)|2
Hl4 (Ω)

)

+ h2l5 |E(tn)|2
Hl5 ,div(Ω)

+ h2l6 |φ(tn)|2
Hl6 (Ω)

+ τ

n∑

m=1

(

‖um
h − u(tm)‖2 + ‖Em

h − E(tm)‖2
)

+ ‖φn
D,h − φD(tn)‖2H1/2(∂Ω)

)

. (3.40)

Adding (3.39) to (3.40) and eliminating the discretization errors of u and E on the right-hand

side bounds the discretization errors of all partial unknowns in terms of the true solution and

the data. We conclude by bounding the right-hand side by the respective maximum on J

(admissible due to (H7)–(H10)) yielding a right-hand side that is independent of n such that

the estimate holds for every n ∈ {1, . . . ,N}. �
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Chapter4
Numerical Solution of the SNPP System and

the DNPP Systems

This chapter presents a fully discrete numerical scheme capable of approximating the

solutions of the SNPP system (cf. Prob. 2.1, p. 19) and its homogenization results—the

DNPP systems (cf. Thms. 2.5 and 2.8, pages 23 and 25)—in two space dimensions.

In Section 4.1, we apply Rothe’s method to the SNPP system, using the implicit Euler

method to obtain a sequence of time-discrete, yet still coupled / nonlinear systems. The cou-

plings between the subsystems for liquid flow, transport, and electric field are resolved by

means of linearization schemes: either an iterative splitting approach or the Newton scheme.

The application to the time-discrete SNPP system is demonstrated and their usability dis-

cussed. We proceed with an iterative splitting approach that is also applicable for the ho-

mogenized systems in an analogous way. At the end of this paragraph, publications that

appeared in the last decade dealing with the numerical approximation of the SNPP system

and related systems are reviewed.

The spatial discretization of the decoupled subsystems is performed in two space di-

mensions on unstructured grids. In particular, lowest order mixed finite elements according

to Raviart and Thomas are used for the discretization of convection–diffusion equations

in Section 4.2 and Taylor–Hood elements are used for the discretization of the Stokes equa-

tions in Section 4.3. Hereby, the flux unknowns, which are meaningful physical magnitudes,

are computed directly and therefore numerical differentiation is avoided. These unknowns

couple the SNPP system and also the associated homogenization results and are further

required for the computation of the effective macroscopic tensors (2.2a), (2.3a).

In addition to the advantages mentioned above, the use of lowest order Raviart–Thomas

elements has approved for discretization schemes for mass transport: besides local mass

conservation, less numerical diffusion is produced, and more robustness is gained in the
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Chapter 4 Numerical Solution of the SNPP System and the DNPP Systems

case of large element Péclet numbers (cf. Rem. 4.12) or non-smooth coefficients (Brunner

et al. 2011) in comparison to non-mixed discretizations.

4.1 Linearization Schemes

In this section, we exemplify two basic iterative linearization schemes applied to the time-

discrete nonlinear SNPP system (cf. Prob. 2.1, p. 19): a Newton scheme and an iterative

splitting scheme (also called iterative operator splitting, Picard iteration, and, in the con-

text of Nernst–Planck–Poisson systems, Gummel iteration (due to Gummel 1964)). Both

schemes can also be used in a straight forward way to cope with the nonlinearities of the

homogenization results, i. e., the DNPP systems (cf. Thms. 2.5 and 2.8).

Let 0 ≕ t0 < t1 < . . . < tN ≔ T be a not necessarily equidistant decomposition

of the time interval J into N subintervals and let tn − tn−1 ≕ τn denote the time step size.

Furthermore, for any time-dependent function v, the notation vn = vn(x) ≔ v(tn, x) is used.

Applying the implicit Euler method, i. e., approximating ∂tc±ε (tn) by the backward difference

quotient ∂c±,nε = (c±,nε − c±,n−1
ε )/τn (cf. (3.12), p. 35), yields the following sequence of N

stationary, coupled SNPP systems:

Problem 4.1 (Time-discrete family of SNPP problems). For n ∈ {1, . . . ,N}, seek (un
ε, pn

ε,

j+,nε , c+,nε , j−,nε , c−,nε , En
ε, φ

n
ε) such that

−ε2 ∆un
ε + ∇pn

ε = εβ En
ε (c+,nε − c−,nε ) in Ωε , (4.1a)

∇ · un
ε = 0 in Ωε , (4.1b)

j±,nε = −∇c±,nε +
(

un
ε ± εγ En

ε

)

c±,nε in Ωε , (4.1c)

c±,nε + τn∇ · j±,nε = ∓τn (c+,nε − c−,nε ) + c±,n−1 in Ωε , (4.1d)

En
ε = −εα∇φn

ε in Ωε , (4.1e)

∇ · En
ε = c+,nε − c−,nε in Ωε (4.1f)

with given initial data c±,0 and suitable boundary conditions on Γε ∪ ∂Ω.

Linearization by the Newton scheme. The iterative Newton scheme copes with nonlinear

problems by linearization by means of a truncated Taylor series expansion around each

iterate. Considered a system of partial differential equations in residual form

R(U) = 0
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4.1 Linearization Schemes

with solution U and an operator R, the standard (Banach valued) Newton method consists

in seeking solutions Uk such that

DR(Uk−1) (Uk − Uk−1) = −R(Uk−1)

for k = 1, 2, . . . , where D stands for the Fréchet derivative, until some stopping criterion is

fulfilled. Note that the Jacobian DR evaluated at a point is again a (linear) Banach operator.

Referring to the system (4.1), we can exploit an additive decomposition of the operator R =
A + B + C into a linear operator A, a nonlinear operator B, and a constant operator C. In

other words, system (4.1) is equivalent to

(A + B + C) (un
ε, pn

ε, j+,nε , c+,nε , j−,nε , c−,nε , En
ε, φ

n
ε) = 0 (4.2)

with

A :





un
ε

pn
ε

j+,nε

c+,nε

j−,nε

c−,nε

En
ε

φn
ε





7→





−ε2∆ ∇

∇·

I ∇

τn∇· (1+τn) I −τn I

I ∇

−τn I τn∇· (1+τn) I

I εα∇

−I I ∇·









un
ε

pn
ε

j+,nε

c+,nε

j−,nε

c−,nε

En
ε

φn
ε





,

B :





un
ε

pn
ε

j+,nε

c+,nε

j−,nε

c−,nε

En
ε

φn
ε





7→





−εβ En
ε (c+,nε − c−,nε )

0

−(un
ε + ε

γ En
ε) c+,nε

0

−(un
ε − εγ En

ε) c−,nε

0

0

0





, and C :≡





0

0

0

−c+,n−1
ε

0

−c−,n−1
ε

0

0





.
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Now let the column vector

Uk
≔ (un,k

ε , pn,k
ε , j+,n,kε , c+,n,kε , j−,n,kε , c−,n,kε , En,k

ε , φ
n,k
ε )

T

abbreviate the vector of unknowns. Here, the index n is still associated with the (fixed)

time level and k with the iteration index. Using the fact that D(AUk + B(Uk)) = A +
DB(Uk) (we may omit the argument braces for linear operators), the Newton scheme for the

approximation of the solution U of (4.2) reads:

Algorithm 4.2 (Newton scheme 1). Iteratively, for k = 1, 2, . . . , seek Uk such that

(A + DB(Uk−1)
)

Uk =
(

DB(Uk−1) − B) (Uk−1) − C

as long as the residual of the system does not fall below a given tolerance (cf. (4.2)).

An equivalent scheme is obtained when Algorithm 4.2 is written in correction form / update

form, in which the system’s residual appears as right-hand side:

Algorithm 4.3 (Newton scheme 2). Iteratively, for k = 1, 2, . . . , seek ∆k such that

(A + DB(Uk−1)
)

∆k = −(A + B + C) (Uk−1) and set Uk
≔ Uk−1 + ∆k

as long as the residual of the system does not fall below a given tolerance (cf. (4.2)).

Note that both schemes are in fact linear in Uk and ∆k, respectively. The Jacobian DB(Uk−1)

in Algorithms 4.2 and 4.3 takes the explicit form





0 0 0 −εβ En,k−1
ε 0 εβ En,k−1

ε −εβ (c+,n,k−1
ε −c−,n,k−1

ε ) 0

0 0 0 0 0 0 0 0

−c+,n,k−1
ε 0 0 −un,k−1

ε −εγEn,k−1
ε 0 0 εγ c+,n,k−1

ε 0

0 0 0 0 0 0 0 0

−c−,n,k−1
ε 0 0 0 0 −un,k−1

ε +εγEn,k−1
ε −εγ c−,n,k−1

ε 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0





.
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4.1 Linearization Schemes

The iterates Uk are expected to converge quadratically for a sufficiently well chosen starting

iterate (cf. Deuflhard 2004; Kelley 1995, 2003). The most obvious choice for this initial

guess is the solution of the previous time step, i. e.,

U0 = (un,0
ε , pn,0

ε , j+,n,0ε , c+,n,0ε , j−,n,0ε , c−,n,0ε , En,0
ε , φn,0

ε )

≔ (un−1
ε , pn−1

ε , j+,n−1
ε , c+,n−1

ε , j−,n−1
ε , c−,n−1

ε , En−1
ε , φn−1

ε ) ,

which means that the question whether the schemes converge or not only depends on the

time step sizes τn. In other words, there exist sufficiently small step sizes τn such that Al-

gorithms 4.2 and 4.3 converge. However, these step sizes may be very small in practice.

One remedy to circumvent this issue is to expand the range of convergence, e. g., by using

a damped version of the Newton scheme, e. g., according to the Armijo rule (Armijo 1966;

cf. Deuflhard 2004; Kelley 1995, 2003). Another remedy is to choose the starting iterates for

each time step equal to the last iterate of a Picard iteration, which was performed previously.

The latter scheme is the object of the next paragraph.

Linearization by an iterative splitting scheme. Considering the fully coupled

system (4.1) again, the basic idea of an iterative splitting approach is to decouple the

system (4.1) by consecutively solving the subsystems {(4.1a), (4.1b)}, {(4.1c), (4.1d)},
{(4.1e), (4.1f)}, all of which are linear. This procedure is repeated until the iterates converge

toward a fixed-point. In our situation, the hierarchical structure of Problem 4.1 suggests to

solve the Poisson subsystem at first by taking the concentrations from the last time step,

using the result to solve the Stokes subsystem, and finally inserting all computed solutions

into the coupled system for the mass transport. This approach is similar to the one that

Herz et al. (2012) used in the analysis of the homogenized system as given in Theorem 2.5

for β = γ = 0. For further fixed-point schemes with respect to similar systems, we refer

to Roubíček (2006) and Prohl & Schmuck (2010).

Consider a fixed-point operator F = F3 ◦F2 ◦F1, where F : (c+,nε , c−,nε ) 7→ F (c+,nε , c−,nε )

with the suboperators F1,F2,F3 defined as follows:

(i) F1 : (c+,nε , c−,nε ) 7→ (c+,nε , c−,nε , En
ε) such that (En

ε, φ
n
ε) is the weak solution of the sub-

system {(4.1e), (4.1f)},

(ii) F2 : (c+,nε , c−,nε , En
ε) 7→ (un

ε, c
+,n
ε , c−,nε , En

ε) such that (un
ε, pn

ε) is the weak solution of the

subsystem {(4.1a), (4.1b)},
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Chapter 4 Numerical Solution of the SNPP System and the DNPP Systems

(iii) F3 : (un
ε, c
+,n
ε , c−,nε , En

ε) 7→ (c+,nε , c−,nε ) such that ( j+,nε , c+,nε , j−,nε , c−,nε ) is the weak solution

of the subsystem {(4.1c), (4.1d)}.

Then the partial solution (c+,nε , c−,nε ) of the system (4.1) is the same as the fixed-point of the

operator F .

We abbreviate the iterates of the iteration scheme that follows by

Xk
≔ (c+,n,kε , c−,n,kε )

with index n associated with the (fixed) time level tn and with k denoting the iteration index.

We take the starting iterate from the previous time level, i. e.,

X0 = (c+,n,0ε , c−,n,0ε ) ≔ (c+,n−1
ε , c−,n−1

ε )

and define the iterative splitting scheme as follows:

Algorithm 4.4 (Iterative splitting scheme). Iteratively, for k = 1, 2, . . . ,

(i) seek Yk such that Yk = F1(Xk−1) ,

(ii) seek Zk such that Zk = F2(Yk) ,

(iii) seek Xk such that Xk = F3(Zk)

until the stopping criterion

‖Xk − Xk−1‖L2(Ωε) < tol

is fulfilled, where tol > 0 is a given small tolerance.

The system’s residual (cf. (4.2)) is controlled by the value tol. Note that seeking solutions of

the subsystems of Algorithm 4.4 are linear problems due to the performed splitting. As usual

for an iterative splitting, the iterates Xk are expected to converge linearly. Simulations show

that the magnitude of the error decreases fairly fast and that the range of convergence is

huge making large time steps possible.

Despite the fact that the fixed-point operator F is a function only of the concentrations,

all remaining unknowns are well-defined and can be evaluated by means of the subopera-

tors F1 and F2 in a postprocessing procedure (cf., e. g., Herz et al. 2012).
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4.1 Linearization Schemes

Remark 4.5 (Comparison of the linearization schemes’ structures). One iteration step

of the iterative splitting scheme according to Algorithm 4.4 has the following explicit form:

(i)






En,k
ε + ε

α
∇φ

n,k
ε = 0

∇ · En,k
ε − c+,n,k−1

ε + c−,n,k−1
ε = 0






,

(ii)






−ε2∆un,k
ε + ∇pn,k

ε − εβEn,k
ε (c+,n,k−1

ε − c−,n,k−1
ε ) = 0

∇ · un,k
ε = 0






,

(iii)






j+,n,kε + ∇c+,n,kε − (

un,k
ε + ε

γEn,k
ε

)

c+,n,kε = 0

τn∇ · j+,n,kε + (1 + τn)c+,n,kε − τnc−,n,kε − c+,n−1
ε = 0

j−,n,kε + ∇c−,n,kε − (

un,k
ε − εγEn,k

ε

)

c−,n,kε = 0

τn∇ · j−,n,kε + (1 + τn)c−,n,kε − τnc+,n,kε − c−,n−1
ε = 0






.

Here, the braces are associated with a simultaneous solving. As opposed to this, the structure

of one iteration step of the Newton scheme from Algorithms 4.2 and 4.3 is

En,k
ε + ε

α
∇φn,k

ε = 0 ,

∇ · En,k
ε − c+,n,kε + c−,n,kε = 0 ,

−ε2∆un,k
ε + ∇pn,k

ε − εβEn,k−1
ε (c+,n,kε − c−,n,kε ) − εβ(En,k

ε − En,k−1
ε ) (c+,n,k−1

ε − c−,n,k−1
ε ) = 0 ,

∇ · un,k
ε = 0 ,

j+,n,kε + ∇c+,n,kε − (

un,k−1
ε +εγEn,k−1

ε

)

c+,n,kε − (

(un,k
ε −un,k−1

ε ) + εγ(En,k
ε −En,k−1

ε )
)

c+,n,k−1
ε = 0 ,

τn∇ · j+,n,kε + (1 + τn)c+,n,kε − τnc−,n,kε − c+,n−1
ε = 0 ,

j−,n,kε + ∇c−,n,kε − (

un,k−1
ε −εγEn,k−1

ε

)

c−,n,kε − (

(un,k
ε −un,k−1

ε ) + εγ(En,k
ε −En,k−1

ε )
)

c−,n,k−1
ε = 0 ,

τn∇ · j−,n,kε + (1 + τn)c−,n,kε − τnc+,n,kε − c−,n−1
ε = 0 .

Comparing the terms for each equation of the representations above reveals that the used

fixed-point approach can be derived from the Newton scheme by some minor modifications.

Hence, it can be interpreted as an approximation of the Newton scheme. △

Concluding remarks. Provided that the two different linearization schemes converge,

they produce the same solution. In particular, a globally implicit discretization in time

is obtained. Thus, the assessment of the schemes toward the computation time and the

amount of consumed memory remains: despite the fact that the quadratic order of con-

vergence of the Newton scheme (cf. Algs. 4.2 and 4.3) is superior to that of the iterative
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splitting (cf. Alg. 4.4), which is linear only, the first has several disadvantages: the treatment

of a system as whole in each iteration step involves the assembly of a very large system

of equations, which consumes far more memory than the iterative splitting approach (cf.

Saaltink et al. 2000; Yeh & Tripathi 1989). The iterative splitting scheme in turn reduces

the problem to small-sized linear subproblems, which are to be solved consecutively. In

our case, these linear subproblems are either of the Stokes type (cf. {(4.1a), (4.1b)}) or of

convection–diffusion type (cf. {(4.1c), (4.1d)}, {(4.1e), (4.1f)}, and all (decoupled) subprob-

lems of the time discretized DNPP systems (2.5) and (2.7)).

Because of all these reasons and due to the hierarchical structure of the SNPP sys-

tem and of its homogenized equivalences, the iterative splitting scheme according to Al-

gorithm 4.4 is the linearization scheme of choice. Hence, we proceed with the spatial dis-

cretization of convection–diffusion type problems in Section 4.2 and of Stokes type prob-

lems in Section 4.3. Moreover, this is an asset as the spatial discretization schemes of the

following sections can also be applied to the cell problems (2.2b) and (2.3b), which flux so-

lutions are required in order to compute the effective coefficients appearing in the DNPP sys-

tems (2.5) and (2.7) (and also to further cell problems defined in Chapter 7). However, note

that the argumentation above is only admissible due to the fact that the reaction rates we

consider are linear.

However, when nonlinear reaction rates are taken into account, in particular, when

the nonlinearities are of dominant nature, an iterative splitting approach may lead to very

small time step sizes and thus to an unfeasible number of time steps—as opposed to the

Newton scheme (Saaltink et al. 2000). Especially for the case of large reactive multicompo-

nent transport systems, the Newton scheme has proven itself to be advantageous in the last

decade (Carrayrou et al. 2010).

A short bibliographical review. Here, we briefly review publications that appeared in

the last decade dealing with finite element approximations of the SNPP system and related

systems. For a historical overview on numerical models for solving the Nernst–Planck–

Poisson system, the reader is referred to, for instance, Samson et al. (1999, Sec. 3.1).

Prohl & Schmuck (2009, 2010) investigated analytically a finite element discretization

of an incompressible, non-dimensionalized Navier–Stokes–Nernst–Planck–Poisson system

for a binary electrolyte. The system is fully coupled since electrophoretic and electroos-

motic phenomena are taken into account. However, only homogeneous boundary conditions

are considered. The discretization in time is fully implicit, using the backward Euler method

and iterative operator splitting. The spatial discretization is carried out using �c
1-bubble ele-
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ments for the velocity (mini element, cf. Arnold et al. 1984), and �c
1 elements for all other

unknowns on triangular (two-dimensional) uniform grids.

An electrochemical system in three space dimensions including liquid flow, multi-ion

transport due to advection, diffusion, and electric drift is considered in Bauer et al. (2011).

An arbitrary number of ionic species, represented by their molar concentrations, obey the

following system of equations:

∂tci + u · ∇ci + ∇ ·
(

− Di∇ci − zi vi F ci∇φ
)

= 0 in J × Ω , (4.3)

together with the electroneutrality condition (1.10), with quantities as listed in Tables B.2

and B.5 (p. 142f.). Provided that no reactions take place, Equation (4.3) is an equivalent

formulation of {(1.4), (1.6)}, since u is divergence-free. The electroneutrality condition is

an algebraic constraint, which is a simplification of the Poisson equation. The system

{(4.3), (1.10)} has the unknowns ci and φ and is completed with initial conditions and linear

boundary conditions for ci and / or conditions prescribing the mass /molar flux across the

boundary due to diffusion and electromigration. A nonlinear boundary condition depending

on all concentrations and on φ is allowed for one single species. Due to the fact that

electroosmosis is not considered, the coupling to the liquid velocity u is only one-sided.

The nonlinear system {(4.3), (1.10)} is linearized by a Newton scheme incorporating

a Jacobian with saddle point structure owing to the electroneutrality condition. The

discretization in space is performed by (non-mixed) Lagrange finite elements of equal order

for ci and φ (�c
1 elements on hexahedrals are used in the simulations) and a Crank–Nicolson

scheme is used for time discretization. Due to the one-sided coupling, the velocity u can be

precomputed in each time step. Altogether, a globally implicit scheme is presented that

is formally accurate of second order in time and space. In Bauer et al. (2012), the same

authors introduce a stabilization scheme capable of preventing oscillations arising in the

convection–dominated case (see also Bauer 2012).

Paz-García et al. (2011) consider the transport due to diffusion and electromigration

of an arbitrary number of charged chemical species between an anode and a cathode in

a liquid medium. The model consists of a Poisson–Nernst–Planck system similar to the

SNPP system in Section 1.1 with u ≡ 0 on a one-dimensional domain, equipped with flux

boundary conditions for the transport and also for the Poisson equation. The implicit Euler

method is used to integrate in time, while (non-mixed) Lagrange �c
1 finite elements are

used for the space discretization. The nonlinearity in the drift term is treated by Gummel’s

iteration (cf. Sec. 4.1).
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4.2 Discretization of Equations of Convection–Diffusion

Type

In this section, we present the discretization of a general convection–diffusion equation

equipped with three types of different boundary conditions. By choosing specific coeffi-

cients, boundary data, and optionally constraints, the discretization scheme covers all sub-

problems of the SNPP system, DNPP systems, and cell problems in this work that are not

of Stokes type.

4.2.1 Formulation of the Weak Problems

Model equations. Consider a time interval J = ]0, T [ and a domain Ω ⊂ �2 as described

in Section 3.1, except that Ω is also allowed to contain interior boundaries. Furthermore, let

the boundary ∂Ω be split into not necessarily connected flux, Neumann, and closed Dirichlet

boundaries ∂Ωflux, ∂ΩN, and ∂ΩD, respectively, such that ∂Ω = ∂Ωflux ∪ ∂ΩN ∪ ∂ΩD.

