Contents

Foreword XXI
Preface XXV
List of Contributors XXXIII

Part I: Chemistry Education: A Global Endeavour 1

1 Chemistry Education and Human Activity 3
Peter Mahaffy
1.1 Overview 3
1.2 Chemistry Education and Human Activity 3
1.3 A Visual Metaphor: Tetrahedral Chemistry Education 4
1.4 Three Emphases on Human Activity in Chemistry Education 5
1.4.1 The Human Activity of Learning and Teaching Chemistry 6
1.4.1.1 Atoms or Learners First? 6
1.4.1.2 Identifying Learners and Designing Curriculum to Meet Their Needs 7
1.4.1.3 Effective Practices in the Human Activity of Learning and Teaching Chemistry 8
1.4.1.4 Identifying and Eliminating Worst Practices as a Strategy? 8
1.4.1.5 Exemplar: Emphasizing the Human Activity of Learning and Teaching Chemistry 9
1.4.2 The Human Activity of Carrying Out Chemistry 10
1.4.2.1 Explicit and Implicit Messages about the Nature of Chemistry 10
1.4.2.2 Breathing the Life of Imagination into Chemistry’s Facts 11
1.4.2.3 Exemplars: Emphasizing the Human Activity of Carrying Out Chemistry 13
1.4.3 Chemistry Education in the Anthropocene Epoch 14
1.4.3.1 Planetary Boundaries: A Chemistry Course Outline? 15
1.4.3.2 Steps toward Anthropocene-Aware Chemistry Education 16
1.4.3.3 Exemplars: Anthropocene-Aware Chemistry Education 17
1.5 Teaching and Learning from Rich Contexts 18
1.5.1 Diving into an Ocean of Concepts Related to Acid–Base Chemistry 18
2 Chemistry Education That Makes Connections:
Our Responsibilities 27
Cathy Middlecamp

2.1 What This Chapter Is About 27
2.2 Story #1: Does This Plane Have Wings? 28
2.3 Story #2: Coaching Students to “See” the Invisible 30
2.4 Story #3: Designing Super-Learning Environments for Our Students 34
2.5 Story #4: Connections to Public Health (Matthew Fisher) 37
2.6 Story #5: Green Chemistry Connections (Richard Sheardy) 39
2.7 Story #6: Connections to Cardboard (Garon Smith) 41
2.8 Story #7: Wisdom from the Bike Trail 44
2.9 Conclusion: The Responsibility to “Connect the Dots” 46
References 48

3 The Connection between the Local Chemistry Curriculum and Chemistry Terms in the Global News: The Glocalization Perspective 51
Mei-Hung Chiu and Chin-Cheng Chou

3.1 Introduction 51
3.2 Understanding Scientific Literacy 52
3.3 Introduction of Teaching Keywords-Based Recommendation System 55
3.4 Method 56
3.5 Results 57
3.5.1 Example 1: Global Warming 57
3.5.2 Example 2: Sustainability 57
3.5.3 Example 3: Energy 58
3.5.4 Example 4: Acid 59
3.5.5 Example 5: Atomic Structure 60
3.5.6 Example 6: Chemical Equilibrium 61
3.5.7 Example 7: Ethylene 62
3.5.8 Example 8: Melamine 63
3.5.9 Example 9: Nano 64
3.6 Concluding Remarks and Discussion 65
3.7 Implications for Chemistry Education 68
Acknowledgment 70
References 70
4 Changing Perspectives on the Undergraduate Chemistry Curriculum

Martin J. Goedhart

4.1 The Traditional Undergraduate Curriculum 73
4.2 A Call for Innovation 74
4.2.1 Constructivism and Research on Student Learning 74
4.2.2 New Technologies 76
4.2.3 The Evolving Nature of Chemistry 77
4.2.4 Developments in Society and Universities 77
4.3 Implementation of New Teaching Methods 78
4.3.1 The Interactive Lecture 79
4.3.2 Problem- and Inquiry-Based Teaching 80
4.3.3 Research-Based Teaching 80
4.3.4 Competency-Based Teaching 81
4.4 A Competency-Based Undergraduate Curriculum 83
4.4.1 The Structure of the Curriculum 84
4.4.2 Competency Area of Analysis 86
4.4.3 Competency Area of Synthesis 88
4.4.4 Competency Area of Modeling 89
4.4.5 The Road to a Competency-Based Curriculum 90
4.5 Conclusions and Outlook 92

