Session 1: Prospects, Legal Regulation, Perception – Part 1

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Railway Noise Control in Europe: Current Status</td>
<td>1</td>
</tr>
<tr>
<td>J. Oertli</td>
<td></td>
</tr>
<tr>
<td>Novel Legislation for Railway Lines and Motorways in The Netherlands</td>
<td>7</td>
</tr>
<tr>
<td>P.H. de Vos</td>
<td></td>
</tr>
<tr>
<td>Bearable Railway Noise Limits in Europe</td>
<td>13</td>
</tr>
<tr>
<td>F.B.J. Elbers, E. Verheijen</td>
<td></td>
</tr>
<tr>
<td>State-of-the-Art of the Noise Emission of Railway Cars</td>
<td>21</td>
</tr>
<tr>
<td>S. Lutzenberger, C. Gutmann, U. Reichart</td>
<td></td>
</tr>
</tbody>
</table>

Session 2: Prospects, Legal Regulation, Perception – Part 2

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Separation of Vehicle Noise for Limit Setting in Future Legislation</td>
<td>31</td>
</tr>
<tr>
<td>T. Thron, S. Leth, B. Stegemann</td>
<td></td>
</tr>
</tbody>
</table>

Session 2: Wheel and Rail Noise – Part 1

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimating the Performance of Wheel Dampers Using Laboratory Methods and a Prediction Tool</td>
<td>39</td>
</tr>
<tr>
<td>B. Betgen, P. Bouvet, G. Squicciarini, D.J. Thompson, C.J.C. Jones</td>
<td></td>
</tr>
<tr>
<td>Estimating the Performance of Rail Dampers Using Laboratory Methods and Software Predictions</td>
<td>47</td>
</tr>
<tr>
<td>M.G.R. Toward, G. Squicciarini, D.J. Thompson, Y. Gao</td>
<td></td>
</tr>
<tr>
<td>Experimental and Theoretical Studies on Impact Noise Generation due to Rail Joints</td>
<td>55</td>
</tr>
<tr>
<td>T. Kitagawa, K. Murata, T. Kawaguchi, S. Tanaka, K. Nagakura</td>
<td></td>
</tr>
</tbody>
</table>
An Explicit Integration Finite Element Method for Impact Noise Generation at a Squat .. 63
Z. Yang, Z. Li, R.P.B.J. Dollevoet

Poster Session 1: Prospects, Legal Regulation, Perception/Wheel and Rail Noise/Prediction, Measurements, Monitoring

Future European Noise Emission Ceilings: Threat or Solution? A Review Based on Swiss and Dutch Ceilings .. 71
E. Verheijen, F.B.J. Elbers

Comparison between Road and Rail Noise Cost per Transported Ton of Cargo ... 79
M. Ögren, H. Andersson, T. Jerson

A Survey of Freight Locomotive Passby Noise Emissions 85
B.E. Croft, B. Dowdell, D. Hanson, D.C. Anderson

On the Importance of Accuracy of Geographic Model Data for Noise Impact Studies ... 93
A.H.W.M. Kuijpers, M.S. Roovers, G.H. Groenveld

The Efficiency of Noise Reduction Measures on Railway Infrastructure in Normal Operating Conditions - NOVIBRAIL 101
J. Hlavdček, L. Hejzlar, R. Kolmačka

Characterizing Wheel Flat Impact Noise with an Efficient Time Domain Model .. 109
J. Yang, D.J. Thompson, Y. Takano

Study on the Sound Radiation Directivity of a Railway Wheel and the Relationship between Directivity and Mode Shape 117
J. Han, X.B. Xiao, R.Q. Wang, X. Zhao, G.T. Zhao, X.S. Jin

Empirical Modeling of Railway Aerodynamic Noise Using One Microphone Pass-By Recording ... 125
X. Zhang

Localizing Noise Sources on a Rail Vehicle during Pass-By 133
J. Gomes, J. Hald, B. Ginn

Experimental Characterization of the Vibro-Acoustic Behaviour of a Switch .. 141
B. Faure, E. Bongini, A. Renoncourt, A. Pouzet
Experimental Comparison of Maximum Length Sequence (MLS) and Impact Hammer Methods to Evaluate Vibration Transfer Functions in Soil .. 149
G. Coquet, A. Kengni Kengang

sonRAIL Web Tool – A New Web Application of the Swiss Method on Railway Noise Calculation RELEASED IN 2013 .. 157
C. Czolbe, J.-M. Wunderli, F. Fischer