Given the coefficient functions A,F : J × Ω → �, C,E : J × Ω → �2, D : J ×
Ω → �2,2, the boundary data qflux : J × ∂Ωflux → �, uD : J × ∂ΩD → �, and the initial

data u0 : Ω → �, we consider the following initial boundary value problem in seeking two

functions q : J × Ω→ �2 and u : J × Ω→ � such that

q = −D∇u + Cu + E in J × Ω , (4.4a)

∂t (Au) + ∇ · q = F in J × Ω , (4.4b)

q · ν = qflux on J × ∂Ωflux , (4.4c)

− (

D∇u
) · ν = 0 on J × ∂ΩN , (4.4d)

u = uD on J × ∂ΩD , (4.4e)

u = u0 on {0} × Ω . (4.4f)

In contrast to the previous chapters, we consider a time and space dependent coefficient D =

D(t, x) here and assume tacitly that for a. e. (t, x) ∈ J × Ω the hypothesis (H1) on p. 36

holds. Even though we do not need this generalization for the numerical investigation of

the SNPP system or of the DNPP systems in Chapter 6, we do require it in Chapter 7.

Furthermore, we assume that ∂ΩN is an outflow boundary, i. e.,

q · ν > 0
(4.4d)
⇐⇒ (Cu + E) · ν > 0 on J × ∂ΩN . (4.5)
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The Neumann boundary condition (4.4d) is discussed in Remark 4.7. If the flux bound-

ary ∂Ωflux is non-empty and is used as inflow boundary for instance, it has to be assured that

the mass that enters the domain has to be equal to the mass that is transported away from

the boundary into the inside of Ω by the advective flux.

Example 4.6 (Choice of the coefficient functions). By choosing specific coefficient func-

tions and boundary data, the discretization scheme for (4.4) presented hereinafter can be

applied directly to the (linearized) model problems appearing in this work: the cell prob-

lems (2.2b) are obtained, e. g., by choosing A,C,F equal to zero, D = I, where I denotes

the unit matrix, and E = −e j together with g = 0 on the interior boundary Γ, while choos-

ing periodic boundary conditions on the exterior boundary ∂Y . The transport problem for

the positively charged particles in Algorithm 4.4 is obtained by choosing A equal to one,

C = un,k
ε +ε

γ En,k
ε , D = I, E equal to zero, and F = −(c+,n,k−1

ε −c−,n,k−1
ε ) at a fixed time level tn,

and so on. △

Remark 4.7 (Neumann boundary condition for the transport problem). The use of

Neumann boundary conditions as given in (4.4d)—also called zero-gradient condition or

outflow condition—is a common way to model outflow boundaries (cf. Kinzelbach (1992,

Sec. 2.2), Knabner & Angermann (2003, Sec. 3.2, p. 108f.), Logan (2001, Sec. 2.7.2), and

Spitz & Moreno (1996, p. 84)). Here, only the diffusive flux is prescribed to be zero at

the boundary, whereas the convective flux “adjusts” itself automatically. By assumption,

the convective flux is nonvanishing on the boundary ∂ΩN and points outside the domain

(cf. (4.5)). Indeed, the fact that the diffusive flux through the boundary ∂ΩN is prescribed

to be zero in (4.4d) yields a detention of mass and thus a local increase of the amount of

concentration at this boundary—a “blow up” is expected. However, this increase implies

also an increase of mass that is transported outside of the domain by advection, and thus no

critical situation occurs. △

Weak continuous formulation. Next, the weak formulation of (4.4) is derived. Recall the

space Hdiv(Ω) ≔ {u ∈ L2(Ω); ∇ · u ∈ L2(Ω)} ⊃ H1(Ω) (cf. Sec. 3.1). For Γ ⊂ ∂Ω, we define

the constrained ansatz space

Hdiv
a,Γ(Ω) ≔

{

u ∈ Hdiv(Ω); u · ν = a on Γ
}

,

with a being an element of H−1/2(Γ) according to Theorem 3.1. We take the flux bound-

ary condition as the essential boundary condition by imposing it explicitly in the solution
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space. That of Dirichlet type is taken as natural boundary condition imposed by the weak

formulation itself. Regarding the Neumann boundary, we take the equivalence

−(D∇u
) · ν = 0

(4.4d)
⇔ q · ν = (

uC + E
) · ν on J × ∂ΩN (4.6)

into account and claim it weakly in the continuous variational problem. This linear con-

straint will later be used to substitute the Neumann degrees of freedom in the linear algebra

system (4.13) that results from the discretization below with terms that depend on the scalar

solution u (static condensation). It is also possible to treat the Neumann boundary condition

as a natural one entailing certain disadvantages. For a discussion in this regard, see Re-

mark 4.9.

For the sake of presentation, the coefficients A, D, and F are assumed to exist compo-

nentwise in L∞(J × Ω) and C, E ∈ L2(J, Hdiv(Ω)) in this section. Multiplication of (4.4a)

by the inverse of D and using the Green’s formula (3.4), we define the following continuous

variational problem:

Problem 4.8 (Weak continuous convection–diffusion problem). Let the data u0 ∈
L2(Ω), qflux ∈ L2(J; H−1/2(∂Ωflux)), uD ∈ L2(J; H1/2(∂ΩD)) and the coefficients A to F be

given. Seek (q, u) ∈ L2(J; Hdiv
qflux,∂Ωflux

(Ω)) × (

H1(J; L2(Ω)) ∩ L2(J; L∞(Ω))
)

such that for

a. e. t ∈ J,

∀u ∈ Hdiv
0,∂Ωflux∪∂ΩN

(Ω), −
(

D(t)−1q(t) , u
)

L2(Ω)
+ (∇ · u , u(t))L2(Ω) +

(

D(t)−1
C(t) u(t) , u

)

L2(Ω)

= 〈u · ν , uD〉H−1/2(∂ΩD),H1/2(∂ΩD) −
(

D(t)−1
E(t) , u

)

L2(Ω)
,

∀w ∈ L2(Ω),
(

∂t
(

A(t) u(t)
)

, w
)

L2(Ω) + (∇ · q(t) , w)L2(Ω) = (F(t) , w)L2(Ω) ,

∀z ∈ H1/2(∂ΩN), 〈q(t) · ν , z〉H−1/2(∂ΩN),H1/2(∂ΩN) =
〈(

uC + E
)

(t) · ν , z
〉

H−1/2(∂ΩN),H1/2(∂ΩN)

with u(0, ·) = u0 in Ω and u(0, ·) = uD(0) on ∂ΩD.

The boundary term in the first equation vanished on ∂Ωflux ∪ ∂ΩN due to the chosen space

of test functions. Note that the regularity assumptions are sufficient here. For instance,

regarding the last equation, we have by Hölder’s inequality and Theorem 3.1 (ii) that

‖u(t)C(t) · ν‖H−1/2(∂ΩN) ≤ ‖u(t)‖L∞(Ω)‖C(t)‖Hdiv(Ω) < ∞.

Remark 4.9 (Natural Neumann boundary condition). An alternative weak continuous

formulation is obtained by treating the Neumann boundary condition (4.4d) as a natural
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4.2 Discretization of Equations of Convection–Diffusion Type

condition. Then the corresponding problem to Problem 4.8 consists in seeking (q, u) ∈
L2(J; Hdiv

qflux,∂Ωflux
(Ω)) × H1(J; L2(Ω)) such that for a. e. t ∈ J,

∀u ∈ Hdiv
0,∂Ωflux

(Ω), −
(

D(t)−1q(t) , u
)

L2(Ω)
+ (∇ · u , u(t))L2(Ω)

+
(

D(t)−1
C(t) u(t) , u

)

L2(Ω)
= “

∫

∂ΩN

q(t) · ν (C(t) · ν)−1
u · ν ”

+ 〈u · ν , uD〉H−1/2(∂ΩD),H1/2(∂ΩD) −
(

D(t)−1
E(t) , u

)

L2(Ω)
, (4.7a)

∀w ∈ L2(Ω),
(

∂t
(

A(t) u(t)
)

, w
)

L2(Ω) + (∇ · q(t) , w)L2(Ω) = (F(t) , w)L2(Ω) . (4.7b)

The boundary integral on ∂ΩN in (4.7a) is set in quotes here, since at this point, the regu-

larity assumptions are not enough so that this term is meaningful. Notwithstanding this, the

discretization of the system (4.7) yields a larger system of equations (cf. (4.13)) than that

of Problem 4.8. This is due to the fact that in the latter case the degrees of freedom are elim-

inated not only on ∂Ωflux but also on ∂ΩN by static condensation. The main disadvantage

of the strategy of treating the Neumann condition as natural one is certainly the involving

constraint of C · ν , 0 a. e. on J × ∂ΩN. This cannot be guaranteed in our applications,

considered that C stems from the solution of the Stokes subsystem or Darcy subsystem in

the SNPP system or DNPP systems, respectively (cf. Prob. 2.1 and Thms. 2.5 and 2.8). △

Weak discrete formulation. We continue with the formulation of the fully discrete prob-

lem using the backward Euler scheme in time and the Galerkin method with Raviart–

Thomas elements of lowest order in space. Recall the spaces ��k(Th) and �k(Th), de-

fined in (3.7) and (3.6), respectively. Also recall the symbols EΩ and E∂Ω that denote the

sets of interior edges and exterior edges of the triangular grid Th, respectively, such that

EΩ ∪ E∂Ω = E = {E}. In addition, we refer to Eflux, EN, and ED as the set of edges that lie

on ∂Ωflux, ∂ΩN, and ∂ΩD, respectively. For a list of symbols regarding the triangulation and

grid related symbols, see Table B.6.

Problem 4.8 is discretized in time as described in Section 4.1. For a set of edges E′

covering some part of the boundary Γ ⊂ ∂Ω, we define the finite-dimensional affine space

V
ah,E′
h ≔

{

uh ∈ ��0(Th); uh · νE = ah|E for E ∈ E′
}

= Hdiv
ah,Γ

(Ω) ∩��0(Th)

with ah ∈ �0(E′) being an edgewise constant function according to Lemma 3.4 (iii). We

choose a conformal approximation setting (cf. Ern & Guermond 2004, Def. 2.13) by taking

the solution space V
qn

flux,h,Eflux

h × �0(Th) ⊂ Hdiv
qn

flux,h,∂Ωflux
(Ω) × L2(Ω) for n ∈ {1, . . . ,N} and the
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test space V
0,Eflux∪EN

h × �0(Th) ⊂ Hdiv
0,∂Ωflux∪∂ΩN

(Ω) × L2(Ω). The data and the coefficients are

assumed to be given in the following discrete spaces (for each time level tn):

A
n
h, F

n
h ∈ �0(Th) , C

n
h , E

n
h ∈ ��0(Th) , Dn

h ∈ �0(Th)2,2 , (4.8a)

u0
h ∈ �0(Th) , qn

flux,h ∈ �0(Eflux) , un
D,h ∈ �0(ED) . (4.8b)

For the initial and boundary data, this can be realized by using a projection of the associated

data of Problem 4.8. One possibility to do this is to take the respective mean values (e. g.,

qn
flux,h|E ≔ −

∫

E
qn

flux).

Remark 4.10 (Discrete coefficients). The demand that the coefficients are elements of the

discrete spaces as described in (4.8a) can be justified as follows: admittedly, accuracy is

lost—in particular, when the coefficients are the discrete solutions of previously solved prob-

lems. For instance, in the fixed-point iteration for the SNPP system (cf. Alg. 4.4), the water

flux u (indices suppressed), which is determined in the space �c
2(Th)2, must be mapped into

the space��0(Th) in order to fit in the discretization scheme presented in this section. How-

ever, this treatment is admissible as long as the resulting consistence error vanishes at least

with the same order as the approximation error of the underlying discretization (in our case,

this is first order in h, cf. Prop. 3.24). The numerical investigation in Section 5.3 shows that

this is indeed the case.

Certainly, the use of discrete coefficients as described above bears several major ad-

vantages: the case of non-fitting coupling terms as just described only appears once in

all the systems that are solved in this thesis (this is the convection term in the SNPP sys-

tem, cf. Prob. 4.1). All further coupling terms are already derived in the demanded discrete

spaces ��0(Th) and �0(Th). This holds especially for the discretizations of all homogeniza-

tion results (cf. Thms. 2.5 and 2.8, p. 23f.). The most crucial advantage is the exploitation

of the basis representation of these coefficients (cf. (4.10)) in the assembly of the large sys-

tem of equations (4.13). More precisely, the respective integrals appearing in the variational

formulation can be computed exactly. Using instead a quadrature rule of high order to ap-

proximate these integrals would result in high computation times that are not acceptable

here. △

With the above preliminary considerations, the fully discrete variational problem is defined

as follows:
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Problem 4.11 (Weak discrete convection–diffusion problem). Let the data u0
h, qn

flux,h,

un
D,h and the discrete coefficients A

n
h to F

n
h be given according to (4.8). For n ∈ {1, . . . ,N},

seek (qn
h, u

n
h) ∈ V

qn
flux,h ,Eflux

h × �0(Th) such that

∀uh ∈ V
0,Eflux∪EN

h , −
(

(Dn
h)−1qn

h , uh
)

L2(Ω)
+

(

∇ · uh , un
h

)

L2(Ω) +
(

(Dn
h)−1
C

n
hun

h , uh
)

L2(Ω)

=
(

uh · ν , un
D,h

)

L2(∂ΩD)
−

(

(Dn
h)−1
E

n
h , uh

)

L2(Ω)
,

∀wh ∈ �0(Th),
(

A
n
hun

h , wh
)

L2(Ω) + τn
(

∇ · qn
h , wh

)

L2(Ω)

=
(

τnF
n
h , wh

)

L2(Ω) +
(

A
n−1
h un−1

h , wh

)

L2(Ω)
,

∀zh ∈ �0(EN),
(

qn
h · ν , zh

)

L2(∂ΩN)
=

(

(un
hC

n
h + E

n
h) · ν , zh

)

L2(∂ΩN)
.

In the first and in the last equation we write the L2(Ω) scalar products instead of the duality

pairings as in Problem 4.8, since the respective left-hand sides are clearly element of L2(Ω).

Remark 4.12 (Local Péclet number). Characteristic quantities as derived in Section 1.1

may serve as error indicator due to a loss of stability. Such a quantity is the local or element

Péclet number PeT (Hughes 1987; Knabner & Angermann 2003, p. 372), which is defined

by

PeT ≔
‖C‖L∞(T ) hT

2 ‖D‖L∞(T )
for T ∈ Th .

This dimensionless number describes the ratio of the advective to the diffusive transport

rate. If PeT > 1, the convective part dominates the diffusive one and the flux is said to be

(locally) convection dominated (and vice versa for PeT ≤ 1). If PeT becomes too high, the

discretization may become unstable and unphysical oscillations appear. This is due to the

fact that the constant C in the respective a priori estimate for the discretization error of the

gradient depends on PeT (cf. Hughes 1987).

Stabilization methods such as streamline-upwinding can handle the aforementioned

situation, but have the disadvantage of causing additional numerical diffusion (cf. Radu et

al. 2011). See, for instance, Hughes et al. (2004, Chap. 5) or Kuzmin (2010, Sec. 2.2) for

overviews of stabilization methods in this context. Local grid refinement can also reduce the

local Péclet number, however, to the expense of an increased computation cost. △

In the next section, we derive the linear system of equations that is the analog of Prob-

lem 4.11.
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4.2.2 Matrix Formulation

Basis representation. We first choose bases for the discrete ansatz spaces in order to be

able to represent the unknowns (qn
h, u

n
h) and also the coefficients of Problem 4.11 in their

associated coordinates. An explicit formulation of the basis functions or form functions is

given below (cf. Sec. 4.2.3). In this sense, let

V
qn

flux,h ,Eflux

h ≔ span
{

ϕE
}

E∈E ∩ Hdiv
qn

flux,h,∂Ωflux
(Ω) , V

0,Eflux∪EN

h ≔ span
{

ϕE
}

E∈EΩ∪ED
,

�0(Th) ≔ span
{

χT
}

T∈Th

with {ϕE}E∈E being the basis of ��0(Th) and with χT denoting the characteristic func-

tion on T . The basis functions ϕE are extended by zero outside their local support, i. e.,

ϕE : Ω→ �2 (cf. Def. 4.14) and therefore, the definition of the space V
0,Eflux∪EN

h is mean-

ingful. With respect to these spaces, we obtain the following representation of the solu-

tion (qn
h, u

n
h):

V
qn

flux,h ,Eflux

h ∋ qn
h(x) =

∑

E∈E
qn

E ϕE(x) , �0(Th) ∋ un
h(x) =

∑

T∈Th

un
T χT (x) (4.9a)

with the degrees of freedom qn
E and un

T and the constraint that qn
E = qn

flux,h|E for E ∈ Eflux. As

test functions (uh, wh), we choose

V
0,Eflux∪EN

h ∋ uh(x) = ϕE′(x) for E′ ∈ EΩ ∪ ED ,

�0(Th) ∋ wh(x) = χT ′(x) for T ′ ∈ Th . (4.9b)

Similarly, we obtain the following representation for the coefficients in ��0(Th):

C
n
h (x) =

∑

E∈E
c

n
E ϕE(x) , E

n
h(x) =

∑

E∈E
e

n
E ϕE(x) . (4.10)

We denote the �0(Th) coordinates of the time-discrete coefficients A
n
h, Dn

h, and F
n
h associated

with a fixed T ∈ Th by a
n
T , dn

T , and f
n
T , respectively.
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Linear algebra system. In this paragraph, we abbreviate the L2(Ω) and the L2(Ω) scalar

product by (· , ·). With the representation (4.9), the system of equations for the nth time step

reads

−
∑

E∈E
qn

E

(

(Dn
h)−1ϕE , ϕE′

)

+
∑

T∈Th

un
T

(

(χT , ∇ · ϕE′) +
(

(Dn
h)−1
C

n
h χT , ϕE′

))

=
(

un
D,h , ϕE′ · ν

)

L2(∂ΩD)
−

(

(Dn
h)−1
E

n
h , ϕE′

)

,
∑

T∈Th

un
T

(

A
n
h χT , χT ′

)

+ τn

∑

E∈E
qn

E(∇ · ϕE , χT ′) =
(

τnF
n
h , χT ′

)

+
∑

T∈Th

un−1
T

(

A
n−1
h χT , χT ′

)

,

∑

E∈EN

qn
E

(

ϕE · ν , χE′′
)

L2(∂ΩN) =
∑

E∈EN

(un
T⊂Ec

n
E + e

n
E)

(

ϕE · ν , χE′′
)

L2(∂ΩN)

for E′ ∈ EΩ ∪ ED, T ′ ∈ Th, and E′′ ∈ EN. Using
(

ϕE · ν , χE′′
)

L2(∂ΩN) = δEE′′ |E| (cf. Def. 4.14

and Thm. 4.15 (iii)), the last equation yields the (edgewise valid) relation

qn
E = un

T⊃E c
n
E + e

n
E for E ∈ EN . (4.11)

We eliminate the degrees of freedom on Neumann edges in the first two equations by (4.11)

and account for the constraint of V
qn

flux,h,Eflux

h by setting qn
E = qn

flux,h|E on flux edges. Hence,

−
∑

E∈EΩ∪ED

qn
E

∫

Ω

(Dn
h)−1ϕE · ϕE′

+
∑

T∈Th

un
T

( ∫

T
∇ · ϕE′ +

∫

T
(dn

T )−1
C

n
h · ϕE′ −

∑

{E⊂T |E∈EN}
cE

∫

T
(dn

T )−1 ϕE · ϕE′

)

=

∫

∂ΩD

un
D,h ϕE′ · ν −

∫

Ω

(Dn
h)−1
E

n
h · ϕE′ +

∑

E∈EN

e
n
E

∫

Ω

(Dn
h)−1ϕE · ϕE′

+
∑

E∈Eflux

qn
flux,h

∣
∣
∣
E

∫

Ω

(Dn
h)−1ϕE · ϕE′ , (4.12a)

τn

∑

E∈EΩ∪ED

qn
E

∫

T ′
∇ · ϕE + un

T ′

(

|T ′| an
T ′ + τn

∑

{E⊂T |E∈EN}
c

n
E

∫

T ′
∇ · ϕE

)

= |T ′|
(

τn f
n
T ′ + un−1

T ′ a
n−1
T ′

)

− τn

∑

E∈EN

e
n
E

∫

T ′
∇ · ϕE − τn

∑

E∈Eflux

qn
flux,h

∣
∣
∣
E

∫

T ′
∇ · ϕE (4.12b)

for E′ ∈ EΩ ∪ED and T ′ ∈ Th. Since ��0(Th) ∋ Cn
h (x) =

∑

E∈E c
n
EϕE(x), it locally holds that

∫

T

(

(dn
T )−1
C

n
h

)

· ϕE′ dx =
∑

E⊂T

c
n
E

∫

T
(dn

T )−1 ϕE · ϕE′
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and thus the associated two terms can be summarized in (4.12a). This works analogously for

the terms containing the coefficient En
h . The system (4.12) is thus equivalent to the following

system of equations:





Bn Cn + DT

τnD En









Qn

Un




=





bq,n

bu,n




(4.13)

with submatrices

Bn =
[

Bn
E′E

]

E′,E∈EΩ∪ED
, Cn =

[

Cn
E′T

]

E′∈EΩ∪ED ,T∈Th
, D =

[

DT ′E

]

T ′∈Th,E∈EΩ∪ED
,

En =
[

En
T ′T

]

T ′,T∈Th
, bq,n =

(

bq,n
E′

)

E′∈EΩ∪ED
, bu,n =

(

bu,n
T ′

)

T ′∈Th

and the representation vectors of the solution (qn
h, u

n
h) ∈ ��0(Th) × �0(Th) of Problem 4.11

Qn =
(

qn
E

)

E∈EΩ∪ED
, Un =

(

un
T

)

T∈Th
.

Here, the data is given by

Bn
≔ −A

T∈Th

Hn
T , (4.14a)

Cn
E′T ≔

∑

{E⊂T |E<EN}
c

n
E

∫

T

(

(dn
T )−1 ϕE

)

· ϕE′ for E′ ∈ EΩ ∪ ED, T ∈ Th , (4.14b)

DT ′E ≔

∫

T ′
∇ · ϕE for T ′ ∈ Th, E ∈ EΩ ∪ ED , (4.14c)

En
TT ≔ |T | an

T + τn

∑

{E⊂T |E∈EN}
c

n
E DT E for T ∈ Th , (4.14d)

bq,n
E′ ≔ δE′∈ED |E′| un

D,h

∣
∣
∣
E
−

∑

T∈Th

∑

E⊂T

e
n
E Hn

T,E′,E −
∑

E∈EN

e
n
E BE′E −

∑

E∈Eflux

qn
flux,h

∣
∣
∣
E

BE′E

for E′ ∈ EΩ ∪ ED ,

(4.14e)

bu,n
T ′ ≔ |T ′|

(

τn f
n
T ′ + un−1

T ′ a
n−1
T ′

)

−
∑

E∈EN

e
n
E τn DT ′E −

∑

E∈Eflux

qn
flux,h

∣
∣
∣
E
τn DT ′E

for T ′ ∈ Th .