References 93

5 Empowering Chemistry Teachers' Learning: Practices and New Challenges

Jan H. van Driel and Onno de Jong

5.1 Introduction 99
5.2 Chemistry Teachers' Professional Knowledge Base 102
5.2.1 The Knowledge Base for Teaching 102
5.2.2 Chemistry Teachers' Professional Knowledge 103
5.2.3 Development of Chemistry Teachers' Professional Knowledge 105
5.3 Empowering Chemistry Teachers to Teach Challenging Issues 107
5.3.1 Empowering Chemistry Teachers for Context-Based Teaching 107
5.3.2 Empowering Chemistry Teachers to Teach about Models and Modeling 109
5.3.3 Empowering Chemistry Teachers to Use Computer-Based Technologies for Teaching 111
5.4 New Challenges and Opportunities to Empower Chemistry Teachers' Learning 113
5.4.1 Becoming a Lifelong Research-Oriented Chemistry Teacher 113
5.4.2 Learning Communities as a Tool to Empower Chemistry Teachers' Learning 114
5.5 Final Conclusions and Future Trends 116

References 118
6 Lifelong Learning: Approaches to Increasing the Understanding of Chemistry by Everybody 123
John K. Gilbert and Ana Sofia Afonso

6.1 The Permanent Significance of Chemistry 123
6.2 Providing Opportunities for the Lifelong Learning of Chemistry 123
6.2.1 Improving School-Level Formal Chemistry Education 123
6.2.2 Formal Lifelong Chemical Education 125
6.2.3 Informal Chemical Education 126
6.2.4 Emphases in the Provision of Lifelong Chemical Education 127
6.3 The Content and Presentation of Ideas for Lifelong Chemical Education 129
6.3.1 The Content of Lifelong Chemical Education 129
6.3.2 The Presentation of Chemistry to Diverse Populations 130
6.4 Pedagogy to Support Lifelong Learning 131
6.5 Criteria for the Selection of Media for Lifelong Chemical Education 133
6.6 Science Museums and Science Centers 133
6.6.1 Museums 133
6.6.2 Science Centers 134
6.7 Print Media: Newspapers and Magazines 134
6.8 Print Media: Popular Books 135
6.9 Printed Media: Cartoons, Comics, and Graphic Novels 136
6.9.1 Three Allied Genre 136
6.9.2 The Graphic Novel 137
6.9.3 The Educational Use of Graphic Novels in Science Education 138
6.9.4 Case Study: A Graphic Novel Concerned with Cancer Chemotherapy 140
6.10 Radio and Television 140
6.11 Digital Environments 141
6.12 Citizen Science 143
6.13 An Overview: Bringing About Better Opportunities for Lifelong Chemical Education 144
References 146

Part II: Best Practices and Innovative Strategies 149

7 Using Chemistry Education Research to Inform Teaching Strategies and Design of Instructional Materials 151
Renée Cole

7.1 Introduction 151
7.2 Research into Student Learning 153
7.3 Connecting Research to Practice 154
7.3.1 Misconceptions 154
7.3.2 Student Response Systems 157
7.3.3 Concept Inventories 158
7.3.4 Student Discourse and Argumentation 159
7.3.5 Problem Solving 161
7.3.6 Representations 161
7.3.7 Instruments 163
7.4 Research-Based Teaching Practice 165
7.4.1 Interactive Lecture Demonstrations 166
7.4.2 ANAPOGIL: Process-Oriented Guided Inquiry Learning in Analytical Chemistry 167
7.4.3 CLUE: Chemistry, Life, the Universe, and Everything 169
7.5 Implementation 171
7.6 Continuing the Cycle 172
References 174

8 Research on Problem Solving in Chemistry 181
George M. Bodner
8.1 Why Do Research on Problem Solving? 181
8.2 Results of Early Research on Problem Solving in General Chemistry 184
8.3 What About Organic Chemistry 186
8.4 The "Problem-Solving Mindset" 192
8.5 An Anarchistic Model of Problem Solving 193
8.6 Conclusion 199
References 200