Concept for Measuring Aeroacoustic Noise Transmission in Trains Derived from Experience Gained in Aircraft Testing .. 165
J. Galuba (formerly Kokavec), C. Spehr

Session 3: Wheel and Rail Noise – Part 2

Innovative Measures for Reducing Noise Radiation from Track 173
M. Beier, T. Lölgen, M. Starnberg

Innovative Noise Mitigation Measures in the Framework of “Konjunkturprogramm II” in Germany .. 181
U. Moehler, M. Liepert, A. Martens

Session 3: Prediction, Measurements, Monitoring – Part 1

Indirect Method of Rail Roughness Measurement – VUKV Implementation and Initial Results .. 189
L. Phamová, P. Bauer, J. Malinský, M. Richter

Background for a New Standard on Pass-By Measurement of Combined Roughness, Track Decay Rate and Vibroacoustic Transfer Functions 197
M.G. Dittrich, F. Létourneaux, H. Dupuis

Monitoring Rail Condition Based on Sound and Vibration Sensors Installed on an Operational Train .. 205
T. Jensen, S. Chauhan, K. Haddad, W. Song, S. Junge

Session 4: Prediction, Measurements, Monitoring – Part 2

Transposition of Noise Type Test Data for Tracks and Vehicles 213
H.W. Jansen, M.G. Dittrich, G. Squicciarini, D.J. Thompson, B. Betgen

Virtual Testing within the TSI Noise: How to Introduce Numerical Simulation into a Certification Process? .. 221
E. Bongini, R. Cordero

A Study of the Measurement Technology of Noise Sources of High-Speed Trains .. 229
H.I. Koh, A. Nordborg, H.M. Noh
Determination of Insertion Losses for Vibration Mitigation Measures in Track by Artificial Vibration Excitation ... 237
R. Garburg, D. Heiland, M. Mistler

The Prediction of Vibration Transfer for Railway Induced Ground Vibration ... 245
H. Verbraken, N. Veirman, V. Cuellar, G. Lombaert, G. Degrande

Session 5: Ground-Borne Vibration – Part 1

G. Lombaert, G. Degrande, S. François, D.J. Thompson

Prediction of Railway Induced Vibration and Ground Borne Noise Exposure in Building and Associated Annoyance 289
M. Villot, S. Bailhache, C. Guigou, P. Jean

Attenuation of Railway Noise and Vibration in Two Concrete Frame Multi-storey Buildings ... 297
D.E.J. Lurcock, D.J. Thompson, O.G. Bewes

Session 6: Ground-Borne Vibration – Part 2

Developing a Good Practice Guide on the Evaluation of Human Response to Vibration from Railways in Residential Environments 305
J.S. Woodcock, E. Peris, D.C. Waddington, A.T. Moorhouse

Vibration Control at Sound Transit .. 313
J.T. Nelson, D.L. Watry

Recent Developments in the Pipe-in-Pipe Model for Underground-Railway Vibration Predictions .. 321
K.A. Kuo, S.W. Jones, M.F.M. Hussein, H.E.M. Hunt

Prediction of Railway-Induced Ground Vibrations: The Use of Minimal Coordinate Method for Vehicle Modelling 329
G. Kouroussis, G. Alexandrou, J. Florentin, O. Verlinden

Poster Session 2: Interior Noise, Sound Barrier/Grinding, Corrugation, Roughness/Resilient Track Forms

Transfer Path Analysis on a Siemens Combino-Plus Tram in Almada – Seixal (Lisbon) ... 337
G. Schleinzer, T. Kern
Characteristics of Sound Insulation and Insertion Loss of Different Deloading Sound Barriers for High-Speed Railways

B. He, X.B. Xiao, X. Zhou, J. Han, X.S. Jin

Optimizing Capacity of Railroad Yards within Noise Limits Using a Dynamic Noise Model

S.N. Hoogzaad, M.S. Roovers

Modeling of Wheel-Track Interaction with Rail Vibration Damper and Its Application for Suppressing Short Pitch Rail Corrugation

T.X. Wu, Y.R. Wang

Investigating the Effects of a Network-Wide Rail Grinding Strategy on Wayside Noise Levels

N.J. Craven, O.G. Bewes, B.A. Fenech, R.R.K. Jones

Acoustic and Dynamic Characteristics of a Complex Urban Turnout Using Fibre-Reinforced Foamed Urethane (FFU) Bearers