(4.14f)
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The auxiliary local assembly matrix variable Hn
T ∈ �3,3 is given by

Hn
T ≔

[ ∫

T

(

(dn
T )−1 ϕE

)

· ϕE′

︸                   ︷︷                   ︸

=: Hn
T,E,E′

]

E′,E⊂T

. (4.14g)

The operator A denotes the assembly operator, which maps the element contribution Hn
T

to the global matrix Bn (cf. Bathe 2007; Hughes 2000). In particular, this is done by a loop

over all elements T ∈ Th, calculating only the nine non-zero entries of the local assembly

matrix Hn
T per element, i. e., where ϕE and ϕE′ have a common support. A representative

structure of the large sparse matrix in (4.13) is illustrated in Figure 4.4 (a) on p. 85.

Remark 4.13 (Degrees of freedom and postprocessing). Even though the degrees of

freedom for the flux unknowns qn are located on the sets edges EΩ ∪ ED, the block matrices

in (4.13) are assembled with respect to all edges. Subsequently, a subindexing technique is

used to solve (4.13) for the degrees of freedom only (Alberty et al. 1999, Sec. 8). The flux

unknown on flux edges, i. e. (qE)E∈Eflux , is directly determined according to the boundary

data qflux. The flux unknown on Neumann edges, i. e., (qE)E∈EN , has to be computed in

a postprocessing step according to (4.6), since it depends on the scalar solution un. Note that

this linear constraint appearing in the flux ansatz space was taken into account implicitly. △

Balance constraint of the scalar unknown. If we consider the stationary case, i. e., the

coefficient A in (4.4) is chosen equal to zero, τn = 1, and at the same time ∂ΩD = ∅,
the scalar solution is given only up to a constant and the system of equations (4.13) has

a rank deficiency of one. To introduce a constraint in order to reobtain uniqueness of the

scalar solution, we define a balance constraint by demanding the mean scalar solution to be

equal to a constant bλ, i. e., −
∫

Ω
uh

!
= bλ. This relation is reformulated by means of the basis

representation (4.9b) of uh to

∑

T∈Th

|T | uT = F · U = |Ω| bλ
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with F =
( |T | )T∈Th

. The constraint is incorporated into system (4.13) by appending an

additional column as follows:





B C + DT

D E

FT









Q

U




=





bq

bu

bλ





, (4.15)

which omits again a unique solution.

4.2.3 Assembly

We have derived the large system of equations (4.13), which solution is equivalent to that

of Problem 4.11. This system contains terms depending on the basis functions ϕE, which

are yet of abstract nature. In this section, we define an explicit (global) basis of ��0(Th).

In contrast to Section 4.3, where only a basis on the reference triangle T̂ is defined and the

Piola transformation is used, it is demonstrated that there is no disadvantage in not using

Piola mapping. Eventually, it is shown how the explicit choice of form functions leads to

simplifications of the integral terms in (4.14). Furthermore, we comment on the solving of

the system of equations (4.13).

Form functions. Recall that each edge E ∈ E = EΩ ∪ E∂Ω is equipped with a (globally

defined) unique normal unit vector νE, such that νE is exterior to Ω for E ∈ E∂Ω. In the

following, x
opp
ET denotes the node of T opposite to E, x

bary
E the barycenter of E, and σET the

sign of E according to the local orientation, i. e.,

σET ≔






1 , νET = νE

−1 , νET = −νE






,

where νET is the unit edge normal under local orientation (cf. Fig. 4.1; Tab. B.6, p. 145).

Thus,

νE = σETνET for E ⊂ T ∈ Th (4.16)

holds by definition.

We define the global form functions and linear forms as follows and show later on

in Theorem 4.15 that these define a global finite element space:
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b

b

b

T ′
T νE=νET

νET ′

x
bary
E x

opp
ET ′

x
opp
ET

E

Figure 4.1. Illustration of the local edge orientation and the notation for a grid consisting of two
triangles, i. e., Th = {T, T ′}. Here, σET = 1 and σET ′ = −1. Note that the boundary
edge orientation is always chosen in a way that the local edge normals point outward
of the domain.

Definition 4.14 (Global form functions and global linear forms). Let the global form

functions ϕE be defined by

ϕE : Ω ∋ x 7→ ϕE |T (x) ≔






σET
|E|

2 |T |(x − x
opp
ET ) , E ⊂ T

0 , E 1 T






∈ �2 for T ∈ Th (4.17a)

and the global degrees of freedom ̺E be defined by

̺E : ��0(Th) ∋ uh 7→ ̺E(uh) ≔ −
∫

E
uh · νE ∈ � for E ∈ E . (4.17b)

Obviously, the domain of ̺E can be extended to Hdiv(Ω). Clearly, ϕE ∈ ��0(Th) ⊂ Hdiv(Ω)

for E ∈ E (cf. (3.5), p. 32; (3.7), p. 33) noting that
�

ϕE
�

E, i. e., the jump of ϕE across the

edge E, vanishes.

A (local) finite element is a quadruplet {T, PT , ΣT ,VT }, satisfying the following proper-

ties (e. g. Ern & Guermond 2004):

(i) T ⊂ �2 non-empty, compact, and connected, ∂T Lipschitz.

(ii) PT is a vector space of functions p : T → �2.

(iii) ΣT = {̺k} is a basis for P′T .

In this spirit, we show that the explicit global form function and linear forms according to

Definition 4.14 define the global lowest-order Raviart–Thomas finite element space:

Theorem 4.15 (Global finite element property). Consider ϕE ∈ ��0(Th) and ̺E ∈
L(��0(Th);�) due to Definition 4.14. Then

(i) ��0(Th) = span {ϕE}E∈E .
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(ii) L
(

��0(Th);�
)

= span {̺E}E∈E .

(iii) ̺E′(ϕE) = δE′E, with δ denoting the Kronecker delta.

Proof. See Bahriawati & Carstensen (2005, Lem. 4.1). In addition, we give an alterna-

tive / adapted proof of (iii). Consider T ∈ Th fixed. Then there holds

̺E′(ϕE)
(4.17b)
= −

∫

E′
ϕE · νE′ dx

(4.17a)
= σET

|E|
2|T | −

∫

E′
(x − x

opp
ET ) · νE′ dx .

For E , E′ ⊂ T , the vector (x − x
opp
ET ) is orthogonal to νE′ . Otherwise, considering E′ = E,

̺E(ϕE) = σET
|E|

2|T | −
∫

E
(x − x

opp
ET ) · νE dx

(4.16)
=

1

2|T |

∫

E
(x − x

opp
ET ) · νET dx = 1 . �

The linear forms {̺E} are called global degrees of freedom. If those are the evaluations of

functions at certain points (often on grid vertices or barycenters), the elements are called

Lagrangian and the evaluation points are called nodes. Since the normal trace on edges of

elements of ��0(Th) are constant (cf. Lem. 3.4, (iii)), we can write

̺E′(ϕE) = −
∫

E′
ϕE · νE′ dx = ϕE(x) · νE′ for (arbitrary) x ∈ E .

Consequently, if we choose nodes by x ≔ x
bary
E , the degrees of freedom are simply the

normal components of fluxes at the edge barycenters.

Evaluation of the integrals. This paragraph is dedicated to the simplification of the in-

tegral terms in (4.14), inter alia, by the exploitation of the special structure of the explicit

��0(Th) basis in Definition 4.14. Using (4.14g), the term (4.14b) can be written as

Cn
E′T =

∑

{E⊂T |E<EN}
c

n
E Hn

T,E,E′ .

With the divergence theorem, (4.16), and the definition of the degrees of

freedom (4.17b), the term (4.14c) is reformulated to

DT ′E =

∫

T ′
∇ · ϕE =

∑

E′⊂T ′

∫

E′
ϕE · νE′T ′ = σET ′ |E| .
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T̂ T

F

x̂1 Ê3 x̂2

Ê1Ê2

x̂3

x1 E3
x2

E1

x3

E2

b

b
b

b

b b

Figure 4.2. The affine mapping F transforms the reference triangle T̂ with x̂1 = 0, x̂2 = (1, 0)T,
x̂3 = (0, 1)T to some triangle T with local vertices xk. The edge orientation for T̂
is defined such that σÊkT = 1. The edge orientation and thus the orientation of the
edge normals may not be maintained under F.

Note that the matrix D = [DT ′E]T ′∈Th,E∈EΩ∪ED in (4.13) is invariant in time and thus has to be

assembled only once for all time steps.

Now consider a component of the local assembly matrix Hn
T as defined in (4.14g). The

use of the explicit definition of the basis functions (4.17a) yields

Hn
T,E,E′ =

∫

T

(

(dn
T )−1 ϕE

)

· ϕE′

= σETσE′T
|E||E′|
4 |T |2

∫

T

(

(dn
T )−1 (x − x

opp
ET )

)

· (x − x
opp
E′T ) dx .

The integrand belongs to �2(T ) and thus the integral can be evaluated exactly by sampling

at the barycenters of each edge (cf. Ern & Guermond 2004, Tab. 8.2, p. 360):

Hn
T,E,E′ = σETσE′T

|E||E′|
12 |T |

∑

E′′⊂T

(

(dn
T )−1 (x

bary
E′′ − x

opp
ET )

)

· (x
bary
E′′ − x

opp
E′T ) .

An alternative to the quadrature above is the use of the Piola transformation as described

in Section 4.3.3. For vector-valued functions, we have the transformation rule (cf. Durán

2008, (22), p. 12)

u(x) = u
(

F(x̂)
)

=
∇F

det∇F
û(x̂) . (4.18a)

The form functions as given in Definition 4.14 simplify to

ϕ̂1(x̂) =
√

2x̂ , ϕ̂2(x̂) = x̂ −





1

0




, ϕ̂3(x̂) = x̂ −





0

1




(4.18b)
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on the reference triangle T̂ (cf. Fig. 4.2) with ϕ̂k ≔ ϕ̂Êk
. Equation (4.18) can be used to

integrate Hn
T̂ ,E,E′

exactly on T̂ in the manner of Section 4.3.3. However, when transform-

ing T to T̂ , attention has to be paid to the edge signs σEkT .

Remark 4.16 (Solving the linear algebra system). The linear algebra system (4.13),

which has to be solved for each time step n ∈ {1, . . . ,N}, has a saddle point

structure. The paper of Benzi et al. (2005) provides an extensive review of iterative

methods for large sparse systems of this type. We succeeded both with direct solvers

from the package UMFPACK (Davis 2004) and with the iterative solver provided

by ILUPACK (Bollhöfer & Saad 2006; Bollhöfer et al. 2011, and further publications

of M. Bollhöfer) that uses preconditioned Krylov subspace methods. In the case of

balance constraints (cf. (4.15)), we obtain a rectangular system of equations with a rank

deficiency of one. This system admits a unique solution that is computed by a sparse QR

decomposition (SPQR), also contained in the package UMFPACK (Davis 2011). The

algorithm SPQR is rank-revealing, i. e., it effectively results in a pseudo-quadratic upper

triangular system of full rank. △

4.3 Discretization of Equations of Stokes Type

This section presents the discretization of the stationary Stokes equations (cf. {(1.1), (1.3)})
equipped with two different types of boundary conditions using mixed finite elements of

Taylor–Hood type.

4.3.1 Formulation of the Weak Problems

Model equations. Consider the following model problem in a domain Ω ⊂ �2 with

boundary ∂Ω = ∂ΩD∪∂ΩN that decomposes into a non-empty and closed Dirichlet part ∂ΩD

and a Neumann part ∂ΩN:

−µ∆u + ∇p = f in Ω , (4.19a)

∇ · u = 0 in Ω , (4.19b)

u = uD on ∂ΩD , (4.19c)
(

µ∇u − p I
)

ν = 0 on ∂ΩN (4.19d)
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with the unknowns u = (u, v)T : Ω → �2, the liquid velocity, and p : Ω → �, the liquid

pressure, and the following given data: µ ∈ �+, f = ( f x, f y)T : Ω → �2, uD = (uD, vD)T :

∂ΩD → �2. Moreover, let I denote the identity matrix. If ∂ΩN = ∅, the pressure p is defined

only up to a constant. Hence, in this case, we additionally demand that −
∫

Ω
p = 0 holds.

Remark 4.17 (Boundary conditions for the Stokes problem). In applications the Diri-

chlet boundary condition (4.19c) prescribes the velocity at inflow boundaries or the condi-

tion at the solid–liquid interface. The latter case is termed no-slip condition for which uD = 0

is demanded. The Neumann condition (4.19d) realizes a “free” boundary that serves as in-

flow and / or outflow boundary in the sense that the normal velocity on ∂ΩN automatically

adjusts itself such that mass is conserved globally, i. e.,
∫

∂Ω
u ·ν dsx = 0 holds. For a more de-

tailed discussion we refer to the books of Elman et al. (2005, Chap. 5) and Gross & Reusken

(2011, Sec. 1.2). △

Weak continuous formulation. We define the constrained ansatz space

H1
a,∂ΩD

(Ω) ≔
{

s ∈ H1(Ω); s|∂ΩD = a
}

with a ∈ H1/2(∂ΩD), i. e., the Dirichlet boundary condition is the essential boundary condi-

tion here. By choosing the test functions (s, w) ∈ H1
0,∂ΩD

(Ω)× L2(Ω), integrating over Ω, and

integrating by parts we obtain the continuous variational problem with respect to (4.19):

Problem 4.18 (Weak continuous Stokes problem). Let f ∈ L2(Ω), µ ∈ �+ be given.

Seek (u, p) ∈ H1
uD,∂ΩD

(Ω) × L2(Ω) such that

∀s ∈ H1
0,∂ΩD

(Ω), µ(∇u , ∇s)L2(Ω) − (p , ∇ · s)L2(Ω) = ( f , s)L2(Ω) ,

∀w ∈ L2(Ω), (∇ · u , w)L2(Ω) = 0 .

Recall that the L2(Ω) scalar product is defined by (∇u , ∇s)L2(Ω) ≔
∑2

i, j=1

∫

Ω
[∇u]i, j[∇s]i, j dx.

Note that in the first equation of Problem 4.18 the term
∫

∂ΩN
(µ∇u − pI)ν · s dsx appeared

after integrating by parts. However, this boundary integral vanishes due to the homogeneous

natural boundary condition (4.19d). Problem 4.18 admits a unique solution (u, p) ∈ H1
0(Ω)×

L2(Ω), at least for the case of ∂ΩN = ∅ together with a homogeneous Dirichlet boundary

condition (cf. Ern & Guermond 2004, Thm. 4.3, p. 178).
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∂ΩN

∂ΩN

∂ΩD

Dirichlet nodes Nu
D

interior and Neumann nodes Nu
Ω
∪Nu

N

b

b

b
b

bc

bc

bc

b
b b

b

b
b

b

b

bc

b

b

b

Figure 4.3. Definition of the set of nodes Nu
Ω

, Nu
D, Nu

N for the velocity uh. A vertex xN with
xN = ∂ΩD ∩ ∂ΩN is declared as a Dirichlet node N ∈ Nu

D. The degrees of freedom
are located on Nu

Ω
∪Nu

N.

Weak discrete formulation. For k ∈ �, let

�
c
k(Th) ≔ �k(Th) ∩ C0(Ω) ⊂ H1(Ω) (4.20)

denote the global polynomial space on the triangulation Th that is piecewise polynomial of

order k (cf. (3.6)) and globally continuous. Analogously, let �c
k(E) be the edgewise poly-

nomial, globally continuous space. We define the finite-dimensional subspace Sa,∂ΩD

h ⊂
H1

a,∂ΩD
(Ω) by

S
ah ,∂ΩD

h ≔ H1
ah ,∂ΩD

(Ω) ∩ �c
2(Th)2

with ah ∈ �c
2(ED)2. Thus, the discrete velocity space consists of globally continuous, piece-

wise quadratic functions and the discrete pressure space of globally continuous, piecewise

linear functions. The associated finite element is referred to as Taylor–Hood element (cf.

Hood & Taylor 1973; Girault & Raviart 1986, Sec. 4.2). For the analysis of Taylor–Hood

schemes see, e. g., Bercovier & Pironneau (1979) and Brezzi & Falk (1991).

We are now able to formulate the discrete version of Problem 4.18, the fully discrete

variational problem:

Problem 4.19 (Weak discrete Stokes problem). Let f ∈ L2(Ω), µ ∈ �+ be given. Seek

(uh, ph) ∈ S0,∂ΩD

h × �c
1(Th) such that

∀sh ∈ Sah ,∂ΩD

h , µ(∇uh , ∇sh)L2(Ω) − (ph , ∇ · sh)L2(Ω) = ( f , sh)L2(Ω) ,

∀wh ∈ �c
1(Th), (∇ · uh , wh)L2(Ω) = 0 .
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4.3.2 Matrix Formulation

Following the idea of Elman et al. (2005, Sec. 5.3), we derive the linear system of equations

that is equivalent to Problem 4.19.

Basis representation. Let Nu ≔ Nu
Ω
∪ Nu

D ∪ Nu
N be the set of velocity nodes consisting

of the union of vertices V and edge barycenters {xbary
E }E as described in Figure 4.3, and

let N p ≔ V denote the set of pressure nodes. Thus, the solution for the vector-valued

unknown uh can be expressed by

S
ah ,∂ΩD

h ∋ uh(x) =
∑

N∈Nu

uN





φN(x)

0




+

∑

N∈Nu

vN





0

φN(x)




, (4.21)

keeping in mind that uN and vN are prescribed by the Dirichlet data uD on ∂ΩD, where {φN}N
is the nodal basis of �c

2(Th). Clearly, φN(xN′) = δNN′ holds for N,N′ ∈ Nu. Hence, uN and

vN are the coordinates of the components of uh with respect to {φN} and

�
c
2(Th)2 = span

{

(φN , 0)T, (0, φN)T
}

N
.

The pressure solution is represented by

Wh ∋ ph(x) =
∑

N∈N p

pN ψN(x) (4.22)

with {ψN}N being the basis of �c
1(Th). Similarly, ψN(xN′) = δNN′ for N,N′ ∈ N p. We assume

for the discrete coefficients that uD,h ∈ �c
2(ED)2 and fh ∈ �c

2(T )2 holds using a similar

coordinate notation as in (4.21). For the sake of presentation, we suppress the index h in the

following.

Linear algebra system. In this paragraph, we abbreviate the L2(Ω) and the L2(Ω) scalar

product by (· , ·). With

sh =





φN′

0




,





0

φN′




for N′ ∈ Nu

Ω ∪ Nu
N and wh = ψN′ for N′ ∈ N p
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and taking into account that there are no degrees of freedom on Dirichlet nodes, we obtain

the following system of equations, which has saddle-point structure:

µ
∑

N∈Nu
Ω
∪Nu

N

uN (∇φN , ∇φN′) −
∑

N∈N p

pN (ψN , ∂xφN′) = ( f x , φN′) − µ
∑

N∈Nu
D

uD|N (∇φN , ∇φN′) ,

for N′ ∈ Nu
Ω
∪Nu

N ,

µ
∑

N∈Nu
Ω
∪Nu

N

vN (∇φN , ∇φN′) −
∑

N∈N p

pN (ψN , ∂yφN′) = ( f y , φN′) − µ
∑

N∈Nu
D

vD|N (∇φN , ∇φN′)

for N′ ∈ Nu
Ω
∪Nu

N ,

∑

N∈Nu
Ω
∪Nu

N

(

uN(ψN′ , ∂xφN) + vN(ψN′ , ∂yφN)
)

= −
∑

N∈Nu
D

(

uD|N(ψN′ , ∂xφN) + vD|N(ψN′ , ∂yφN)
)

for N′ ∈ N p ,

or equivalently,





µA BT

µA CT

B C









U

V

P





=





bu

bv

bp





, (4.23)

where

A =
[

AN′N

]

N′,N∈Nu
Ω
∪Nu

N

, B =
[

BN′N

]

N′∈N p,N∈Nu
Ω
∪Nu

N

, C =
[

CN′N

]

N′∈N p,N∈Nu
Ω
∪Nu

N

,

bu =
(

bu
N′

)

N′∈Nu
Ω
∪Nu

N

, bv =
(

bvN′
)

N′∈Nu
Ω
∪Nu

N

, bp =
(

bp
N′

)

N′∈N p

with

AN′N = (∇φN , ∇φN′) , BN′N = (ψN′ , ∂xφN) , CN′N = (ψN′ , ∂yφN) ,

bu
N′ = ( f x , φN′) − µ

∑

N∈Nu
D

AN′N uD|N , bvN′ = ( f y , φN′) − µ
∑

N∈Nu
D

AN′N vD|N ,

bp
N′ = −

∑

N∈Nu
D

(

BN′N uD|N + CN′N vD|N
)

and the following representation vectors of the solution of Problem 4.19 with respect to the

bases of �c
2(Th), �c

2(Th), and �c
1(Th), respectively:

U =
(

uN

)

N∈Nu
Ω
∪Nu

N

, V =
(

vN

)

N∈Nu
Ω
∪Nu

N

, P =
(

pN

)

N∈N p
.
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4.3 Discretization of Equations of Stokes Type

A representative structure of the large sparse matrix in (4.23) is illustrated in Figure 4.4 (b).

DOF= 315, NNZ= 1 635 (a) DOF= 612, NNZ= 7 475 (b) #T=120, #E=195, #V=74 (c)

Figure 4.4. Representative sparse matrix structure of the system of equations for (a) convection–
diffusion type problems (cf. (4.13), p. 74), and for (b) Stokes type prob-
lems (cf. (4.23), p. 84) on (c) a grid (DOF: degrees of freedom; NNZ: number of
non-zero entries).