9 Do Real Work, Not Homework 203
Brian P Coppola
9.1 Thinking About Real Work 203
9.1.1 Defining Real Work: Authentic Learning Experiences 203
9.1.2 Doing Real Work: Situated Learning 206
9.2 Attributes of Real Work 209
9.2.1 Balance Convergent and Divergent Tasks 209
9.2.1.1 Convergent Assignments 212
9.2.1.2 Divergent Assignments 213
9.2.1.3 Balancing Convergent and Divergent Assignments 214
9.2.1.4 Convergent Assignments in Team Learning 215
9.2.1.5 Divergent Assignments in Team Learning 216
9.2.2 Peer Presentations, Review, and Critique 218
9.2.2.1 Calibrated Peer Review 221
9.2.2.2 Guided Peer Review and Revision 221
9.2.2.3 Argumentation and Evidence 222
9.2.3 Balance Teamwork and Individual Work 222
9.2.3.1 Team-Based Learning: Face-to-Face Teams 222
9.2.3.2 Team-Based Learning: Virtual Teams 223
9.2.3.3 Team-Based Learning: Laboratory Projects 223
9.2.3.4 Team-Based Learning: Collaborative Identification 223
9.2.3.5 Team-Based Learning: Experimental Optimization 224
9.2.4 Students Use the Instructional Technologies 224
9.2.4.1 Learning by Design 224
9.2.4.2 Electronic Homework System: In the Classroom 225
9.2.4.3 Student-Generated Videos 225
9.2.4.4 Student-Generated Animations 225
9.2.4.5 Student-Generated Video Blogs 226
9.2.4.6 Wikipedia Editing 227
9.2.4.7 Wiki Environment 227
9.2.4.8 Student-Generated Metaphors 227
9.2.5 Use Authentic Texts and Evidence 228
9.2.5.1 Literature Summaries 228
9.2.5.2 Literature Seminars 229
9.2.5.3 Public Science Sources 230
9.2.5.4 Generating Questions 230
9.2.5.5 Course-Based Undergraduate Research Experiences (CURE) 230
9.2.5.6 Interdisciplinary Research-Based Projects 231
9.2.6 As Important to the Class as the Teacher's Work 232
9.2.6.1 Student-Generated Instructional Materials 232
9.2.6.2 Wiki Textbooks 232
9.2.6.3 Print and Web-Based Textbooks 233
9.2.6.4 Electronic Homework Systems 235
9.2.6.5 Podcasts 236
9.2.6.6 Classroom: Active-Learning Assignments 238
9.2.6.7 Laboratory: Safety Teams 239
9.3 Learning from Real Work 239
9.3.1 Evidence of Creativity through the Production of Divergent Explanations 240
9.3.2 Peer Review and Critique Reveal Conceptual Weaknesses 240
9.3.3 Team Learning Produces Consistent Gains in Student Achievement 241
9.3.4 Students Use Instructional Technologies 242
9.3.5 Using Authentic Materials Result in Disciplinary Identification and Socialization 243
9.3.6 Student-Generated Instructional Materials Promotes Metacognition and Self-Regulation 244
9.4 Conclusions 245
Acknowledgments 247
References 247
10 Context-Based Teaching and Learning on School and University Level 259
Ilka Parchmann, Karolina Broman, Maike Busker, and Julian Rudnik