S. Kaewunruen

Ensuring Acceptable Vibration Levels in Listed Buildings by Means of Precise Vibration Measurements and Highly-Efficient Floating Slab Track

T. Jaquet

An Assessment of the Effectiveness of Replacing Slab Track to Control Groundborne Noise and Vibration in Buildings above an Existing Railway Tunnel

O.G. Bewes, L.J. Jakielaszek, M.L. Richardson

Mitigation Measures against Vibration for Ballasted Tracks – Optimisation of Sleepers, Sleeper Pads and the Substructure by Combined Finite-Element Boundary-Element Calculations

L. Auersch, W. Rückner

Session 7: Squeal Noise, Structure-Borne Noise

Innovative Measures for Reducing Noise Radiation from Steel Railway Bridges

D. Stiebel, T. Lölgen, C. Gerbig

Modelling of Railway Curve Squeal Including Effects of Wheel Rotation

A. Pieringer, L. Baeza, W. Kropp

FASTSIM with Falling Friction and Friction Memory

E.A.H. Vollebregt

Towards an Engineering Model for Curve Squeal

I. Zenzerovic, A. Pieringer, W. Kropp
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>An Investigation of the Influence of Track Dynamics on Curve Noise</td>
<td>441</td>
</tr>
<tr>
<td>J. Jiang, I. Ying, D. Hanson, D.C. Anderson</td>
<td></td>
</tr>
<tr>
<td>Field Trials of Gauge Face Lubrication and Top-of-Rail Friction</td>
<td>449</td>
</tr>
<tr>
<td>Modification for Curve Noise Mitigation</td>
<td></td>
</tr>
<tr>
<td>D. Curley, D.C. Anderson, J. Jiang, D. Hanson</td>
<td></td>
</tr>
<tr>
<td>Session 8: High-Speed Trains, Aerodynamic Noise – Part 1</td>
<td></td>
</tr>
<tr>
<td>Invited Paper: Railway Noise Generated by High-Speed Trains</td>
<td>457</td>
</tr>
<tr>
<td>F. Poisson</td>
<td></td>
</tr>
<tr>
<td>Component-Based Model for Aerodynamic Noise of High-Speed Trains</td>
<td>481</td>
</tr>
<tr>
<td>E. Latorre Iglesias, D.J. Thompson, M.G. Smith</td>
<td></td>
</tr>
<tr>
<td>Analysis of Aerodynamic and Aeroacoustic Behaviour of a Simplified</td>
<td>489</td>
</tr>
<tr>
<td>High-Speed Train Bogie</td>
<td></td>
</tr>
<tr>
<td>J.Y. Zhu, Z.W. Hu, D.J. Thompson</td>
<td></td>
</tr>
<tr>
<td>Derivation of Sound Emission Source Terms for High Speed Trains</td>
<td>497</td>
</tr>
<tr>
<td>Running at Speeds in Excess of 300 km/h</td>
<td></td>
</tr>
<tr>
<td>T. Marshall, B.A. Fenech, R. Greer</td>
<td></td>
</tr>
<tr>
<td>Session 9: High-Speed Trains, Aerodynamic Noise – Part 2</td>
<td></td>
</tr>
<tr>
<td>Mastering Micro-Pressure Wave Effects at the Katzenbergtunnel</td>
<td>505</td>
</tr>
<tr>
<td>– Design of Measures, Prediction of Efficiency and Full-Scale Test</td>
<td></td>
</tr>
<tr>
<td>Verification</td>
<td></td>
</tr>
<tr>
<td>M. Hieke, C. Gerbig, T. Tielkes</td>
<td></td>
</tr>
<tr>
<td>Aerodynamic Noise Reduction of a Pantograph Panhead by Applying a</td>
<td>515</td>
</tr>
<tr>
<td>Flow Control Method</td>
<td></td>
</tr>
<tr>
<td>T. Mitsumoji, T. Sueki, N. Yamazaki, Y. Sato, M. Ikeda, R. Takinami,</td>
<td></td>
</tr>
<tr>
<td>H. Gejima, K. Fukagata</td>
<td></td>
</tr>
<tr>
<td>Session 9: Ground-Borne Vibration – Part 3</td>
<td></td>
</tr>
<tr>
<td>Reduction of Train Induced Ground Vibration by Vehicle Design</td>
<td>523</td>
</tr>
<tr>
<td>A. Mirza, A. Frid, J.C.O. Nielsen</td>
<td></td>
</tr>
<tr>
<td>RIVAS – Mitigation Measures on Vehicles (WP5); Experimental Analysis</td>
<td>531</td>
</tr>
<tr>
<td>of SBB Ground Vibration Measurements and Vehicle Data</td>
<td></td>
</tr>
<tr>
<td>Ph. Huber, B. Nélain, R. Müller</td>
<td></td>
</tr>
<tr>
<td>Stiff Wave Barriers for the Mitigation of Railway Induced Vibrations</td>
<td>539</td>
</tr>
<tr>
<td>P. Coulier, A. Dijckmans, J. Jiang, D.J. Thompson, G. Degrande, G.</td>
<td></td>
</tr>
<tr>
<td>Lombaert</td>
<td></td>
</tr>
</tbody>
</table>
Poster Session 3: Ground-Borne Vibration/High-Speed Trains, Aerodynamic Noise/Squeal Noise, Structure-Borne Noise