Pressure-balance constraint. If ∂ΩN = ∅ then the pressure solution is defined only up

to a constant and the system of equations (4.23) has a rank deficiency of one. To introduce

a constraint in order to reobtain uniqueness of the pressure, we define a pressure-balance

constraint by demanding the mean pressure to be equal to a constant bλ, i. e., −
∫

Ω
ph

!
= bλ,

which can be reformulated by means of the basis representation (4.22) of ph to

∑

N∈N p

pN (ψN , 1)L2(Ω) = |Ω| bλ .

With

D =
(

DN

)

N∈N p
, where DN ≔ (ψN , 1)L2(Ω)

the pressure balance can be written as D · P = |Ω| bλ and be appended to (4.23). As a few

linear algebra solvers require quadratic or even more symmetric systems, we further append

a column as follows:





µA BT

µA CT

B C D

DT 1









U

V

P

λ





=





bu

bv

bp

|Ω| bλ





. (4.24)
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b

b
b

b b

b

b

b

b b

b b

T̂ T

F

N̂1 N̂6 N̂2

N̂4N̂5

N̂3

N1
N6

N2

N4

N3

N5

Figure 4.5. The affine mapping F transforms the reference triangle T̂ to some triangle T with
local nodes Nk. The orientation is maintained under F.

The vector D is assembled elementwise, similar to the term ( f x , φN′)L2(Ω) in (4.23). Note

that the solution of (4.24) must satisfy λ = 0 and that the symmetry of the system of equa-

tions (4.24) is preserved.

4.3.3 Assembly

The integration of the terms appearing in (4.23) is performed exactly after transformation

to the reference triangle T̂ by the Piola transformation (cf. Chen (2005), Durán (2008), and

Knabner & Angermann (2003), and Fig. 4.5). We therefore define the affine one-to-one

mapping F : T̂ ∋ x̂ 7→ x ∈ T and further the function ŵ : T̂ → � for a w : T → � by

ŵ = w ◦ F , i. e., w(x) = ŵ(x̂) . Application of the chain rule yields

∇̂u(x) = ∇̂u
(

F(x̂)
)

=





∂xu(x) ∂x̂F x(x̂) + ∂yu(x) ∂x̂Fy(x̂)

∂xu(x) ∂ŷF x(x̂) + ∂yu(x) ∂ŷFy(x̂)




=

(

∇̂F(x̂)
)T
∇u(x) =

(

∇F
)T
∇u(x),

with the notations ∇̂ = (∂x̂, ∂ŷ)
T, F = (F x, Fy)T used. In short terms,

∇ =
(

∇F
)−T
∇̂ . (4.25)

The affine mapping can be expressed explicitly in terms of the vertices xk of T by

F : x̂ 7→
[

x2 − x1

∣
∣
∣x3 − x1

]

︸               ︷︷               ︸

=∇F

x̂ + x1 . (4.26)

Eventually, we need an explicit representation of the local spaces �c
1(T ) = span{ψNk }k∈{1,2,3}

and �c
2(T ) = span{φNk}k∈{1,...,6}. Here, Nk = xk denote the local nodes on a considered tri-
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4.3 Discretization of Equations of Stokes Type

angle T (cf. Fig. 4.3). With the abbreviations ψk ≔ ψNk , the linear basis functions ψk are

simply the barycentric coordinates on T :

ψ1(x) =
1

2|T | det





x y 1

x2 y2 1

x3 y3 1





, ψ2(x) =
1

2|T | det





x1 y1 1

x y 1

x3 y3 1





, ψ3(x) =
1

2|T | det





x1 y2 1

x2 y2 1

x y 1





with derivatives

∂ψ1

∂x
=

y2 − y3

2 |T | ,
∂ψ2

∂x
=

y3 − y1

2 |T | ,
∂ψ3

∂x
=

y1 − y2

2 |T | ,

∂ψ1

∂y
=

x3 − x2

2 |T | ,
∂ψ2

∂y
=

x1 − x3

2 |T | ,
∂ψ3

∂y
=

x2 − x1

2 |T | .

Moreover, the quadratic functions φi are expressed in terms of ψk via

φi = ψi(2ψi − 1) , φi j = 4ψiψ j , i , j for i, j ∈ {1, 2, 3}

with derivatives

∂φi

∂x
=

∂ψi

∂x

(

4ψi − 1
)

,
∂φi

∂y
=

∂ψi

∂y

(

4ψi − 1
)

,

∂φi j

∂x
= 4

(

ψi
∂ψ j

∂x
+ ψ j

∂ψi

∂x

)

,
∂φi j

∂y
= 4

(

ψi
∂ψ j

∂y
+ ψ j

∂ψi

∂y

)

,

where φ23 ≔ φ4, φ13 ≔ φ5, φ12 ≔ φ6. On the reference triangle T̂ , the linear basis functions

simplify to

ψ̂1(x̂) = 1 − x̂ − ŷ , ψ̂2(x̂) = x̂ , ψ̂3(x̂) = ŷ

with the following derivatives:

∂ψ̂1

∂x̂
= −1 ,

∂ψ̂2

∂x̂
= 1 ,

∂ψ̂3

∂x̂
= 0 ,

∂ψ̂1

∂ŷ
= −1 ,

∂ψ̂2

∂ŷ
= 0 ,

∂ψ̂3

∂ŷ
= 1 .

With these preparations we continue with the description of the assembly of the sparse

matrices A, B, C and of the vectors bu, bv in the large system of equations (4.23).

87



Chapter 4 Numerical Solution of the SNPP System and the DNPP Systems

Assembly of A. Decomposition of the integral yields

AN′N =
∑

T∈Th

∫

T
∇φN · ∇φN′ ,

where N, N′ ∈ Nu
Ω
∪ Nu

N denote the (global) nodes. Let again Nk, k ∈ {1, . . . , 6} denote the

local nodes on a considered triangle T . We define the local assembly matrix AT ∈ �6,6 by

[

AT

]

l,k
=

∫

T
∇φNk · ∇φNl such that A = A

T∈Th

AT ,

with A denoting the assembly operator that maps the element contribution to the global

matrix (cf. Bathe 2007; Hughes 2000). Using the abbreviations φk ≔ φNk , φ̂k ≔ φ̂N̂k
, there

holds

∫

T
∇φk(x) · ∇φl(x) dx =

∫

T̂
∇φk

(

F(x̂)
) · ∇φl

(

F(x̂)
)

det∇F dx̂

(4.25)
=

∫

T̂

(

∇F
)−T
∇̂φk

(

F(x̂)
) · (∇F

)−T
∇̂φl

(

F(x̂)
)

det∇F dx̂

=

∫

T̂

(

∇F
)−T
∇̂φ̂k(x̂) · (∇F

)−T
∇̂φ̂l(x̂) det∇F dx̂

=

∫

T̂
G ∇̂φ̂k(x̂) · ∇̂φ̂l(x̂) dx̂ (4.27a)

with

G =
[

Gi j

]

i, j=1,2
=

(

∇F
)−1 (

∇F
)−T det∇F =

((

∇F
)T
∇F

)−1
det∇F

(4.26)
=

1

2 |T |





[∇F]2 · [∇F]2 − [∇F]1 · [∇F]2

sym [∇F]1 · [∇F]1




, (4.27b)

where [∇F]i refers to the ith column of ∇F. Due to the vertex orientation it holds that

0 < det∇F = 2 |T | for every T ∈ Th . Consequently, we are able to express the local

assembly matrix AT as linear combination of constant matrices:

AT =

∫

T





∇φ1 · ∇φ1 · · · ∇φ6 · ∇φ1

...
...

sym · · · ∇φ6 · ∇φ6





dx
(4.27)
= G11

∫

T̂





∂x̂φ̂1∂x̂φ̂1 · · · ∂x̂φ̂6∂x̂φ̂1

...
...

sym · · · ∂x̂φ̂6∂x̂φ̂6





dx̂
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+G12

∫

T̂









∂x̂φ̂1∂ŷφ̂1 · · · ∂x̂φ̂6∂ŷφ̂1

...
...

∂x̂φ̂1∂ŷφ̂6 · · · ∂x̂φ̂6∂ŷφ̂6





+





∂ŷφ̂1∂x̂φ̂1 · · · ∂ŷφ̂6∂x̂φ̂1

...
...

∂ŷφ̂1∂x̂φ̂6 · · · ∂ŷφ̂6∂x̂φ̂6









dx̂

+G22

∫

T̂





∂ŷφ̂1∂ŷφ̂1 · · · ∂ŷφ̂6∂ŷφ̂1

...
...

sym · · · ∂ŷφ̂6∂ŷφ̂6





dx̂ ,

which can be integrated exactly.

Assembly of B and C. We decompose the term BN′N as follows:

BN′N =
∑

T∈Th

∫

T
ψN′ ∂xφN for N ∈ Nu

Ω ∪Nu
N, N′ ∈ N p.

Let again, the indices k, l refer to the local nodes on a considered triangle T (cf. Fig. 4.5).

We define the local assembly matrix BT ∈ �3,6 by

[

BT

]

l,k
=

∫

T
ψl ∂xφk such that B = A

T∈Th

BT .

With (4.25), we derive ∂x =
(

[∇F]22 ∂x̂ − [∇F]12 ∂ŷ
)/

det∇F and thus

[

BT

]

l,k
= [∇F]22

∫

T̂
ψ̂l ∂x̂φ̂k dx̂ − [∇F]21

∫

T̂
ψ̂l ∂ŷφ̂k dx̂ .

Analogously, we obtain

[

CT

]

l,k
=

∫

T
ψl ∂yφk dx = − [∇F]12

∫

T̂
ψ̂l ∂x̂φ̂k dx̂ + [∇F]11

∫

T̂
ψ̂l ∂ŷφ̂k dx̂ .

Assembly of bu and bv. At first, we consider only the first term of bu
N′ as given in (4.23).

For a homogeneous Dirichlet boundary condition, we have

bu
N′ = ( f x , φN′) =

∑

T∈Th

∫

T
f xφN′ for N′ ∈ Nu

Ω ∪Nu
N .
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Since f x|T ∈ �c
2(T ), there is the local basis representation f x(x)|T =

∑6
k=1 f x

k φk(x) and thus

we obtain by transformation to the reference triangle T̂

∫

T
f xφl dx =

6∑

k=1

f x
k

∫

T
φkφl dx = 2 |T |

6∑

k=1

f x
k

∫

T̂
φ̂kφ̂l dx̂ for l ∈ {1, . . . , 6} .

Let f x,loc
T ∈ �6 denote the vector of the first component of f evaluated at the six nodes of T .

Furthermore, let ET ∈ �6,6 be the local assembly matrix defined by

[

ET

]

l,k
≔

∫

T
φk φl ,

where after transformation to the reference triangle T̂

ET = 2 |T |
∫

T̂





φ̂1φ̂1 · · · φ̂1φ̂6

...
...

sym · · · φ̂6φ̂6





dx̂ . (4.28)

Then, the local assembly vector bu
T with bu = AT∈Th

bu
T is expressed by a matrix vector

product with the local assembly matrix ET (cf. (4.28)):

�
6 ∋ bu

T = ET f x,loc
T .

The vector bvT is assembled analogously. Remark that the matrix E ≔ AT∈Th
ET appeared

in the large system of equations (4.23) if the non-stationary case of the Stokes equations is

considered.
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Chapter5
Verification of the Discretization Schemes

In this chapter, we apply the method of manufactured solutions (MMS—cf. Roache 1998a,b,

2002; Salari & Knupp 2000) to the implemented discretization schemes in order to validate

numerically the implemented solver and thus to verify the underlying discretization schemes

of Chapters 3 and 4. In particular, the tests implicitly demonstrate the convergence of the

incorporated iterative splitting algorithm (cf. Alg. 4.4). Furthermore, the numerically esti-

mated orders of convergence in Section 5.4 show that the a priori error estimates for the

DNPP system in Section 3.2 are valid for lowest order discretization spaces. The verifica-

tion of the discretization schemes for all systems under consideration is the basis for the

numerical investigations that follow in Chapter 6.

Preliminaries. We make use of the following lemma to numerically estimate the orders

of convergence in the discretization parameter h:

Lemma 5.1 (Estimates for the convergence order). Assume an a priori error estimate of

the form

∀h > 0 , ‖zh − z‖L2(Ω) ≤ C(z) hk (5.1)

to hold, using the usual notation. Here, C = C(z) > 0 depends only of the domain Ω and

of the true solution z. Let (h j) j∈� be a positive decreasing sequence. Then the convergence

order k of the underlying discretization scheme satisfies

k ≥ ln

(‖zh j−1 − z‖L2(Ω)

‖zh j − z‖L2(Ω)

)/

ln

(
h j−1

h j

)

, (5.2a)

and also

k ≥ ln

(‖zh j−1 − zh j−2‖L2(Ω)

‖zh j − zh j−1‖L2(Ω)

)/

ln

(
h j−1 + h j−2

h j + h j−1

)

. (5.2b)
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Proof. Inequality (5.2a) immediately follows by the quotient of (5.1) with h = h j−1, h j and

taking the logarithm. Further, by ‖zh j − zh j−1‖ ≤ ‖z − zh j‖ + ‖z − zh j−1‖, (5.1), and hk
j + hk

j−1 ≤
(h j + h j−1)k analogously (5.2b) is obtained. �

Inequalities (5.2) provide bounds for the minimum convergence order. In the following, the

minimum experimental convergence order is frequently denoted by co and is set equal to the

right-hand side of (5.2a) or (5.2b). If h j = h j−1/2—as done in this thesis—the denominators

of (5.2a) and (5.2b) simplify to ln 2. The estimate (5.2a) is only meaningful if the true

solution z is known—this is the case for scenarios according to the MMS. Otherwise, if

the true solution is missing (cf. Par. “Upscaled Tensors” of Sec. 6.2), the estimate (5.2b) is

used.

5.1 Verification of the Convection–Diffusion

Discretization

5.1.1 Scenario: Reactive Transport

The following test scenario was taken from Bause & Knabner (2004) and Radu et al. (2008).

Model problem. In this scenario, two chemical species—an electron acceptor A and an

electron donor D—represented by their molar concentrations cA and cD, respectively, are

transported through a saturated porous medium. The transport mechanisms are diffusion

and advection due to a prescribed water flux u. If both species are available in any area of

the considered domain Ω, they degrade according to the stoichiometry

2A + D → ∅ (5.3)

with a rate constant equal to one. Let J ≔ ]0, 1[ ,Ω ≔ ]0, 2[× ]0, 3[ , u ≔ (0, −1)T, θ ≔ 1.0,

D ≔ 0.1 I, νA ≔ 2, νD ≔ 1, where θ denotes the water saturation, D the diffusion–dispersion

coefficient, and νi the stoichiometric coefficients due to (5.3). Then, the considered system

of equations reads

ji = −D∇ci + u ci in J × Ω ,

∂t(θ ci) + ∇ · ji = f i − θ νi (cA)2 cD in J × Ω ,
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5.1 Verification of the Convection–Diffusion Discretization

ci = ci
D on J × ∂Ω ,

ci = ci,0 on {0} × Ω for i ∈ {

A,D
}

. (5.4)

Numerical setting. For numerical studies the true solution is prescribed by

cA(t, x) ≔ (x − 1)2 y exp(−0.1t)/9 , (5.5a)

cD(t, x) ≔ x (2 − x) y3exp(−0.1t)/27 . (5.5b)

The coefficient f i is determined by (5.4) and the initial conditions and the boundary condi-

tions are obtained by the evaluation of (5.5) on {0}×Ω and J×∂Ω, respectively. The problem

is solved with the discretization scheme of Section 4.2 setting A
i ≔ 1, C i ≔ u, Di

≔ D, and

F
i ≔ f i. As linearization scheme the Newton method was used (cf. Algs. 4.2 and 4.3).

The discretization errors ‖ ji
h − ji‖L2(Ω) and ‖ci

h − ci‖L2(Ω) at end time T = 1 are estimated

for different mesh sizes h and the minimum experimental convergence orders are computed

according to (5.2a). The temporal step size is set to τ = 0.1 and the maximum residual for

the Newton stepper to 1E−10.

Results. The discretization errors and estimated bounds for the minimum convergence

orders due to (5.2a) at end time T = 1 are listed in Table 5.1. Here, we used the following

discrete norms for qh, q ∈ ��0(Th) and uh, u ∈ �0(Th):

‖qh − q‖2
��0(Th) ≔

∑

T∈Th

∑

E⊂E

|T |
3

(

q(x
bary
E ) · νE − qE

)2
, (5.6a)

‖uh − u‖2
�0(Th) ≔

∑

T∈Th

|T | (u(x
bary
T ) − uT

)2
, (5.6b)

where the time index was suppressed. The L2(Ω) norms are approximated by a quadrature

rule of high order on Th (e. g. Ern & Guermond 2004, p. 360).

The expected linear grid convergence order in L2(Ω) (cf. Douglas & Roberts 1985) is

obtained for both molar flux and concentration and superconvergence is observed for the

concentration in the discrete norm as defined in (5.6b). The results are listed in Table 5.1.

The slightly varying convergence orders in the L2(Ω) norms are due to the non-regular grid

refinements. The rapidly decreasing convergence orders in the discrete norms toward h =

1.25E−2 result from the time discretization error, which begins to dominate over the spatial

one. Smaller time stepping re-establishes the optimal order.
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h #T #E ‖ jAh − jA‖L2(Ω) co ‖ jDh − jD‖L2(Ω) co ‖ jAh − jA‖��0(Th) co ‖ jDh − jD‖��0(Th) co

4.00E−1 64 108 1.762E−1 — 2.228E−1 — 3.229E−2 — 1.099E−1 —

2.00E−1 316 498 7.473E−2 1.24 7.904E−2 1.50 1.203E−2 1.42 1.948E−2 2.50

1.00E−1 1 272 1 956 3.778E−2 0.98 3.959E−2 1.00 4.734E−3 1.35 6.547E−3 1.57

5.00E−2 5 356 8 130 1.727E−2 1.13 1.824E−2 1.12 1.848E−3 1.36 1.997E−3 1.71

2.50E−2 21 452 32 370 8.645E−3 1.00 9.036E−3 1.01 9.151E−4 1.01 8.406E−4 1.25

1.25E−2 86 936 130 788 4.219E−3 1.04 4.438E−3 1.03 3.804E−4 1.27 3.598E−4 1.22

6.25E−3 347 872 522 576 2.103E−3 1.00 2.219E−3 1.00 1.997E−4 0.93 2.161E−4 0.74

h #T #E ‖cA
h − cA‖L2(Ω) co ‖cD

h − cD‖L2(Ω) co ‖cA
h − cA‖�0(Th) co ‖cD

h − cD‖�0(Th) co

4.00E−1 64 108 1.385E−1 — 1.916E−1 — 4.873E−2 — 1.436E−1 —

2.00E−1 316 498 5.824E−2 1.25 5.904E−2 1.70 7.451E−3 2.71 2.277E−2 2.66

1.00E−1 1 272 1 956 2.842E−2 1.04 2.862E−2 1.04 1.744E−3 2.10 6.561E−3 1.80

5.00E−2 5 356 8 130 1.319E−2 1.11 1.325E−2 1.11 3.869E−4 2.17 1.432E−3 2.20

2.50E−2 21 452 32 370 6.578E−3 1.00 6.511E−3 1.03 1.261E−4 1.62 2.524E−4 2.50

1.25E−2 86 936 130 788 3.210E−3 1.04 3.202E−3 1.02 7.277E−5 0.79 1.339E−4 0.91

6.25E−3 347 872 522 576 1.602E−3 1.00 1.606E−3 1.00 6.754E−5 0.11 1.716E−4 0.36

Table 5.1. Discretization errors at end time T = 1 (time index suppressed) and estimated convergence orders for the scenario according
to Section 5.1.1. The total degress of freedom for one species per time step is equal to #T + #E.
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5.1.2 Scenario: Water Flow with Flux Boundaries

The following test scenario was taken from Bahriawati & Carstensen (2005).

Model problem. The stationary Darcy-type problem

u = −∇p in Ω ,

∇ · u = 0 in Ω ,

p = 0 on ∂ΩD ,

u · ν = uN on ∂ΩN (5.7)

is considered on the L-shaped domain Ω = ]− 1, 1[ 2 \ [0, 1] × [−1, 0] (cf. Fig. 5.1). The

pressure p is set equal to zero on the Dirichlet boundary ∂ΩD ≔ {0} × [−1, 0]∩ [0, 1] × {0},
while the water flux u over the Neumann boundary ∂ΩN = ∂Ω \ ∂ΩD is prescribed by

uN(r, ϕ) ≔ 2/3 r−1/3





− sin(1/3 ϕ)

cos(1/3ϕ)




· ν

in the polar coordinates (r, ϕ).

Numerical setting. The true pressure solution of (5.7) is given by

p(r, ϕ) = r2/3 sin(2/3 ϕ) .

Transformation of the gradient into polar coordinates

∇p =
[

νr

∣
∣
∣
∣

1
r νϕ

]

∇(r,ϕ)p , νr ≔
x

|x| , νϕ ≔





0 −1

1 0




νr

yields the true flux solution

u = − 2

3
r−1/3

(

sin(2/3 ϕ) νr + cos(2/3ϕ) νϕ
)

.

The problem (5.7) is solved with the discretization scheme presented in Section 4.2. The

discretization errors ‖uh − u‖L2(Ω) and ‖ph − p‖L2(Ω), where (uh, ph) denotes the discrete
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Figure 5.1. Unstructured grids on the domain Ω = ]− 1, 1[ 2 \ [0, 1] × [−1, 0] with h =
1/4, 1/8, 1/16.

h #E #T ‖uh − u‖L2(Ω) co ‖uh − u‖��0(Th) co ‖ph − p‖L2(Ω) co ‖ph − p‖�0(Th) co

1/2 44 24 3.025E−1 — 1.089E−1 — 1.770E−1 — 9.392E−2 —

1/4 157 94 2.010E−1 0.59 6.928E−2 0.65 8.473E−2 1.06 2.991E−2 1.65

1/8 602 380 1.249E−1 0.69 4.465E−2 0.63 4.070E−2 1.06 1.330E−2 1.17

1/16 2 362 1 532 7.828E−2 0.67 2.452E−2 0.86 1.990E−2 1.03 5.588E−3 1.25

1/32 9 320 6 128 4.863E−2 0.69 1.581E−2 0.63 9.731E−3 1.03 2.016E−3 1.47

1/64 37 036 24 520 3.245E−2 0.58 1.149E−2 0.46 4.835E−3 1.01 9.147E−4 1.14

1/128 147 812 98 200 2.068E−2 0.65 7.656E−3 0.59 2.398E−3 1.01 3.624E−4 1.34

1/156 689 047 458 682 1.284E−2 0.68 4.989E−3 0.62 1.133E−3 1.08 1.172E−4 1.63

Table 5.2. Discretization errors and estimated convergence orders for the scenario according
to Section 5.1.2.

solution, are subsequently estimated for different mesh sizes and the minimum experimental

convergence orders are computed due to (5.2a).