10.1 Introduction 259

10.2 Theoretical and Empirical Background for Context-Based Learning 260

10.3 Context-Based Learning in School: A Long Tradition with Still Long Ways to Go 261

10.4.1 Strategies to Approach Context-Based Tasks 265

10.4.2 Application of Chemical Knowledge 267

10.4.3 Outlook on the Design of Tasks and Research Studies 269

10.5 Context-Based Learning on University Level: Goals and Approaches 269

10.5.1 Design of Differentiated CBL-Tasks 271

10.5.2 Example 1 Physical and Chemical Equilibria of Carbon Dioxide – Important in Many Different Contexts 272

10.5.3 Example 2 Chemical Switches – Understanding Properties like Color and Magnetism 273

10.5.4 Feedback and Implications 275

10.6 Conclusions and Outlook 275

References 276

11 Active Learning Pedagogies for the Future of Global Chemistry Education 279
Judith C. Poe

11.1 Problem-Based Learning 280

11.1.1 History 281

11.1.2 The Process 281

11.1.3 Virtual Problem-Based Learning 283

11.1.4 The Problems 285

11.1.4.1 Selected Problems for Introductory Chemistry at the UTM 285

11.1.4.2 Project for a UTM Upper Level Bioinorganic Chemistry Course 288

11.1.5 PBL – Must Content Be Sacrificed? 289

11.2 Service-Learning 290

11.2.1 The Projects 291

11.2.1.1 Selected Analytical/Environmental Chemistry Projects 291

11.2.1.2 Selected Projects in Chemistry Education 292

11.2.1.3 Project for an Upper Level Bioinorganic Chemistry Course at UTM 293

11.2.2 Benefits of Service-Learning 294
11.3 Active Learning Pedagogies 296

11.4 Conclusions and Outlook 297

References 297

12 Inquiry-Based Student-Centered Instruction 301

Ram S. Lamba

12.1 Introduction 301

12.2 Inquiry-Based Instruction 303

12.3 The Learning Cycle and the Inquiry-Based Model for Teaching and Learning 304

12.4 Information Processing Model 308

12.5 Possible Solution 308

12.6 Guided Inquiry Experiments for General Chemistry: Practical Problems and Applications Manual 310

12.7 Assessment of the Guided-Inquiry-Based Laboratories 314

12.8 Conclusions 316

References 317

13 Flipping the Chemistry Classroom with Peer Instruction 319

Julie Schell and Eric Mazur

13.1 Introduction 319

13.2 What Is the Flipped Classroom? 320

13.2.1 Three Big Ideas about Flipped Classrooms 321

13.2.2 Blended Learning and Flipped Classrooms 322

13.2.3 A Brief History of the Flipped Classroom 323

13.2.4 Traditional versus a Flipped Chemistry Classroom 323

13.2.5 Flipped Classrooms and Dependency on Technology 324

13.3 How to Flip the Chemistry Classroom 325

13.3.1 Common Myths about Flipped Classrooms 326

13.3.1.1 Myth 1: Flipped Classrooms are Just Video Lectures 326

13.3.1.2 Myth 2: Flipped Classrooms Have No Lectures 326

13.3.1.3 Myth 3: Students Won’t Be Prepared for Class 327

13.3.1.4 Myth 4: Flipping Your Classroom Means Changing Everything You Do 327

13.3.1.5 Myth 5: Flipped Classrooms Solve All Students’ Problems Immediately 328

13.3.2 FLIP 329

13.3.3 Student Attitudes toward Flipping General Chemistry 329

13.4 Flipping Your Classroom with Peer Instruction 329

13.4.1 What Is Peer Instruction? 330

13.4.2 What Is a ConceptTest? 331

13.4.3 Workflow in a Peer Instruction Course 332

13.4.4 ConceptTest Workflow 333

13.4.5 Peer Instruction and Classroom Response Systems 333

13.4.6 The Instructional Design of a Peer Instruction Course 334
13.4.7 Research on Peer Instruction 336
13.4.8 Strategies for Avoiding Common Pitfalls of Flipping the Classroom with Peer Instruction 336
13.4.8.1 Effective Grouping 337
13.4.8.2 Response Opportunities 337
13.4.8.3 Peer Discussion Opportunities 337
13.4.8.4 Response Sharing 338
13.4.9 Flipping the Chemistry Classroom with Peer Instruction 338
13.5 Responding to Criticisms of the Flipped Classroom 339
13.6 Conclusion: The Future of Education 341
Acknowledgments 341
References 341

