Contents

Preface — xi
Introduction — xiii

Mikhail Yu. Antonov
1 Architecture of parallel computing systems — 1
 1.1 History of computers — 1
 1.2 Architecture of parallel computers — 1
 1.3 Modern supercomputers — 4
 1.4 Multicore computers — 5
 1.5 Operating system processes and threads — 5
 1.6 Programming multi-threaded applications — 7

Mikhail Yu. Antonov
2 Multi-threaded programming — 9
 2.1 POSIX threads — 9
 2.2 Creating and terminating threads — 10
 2.3 Thread life-cycle — 11
 2.4 Multi-threaded matrix summation — 12
 2.5 Thread synchronization — 15

Petr A. Popov
3 Essentials of OpenMP — 21
 3.1 OpenMP parallel programming model — 21
 3.2 The parallel construct — 22
 3.3 Work-sharing constructs — 23
 3.4 Work-sharing clauses — 28
 3.5 Synchronization — 32
 3.6 Dirichlet problem for the Poisson equation — 36

Aleksandr V. Grigoriev, Ivan K. Sirditov, and Petr A. Popov
4 MPI technology — 45
 4.1 Preliminaries — 45
 4.2 Message-passing operations — 50
 4.3 Functions of collective interaction — 53
 4.4 Dirichlet problem for the Poisson equation — 68

Aleksandr V. Grigoriev
5 ParaView: An efficient toolkit for visualizing large datasets — 77
 5.1 An overview — 77
Contents

5.2 Data file formats —— 78
5.3 Preparing data —— 82
5.4 Working with ParaView —— 90
5.5 Parallel visualization —— 95

Victor S. Borisov
6 Tools for developing parallel programs —— 99
6.1 Installation of PTP —— 99
6.2 Program management —— 100
6.3 Parallel debugging —— 113
6.4 Performance analysis —— 116

Aleksandr G. Churbanov, Petr N. Vabishchevich
7 Applied software —— 121
7.1 Numerical simulation —— 121
7.2 Applied software engineering —— 124
7.3 Software architecture —— 125
7.4 General purpose applied software —— 127
7.5 Problem-oriented software —— 129

Maria V. Vasilieva, Alexandr E. Kolesov
8 Geometry generation and meshing —— 133
8.1 General information —— 133
8.2 The Gmsh workflow —— 135
8.3 NETGEN first look —— 149

Nadezhda M. Afanasyeva, Maria V. Vasilieva
9 PETSc for parallel solving of linear and nonlinear equations —— 153
9.1 Preliminaries —— 153
9.2 Solvers for systems of linear equations —— 163
9.3 Solution of nonlinear equations and systems —— 171
9.4 Solving unsteady problems —— 180

Petr E. Zakharov
10 The FEniCS project —— 189
10.1 Preliminaries —— 189
10.2 Model problem —— 191
10.3 Finite element discretization —— 192
10.4 Program —— 194
10.5 Result processing —— 204
10.6 Nonlinear problems —— 208
10.7 Time-dependent problems —— 212