Results. The discretization errors and estimated convergence orders are listed in Table 5.2.

We observe the expected linear convergence order in the L2(Ω) norm (cf. Prop. 3.23 with

vanishing errors for E and u; and Brezzi & Fortin 1991, Prop. 1.2, p. 139) for the pressure

and a convergence order of about 2/3 for the water flux. This suboptimal order is obtained

due to a loss of regularity of the solution originating from the reentrant corner of the domain

(cf. Fig. 5.1).
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5.2 Verification of the Stokes Discretization

The discretization scheme for Stokes-type problems as described in Section 4.3 on p. 80

is applied to several test scenarios in order to verify the theoretically predicted orders of

convergence. The a priori error estimates for the Taylor–Hood discretization of the Stokes

equations read as follows:

Theorem 5.2 (Order of grid convergence). Let (u, p) ∈ H1(Ω) × L2(Ω) and (uh, ph) ∈
�

c
2(Th)2 × �c

1(Th) be the solutions of Problem 4.18 and Problem 4.19, respectively. Then, if

u ∈ H3(Ω) and p ∈ H2(Ω), there exists a constant C independent of h such that

∀h, ‖uh − u‖L2(Ω) ≤ Ch3(‖u‖H3(Ω) + ‖p‖H2(Ω)
)

, (5.8a)

∀h, ‖ph − p‖L2(Ω) ≤ Ch2(‖u‖H3(Ω) + ‖p‖H2(Ω)
)

. (5.8b)

Proof. See Ern & Guermond (2004) and references cited therein. �

As in the previous section, (5.2a) is used to estimate the minimum convergence order in h,

again denoted by co.

5.2.1 Scenario: Colliding Flow

In the scenario “colliding flow” (cf. Elman et al. 2005) the true solution u =

(20xy3, 5x4 − 5y4)
T

and p = 60x2y − 20y3 is prescribed on a domain Ω = ]−1, 1[2 and the

constraint −
∫

Ω
p = 0 is claimed.

The discretization errors and the estimated convergence orders according to (5.2a) are

listed in Table 5.3. We receive the expected cubic convergence order in L2(Ω) for both ve-

locity components and a quadratic order of convergence for the pressure.
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h DOF ‖u − uh‖L2(Ω) co ‖v − vh‖L2(Ω) co ‖p − ph‖L2(Ω) co

1 95 1.038E+0 — 7.131E−1 — 9.877E+0 —

1/2 259 1.027E−1 3.34 8.765E−2 3.02 2.143E+0 2.20

1/4 1 019 1.116E−2 3.20 1.054E−2 3.06 4.961E−1 2.11

1/8 4 087 1.468E−3 2.93 1.235E−3 3.09 1.230E−1 2.01

1/16 15 704 1.734E−4 3.08 1.536E−4 3.01 2.987E−2 2.04

1/32 63 796 2.118E−5 3.03 1.843E−5 3.06 7.276E−3 2.04

1/64 255 974 2.600E−6 3.03 2.282E−6 3.01 1.807E−3 2.01

Table 5.3. Mesh sizes, degrees of freedom (DOF), discretization errors, and convergence orders
for the test scenario “colliding flow” according to Elman et al. (2005). The total DOF
are given by 2 (#V + #E) + #V.

5.2.2 Scenario: Force Term

To verify the discretization of the force term f in (4.19) a true solution (u, p) is again

prescribed and balanced by the right-hand side f . We choose Ω ≔ ]0, 1[2, u ≔
(− cos(π x) sin(π y), sin(π x) cos(π y)

)T, p :≡ 0, and the constraint −
∫

Ω
p = 0. Hence, f = 2πu

holds. The discretization errors together with the estimated convergence orders are shown

in Table 5.4.

h DOF ‖u − uh‖L2(Ω) co ‖v − vh‖L2(Ω) co ‖p − ph‖L2(Ω) co

1 31 2.431E−2 — 2.431E−2 — 3.995E−16 —

1/2 95 1.082E−2 1.17 1.082E−2 1.17 3.778E−2 —

1/4 259 1.702E−3 2.67 1.702E−3 2.67 7.548E−3 2.32

1/8 1 019 2.239E−4 2.93 2.240E−4 2.93 1.512E−3 2.32

1/16 4 087 2.724E−5 3.04 2.755E−5 3.02 3.955E−4 1.94

1/32 15 731 3.413E−6 3.00 3.405E−6 3.02 5.817E−5 2.77

1/64 63 670 4.257E−7 3.00 4.261E−7 3.00 1.609E−5 1.85

1/128 255 659 5.279E−8 3.01 5.282E−8 3.01 3.956E−6 2.02

Table 5.4. Mesh sizes, degrees of freedom (DOF), discretization errors, and convergence orders
for the test scenario “force term”. The total DOF are given by 5 (#V) + 2 (#E).
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5.3 Verification of the SNPP Discretization

As a representative system we choose the SNPP equations with essential boundary condi-

tions:

−∆u + ∇p = E (c+ − c−) + f in J × Ω , (5.9a)

∇ · u = 0 in J × Ω , (5.9b)

u = uD on J × ∂Ω , (5.9c)

j± = −∇c± +
(

u ± E
)

c± in J × Ω , (5.9d)

∂tc
± + ∇ · j± = s± in J × Ω , (5.9e)

j± · ν = j±flux on J × ∂Ω , (5.9f)

c± = c±,0 on {0} × Ω , (5.9g)

E = −∇φ in J × Ω , (5.9h)

∇ · E = c+ − c− in J × Ω , (5.9i)

E · ν = EN on J × ∂Ω . (5.9j)

Natural and mixed boundary conditions are also considered for verification (cf. Rem. 5.3).

The artificial force and source / sink terms f and s+, s−, respectively, are required as balanc-

ing terms for the application of the MMS.

Reference solution and data. The following scenario is based on Prohl & Schmuck

(2010). We choose the time interval J = ]0, 1[, the unit square domain Ω ≔ ]0, 1[2, and

the prescribed solution ansatz

u(t, x) ≔ t





−cx sy

sx cy




, p(t, x) ≔ −1

4

(

cos(2πx) + cos(2πy)
)

,

c+(t, x) ≔ t cx , c−(t, x) ≔ t sy , φ(t, x) ≔ t
π2

(

cx − sy
)

(5.10a)
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using the abbreviations sx ≔ sin(πx), sy ≔ sin(πy), cx ≔ cos(πx), cy ≔ cos(πy). Since we

use mixed finite elements, we are further interested in the discretization errors of the fluxes.

Computing the derivatives analytically, we obtain the following expressions:

E(t, x) =
t

π





sx

cy




, j+(t, x) = t





π sx + t
π
sx cx − t cx cx sy

t
π
cx cy + t sx cx cy




,

j−(t, x) = −t





t
π
sx sy + t cx sy sy

π cy + t
π
sy cy − t sx sy cy




. (5.10b)

Substituting (5.10) into (5.9) produces the following balancing source terms:

f (t, x) = 2tπ2





−cx sy

sx cy




+
π

2





sin(2πx)

sin(2πy)




+

t2

π
(sy − cx)





sx

cy




,

s+(t, x) =
(

1 + π2t
)

cx + t2
(

cx2 − sx2 − cx sy + π sx cx sy
)

,

s−(t, x) =
(

1 + π2t
)

sy + t2
(

sy2 − cy2 − cx sy + π sx cy cy
)

. (5.11a)

The boundary data and the initial data are obtained by sampling the reference solution (5.10)

on the boundary ∂Ω and at t = 0, respectively. Thus, we obtain

j+flux(t, x) =






−t2 sx cx − t2

π
cx on J × {∂Ω1 ∪ ∂Ω3}

−t2 sy on J × ∂Ω2

t2 sy on J × ∂Ω4






,

j−flux(t, x) =






π t on J × {∂Ω1 ∪ ∂Ω3}

t2 sy2 on J × {∂Ω2 ∪ ∂Ω4}






,

EN(t, x) =






− t
π

on J × {∂Ω1 ∪ ∂Ω3}

0 on J × {∂Ω2 ∪ ∂Ω4}






(5.11b)

with ∂Ω j as given in Figure 5.2. and obvious formulations for uD and c±,0. In order to ensure

uniqueness we prescribe

−
∫

Ω

p ≡ 0 and −
∫

Ω

φ = − 2

π3
t (5.12)

in (5.9).
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∂Ω4

∂Ω1

∂Ω2

∂Ω3

Figure 5.2. Boundary notation for the assignment of different boundary conditions.

Results. Solving system (5.9) with the data and constraints as defined above yields dis-

cretization errors as shown in Figure 5.3 and Table 5.5. We verify the predicted convergence

orders in h, namely three for u, two for p (cf. (5.8)), and one for the other unknowns (cf.

Douglas & Roberts 1985; Ern & Guermond 2004). As expected, we further observe a linear

grid convergence order for the overall unknown (u, p, j+, c+, j−, c−, E, φ).

 

 

‖φh − φ‖L2(Ω)

‖Eh − E‖L2(Ω)

‖c−
h
− c−‖L2(Ω)

‖ j−
h
− j−‖L2(Ω)

‖c+
h
− c+‖L2(Ω)

‖ j+
h
− j+‖L2(Ω)

‖ph − p‖L2(Ω)

‖vh − v‖L2(Ω)

‖uh − u‖L2(Ω)

123

10−4 10−3 10−2 10−1 100

10−8

10−6

10−4

10−2

100

Figure 5.3. Discretization errors vs. grid sizes. The slope of each graph represents the conver-
gence order in h. Here, u and v denote the components of u.

Remark 5.3 (Further boundary conditions). The experimental orders of convergence

are as in Figure 5.3 if using the conditions c± = c±D on J × ∂Ω in (5.9f) and / or φ = φD

on J × ∂Ω in (5.9j) or if taking any decomposition of ∂Ω into the considered boundary

types (for each subproblem chosen independently from the partition of the others). Hereby,

the data c±D, φD are obtained in the fashion demonstrated above. In all cases, both balance

constraints (5.12) must be disregarded again.
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The different boundary conditions must satisfy certain transition conditions at points

on the boundary at which two boundary types meet. With the aforementioned procedure,

those are naturally fulfilled and smooth transitions are expected, which do not perturb the

convergence behavior. △

5.4 Verification of the DNPP Discretization

As a representative system we choose the DNPP equations associated with the homoge-

nization result for the parameters (α, β, γ) = (0, 0, 0) (cf. Thm. 2.5) with essential boundary

conditions:

u = −∇p + E (c+ − c−) + f in J × Ω , (5.13a)

∇ · u = 0 in J × Ω , (5.13b)

u · ν = uN on J × ∂Ω , (5.13c)

j± = −∇c± +
(

u ± E
)

c± in J × Ω , (5.13d)

∂tc
± + ∇ · j± = s± in J × Ω , (5.13e)

j± · ν = j±flux on J × ∂Ω , (5.13f)

c± = c±,0 on {0} × Ω , (5.13g)

E = −∇φ in J × Ω , (5.13h)

∇ · E = c+ − c− in J × Ω , (5.13i)

E · ν = EN on J × ∂Ω . (5.13j)

Natural and mixed boundary conditions are also considered for verification (cf. Rem. 5.4).

Similar to the setting of Section 5.3, the artificial force and source / sink terms f and s+, s−,

respectively, are required as balancing terms for the application of the MMS.

Reference solution and data. We choose the same prescribed solution ansatz as in Sec-

tion 5.3, i. e., (u, p, j+, c+, j−, c−, E, φ) is defined as in (5.10) on the time interval J = ]0, 1[

and the unit square domain Ω ≔ ]0, 1[2. If we substitute this solution vector into (5.13), we

obtain the same data as given in (5.11) except that

f (t, x) = t





−cx sy

sx cy




+
π

2





sin(2πx)

sin(2πy)




+

t2

π
(sy − cx)





sx

cy




,
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5.4
V

erifi
cation

of
the

D
N

P
P

D
iscretization

h 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256

#T 4 26 112 516 2 224 9 166 37 928 151 038

#E 8 45 182 804 3 398 13 875 57 148 227 069

#V 5 20 71 289 1175 4 710 19 221 76 032

‖uh − u‖L2(Ω) 2.472E−2 5.204E−3 5.450E−4 5.737E−5 6.436E−6 7.967E−7 9.552E−8 1.323E−8

‖vh − v‖L2(Ω) 2.474E−2 4.494E−3 5.420E−4 5.793E−5 6.360E−6 7.909E−7 9.760E−8 1.400E−8

‖ph − p‖L2(Ω) 1.299E−1 3.944E−2 8.028E−3 1.769E−3 4.032E−4 9.624E−5 2.310E−5 5.863E−6

‖ j+h − j+‖L2(Ω) 1.589E−0 5.761E−1 2.889E−1 1.394E−1 6.793E−2 3.314E−2 1.630E−2 8.197E−3

‖c+h − c+‖L2(Ω) 4.762E−1 1.424E−1 7.134E−2 3.236E−2 1.521E−2 7.514E−3 3.609E−3 1.811E−3

‖ j−h − j−‖L2(Ω) 8.692E−1 3.842E−1 1.890E−1 8.806E−2 4.164E−2 2.026E−2 9.993E−3 5.029E−3

‖c−h − c−‖L2(Ω) 6.022E−1 1.797E−1 7.224E−2 3.150E−2 1.529E−2 7.489E−3 3.751E−3 1.865E−3

‖Eh − E‖L2(Ω) 1.678E−1 6.157E−2 3.036E−2 1.422E−2 6.887E−3 3.403E−3 1.657E−3 8.344E−4

‖φh − φ‖L2(Ω) 5.567E−2 2.028E−2 1.009E−2 4.534E−3 2.178E−3 1.073E−3 5.277E−4 2.629E−4

coh u — 2.25 3.26 3.25 3.16 3.01 3.06 2.85

coh v — 2.46 3.05 3.23 3.19 3.01 3.02 2.80

coh p — 1.72 2.30 2.18 2.13 2.07 2.06 1.98

coh j+ — 1.46 1.00 1.05 1.04 1.04 1.02 0.99

coh c+ — 1.74 1.00 1.14 1.09 1.02 1.06 0.99

coh j− — 1.18 1.02 1.10 1.08 1.04 1.02 0.99

coh c− — 1.74 1.31 1.20 1.04 1.03 1.00 1.01

coh E — 1.45 1.02 1.09 1.05 1.02 1.04 0.99

coh φ — 1.46 1.01 1.15 1.06 1.02 1.02 1.00

Table 5.5. Discretization errors and minimum convergence orders for decreasing mesh size h for tol = 1E−6 at end time T = 1 (time index
suppressed). The total number of degrees of freedoms is 3 (#T ) + 5 (#E) + 3 (#V) per fixed-point iteration.103
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and

uN(t, x) =






−t sx on J × ∂Ω1

t sy on J × ∂Ω2

−t sx on J × ∂Ω3

t sy on J × ∂Ω4






with ∂Ω j as given in Figure 5.2. In order to ensure uniqueness, again, we have to prescribe

the constraints (5.12) in (5.13).

Results. Solving system (5.13) with the data and constraints as defined above yields dis-

cretization errors as shown in Figure 5.4 and Table 5.6. We verify the predicted linear con-

vergence order in h for all unknowns u, p, j+, c+, j−, c−, E, φ (cf. Thm. 3.26).

 

 

‖φh − φ‖L2(Ω)

‖Eh − E‖L2(Ω)

‖c−
h
− c−‖L2(Ω)

‖ j−
h
− j−‖L2(Ω)

‖c+
h
− c+‖L2(Ω)

‖ j+
h
− j+‖L2(Ω)

‖ph − p‖L2(Ω)

‖uh − u‖L2(Ω)

1

10−4 10−3 10−2 10−1 100
10−4
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10−2

10−1
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101

102

Figure 5.4. Discretization errors vs. grid sizes. The slope of each graph represents the conver-
gence order in h.

Remark 5.4 (Further boundary conditions). The experimental orders of convergence

are the same if using the conditions p = pD on J × ∂Ω in (5.13c) and / or c± = c±D on J × ∂Ω
in (5.13f) and / or φ = φD on J × ∂Ω in (5.13j) or if taking any decomposition of ∂Ω

into the considered boundary types (for each subproblem chosen independently from

the partition of the others). Hereby, the data pD, c±D, and φD are obtained in a fashion

demonstrated above. In all cases, both balance constraints (5.12) must be neglected again.

See Remark 5.3 regarding transition conditions. △
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5.4
V

erifi
cation

of
the

D
N

P
P

D
iscretization

h 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512

#T 4 26 112 516 2 224 9 166 37 928 151 038 603 960

#E 8 45 182 804 3 398 13 875 57 148 227 069 906 964

‖uh − u‖L2(Ω) 4.553E−1 2.567E−1 1.271E−1 5.815E−2 2.794E−2 1.366E−2 6.703E−3 3.343E−3 1.653E−3

‖ph − p‖L2(Ω) 2.505E−1 1.078E−1 4.965E−2 2.296E−2 1.087E−2 5.284E−3 2.599E−3 1.307E−3 6.517E−4

‖ j+h − j+‖L2(Ω) 1.147E−0 5.758E−1 2.896E−1 1.397E−1 6.826E−2 3.335E−2 1.634E−2 8.219E−3 4.086E−3

‖c+h − c+‖L2(Ω) 4.160E−1 1.441E−1 7.150E−2 3.237E−2 1.522E−2 7.577E−3 3.614E−3 1.811E−3 9.389E−4

‖ j−h − j−‖L2(Ω) 9.174E−1 3.867E−1 1.897E−1 8.841E−2 4.209E−2 2.049E−2 1.005E−2 5.061E−3 2.512E−3

‖c−h − c−‖L2(Ω) 3.174E−1 1.426E−1 6.809E−2 3.108E−2 1.538E−2 7.481E−3 3.744E−3 1.866E−3 9.211E−4

‖Eh − E‖L2(Ω) 1.432E−1 6.193E−2 3.039E−2 1.422E−2 6.919E−3 3.419E−3 1.657E−3 8.349E−4 4.188E−4

‖φh − φ‖L2(Ω) 4.961E−2 2.041E−2 1.010E−2 4.536E−3 2.184E−3 1.077E−3 5.285E−4 2.629E−4 1.327E−4

coh u — 0.83 1.01 1.13 1.06 1.03 1.03 1.00 1.02

coh p — 1.22 1.12 1.11 1.08 1.04 1.02 0.99 1.00

coh j+ — 0.99 0.99 1.05 1.03 1.03 1.03 0.99 1.01

coh c+ — 1.53 1.01 1.14 1.09 1.01 1.07 1.00 0.95

coh j− — 1.25 1.03 1.10 1.07 1.04 1.03 0.99 1.01

coh c− — 1.15 1.07 1.13 1.02 1.04 1.00 1.00 1.02

coh E — 1.21 1.03 1.10 1.04 1.02 1.05 0.99 1.00

coh φ — 1.28 1.01 1.15 1.05 1.02 1.03 1.01 0.99

Table 5.6. Discretization errors and minimum convergence orders for decreasing mesh size h for tol = 1E−6 at end time T = 1 (time index
suppressed). The total number of degrees of freedoms is 4 (#T ) + 4 (#E) per fixed-point iteration.
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Chapter6
Numerical Investigation of the

Homogenization Process

The main issue of this chapter is the comparison of solutions of the scaled SNPP systems

introduced in Chapter 2 with that of its associated homogenized systems in two space di-

mensions. Since a choice of fixed scaling parameters (α, β, γ) adjusts a weighting between

the different electrokinetic processes modeled by the SNPP system, the types of the corre-

sponding upscaled DNPP system varies and especially also the couplings within. This chap-

ter presents qualitative and also quantitative studies of the convergence rates in ε according

to which the pore-scale solutions converge toward their upscaled equivalents.

Even though, periodic homogenization is a popular averaging technique, publications

dealing with the numerical approximation of its homogenization results as well as investi-

gations based on those are scarce. Most of the publications focusing on the numerical aspect

are dealing with the computation of effective coefficients by solving cell problems (e. g.,

Allaire et al. 2013; Chavarria-Krauser & Ptashnyk 2010; Griebel & Klitz 2010; Smith et al.

2004). An even smaller number of publications have numerically investigated the quality

of homogenized systems (e. g., Bourgat 1979; Mahato 2013; Sarkis & Versieux 2008; van

Noorden 2009).

The outline of this chapter is as follows: in Section 6.1 an appropriate test scenario is

constructed based on which the subsequent numerical simulations for both the SNPP sys-

tems and DNPP systems, are performed. This contains, inter alia, the definition of appro-

priate initial conditions and boundary conditions including the respective data. Additional

boundary conditions on the solid surfaces have to be defined for the SNPP systems due

to the resolving of the pore scale. Section 6.2 outlines the three different DNPP systems

obtained by three choices of fixed sets of scaling parameters. These upscaled systems in-

corporate effective tensors, which are pre-computed for the simulations that follow. Here,

we examine the grid convergence rate and illustrate different possible choices of pore ge-
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ometries represented by unit cells. We proceed in Section 6.3 with the investigation of the

simulation results by interpreting the different behaviors of physical meaningful quantities

with regard to the different choices of scalings. In Section 6.4 we study qualitatively the rate

of convergence in the scale parameter ε by comparing outflow curves. Section 6.5, which

is the main part of this chapter, deals with quantitative studies of the approximation qual-

ity with respect to ε of the three SNPP systems under consideration. The computation of

the distance between SNPP solutions and DNPP solutions—that we call the scale error—

requires the application of a grid-to-grid projection algorithm including a stencil jumping

algorithm as a subroutine. We show the numerically estimated orders of convergence in the

scale parameter ε and present explicit visualizations of the scale errors.