14 Innovative Community-Engaged Learning Projects: From Chemical Reactions to Community Interactions 345
Claire McDonnell
14.1 The Vocabulary of Community-Engaged Learning Projects 345
14.1.1 Community-Based Learning 346
14.1.2 Community-Based Research 346
14.1.3 Developing a Shared Understanding of CBL and CBR 347
14.2 CBL and CBR in Chemistry 349
14.2.1 Chemistry CBL at Secondary School (High School) Level 352
14.2.2 Chemistry Projects Not Categorized as CBL or CBR 352
14.2.3 Guidelines and Resources for Getting Started 352
14.3 Benefits Associated with the Adoption of Community-Engaged Learning 353
14.3.1 How Do Learners Gain from CBL and CBR? 354
14.3.1.1 Personal Development and Graduate Attributes 354
14.3.1.2 High-Impact Educational Practices 354
14.3.2 How Do HEIs and Schools Gain from CBL and CBR? 356
14.3.3 How Do Communities Gain from CBL and CBR? 359
14.3.3.1 Reciprocity 359
14.3.3.2 Maximizing Impact for Community Partners 359
14.4 Barriers and Potential Issues When Implementing Community-Engaged Learning 360
14.4.1 Clarity of Purpose 360
14.4.2 Regulatory and Ethical Issues 360
14.4.3 Developing Authentic Community Partnerships 361
14.4.3.1 Useful Frameworks 361
14.4.3.2 Case Studies on Developing Authentic Community Partnerships 361
14.4.4 Sustainability 362
14.4.5 Institutional Commitment and Support 363
14.4.6 An Authentic Learning Environment 363
14.4.7 Reflection 363
17 The Role of Language in the Teaching and Learning of Chemistry 421
Peter E. Childs, Silvija Markic, and Marie C. Ryan
17.1 Introduction 421
17.2 The History and Development of Chemical Language 423
17.2.1 Chemical Symbols: From Alchemy to Chemistry, from Dalton to
Berzelius 423
17.2.2 A Systematic Nomenclature 425
17.3 The Role of Language in Science Education 428
17.4 Problems with Language in the Teaching and Learning
of Chemistry 430
17.4.1 Technical Words and Terms 432
17.4.2 Nontechnical Words 433
17.4.3 Logical Connectives 434
17.4.4 Command Words 435
17.4.5 Argumentation and Discourse 436
17.4.6 Readability of Texts 436
17.5 Language Issues in Dealing with Diversity 437
17.5.1 Second Language Learners 437
17.5.2 Some Strategies for Improving Language Skills of SLLs 440
17.5.3 Special-Needs Students 440
17.6 Summary and Conclusions 441
References 442
Further Reading 445

18 Using the Cognitive Conflict Strategy with Classroom Chemistry
Demonstrations 447
Robert (Bob) Bucat
18.1 Introduction 447
18.2 What Is the Cognitive Conflict Teaching Strategy? 448
18.3 Some Examples of Situations with Potential to Induce Cognitive
Conflict 449
18.4 Origins of the Cognitive Conflict Teaching Strategy 451
18.5 Some Issues Arising from A Priori Consideration 453
18.6 A Particular Research Study 455
18.7 The Logic Processes of Cognitive Conflict Recognition
and Resolution 459
18.8 Selected Messages from the Research Literature 461
18.9 A Personal Anecdote 465
18.10 Conclusion 466
References 467

19 Chemistry Education for Gifted Learners 469
Manabu Sumida and Atsushi Ohashi
19.1 The Gap between Students’ Images of Chemistry and Research
Trends in Chemistry 469
19.2 The Nobel Prize in Chemistry from 1901 to 2012: The Distribution and Movement of Intelligence 470
19.3 Identification of Gifted Students in Chemistry 472
19.3.1 Domain-Specificity of Giftedness 472
19.3.2 Natural Selection Model of Gifted Students in Science 474
19.4 Curriculum Development and Implementation of Chemistry Education for the Gifted 477
19.4.1 Acceleration and Enrichment 477
19.4.2 Higher Order Thinking and the Worldview of Chemistry 478
19.4.3 Promoting Creativity and Innovation 479
19.4.4 Studying Beyond the Classrooms 480
19.4.5 Can the Special Science Program Meet the Needs of Gifted Students? 482
19.5 Conclusions 484
References 486

20 Experimental Experience Through Project-Based Learning 489
Jens Josephsen and Søren Hvidt
20.1 Teaching Experimental Experience 489
20.1.1 Practical Work in Chemistry Education 489
20.1.2 Why Practical Work in Chemistry Education? 490
20.1.3 Practical Work in the Laboratory 491
20.2 Instruction Styles 492
20.2.1 Different Goals and Instruction Styles for Practical Work 492
20.2.2 Emphasis on Inquiry 493
20.3 Developments in Teaching 494
20.3.1 Developments at the Upper Secondary Level 494
20.3.2 Trials and Changes at the Tertiary Level 495
20.3.3 Lessons Learned 497
20.4 New Insight and Implementation 498
20.4.1 Curriculum Reform and Experimental Experience 498
20.4.1.1 Problem-Based Group-Organized Project Work 498
20.4.1.2 Second Semester Project Work 499
20.4.2 Analysis of Second Semester Project Reports 502
20.4.2.1 Analysis of Reports from a Chemistry Point of View 503
20.4.2.2 Elements of Experimental Work 503
20.5 The Chemistry Point of View Revisited 511
20.6 Project-Based Learning 512
References 514