Ground-Borne Vibration Mitigation Measures for Turnouts:
State-of-the-Art and Field Tests 547
R. Müller, J.C.O. Nielsen, B. Nélain, A. Zemp

Reducing Railway Induced Ground-Borne Vibration by Using Trenches and Buried Soft Barriers 555
J. Jiang, M.G.R. Toward, A. Dijckmans, D.J. Thompson, G. Degrande, G. Lombaert, J. Ryue

Pantograph Area Noise and Vibration Transmission Characteristics and Interior Noise Reduction Method of High-Speed Trains 563
J.Q. Guo, J.M. Ge, Z.J. Sun, S.Q. Liu, Y.J. Zhao, J.S. Lin

Micro-Pressure Wave Emissions from German High-Speed Railway Tunnels – An Approved Method for Prediction and Acoustic Assessment 571
C. Gerbig, M. Hieke

Three Noise Mitigation Measures for Steel Railway Bridges 579
H. Venghaus

The Mechanisms of Curve Squeal 587
J. Jiang, D.C. Anderson, R. Dwight

Proposals for Improved Measurement Methods for Curve Squeal and Braking Noise 595
M.G. Dittrich, H.W. Jansen

Curve Squeal in the Presence of Two Wheel/Rail Contact Points 603
G. Squicciarini, S. Usberti, D.J. Thompson, R. Corradi, A. Barbera

Session 10: Resilient Track Forms

A Review of Measurement Data on the Performance of a Resilient Track Form as a Mitigation Measure for Ground-Borne Noise 611
S.J. Cox, D. Herron

Challenges in the Design and Fabrication of Elastomeric Springs for Floating Slab Tracks 619
S. Rajaram, H.J. Saurenman

Vibration Mitigation by Innovative Low Stiffness Rail Fastening Systems for Ballasted Track 627
B. Faure, E. Bongini, G. Lombaert, C. Guigou-Carter, D. Herron
Control of Railway Induced Ground Vibrations: Influence of Excitation Mechanisms on the Efficiency of Resilient Track Layers 635
B. Nélain, N. Vincent, G. Lombaert, G. Degrande

Session 11: Grinding, Corrugation, Roughness

Measurement of Long Wavelength Irregularities on Rails 643
S.L. Grassie

Statistical Description of Wheel Roughness 651
G. Squicciarini, M.G.R. Toward, D.J. Thompson, C.J.C. Jones

Rail Corrugation Growth on Curves – Measurements, Modelling and Mitigation .. 659
P.T. Torstensson, J.C.O. Nielsen

Effects of Track Stiffness and Tuned Rail Damper on Rail Roughness Growth and Rail Vibration Levels on Metro System 667
A. Wang, Z. Wang, Z. Zhao, Y. Zhang, Y. Duan, T. Lei, M. Du

Session 11: Interior Noise, Sound Barrier – Part 1

Prediction of Acoustical Wall Pressure Levels of Rolling Stock Vehicles 675
A. Bistagnino, A. Vallespin, J. Sapena

Session 12: Interior Noise, Sound Barrier – Part 2

Study on Effective Sound Barriers for High Speed Trains 683
T. Kitagawa, K. Nagakura, S. Tanaka, K. Murata

Study on Abnormal Interior Noise of High-Speed Trains 691
J. Zhang, X.B. Xiao, G. Han, Y. Deng, X.S. Jin

Interior Noise Prediction of High-Speed Train Based on Hybrid FE-SEA Method ... 699

Attractive Train Interiors: Minimizing Annoying Sound and Vibration 707
U. Orrenius, U. Carlsson

Author Index ... 715