All simulations in this chapter were performed with the numerical toolbox

HyPHM (cf. Appx. A). Most of the simulation results were published in Frank et al. (2011).

Notation. For fixed values of scaling parameters α, β, γ the corresponding SNPP system

due to Problem 2.1 on p. 19 is abbreviated by Pα,β,γ
ε , while the corresponding DNPP system

as stated in Theorems 2.5 and 2.8 on pages 23 and 25 is abbreviated by Pα,β,γ

0 .

6.1 Formulation of a Test Scenario

This section deals with the construction of an expedient test scenario in order to show the

convergence Pα,β,γ

ε,h → Pα,β,γ

0,h numerically as ε → 0 for three considered sets of parame-

ters (α, β, γ), where Pα,β,γ

0 denote the limit systems stated in Theorems 2.5 and 2.8. The

symbols Pα,β,γ

ε,h and Pα,β,γ

0,h stand for the associated discretized versions of Pα,β,γ
ε and Pα,β,γ

0 ,

respectively.

Domains and general setting. Recall the periodic two-scale framework as illustrated

in Figure 2.1 on p. 18. We consider a square domain Ω = ]0, 1[ 2 and its perforated ver-

sion Ωε with solid inclusions as described later in this section. On both scales, we choose

boundary and initial conditions such that a horizontal flow field arises in which two oppo-

sitely charged species are transported through the domain.

Boundary conditions, initial conditions, and constraints. To complete Pα,β,γ
ε and Pα,β,γ

0

boundary conditions on the exterior boundary ∂Ω for both systems have to be defined. We

choose periodic conditions on ]0, 1[×{0, 1}, an inflow boundary condition on {0}× ]0, 1[ ,
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and an outflow boundary condition on {1}× ]0, 1[ . The corresponding boundaries are de-

noted by ∂Ωin and ∂Ωout, respectively, and write ∂Ω ≔ ∂Ωin ∪ ∂Ωout in this section.

The pore velocity uε in Pα,β,γ
ε is given by Stokes equations and the averaged velocity ū0

in Pα,β,γ

0 by an extended Darcy’s law. According to Section 2.2.1, the exterior boundary

conditions for the homogenized system coincide with that of the pore scale system, for

which we choose inflow boundary conditions of Dirichlet type:

uε = uD on J × ∂Ωin .

This boundary condition is not feasible for the averaged velocity u0, since

u0 ∈ L2(J; Hdiv(Ω)) 1 L2(J; H1(Ω)) lacks on regularity. As a remedy, we choose flux inflow

conditions, i. e.,

ū0 · ν = uflux on J × ∂Ωin .

In order to obtain a coincident normal inflow, let

uD ≔





uin

0




and uflux ≔ −uin ,

where uin : J × ∂Ωin → � is a given inflow rate. For both problems, outflow boundary

conditions are chosen on ∂Ωout (cf. (6.1b) and (6.2b)).

For the transport problems on both scales, we take ∂Ωin to be a boundary through

which the molar fluxes j±,in : J×∂Ωin → �2 are prescribed and ∂Ωout to be of homogeneous

Neumann type (cf. (6.1d) and (6.2d)).

By choosing a homogeneous Neumann boundary condition Eε · ν = 0 on the exterior

boundary ∂Ω in the case of α = 0, we would have to satisfy a global electro-neutrality

condition as a compatibility condition, which is obtained by testing (2.1h) with one and

applying the divergence theorem:

∫

Ωε

c+ε − c−ε dx
(2.1h)
=

∫

Ωε

∇ · Eε dx =

∫

Γε

Eε · ν dsx +

∫

∂Ω

Eε · ν dsx

(2.1i)
= ε

∫

Γε

σ dsx

for a. e. t ∈ J. An analogous condition is obtained for (2.5f). In order to avoid this situation—

which is not feasible for a general setting—we choose homogeneous Dirichlet boundary data

in the case of α = 0 (cf. (6.1f)). For α = 2, a homogeneous Dirichlet condition is not reason-

able since in general φ̄0 is non-zero on ∂Ω (cf. Rem. 2.9). Therefore, we apply homogeneous

Neumann boundary data in the case α = 2 (cf. (6.1f)).
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Recapitulating, the pore scale problem Pα,β,γ
ε as given in (2.1) is completed with the

boundary and initial conditions

uε =





uin

0




, on J × ∂Ωin , (6.1a)

(

∇uε − pε I
)

ν = 0 , on J × ∂Ωout , (6.1b)

j±ε · ν = − j±,in , on J × ∂Ωin , (6.1c)

−∇c±ε · ν = 0 , on J × ∂Ωout , (6.1d)

c±ε = 0 , on {0} × Ωε , (6.1e)





φε

Eε · ν

=

=

0 , α = 0

0 , α = 2






, on J × ∂Ω . (6.1f)

The upscaled problem Pα,β,γ

0 , as stated in Theorems 2.5 and 2.8, is completed with

ū0 · ν = −uin , on J × ∂Ωin , (6.2a)

p0 = 0 , on J × ∂Ωout , (6.2b)

j±0 · ν = − j±,in , on J × ∂Ωin , (6.2c)

−∇c±0 · ν = 0 , on J × ∂Ωout , (6.2d)

c±0 = 0 , on {0} × Ω , (6.2e)





φ0 =

—

0 , α = 0

, α = 2






, on J × ∂Ω . (6.2f)

The boundary data uin, j±,in on ∂Ωin and also the boundary data φD, σ on the interior bound-

ary Γε (cf. (2.1i)) are defined below.

Boundary data. We choose a stationary inflow uin ≔ 1 and molar fluxes across the bound-

ary

j+,in ≔






1 , t ∈ ]0, 1]

0 , otherwise






, j−,in ≔






1 , t ∈ ]1/2, 3/2]

0 , otherwise






.

These fluxes realize a “pulse” of each concentration entering the domain of duration one.

Since both pulses exist for t ∈ ]1/2, 1], it is ensured that a reaction between both species
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Figure 6.1. Stripes with a vertical length of ε used as computational domain Ωε.

takes place (cf. (2.1e) and associated homogenization results). The surface charge density σ

and the surface potential φD appear in the (interior) boundary condition of (2.1i) and also as

effective magnitudes in (2.5f) and (2.8). We choose the dataσ ≔ 1 and φD ≔ 1. Even though

the latter value has no impact on the electric field, since it was assumed to be a constant, the

correct reference state with regard to the averaged potential φ̄0 has to be chosen.

Simplifications. The boundary conditions defined above allow the computation of Pα,β,γ

ε,h

on stripes of vertical length ε as illustrated in Figure 6.1 with periodic boundary conditions

on ]0, 1[×{0, ε} as performed, e. g., by van Noorden (2009), and Efendiev & Hou (2009).

This reduces the computation cost from quadratic to linear order in 1/ε.

6.2 Preliminary Remarks

By applying the test scenario defined in Section 6.1, we numerically investigate the theoreti-

cally predicted convergence in the small-scale parameter ε→ 0. Therefore, we consider the

following conceptually different types of limit problems Pα,β,γ

0 (cf. Thms. 2.5 and 2.8): the

first model corresponds to the parameter set (α, β, γ) = (0, 0, 0), the second to the set (0, 1, 0)

and the third to the set (2, 1, 1) (cf. Sec. 2.2; Tab. 2.1).

In the first case, we deal with a fully coupled system of partial differential equations

similar to the pore scale-model P0,0,0
ε . Here, the liquid flow is directly coupled to both the

electric and the concentration fields by means of an extended Darcy’s law. The transport of

the concentrations is given by Nernst–Planck equations with effective coefficients. More-

over, the extended Darcy velocity enters the convective term and the electric field occurs

in the drift term. Eventually, the electric field is given by an elliptic second-order partial

differential equation with effective coefficients and charge densities of the concentrations as

source term.
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In the second case, the macroscopic velocity is determined by a standard Darcy’s law.

Consequently, the Darcy velocity serves as a convective term in the transport of the con-

centrations, but there is no back coupling of the electric field or the concentrations on the

velocity field. However, since the transport is given by a Nernst–Planck system, the upscal-

ing procedure yields a (partially) coupled system of partial differential equations. On the

one hand the concentration distribution influences the electric field, which on the other hand

determines the concentrations.

The third choice of parameter set results in a decoupled limit system. The liquid flow

is determined by a standard Darcy’s law and the transport is determined by a standard

convection–diffusion equation with Darcy velocity in the convective term. The electric term

vanishes completely in the limit description for the velocity and the concentrations. Even

though there is no averaged presentation of the pore-scale electric field, the averaged elec-

tric potential can be reconstructed from the concentration fields (cf. (2.8)). Note that in this

case the volume additivity constraint (cf. (2.6), p. 25 and Sec. 2.2.2) is not required from the

numerical point of view and thus is released in what follows.

For the numerical validation of the convergence, the pore-scale problems Pα,β,γ

ε,h as well

as the averaged problems Pα,β,γ

0,h are solved for the three parameter sets (α, β, γ) = (0, 0, 0),

(0, 1, 0), and (2, 1, 1) according to the setting described in Section 6.1. In all cases, it is rea-

sonable to precompute the upscaled tensors, since they decouple from the upscaled systems.

In order to obtain a sufficiently good approximation, we proceed as follows.

1/4 1/16 1/64 1/256
1

1.5

2

2.5

3

0.935

0.945

0.955

0.965

0.975

1/4 1/16 1/64 1/256
1

1.5
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2.5

3
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0.033
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(a) (b)

Figure 6.2. The graphs show the convergence behavior of the computed upscaled tensors Dh (a)
and Kh (b) for vanishing mesh size h. The Frobenius norms of the tensors (solid) and
the minimum convergence orders according to (5.2b) (dashed) are plotted against h.

Geometry of the representative cell. The solid inclusion Ys of the representative unit

cell Y = ]0, 1[ 2 (cf. Fig. 2.1) may be replaced by more general geometries. Thereby the
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h 1/4 1/8 1/16 1/32 1/64 1/128 1/256

triangles 24 120 505 2 126 9 336 37 438 155 108

edges 40 188 774 3 222 14 071 56 291 232 930

vertices 15 67 268 1 095 4 734 18 852 77 821

permeability tensor

(Kh)1,1 2.301E−2 2.145E−2 2.103E−2 2.092E−2 2.090E−2 2.089E−2 2.089E−2

(Kh)2,1 −5.096E−3 −4.531E−3 −4.436E−3 −4.415E−3 −4.409E−3 −4.408E−3 −4.407E−3

(Kh)1,2 −5.096E−3 −4.531E−3 −4.436E−3 −4.415E−3 −4.409E−3 −4.408E−3 −4.407E−3

(Kh)2,2 2.301E−2 2.145E−2 2.103E−2 2.092E−2 2.090E−2 2.089E−2 2.089E−2

‖Kh‖F 3.334E−2 3.100E−2 3.040E−2 3.024E−2 3.020E−2 3.019E−2 3.019E−2

diffusion / permittivity tensor

(Dh)1,1 6.532E−1 6.755E−1 6.790E−1 6.798E−1 6.800E−1 6.801E−1 6.801E−1

(Dh)2,1 −1.087E−1 −8.890E−2 −8.608E−2 −8.538E−2 −8.519E−2 −8.515E−2 −8.514E−2

(Dh)1,2 −1.087E−1 −8.890E−2 −8.608E−2 −8.538E−2 −8.519E−2 −8.515E−2 −8.514E−2

(Dh)2,2 6.532E−1 6.756E−1 6.790E−1 6.798E−1 6.800E−1 6.801E−1 6.801E−1

‖Dh‖F 9.365E−1 9.636E−1 9.680E−1 9.690E−1 9.692E−1 9.693E−1 9.693E−1

Table 6.1. Approximated upscaled tensors Dh and Kh computed on a periodically bounded grid
for decreasing mesh size h.

statements of Theorems 2.5 and 2.8 remain true. Even though our numerical scheme can

deal with such geometric settings, we consider a solid part with an elliptic shape in this

thesis (cf. Fig. 6.3 (a) to (d)). The reason is that on the one hand, angular geometries as

depicted in Figure 6.3 (e), (f) reduce the convergence order coh in h (cf. Sec. 5.1.2) and on

the other hand the simplest geometry—a circle—would yield isotropic upscaled tensors Dh

and Kh (cf. Def. 2.3 and Expl. 1.1).

Upscaled tensors. The upscaled tensors Dh and Kh are computed by integration of

the flux solution of the (discretized) cell problems (2.2b) and (2.3b) according to (2.2a)

and (2.3a), respectively, for a sequence of decreasing mesh sizes (h j) j. Owing to the

regularity of the chosen geometry (cf. Fig. 6.3), we observe a superconvergence of

second order in h (cf. Tab. 6.1 and Fig. 6.2). For the computation of the homogenized

problems Pα,β,γ

0,h , for every h, we use the best approximation of D and K. Also note that the

computed tensors are symmetric and positive definite as expected (cf. Def. 2.3).
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(a) (b) (c)

(d) (e) (f)

Figure 6.3. The considered solid part is bounded by a centered ellipsis of diameters 1/3 and 2/3
with a rotation angle of π/4. The triangulated unit cell as used in this chapter is
shown for h = 1/16 in (a) and for h = 1/32 in (b). Pre-adaptation is also feasible for
practical computations (c). More complex geometries as illustrated in (d) or as used
by Smith et al. (2004) (e) or by Allaire et al. (2013) (f) are also valid choices for our
numerical scheme.

Since we focus on the scale error in ε (cf. Sec. 6.5), for the remainder of this thesis, the

discretization parameters (τ, h) as well as the iteration tolerance tol are chosen sufficiently

small to exclude discretization and splitting errors.

6.3 Comparison of Different Scalings and Investigation

of Physical Quantities

We qualitatively investigate the convergence of different physically meaningful variables

and compare the different choices of scalings with regard to their physical behavior.
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c+ε ∈ [0.723, 0.943] (a) c+ε ∈ [0.722, 0.865] (b) c+ε ∈ [0.720, 0.847] (c)

c+ε ∈ [0.719, 0.843] (d) c+ε ∈ [0.719, 0.842] (e) c+0 ∈ [0.721, 0.840] (f)

Figure 6.4. Concentration profiles (blue / low to red / high) for the parameters (α, β, γ) = (0, 0, 0)
at time t = 1 for ε = 1, 1/2, . . . , 1/16 (a)–(e) and the limit (f).

Velocity and pressure. In Figure 6.7, the velocity fields are compared and the convergence

in the scale parameter ε is demonstrated. The Stokes flow uε as a solution of the pore-scale

model shows the physically expected flow around the obstacles. The Darcy flow u0 is di-

rected diagonally to the lower right corner of the computational domain due to the geometry

of the underlying perforated domain that determines the permeability tensor K (cf. (2.3)).

We observe very similar flow fields for the cases of (α, β, γ) = (0, 0, 0) and (0, 1, 0),

which results in similar outflow curves as depicted in Figure 6.10. In the latter case, the

velocity is first slightly increased and then decreased, because the impact of the electric in-

teraction is only of minor magnitude and the pressure field p0 mainly balances this influence.

Concentration fields. Figure 6.4 demonstrates the convergence of the concentration fields

for vanishing scale parameter ε. The concentration front that is locally varying between the
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c+ε ∈ [0.722, 0.866] (a1) c−ε ∈ [0.416, 0.879] (a2)

c+ε ∈ [0.587, 0.802] (b1) c−ε ∈ [0.505, 0.763] (b2)

Figure 6.5. Concentration profiles (blue / low to red / high) for ε = 1/2, (α, β, γ) = (0, 0, 0) (a)
and (2, 1, 1) (b) at time t = 1.

obstacles is smeared to a uniform front more and more resembling a solution of the upscaled

model.

The concentration fields c+ε and c−ε underlie an electric drift toward and against the

orientation of the electric field, respectively (cf. (2.1d)). As illustrated for α = 0 this re-

sults in an attraction of c+ε and a repulsion of c−ε near Γε (cf. Fig. 6.5 (a)) and further

causes a retention of c+ε in the domain (cf. Fig. 6.10 and Fig. 6.9, charged cases). A sig-

nificantly different behavior is observable for α = 2 at which both concentrations are at-

tracted near Γε (cf. Figs. 6.5 (b) and 6.11) due to an orientation change of the electric field

(see below).

Electric field and electric potential. For α = 0 and α = 2, two essentially different evo-

lution behaviors for the electric field and the electric potential are observed (cf. Figs. 6.6

and 6.8). In the first case, both the Neumann condition at Γε (cf. (2.1i)) and the additional

force term σ̄ (cf. (2.5f)) for pore and average scale, respectively, generate an electric field

pointing in an ‘inward direction’ of the domain (Fig. 6.6). The field accounts for the tran-

sient force term (due to charge movement) appearing in (2.1h) and (2.5f) with respect to

time but preserves its orientation at the boundaries. Note that the averaged electric field also
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|Eε| ∈ [0.014, 1.701], φε ∈ [−0.307,−0.003]

|E0| ∈ [0, 0.898], φ0 ∈ [−0.297,−0.003]

Figure 6.6. Electric field and electric potential distribution (blue / low to red / high) for P0,0,0
ε

(top) and P0,0,0
0 (bottom) at time level t = 3/2.

|uε| ∈ [0, 2.683], pε ∈ [−4.549, 55.29] (a) |u0| ≡ 1.022, p0 ∈ [0.150, 47.68] (b)

Figure 6.7. Flow and pressure profiles (blue / low to red / high) (uε, pε) (Stokes) for ε = 1/4 (a)
and (u0, p0) (Darcy) (b), both for the parameters (α, β, γ) = (0, 1, 0) .

accounts for the spatial orientation of the electric field at the pore scale, which results from

the anisotropic pore geometry. The defined (constant) surface potential φD has no influence

on Eε and its orientation is solely prescribed by the presence of charged concentrations for

the case of α = 2 (cf. {(2.1g), (2.1h), (2.1i)} and Fig. 6.8). The consequence is an orientation

change as soon as one species starts to dominate the other.
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|Eε| ∈ [0, 0.085], φε ∈ [0.002, 0.045] (a1)

φ0 ∈ [0.836, 0.851] (a2)

|Eε| ∈ [0, 0.083], φε ∈ [−0.045,−0.002] (b1)

φ0 ∈ [0.803, 0.818] (b2)

Figure 6.8. Electric field and electric potential distribution (blue / low to red / high) for P2,1,1
ε

(a1), (b1) and P2,1,1
0 (a2), (b2) at time levels t = 1/2 (a) and t = 3/2 (b).
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Remark 6.1 (Further notes). Concentrations that are attracted to the interior

boundaries (cf. (2.1i)) do not create singularities in the sense that they increase to infinity

near Γε, since concentrations are sources in the electric field (cf. (2.1h)) or—in physical

terms—the surface attraction is balanced by the interior repulsion, respectively. For α = 0,

higher absolute values of σ may cause the electric drift to dominate over the advective

transport—a fact that may cause a permanent retention of concentrations in the domain or

may inhibit one concentration from entering the domain. △

6.4 Qualitative Convergence Studies

In geosciences so-called column experiments are a standard way to examine flow, transport,

or material properties in which substances travel through a cylinder made of either a natural

soil or a synthetic porous medium. From breakthrough curves, i. e., the outflow concentra-

tions against time, model parameters can be inferred.

Therefore, we define the (molar) outflow curve by

q±,out
ε (t) ≔ −

∫

∂Ωout

j±ε (t, x) · ν dsx . (6.3)

Figures 6.10 and 6.11 show that the mean outflow curves q±,out
ε converge for decreasing ε to

the limits q±,out
0 for all considered parameter sets (α, β, γ). Interestingly, the outflow curves—

even of the coarsest case of ε = 1—are similar to that of the averaged case of ε = 0 and the

rate of convergence is fairly fast.

In order to study the impact of electrodynamic interactions, also with respect to re-

activity, we solve the most complex / fully coupled averaged problem P0,0,0
0 additionally

for uncharged concentrations and with /without reaction term. Figure 6.9 visualizes the

outflow curves of these cases. First, consider the inert, uncharged case: both curves are

congruent—or equivalently—both transport problems are completely decoupled. Switching

to the charged setting, it is clearly realized that c+0 has an increased residence time in the

domain, whereas c−0 has a decreased residence time. Moreover, a transport acceleration of c−0
is observable. Note that in all cases considered so far, mass is preserved, i. e., the integral

of the curves is invariable. If the case of (α, β, γ) = (0, 0, 0) is compared with its uncharged

analog, it is observed that the associated curves for each species diverge even more strongly.

This indicates that electrodynamic effects have a severe impact on kinetic reactions, which

clearly arises from the spatial redistribution of mass (cf. Fig. 6.5 (a)).
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Figure 6.9. Comparison of the outflow curves q+,out
0 (solid) and q−,out

0 (dashed) defined in (6.3)
of the averaged model for the parameters (α, β, γ) = (0, 0, 0) (black) with those of
the inert case (red), uncharged case (green), and inert uncharged case (blue).

6.5 Quantitative Convergence Studies

In addition to the qualitative study in Section 6.4, we estimate the order of convergence in

the scale parameter ε exemplarily for the choice of scaling (α, β, γ) = (0, 0, 0).

edges of Tε,h

edges of T0,h

quadrature points

bC
bC

bC
bC

bC

bC

bC

bC

bC

bC
bC

bC

bC

Figure 6.12. Quadrature on a triangle T ∈ Tε,h. The values at the quadrature points are taken on
the associated underlying grid Tε,h and T0,h, respectively.

Computation of the scale error. For a pair of discrete unknowns (zε,h, z0,h) and a fixed

scaling parameter ε, we define the Lp scale error on the perforated domainΩε at time level tn

by

‖zn
ε,h − zn

0,h‖Lp(Ωε) . (6.4)

Note that the area |Ωε| is invariant in ε (cf. Fig. 6.4). Under the assumption that the order

of (6.4) is εα1 + hα2/εα3 + hα4 for some positive powers αk (cf. Orive & Zuazua 2005; Sarkis
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Figure 6.10. Outflow curves q±,out
ε of the pore-scale model Pα,β,γε and q±,out

0 of the aver-
aged model Pα,β,γ0 (solid for +, dashed for −) for the parameters (α, β, γ) =
(0, 0, 0), (0, 1, 0) (red, orange, green, cyan, blue, and black for ε = 1, 1/2, 1/4,
1/8, 1/16, and ε→ 0).
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Figure 6.11. Outflow curves q±,out
ε of the pore-scale model P2,1,1

ε and q±,out
0 of the averaged

model P2,1,1
0 (solid for +, dashed for −) (red, orange, green, cyan, blue, and black

for ε = 1, 1/2, 1/4, 1/8, 1/16, and ε→ 0).
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& Versieux 2008), the convergence order α1 =: coε in ε is estimated in the fashion of (5.2a)

provided that the discretization parameters h and τ are sufficiently small.