21 The Development of High-Order Learning Skills in High School Chemistry Laboratory: “Skills for Life” 517
Avi Hofstein
21.1 Introduction: The Chemistry Laboratory in High School Setting 517
21.2 The Development of High-Order Learning Skills in the Chemistry Laboratory

21.2.1 Introduction 519
21.2.2 What Are High-Order Learning Skills? 520

21.3 From Theory to Practice: How Are Chemistry Laboratories Used? 522

21.4 Emerging High-Order Learning Skills in the Chemistry Laboratory 523

21.4.1 First Theme: Developing Metacognitive Skills 523

21.4.2 Second Theme: Scientific (Chemical) Argumentation 527

21.4.2.1 The Nature of Argumentation in Science Education 527
21.4.2.2 Argumentation in the Chemistry Laboratory 528

21.4.3 Asking Questions in the Chemistry Laboratory 531

21.5 Summary, Conclusions, and Recommendations 532

References 535

22 Chemistry Education Through Microscale Experiments 539

Beverly Bell, John D. Bradley, and Erica Steenberg

22.1 Experimentation at the Heart of Chemistry and Chemistry Education 539

22.2 Aims of Practical Work 540
22.3 Achieving the Aims 540

22.4 Microscale Chemistry Practical Work — “The Trend from Macro Is Now Established” 541

22.5 Case Study I: Does Scale Matter? Study of a First-Year University Laboratory Class 542

22.6 Case Study II: Can Microscale Experimentation Be Used Successfully by All? 543

22.7 Case Study III: Can Quantitative Practical Skills Be Learned with Microscale Equipment? 544

22.7.1 Volumetric Analysis — Microtitration 544
22.7.2 Gravimetric Measurements 546
22.7.3 The Role of Sensors, Probes, and the Digital Multimeter in Quantitative Microscale Chemistry 548

22.7.3.1 Cell Potential Measurements 549
22.7.3.2 Electrical Conductivity, Light Absorption, and Temperature Measurements 551

22.8 Case Study IV: Can Microscale Experimentation Help Learning the Scientific Approach? 554

22.9 Case Study V: Can Microscale Experimentation Help to Achieve the Aims of Practical Work for All? 555

22.9.1 The UNESCO-IUPAC/CCE Global Microscience Program and Access to Science Education for All 555
27.2 Shifting Assessment Practices in Chemistry Laboratory Learning 672
27.3 Theoretical and Learning Design Perspectives Related to Technology-Enhanced Learning Environments 675
27.4 Wiki Learning Environments as an Assessment Platform for Students' Communication of Their Inquiry Laboratory Outcomes 678
27.4.1 Co-Construction of Shared Understanding of Experimental Observations 679
27.4.2 Enhancing the Role of Tutors in the Wiki Laboratory Community 679
27.5 Practical Examples of the Application of Wikis to Enhance Laboratory Learning Outcomes 681
27.5.1 Supporting Collaborative Discussion of Experimental Data by Large Groups of Students during a Second-Level Organic Chemistry Inquiry Experiment 681
27.5.2 Virtual Laboratory Notebook Wiki Enhancing Laboratory Learning Outcomes from a Collaborative Research-Style Experiment in a Third-Level Nanoscience Course 682
27.5.3 Scaffolding Collaborative Laboratory Report Writing through a Wiki 682
27.6 Emerging Uses of Wikis in Lab Learning Based on Web 2.0 Analytics and Their Potential to Enhance Lab Learning 684
27.6.1 Evaluating Student Participation and Contribution as Insight into Engagement 684
27.6.2 Categorizing the Level of Individual Student Understanding 686
27.7 Conclusion 688
References 689

28 New Tools and Challenges for Chemical Education: Mobile Learning, Augmented Reality, and Distributed Cognition in the Dawn of the Social and Semantic Web 693
Harry E. Pence, Antony J. Williams, and Robert E. Belford
28.1 Introduction 693
28.2 The Semantic Web and the Social Semantic Web 694
28.3 Mobile Devices in Chemical Education 702
28.4 Smartphone Applications for Chemistry 706
28.5 Teaching Chemistry in a Virtual and Augmented Space 708
28.6 The Role of the Social Web 717
28.7 Distributed Cognition, Cognitive Artifacts, and the Second Digital Divide 721
28.8 The Future of Chemical Education 726
References 729

Index 735