Since zε,h and z0,h are defined on different triangulations Tε,h and T0,h, respectively,

a direct computation of (6.4) is not possible. Therefore, the scale error is decomposed

over Tε,h and the local integrals are approximated by quadrature on each triangle T ∈
Tε,h (cf. Fig. 6.12):

∥
∥
∥zn

ε,h − zn
0,h

∥
∥
∥

p

Lp(Ωε)
=

∑

T∈Tε,h

∫

T

∣
∣
∣zn
ε,h − zn

0,h

∣
∣
∣
p ≈

∑

T∈Tε,h

12∑

k=1

ωk

∣
∣
∣zn
ε,h(ξk) − zn

0,h(ξk)
∣
∣
∣
p

with quadrature points ξk ∈ T \ ∂T and weights ωk > 0 for each T ∈ Tε,h using a sixth

order quadrature rule (Stroud 1971). The values of zn
ε,h at the quadrature points are obtained

directly by local interpolation in the underlying approximation space since T ∈ Tε,h. To

obtain the values of zn
0,h, for each quadrature point ξk, the triangle T ′ ∈ T0,h has to be de-

termined first such that ξk ∈ T ′. This was realized by a stencil jumping algorithm (Löhner

2008, ‘neighbor-to-neighbor search’), as illustrated in Figure 6.13. After the triangle T ′ has

been identified, a local interpolation again yields the value of zn
0,h.

Figure 6.13. Starting on an initial triangle (dashed bold tri-
angle), while aiming to identify the triangle that contains
a given point (solid bold triangle), the stencil jumping algo-
rithm successively travels the edges with the smallest pos-
sible (negative) barycentric coordinate with respect to the
point searched for. The algorithm terminates when all three
barycentric coordinates are nonnegative. When performed
on a perforated domain—as illustrated but not used in this
work—it must be ensured that no loops occur and that no
boundary edge is crossed.

Computational results. The computations at time level t = 3/2 reveal L1(Ωε) and L2(Ωε)

convergences of order O(ε) for all scalar unknowns p, c±, φ (cf. Tab. 6.2). In contrast, the

scale errors of the vector-valued unknowns u, j±, and E do not vanish but pass to a fixed

value (cf. Rem. 6.2).

Figure 6.14 illustrates the local L∞ scale errors of the scalar solutions for P0,0,0
ε , ε = 1/4

and P0,0,0
0 at time t = 3/2. The measure in L∞ was chosen here since ‖ · ‖Lp(T ) depend on the

size of T ∈ Tε,h for p < ∞. As expected (cf. Rem. 6.2), it is found that the highest errors

123



Chapter 6 Numerical Investigation of the Homogenization Process

are at the interior boundaries. Analogous results are obtained for (α, β, γ) = (0, 1, 0), (2, 1, 1)

and further time levels.

ε ‖uε − u0‖L1(Ωε) ‖uε − u0‖L2(Ωε) ‖pε − p0‖L1(Ωε) coε ‖pε − p0‖L2(Ωε) coε

1 6.033E−1 7.369E−1 7.127E+0 — 1.025E+1 —

1/2 6.112E−1 7.436E−1 3.135E+0 1.18 4.470E+0 1.20

1/4 6.153E−1 7.468E−1 1.466E+0 1.10 2.060E+0 1.11

1/8 6.178E−1 7.489E−1 7.194E−1 1.03 1.001E+0 1.04

1/16 6.188E−1 7.497E−1 3.752E−1 0.94 5.189E−1 0.95

ε ‖ j+ε − j+0 ‖L1(Ωε) ‖ j+ε − j+0 ‖L2(Ωε) ‖c+ε − c+0 ‖L1(Ωε) coε ‖c+ε − c+0 ‖L2(Ωε) coε

1 3.035E−1 3.982E−1 2.599E−2 — 4.113E−2 —

1/2 2.852E−1 3.744E−1 1.196E−2 1.12 1.848E−2 1.15

1/4 2.816E−1 3.691E−1 5.812E−3 1.04 8.891E−3 1.06

1/8 2.814E−1 3.681E−1 2.939E−3 0.98 4.469E−3 0.99

1/16 2.813E−1 3.677E−1 1.580E−3 0.90 2.348E−3 0.93

ε ‖ j−ε − j−0 ‖L1(Ωε) ‖ j−ε − j−0 ‖L2(Ωε) ‖c−ε − c−0 ‖L1(Ωε) coε ‖c−ε − c−0 ‖L2(Ωε) coε

1 4.675E−1 5.686E−1 1.664E−2 — 2.329E−2 —

1/2 4.815E−1 5.842E−1 8.008E−3 1.06 1.293E−2 0.85

1/4 4.877E−1 5.914E−1 4.033E−3 0.99 7.265E−3 0.83

1/8 4.908E−1 5.947E−1 2.082E−3 0.95 3.829E−3 0.92

1/16 4.921E−1 5.961E−1 1.136E−3 0.89 2.044E−3 0.91

ε ‖Eε − E0‖L1(Ωε) ‖Eε − E0‖L2(Ωε) ‖φε − φ0‖L1(Ωε) coε ‖φε − φ0‖L2(Ωε) coε

1 2.698E−1 3.573E−1 2.398E−2 — 3.151E−2 —

1/2 2.130E−1 2.785E−1 1.402E−2 0.77 1.924E−2 0.71

1/4 1.842E−1 2.560E−1 6.199E−3 1.18 9.639E−3 1.00

1/8 1.734E−1 2.500E−1 2.935E−3 1.08 4.826E−3 1.00

1/16 1.698E−1 2.484E−1 1.469E−3 1.00 2.421E−3 1.00

Table 6.2. Global L1(Ωε) and L2(Ωε) scale errors with respect to P0,0,0
ε and P0,0,0

0 at time t = 3/2
and vanishing h (discretization indices suppressed) with associated estimated mini-
mum convergence order in ε for scalar unknowns.
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Remark 6.2 (Known error estimates). Bensoussan et al. (1978) discuss an error estimate

for the diffusion problem with oscillating coefficients and a convergence order of O(
√
ε) is

obtained. For diffusion problems in perforated domains, we refer to Cioranescu & Saint

Jean Paulin (1999), Jikov et al. (1994), and Griso (2004, 2005). In the latter publications

the method of periodic unfolding is used and an improvement of the error estimate to O(ε)

in the interior is obtained. Error estimates for subsystems of our system (Schmuck 2012)

or for diffusion type problems (Fatima et al. 2012; Melnik & Sivak 2010) are still ongoing

research. For the fluxes, convergence is not expected since corrector estimates are required

that take into account higher order terms and corrected gradients, respectively. Including the

corrected gradients of all variables, the order of convergence in ε has been determined to

be
√
ε for a fairly complex system by Eck (2004). Since there is no analytically proven error

estimate for the complete SNPP system available in the literature, the numerically deter-

mined error estimates provided in this chapter can be seen as a first step toward evaluating

the approximation quality of the pore-scale model by the homogenized model. △
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‖pε,h − p0,h‖L∞(T ) ∈ [2.85E−2, 1.01E+1]

‖c+
ε,h − c+0,h‖L∞(T ) ∈ [7.12E−5, 3.99E−2]

‖c−
ε,h − c−0,h‖L∞(T ) ∈ [5.40E−5, 4.18E−2]

‖φ−
ε,h − φ

−
0,h‖L∞(T ) ∈ [9.19E−5, 4.01E−2]

Figure 6.14. Local L∞ scale errors for the scalar solutions p, c±, and φ (blue / low to red / high)
for P0,0,0

ε , ε = 1/4 and P0,0,0
0 at time t = 3/2 (time index suppressed).
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Chapter7
Extension to a Model with Evolving

Microstructure

Ray et al. (2012c) derive a two-scale model for colloidal dynamics and single-phase liquid

flow within a saturated porous medium with locally periodic pore structure. The model takes

attachment and detachment processes into account, which result in an evolving microstruc-

ture of the medium. This chapter reviews the algorithmic and implementational work of that

publication. The underlying pore-scale model from which the effective model under consid-

eration is derived is an extension to the SNPP system as presented in Section 1.1. We refer

with its description to the original publication and also to Ray (2013).

Following an outline of the considered two-scale problem in Section 7.1, a fully time-

implicit, mass conservative numerical scheme is presented in Section 7.2 using mixed finite

elements for both the macroscopic / averaged scale and the microscopic / pore scale. An aca-

demic two-scale scenario is defined, numerical simulations performed, and finally discussed

in Section 7.3. Hereby, the interaction potential and the surface reaction rate are chosen such

that pore clogging occurs. The simulations reveal the interplay between particle transport,

evolving microstructure, and liquid flow.

7.1 The Effective Model

Ray et al. (2012c) applied an extended method of two-scale asymptotic expansion

(cf. Sec. 1.2) within a level set framework according to van Noorden (2009) to a system of

partial differential equations describing liquid flow and transport (by convection, diffusion,

and drift) of colloidal particles within a porous medium at the pore scale in two space

dimensions. Here, a model for an interaction potential and for a surface reaction may be

prescribed arbitrarily. Moreover, a level set formulation was used to cope with the evolving

microstructure.

127



Chapter 7 Extension to a Model with Evolving Microstructure

We outline the system of equations for the effective model including effective coef-

ficients, all of which are cell-averaged quantities, yet are evolving in time and are space

dependent with respect to the macroscopic domain Ω. These equations are supplemented

with several families of microscopic cell problems, which flux solutions are required to

compute most of the effective coefficients. The coefficient functions depend explicitly on

the microscopic geometry and also on the interaction potential between solid matrix and

particles.

The following model description is restricted to the radially symmetric case, i. e., we

assume a radially symmetric interaction potential between colloids and the solid matrix

as well as a circular shape of the local grains during evolution (cf. Fig. 7.1). With these

assumptions, the level set equation describing the surface of the solid matrix simplifies to

an equation for the grain radius.

Macroscopic equations. In contrast to the remaining thesis, this chapter deals with a so-

called locally periodic setting: associated with each point (t, x) ∈ J × Ω is a unit cell Y

with liquid phase Yl(t, x) and porosity |Yl(t, x)| that evolve in time and that represent the

underlying locally periodic geometry of the solid matrix in the surrounding area.

The system resulting from an averaging procedure by two-scale asymptotic expansion

consists of the following equations: first, a Darcy equation {(7.1a), (7.1b)} describing the

averaged liquid velocity ū0 [m s−1] and the averaged pressure distribution p0 [Pa]. Sec-

ond, a modified effective transport equation with the unknowns ( j̃0, c̃0) that are auxiliary

quantities from which the actual averaged colloidal concentration c̄0 [kg m−3] can be recon-

structed (cf. (7.2)). Third, the equation (7.1e) describing the radii distribution R0 [m] of the

solid grains. Recapitulating, we have

ū0 = −
1

ν ρl
K(t, x)∇xp0 in J × Ω , (7.1a)

∇x · ū0 =
ρl − ρs

ρl
F(t, x) in J × Ω , (7.1b)

j̃0 = −D̄(t, x)∇xc̃0 + V(t, x) c̃0 in J × Ω , (7.1c)

∂t
(

A(t, x) c̃0
)

+ ∇x · j̃0 = −F(t, x) in J × Ω , (7.1d)

∂tR0 = f

(

exp
(

−
Φ0(t, x, y)||y|=R0

kB T

)

c̃0(t, x)

)

in J × Ω , (7.1e)

where the total interaction (energy) potential Φ0 [J] is given in terms of R0 and y (local

distance to grain surface) due to Ray et al. (2012c, (30), p. 690). The type of the surface
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7.1 The Effective Model

reaction rate f : � → � [kg m−2 s−1] at the solid–liquid interface can be chosen arbitrar-

ily (e. g., Ray et al. 2012c, Sec. 2.4, p. 675). The effective coefficients A, D̄, F, K, V are

subject of the paragraph that follows, where explicit definitions are given. In system (7.1),

the following physical (pseudo) constants were used (cf. Tab. B.2, p. 142): the kinematic

viscosity of the liquid ν [m2 s−1], the density of the liquid / solid phase ρl, ρs [kg m−3], and

kB T [kg m2 s−1], the Boltzmann constant times the absolute temperature.

The pde–ode system of macroscopic equations (7.1) is fully coupled, since—beside

the liquid movement / transport coupling—all coefficients A, D̄, F, K, V depend on the lo-

cal grain radii R0. Due to the postulated radially symmetric setting, the evolution of the

underlying microstructure is completely determined by the spatial distribution of R0. Note

that in (7.1e), the variable y in the argument of Φ0 can be expressed in terms of R0: for

fixed x ∈ Ω, only the set Γ = {y ∈ Y; |y|=R0} is a valid third argument of Φ0, since the

reaction takes place on the grain surfaces Γ = Γ(t, x). Since the interaction potential Φ0 is

presumed radially symmetric, Φ0 is constant on this set. The actual averaged (mass) con-

centration c̄0 can be recovered by

c̄0(t, x) = A(t, x) c̃0(t, x) , (7.2)

and the porosity distribution |Yl| = |Yl(t, x)| by |Yl| = 1 − πR2
0 .

Effective coefficients and cell problems. All effective coefficients are obtained by aver-

aging out the microscopic part of quantities depending on (t, x, y). Some of these quantities

are defined as solutions of cell problems.

The explicit formulas for the weighted porosity A [−] and the effective

production / consumption rate F [kg m−3 s−1] are

A(t, x) ≔

∫

Yl(t,x)
exp

(

− Φ0(t, x, y)

kB T

)

dy , (7.3a)

F(t, x) ≔
1

ρs

∫

Γ(t,x)

f

(

exp
(

−Φ0(t, x, y)
)

c̃0(t, x)

)

dsy . (7.3b)

The effective diffusion tensor D̄ [m2 s−1] and the effective permeability tensor K [m2] are

given by

D̄(t, x) ≔ −
∫

Yl(t,x)

D
[

ξ2
1(t, x, y)

∣
∣
∣ ξ2

2(t, x, y)
]

dy , (7.3c)
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K(t, x) ≔ −
∫

Yl(t,x)

[

w1(t, x, y)
∣
∣
∣w2(t, x, y)

]

dy , (7.3d)

where the scalar D [m2 s−1] is the diffusivity of the considered colloidal particles in the liquid.

The notation [a1|a2] denotes the matrix consisting of columns a j. In addition to the tensors

defined above, we need to define the auxiliary coefficient K̂ [m2] :

K̂(t, x) ≔ −
∫

Yl(t,x)

[

ξ1
1(t, x, y)

∣
∣
∣ ξ1

2(t, x, y)
]

dy . (7.3e)

Here, the quantities (ξi
j, ζ

i
j), i, j ∈ {1, 2} are solutions of the cell problems

ξi
j = − exp

(

− Φ0

kB T

)

∇yζ
i
j − exp

(

− Φ0

kB T

)






w j(t, x, y) , i = 1

e j , i = 2






, y ∈ Yl(t, x) ,

∇y · ξi
j = 0 , y ∈ Yl(t, x) , (7.4)

ξi
j · ν0 = 0 , y ∈ Γ(t, x)

with (ξi
j, ζ

i
j) componentwise periodic in Y satisfying the constraint −

∫

Yl
ζ i

j(t, x, y) dy = 0 for

all (t, x) ∈ J × Ω, where Φ0 = Φ0
(

R0(t, x), y
)

. Here and in the following, e j denotes the

jth unit vector in �2, and ν0 the exterior unit normal on Γ. Similarly, the quantities (w j, π j),

j ∈ {1, 2} are solutions of the cell problems

−∆yw j + ∇yπ j = e j , y ∈ Yl(t, x) ,

∇y · w j = 0 , y ∈ Yl(t, x) , (7.5)

w j = 0 , y ∈ Γ(t, x) ,

with (w j, π j) componentwise periodic in Y . Eventually, we define the effective transport

velocity V [m s−1] by

V(t, x) ≔ K̂(t, x) K−1(t, x) ū0(t, x) ,

where ū0 is the partial solution of (7.1). The coefficient K is non-singular (cf. Ray et al.

2012c, Sec. 3.8, p. 686), and thus V is well-defined.
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7.2 Discretization and Solution Scheme

In what follows, a fully discrete numerical scheme is presented, capable to approximate the

effective quantities of interest, i. e., in particular the concentration c̄0, the liquid velocity ū0,

and the porosity |Yl|. This incorporates the solving of the system (7.1) as well as of the cell

problems (7.4) and (7.5). We apply Rothe’s method to the system (7.1) using the implicit

Euler method in order to obtain a sequence of time-discrete, yet still coupled systems. The

couplings between the microscopic scale and the macroscopic scale and also the couplings

between the subsystems for liquid flow, transport, and grain radii fields are resolved by an

iterative splitting scheme. Hence, the resulting numerical scheme is fully implicit in time.

Owing to the splitting between the scales, all of the emerging cell problems become un-

coupled from each other. The spatial discretization is performed on unstructured triangular

grids by lowest order mixed finite elements for both the macroscopic problems and the cell

problems.

Time discretization. Let 0 ≕ t0 < t1 < . . . < tN ≔ T be a not necessarily equidistant

decomposition of the time interval J = ]0, T [ and let tn− tn−1 =: τn denote the time step size.

Furthermore, for any time-dependent quantity ϕ, we use the notation ϕn = ϕn(x) ≔ ϕ(tn, x).

Application of the implicit Euler method yields a sequence of N stationary coupled sys-

tems. More precisely, for n = 1, . . . ,N we have to find (ūn
0, pn

0, j̃n
0, c̃

n
0,R

n
0) in terms of An−1(x),

c̃n−1
0 (x), Rn−1

0 (x) with coefficients An(x), D̄n(x), Fn(x), Vn(x), which in turn depend in par-

ticular on Rn
0(x) (cf. (7.3)).

Spatial discretization. Let TH = {T } be a regular decomposition of the macroscopic do-

main Ω into closed triangles T of characteristic size H such that Ω = ∪T (cf. Sec. 3.1).

We call the associated mesh of TH the coarse-scale grid, represented by the same sym-

bol. In accordance with the considered locally periodic setting, each triangle T ∈ TH

is associated with a unit cell YT containing an evolving liquid phase YT
l = YT

l (t) that is

clearly time-dependent due to the evolving interface and that is denoted by Yn,T
l for the

time level tn (cf. Fig. 7.1). Analogously, let Th = T n,T
h denote the family of fine-scale grids

covering the domains Yn,T
l , T ∈ TH.

We skip the variational formulation of the time-discrete macroscopic system and of the

cell problems (7.4), (7.5) and refer instead to Chapter 4 and indicate only the major points

of the discretization in the following.
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Figure 7.1. Macroscopic domain Ω covered by a coarse grid TH and two cells Yn,Tk
l at some

time level tn representing the local microstructure at Tk ∈ TH .

Except (7.5), all vector-valued unknowns are approximated using the approximation

space due to Raviart and Thomas,��0(TH) (cf. Sec. 4.2) with associated scalar approxima-

tion space �0(TH). See Table B.8 on p. 147 for a list of symbols. In order to approximate the

vector and scalar unknowns of the Stokes type cell problem (7.5), we use the Taylor–Hood

spaces �c
2(Th)2 and �c

1(Th) (cf. Sec. 4.3). The vector-valued spaces��0(Th) and �c
2(Th)2 are

locally and globally mass conservative, respectively. By functions indexed by H, we mean

the respective spatially discretized version, i. e., wn
0,H ≔

∑

T∈TH
w

n,T
0 (analogously for h).

Fully discrete scheme. The solution strategy is illustrated by means of the following al-

gorithm. Recall that we postulated an explicit local representation ofΦ0 in terms of R0 and y

(local distance to grain surface) due to Ray et al. (2012c, (30), p. 690).

Algorithm 7.1 (Two-scale approach).

Initialization

Let n = 0. Generate a coarse-scale grid TH = TH(Ω), initialize Rn
0,H, c̃

n
0,H ∈ �0(TH),

and choose a time step size τn.

Time Step

(i) Set n ≔ n + 1. If tn = T terminate.

(ii) For each triangle T ∈ TH, generate fine-scale grids Th(Yn,T
l ) using the coarse-scale

radii distribution Rn−1
0,H and appropriate mesh sizes h.
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(iii) For each triangle T ∈ TH, solve the cell problems (7.4) and (7.5) for all indices

i, j ∈ {1, 2} on the fine-scale grids Th(Yn,T
l ) in order to compute the coarse-scale

coefficients An
H, F

n
H ∈ �0(TH), D̄n

H,K
n
H, K̂

n
H ∈ �0(TH)2,2.

(iv) Solve the Darcy subproblem {(7.1a), (7.1b)} for (ūn
0,H, pn

0,H) using Fn
H and Kn

H.

(v) Compute the coarse-scale transport velocity Vn
H ∈ ��0(TH) using ūn

0,H, Kn
H, and K̂n

H.

(vi) Solve the transport subproblem {(7.1c), (7.1d)} for ( j̃n
0,H, c̃

n
0,H) using An

H, D̄n
H, Fn

H,

and Vn
H.

(vii) Solve the subproblem for the radii distribution (7.1e) for Rn
0,H using c̃n

0,H.

(viii) Proceed with (i) .

Postprocessing

For all time levels tn, compute the coarse-scale porosity |Yn
l,H | ∈ �0(TH) using Rn

0,H
(

satisfying (Rn
0,H)2π = 1 − |Yn

l,H | on each T ∈ TH
)

and the actual coarse-scale concen-

tration c̄n
0,H ∈ �0(TH) by retransformation via (7.2) using c̃n

0,H.

The steps (ii), (iii) can be performed in parallel.

Remark 7.2 (Multiscale methods). A general concept for designing numerical multiscale

methods exploiting scale separation is the heterogeneous multiscale method (HMM), which

was introduced by E & Engquist (2003) (see E et al. 2007, for a review). In short, overall

macroscopic problems with coefficients depending on the microstructure are to be solved by

estimating the missing macroscopic data from the microscopic models. This methodology

was used in the context of finite elements for diffusion-type problems, see, e. g., Abdulle

(2009), Abdulle & Engquist (2007/08), Du & Ming (2010), and Ming & Yue (2006), and

E et al. (2005), where the HMM finite element method was introduced. For an comparing

overview of this and other numerical multiscale methods, we refer to Ming & Yue (2006),

the lecture notes of G. Allaire (Allaire 2010c), and the review in Efendiev & Hou (2009).

The aforementioned methods are designed for a large class of microstructures. For the

considered model (7.1), however, we can exploit the special form of the equations stem-

ming from the assumed locally periodic microstructure, providing the possibility of a direct

numerical approach on both scales (e. g., as performed by Redeker & Eck 2013; Tan &

Zabaras 2007). The numerical scheme defined in Algorithm 7.1 is related to the HMM in so
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far that for each “node” of the coarse grid microscopic problems have to be solved in order

to obtain the effective coefficients of the macroscopic problem. △

Remark 7.3 (Iterative scheme). In order to avoid splitting errors, we iterate over the

steps (ii)–(vii). More precisely, after the first run, the radii distribution in (ii) is taken

from (vii). The iteration is allowed to terminate and to continue with (i) as soon as the

difference of two successive radii distribution iterates fall below some desired tolerance.

Moreover, it is recommended to reduce the time step size τn in steps with a high iteration

number or in time steps, where the iteration scheme diverges. △

Remark 7.4 (Look-up table). An efficient modification of Algorithm 7.1—especially for

coarse grids with small mesh size H and / or a large number of time steps—is the generation

of a look-up table for some coefficients in a preprocessing step: the effective coefficients An
H,

D̄n
H, Kn

H, and K̂n
H (cf. (7.3)) depend only on given data and solutions of cell problems that

eventually depend on the local grain geometry and thus on the local grain radius. Hence,

these coefficients can be computed for a chosen number of sample radii in ]0, 1/2[ and

fine-scale grids with small mesh sizes h. These data, stored in a look-up table, can now be

accessed during the run time of the main two-scale approach using polynomial interpolation

between sample data. △

7.3 Numerical Results

This section presents an academic two-scale scenario that illustrates the interplay of (local)

surface reaction, porosity changes, and liquid velocity. All simulations were performed with

the numerical toolbox HyPHM (cf. Appx. A). The computation of the (local) effective coef-

ficients on a fixed triangle T ∈ TH in terms of the porosity for different choices of interaction

potentials are shown in Ray et al. (2012c, Sec. 4.3) and Ray (2013, Sec. 5.5).

Let J×Ω ≔ ]0, 1[× ]0, 1[ 2. We use the interaction potentialΦ0 ≔ (|y|−R0+1)−6 (cf. Ray

et al. 2012c, (30c), p. 690). In order to obtain pore clogging, we choose a linear attachment

rate f : c 7→ c/10 (cf. Ray et al. 2012c, Sec. 2.4, 1., p.675). Due to the considered radially

symmetric setting, the effective coefficient F simplifies as follows: for a fixed T ∈ TH, Rn
0

equals |y| on Γ and thus Φn
0 = 1 on Γn. Since c̃n

0 is constant on each unit cell,

Fn(x) =

∫

Γn(x)

f
(

e−1c̃n
0(x)

)

dsy = f
(

e−1c̃n
0(x)

)

|Γn(x)| = 2πRn
0(x) f

(

e−1c̃n
0(x)

)

.
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7.3 Numerical Results

Obviously, the effective reaction term Fn is directly proportional to the local grain surface

area.

The data of the simulated scenario is given as follows: we consider a macroscopic

domain with heterogeneous initial porosity distribution as shown in Figure 7.2. This was

generated by a random field (Suciu et al. 2012, (11)). We take the area near the lower left

corner of the domain as inflow boundary for a concentration, which attaches to the solid

matrix according to the reaction rate described above. At inital time, the concentration is zero

everywhere. A pressure difference between the lower left corner and the upper right corner

of the domain is applied. Consequently, a liquid flow evolves in which the concentration is

transported.

Figure 7.2 shows transient and spatially heterogeneous porosity and liquid velocity

distributions caused by a locally evolving microstructure. In particular, a local reduction

of the porosity occurs, starting in the area near the lower left corner. This is due to the

propagation of the concentration field and its interaction with the solid matrix in this region.

This also leads to a decrease of the liquid velocity magnitude, since the pores are clogging

locally.
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Chapter 7 Extension to a Model with Evolving Microstructure

|Yl| ∈ [0.40, 0.60] (green / low to red / high) |Yl| ∈ [0.23, 0.57] (blue / low to red / high)

|ū0| ∈ [0, 1.79] (blue / low to red / high) |ū0| ∈ [0, 1.35] (blue / low to red / high)

Figure 7.2. Distribution of the macroscopic porosity |Yl| and of the liquid velocity magnitude |ū0|
at first time level (left) and last time level (right) using a coarse-scale grid TH con-
sisting of 34 320 triangles. Each triangle T ∈ TH is associated with an evolving unit
cell (cf. Fig. 7.1). For fixed time levels t = tn the unit cells are covered by fine-scale
grids T n,T

h consisting of between 2 000 to 10 000 triangles.

136



Conclusion

We have presented time-implicit, mass-conservative numerical schemes using mixed finite

elements that are capable of approximating accurately and efficiently the non-stationary,

fully coupled SNPP system and also its homogenized systems. Solving these systems nu-

merically is challenging, in particular, due to the resolution of the pore scale, different types

of boundary conditions, especially periodic ones, and balance constraints. The schemes are

based on fixed-point approaches and have been verified by numerically estimating the theo-

retically predicted grid convergence orders of the linear subproblems, which also hold true

experimentally for the full nonlinear systems. This observation was confirmed analytically

for the homogenized systems by an a priori error estimate of the overall discretization error.

Much emphasis was placed on the quality assessment of the homogenized systems:

based on simulation results, the behavior of the pore-scale and field-scale solutions with

regard to their physical meanings was compared and discussed for different choices of scal-

ings. In addition, the convergence properties of the pore systems toward their upscaled limit

systems were investigated qualitatively and quantitatively. For all considered choices of scal-

ings, we found linear convergence rates in the scale parameter for each scalar unknown. This

numerical estimation of convergence rates provides a first insight into the applicability of the

homogenized systems, since these have not yet been accomplished analytically in a rigorous

manner for the full SNPP system. From the physical point of view, it was observed that elec-

trodynamic effects may have a severe impact on kinetic reaction rates and may furthermore

cause a retardation of charged solutes in the solid matrix. Moreover, within the framework of

a two-scale scenario in which an evolving microstructure and surface reactions were taken

into account, the interplay between particle transport, evolving microstructure, and liquid

flow were numerically revealed.

Having this validation of the derived effective models at hand, it is now possible to

perform further numerical simulations regarding the identification of parameters in specific

application-oriented problems based upon comparisons with experimental measurements.

We consider our investigations to be an important step toward the understanding of the

dynamics of dilute electrolytes and of dissolved charges particles within porous media on

larger scales.
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AppendixA
Implementation Issues

The implementation of the numerical schemes presented in this thesis was mainly written

using the software platform / programming language MATLAB, Release 2012b. More pre-

cisely, a simulation toolbox HyPHM was newly implemented by the author, which already

has been used as simulation software, inter alia, in the publications of Frank et al. (2011,

2012), Ray (2013), and Ray et al. (2012b,c) and the work of Pérez-Pardo (2012). The code

is object-oriented and matrix assembly routines, the solution of cell problems, and other run

in parallel on multi-core processors (MATLAB Parallel Computing Toolbox).

Software features. The toolbox HyPHM provides a framework for continuum modeling

approaches by second-order partial differential equations using mixed finite elements in two

spatial dimensions. For space discretization, unstructured triangular grids are used, which

may contain an arbitrary number of interior holes. HyPHM provides besides manual grid

definition the option to import grids which are generated by the MATLAB Partial Differential

Equation Toolbox or by the mesh generator Gmsh (Geuzaine & Remacle 2009). The latter

is distributed under the terms of the GNU General Public License.

Currently, a (Navier–)Stokes solver and a solver for convection–diffusion–reaction

problems are available. The coefficient functions of the problems may be given either

as algebraic time- and space dependent functions, or as discrete data sets. The latter

option provides the possibility for realizing couplings of the different problems by using

solution data as coefficient input for other problems. For instance, in our considerations,

the water flux and also the electric field appear as coefficients in the Nernst–Planck

equations {(2.5c), (2.5d)}. Both are explicitly given by the mixed solution of the respective

problem in the Raviart–Thomas basis. This can be exploited, since the convective term in

the discrete formulation of the transport problem is naturally given in this basis. Different

boundary types can be chosen independently of each other for each edge of the grid,

where the most established boundary types, such as Dirichlet, Neumann, or flux, were
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Appendix A Implementation Issues

successfully implemented. Periodic boundary conditions are also available for each solver,

which are required at most by solving cell problems arising in periodic homogenization

procedures. These boundary conditions are realized in an implicit way, using a grid-folding

technique. Optionally, mean value constraints may be imposed for the scalar unknown of

each problem in order to ensure well-posedness, which may otherwise be lost for some

choices of boundary conditions. The time discretization follows an implicit Euler scheme

allowing a variable time-step size.

By now, MATLAB, Release 2012b has two key ways to write parallel code: the con-

cept of parallel “for loops” (parfor) and that of single-program-multiple-data (spmd). For

the parallelization with respect to the assembly of the stiffness matrices, the latter one has

approved.

The data for flux and scalar finite element solutions can be stored in the vtk file format,

which subsequently can be used for the visualization using third-party software like Par-

aview (Squillacote 2007) or MayaVi (Ramachandran & Varoquaux 2011), which are both

multi-platform and freely available.

A web link to a comprehensive documentation of HyPHM is found in the References.
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AppendixB
Notation

The dimensionally independent SI base units and the SI derived units used in this work

are listed in Table B.1 (excerpt of Probstein (2003)). Table B.2 gives an outline of physical

constants and also of quantities, which are constant if the considered liquid is water at 20◦C.

A comprehensive reference for fundamental constants, data, and nomenclature in the field

of chemistry and physics is Quack et al. (2007).

Physical quantities and effective physical quantities on an averaged scale are listed in

Table B.5 and Table B.4, respectively. Symbols referring to finite element grids or to trian-

gulations are found in Table B.6, operators and other symbols in Table B.7, subscripts and

superscripts in Table B.3. Physical quantities are subscripted with the number or the symbol

of the chemical species which they refer to wherever required. The subscripts are suppressed

when the context is clear. Eventually, function spaces and norms are listed in Table B.8 and

Table B.9, respectively.
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Appendix B Notation

Quantity Name
Symbol

(SI Units)
Definition

mass kilogram kg

length meter m

time second s

absolute temperature kelvin K

amount of substance mole mol

electric current ampere A

force newton N ≔ kg m s−2 = C V m−1

pressure pascal Pa ≔ N m−2 = kg m−1 s−2

energy joule J ≔ N m = kg m2 s−2 = C V

electric charge coulomb C ≔ A s

electric potential difference volt V ≔ J C−1 = kg m2 s−3 A−1

Table B.1. SI base units (upper list) and SI derived units (lower list).

Quantity Symbol Value SI Units Relation

Avogadro number NA 6.022E+23 mol−1

Boltzmann constant kB 1.381E−23 J K−1

elementary charge e 1.602E−19 C

Faraday constant F 9.648E+4 C mol−1 F = e NA

gas constant R 8.314E+0 J K−1 mol−1 R = kB NA

permittivity (of water) ǫ 5.553E−8 C V−1 m−1

dynamic viscosity (of water) µ 1.002E−3 Pa s µ = ρw ν

kinematic viscosity (of water) ν 1.004E−6 m2 s−1

water density ρw 9.982E+2 kg m−3

temperature T 293 K

Table B.2. Physical constants (upper list) and physical pseudo constants (lower list). The latter
quantities are constant if water at T = 20◦C is considered.
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Symbol Definition

· ∗ dimensionless variable (cf. Sec. 1.1, p. 2)

· closure of a set or y-averaged quantity

· T transposition

· flux flux boundary type

· N Neumann boundary type

· D Dirichlet boundary type

· 0 averaged physical quantity

· ε physical quantity defined on the pore scale (cf. Fig. 2.1, p. 18)

· l physical quantity associated with the liquid phase

· s physical quantity associated with the solid phase

· nh, · nH discrete variable on the grid Th respectively TH at time level tn

· T n,T quantity on a triangle T ∈ TH at time level tn

Table B.3. Subscripts and superscripts.

Symbol Definition SI Units Relation /Comment

D diffusion tensor / permittivity tensor −

K permeability tensor or

hydraulic conductivity tensor

−

φ̄0 background electric potential V

σ̄ mean surface charge density C m−2 σ̄ ≔ −
∫

Γ
σ dsy

(cf. Thm. 2.5, p. 23)

ū0 averaged water flux m s−1 also called Darcy flux

|Yl| porosity −

Table B.4. Special effective / averaged physical quantities.
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Symbol Definition SI Units Relation

c molar density / concentration or number density mol m−3

D diffusivity or diffusion coefficient m2 s−1

E electric field V m−1 E = −∇φ

fE electric body force density N m−3 fE = ρE E (a)

h piezometric head m

j molar flux mol m−2 s−1

K hydraulic conductivity m s−1

p hydrostatic pressure Pa

φ electric potential / voltage V

Φ interaction (energy) potential J

q electric charge C q =
∫

ρE

r reaction rate mol m−3 s−1

ρE charge density C m−3 ρE = F
∑

zi ci

σ surface charge density C m−2

t time s

u pore velocity or Darcy flux of the liquid m s−1

v mobility mol s kg−1 Di = R T vi (b)

x = (x1, . . . , xd)T ∈ �d, point in Ω or space variable m

z charge number / valence, z ∈ � −

Table B.5. Physical quantities. Equation (a) is termed Lorentz relation; (b) is termed Nernst–
Einstein equation.
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Symbol Definition

DOF degrees of freedom

E edge

E set of edges

Eflux, EN, ED set of flux /Neumann /Dirichlet edges, E∂Ω = Eflux ∪ EN ∪ ED

EΩ, E∂Ω set of interior edges, set of boundary edges, E = EΩ ∪ E∂Ω
Γ interior boundary of Y (cf. Fig. 2.1, p. 18)

Γε interior boundary of Ωε (cf. Fig. 2.1, p. 18)

h, H mesh fineness of a triangulation

J ≔ ]0, T [ , open time interval

ν unit normal on a boundary pointing outward of the respective domain

νE = σETνET , unit normal on E under global orientation (cf. Fig. 4.1, p. 77)

νET unit normal on E ⊂ ∂T pointing outward of T

νT unit normal on ∂T pointing outward of T

N total number of time steps, 0 ≕ t0 < t1 < . . . < tN ≔ T

NNZ number of non-zero entries of a sparse matrix

N set of nodes (which may be vertices, barycenters, etc.)

Ω macroscopic domain, Ω = Ω0

Ωε periodically perforated domain representing the pore scale (cf. Fig. 2.1, p. 18)

∂Ω boundary of Ω, exterior boundary of Ωε

σET orientation of E with respect to T (cf. Fig. 4.1, p. 77)

T d-simplex (finite element domain) or end time

Th triangulation or set of triangles associated with mesh fineness h

V set of vertices

x
opp
ET vertex of T opposite to E (cf. Fig. 4.1, p. 77)

x
bary
E , x

bary
T barycenter of E, barycenter of T (cf. Fig. 4.1, p. 77)

Y , Yl, Ys representative periodic cell, liquid part, solid part (cf. Fig. 2.1, p. 18)

Table B.6. Triangulation and grid related symbols.
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Symbol Definition

| · | absolute value of a scalar quantity or Euclidean norm in �n or measure of a

domain

~·�E jump across E (cf. Def. 3.5, p. 32)

{. . .} set or grouping or distinction of cases

{ · }n∈� sequence

( · )i component of a vector or vector buildup

[ · ]i, j component of a matrix or matrix buildup

⌊·⌋ integer part of a positive real number (floor)

· |E restriction to E or trace on E (cf. Thm. 3.1, p. 29)

# cardinality of a discrete set

∧ logical AND

−
∫

Y
· dy average integral over Y , −

∫

Y
w dy ≔ 1

|Y |

∫

Y
w dy

a · b ≔
∑n

k=1 akbk, Euclidean scalar product in �n

∇ ≔ ( ∂
∂x ,

∂
∂y
, ∂
∂z )

T
, spatial gradient

∂t ≔ ∂
∂t , time derivate; ∂tt ≔ ∂2

t

∂ difference quotient (cf. (3.12), p. 35)

A finite element assembly operator (cf. p. 88)

δi, j Kronecker delta

D Fréchet derivative

e j jth unit vector in �n

γ0 ∈ L(H1(Ω); H1/2(∂Ω)), trace operator (cf. Thm. 3.1, p. 29)

γν ∈ L(Hdiv(Ω); H−1/2(∂Ω)), normal trace operator (cf. Thm. 3.1, p. 29)

I unit matrix in �n,n or identity operator (the latter also I (vector) and I (scalar))

M cut-off operator (cf. Def. 3.15, p. 37)

Table B.7. Operators, brackets, and other symbols.
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Symbol Definition

Ck(Ω) space of j times continuously differentiable functions on Ω, k ∈ �0

Ck(J; V) space of V-valued functions of class C j with respect to t, k ∈ �0

D(Ω) space of infinitely differentiable functions with compact support on Ω

D′(Ω) space of distributions

Hk(Ω) k-times weakly differentiable functions in L2(Ω) with derivatives in L2(Ω),

k ∈ �0

Hk(Ω) ≔ (Hk(Ω))d ≔ Hk(Ω;�d), �d-valued functions with components in Hk(Ω)

Hk
0(Ω) closure ofD(Ω) in Hk(Ω)

H1
a(Ω) ≔

{

w ∈ H1(Ω); γ0w = a on ∂Ω, a ∈ H1/2(∂Ω)
}

H−k(Ω) dual of Hk
0(Ω), k ∈ �0

Hk,div(Ω) ≔
{

u ∈ Hk(Ω); ∇ · u ∈ Hk(Ω)
}

, k ∈ �0 (in particular, a Hilbert space)

Hdiv(Ω) ≔ H0,div(Ω)

Hdiv
a (Ω) ≔

{

u ∈ Hdiv(Ω); γνu = a on ∂Ω, a ∈ H−1/2(∂Ω)
}

H1(J × Ω) ≔ H1(J; L2(Ω)) ∩ L2(J; H1(Ω))

Lp(Ω) ≔ Lp(Ω;�) =
{

f : Ω→ � Lebesgue-measurable; ‖ f ‖Lp(Ω) < ∞
}

, 1 ≤ p ≤ ∞

Lp(J; V) space of V-valued functions, whose norm in V is in Lp(J), 1 ≤ p ≤ ∞

L2(Ω)/� quotient space in which two elements of L2(Ω) are identified if their difference

is constant

L(V; W) vector space of continuous, linear mappings from V to W

L(V1×V2;�) vector space of continuous, bilinear forms

�,�0 set of natural numbers, set of natural numbers including zero

�k(T ) vector space of polynomials of maximum degree k on T

�k(Th) ≔
∏

T∈Th
�k(T ), global approximation space (discontinuous), k ∈ �0

�
c
k(Th) ≔ �k(Th) ∩ C0(Ω), global approximation space (continuous), k ∈ �

�
+, �+0 set of (strictly) positive real numbers, set of nonnegative real numbers

�
m,n vector space of real matrices of dimension m × n

��k(T ) local Raviart–Thomas space of order k on triangle T

��k(Th) ≔ Hdiv(Ω) ∩∏

T∈Th
��k(T ), global Raviart–Thomas space of order k

Table B.8. Sets and function spaces.
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Symbol Definition

‖ · ‖C j(J;V) ‖v‖C j(J;V) ≔ supt∈J

∑ j
l=0 ‖∂l

tv(t, ·)‖V

‖ · ‖Lp(Ω) ‖v‖Lp(Ω) ≔






(∫

Ω
|v|p

)1/p
, 1 ≤ p < ∞

ess supx∈Ω |v(x)|, p = ∞






‖ · ‖Lp(J;V) ‖v‖Lp(J;V) ≔






(∫

J
‖v(t, ·)‖pV

)1/p
, 1 ≤ p < ∞

ess supt∈J ‖v(t, ·)‖V , p = ∞






‖ · ‖Hk(Ω) ‖v‖2
Hk(Ω)

≔
∑k

l=0 |v|2Hl(Ω)

‖ · ‖Hk(Ω) ‖u‖2
Hk(Ω)

≔
∑d

i=1 ‖vi‖2Hk(Ω)

‖ · ‖Hk,div(Ω) ‖u‖2
Hk,div(Ω)

≔ ‖u‖2
Hk(Ω)
+ ‖∇ · u‖2

Hk(Ω)

| · |Hk(Ω) |v|2
Hk(Ω)

≔
∑

|α|=k ‖∂αv‖2L2(Ω)
, seminorm in Hk(Ω)

‖ · ‖H1/2(∂Ω) ‖v‖2
H1/2(∂Ω)

≔
∫

∂Ω
|v(x)|2 dx +

∫

∂Ω

∫

∂Ω

|v(x)−v(y)|2
|x−y|d+1 dx dy

‖ · ‖V ′ ≔ ‖ · ‖L(V;�) (see ‖ · ‖L(V;W))

‖ · ‖L(V;W) ‖A‖L(V;W) ≔ supv∈V
‖Av‖W
‖v‖V = sup‖v‖V=1 ‖Av‖W , operator norm

‖ · ‖V1,V2 ‖a‖V1,V2 ≔ supv1∈V1,v2∈V2

a(v1,v2)
‖v1‖V1 ‖v2‖V2

, norm in L(V1 × V2;�)

( · , · )V inner product in Hilbert space V

( · , · )Hk,div(Ω) (u1 , u2)Hk,div(Ω) ≔ (u1 , u2)Hk(Ω) + (∇ · u1 , ∇ · u2)Hk(Ω)

〈 · , · 〉V ′,V duality pairing, 〈v′ , v〉V ′,V = v′(v) = v′v

Table B.9. Norms, inner products, and duality pairing.
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