1 Introduction ........................................................................................................... 23
  1.1 Tunnelling in swelling rocks ........................................................................ 23
  1.2 State of research .......................................................................................... 23
    1.2.1 Overview ............................................................................................... 23
    1.2.2 Theoretical models ............................................................................... 24
    1.2.3 Experimental investigations .................................................................. 27
  1.3 Objectives and structure of the dissertation .............................................. 28

2 Thermodynamic Fundamentals ......................................................................... 31
  2.1 Introduction .................................................................................................... 31
  2.2 Basic thermodynamic relations ................................................................... 34
    2.2.1 Gibbs free energy ................................................................................ 34
    2.2.2 Chemical potential .............................................................................. 36
    2.2.3 Activity ................................................................................................. 38
    2.2.4 Crystal-liquid interfacial effect ................................................................ 44
  2.3 Equilibrium concentrations ........................................................................ 46
    2.3.1 Gypsum ............................................................................................... 46
    2.3.2 Anhydrite ............................................................................................. 47
  2.4 Gypsum-Anhydrite equilibrium relationships ............................................ 47
    2.4.1 General case ........................................................................................ 47
    2.4.2 Simplified model for the conditions in the ground .............................. 48
  2.5 Comparison between predicted solubilities and published data .............. 49
  2.6 Comparison of predicted equilibrium conditions with published data ..... 50
    2.6.1 Anhydrite-gypsum equilibrium in pure water ...................................... 50
    2.6.2 Anhydrite-gypsum equilibrium in NaCl solutions ............................... 52
  2.7 General equilibrium diagram ...................................................................... 54
  2.8 Conclusions ................................................................................................. 55

3 Anhydrite in Gypsum Keuper at Shallow Depths .................................................. 57
  3.1 Introduction ................................................................................................... 57
  3.2 The small pore hypothesis ........................................................................... 63
    3.2.1 Introduction .......................................................................................... 63
    3.2.2 Porosity and pore size distribution of anhydritic claystones .......... 64
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.3</td>
<td>Discussion</td>
<td>66</td>
</tr>
<tr>
<td>3.3</td>
<td>The high pressure hypothesis</td>
<td>67</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Introduction</td>
<td>67</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Required pressure</td>
<td>68</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Mechanically possible pressure</td>
<td>71</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Application to the Belchen and the Chienberg Tunnel</td>
<td>79</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Limitations of the simplified model</td>
<td>83</td>
</tr>
<tr>
<td>3.4</td>
<td>The low water activity hypothesis</td>
<td>92</td>
</tr>
<tr>
<td>3.5</td>
<td>Conclusions</td>
<td>96</td>
</tr>
<tr>
<td>4</td>
<td>Maximum Swelling Pressure of Anhydritic Claystones</td>
<td>99</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>99</td>
</tr>
<tr>
<td>4.2</td>
<td>Microscale</td>
<td>101</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Critical review of previous theoretical estimates of crystallisation pressure</td>
<td>101</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Crystallisation pressure</td>
<td>103</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Relationship between crystallisation pressure and concentration</td>
<td>104</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Ion concentration in a closed system containing anhydrite and gypsum</td>
<td>106</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Ion concentration in open systems</td>
<td>109</td>
</tr>
<tr>
<td>4.3</td>
<td>Macroscale</td>
<td>111</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Measured swelling pressures in laboratory tests</td>
<td>111</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Model for the theoretical estimation of macroscopic swelling pressure</td>
<td>113</td>
</tr>
<tr>
<td>4.4</td>
<td>Megascale</td>
<td>129</td>
</tr>
<tr>
<td>4.5</td>
<td>Conclusions</td>
<td>135</td>
</tr>
<tr>
<td>5</td>
<td>Time Development of Sulphate Hydration</td>
<td>137</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>137</td>
</tr>
<tr>
<td>5.2</td>
<td>Kinetic model</td>
<td>138</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Dissolution and precipitation rates</td>
<td>138</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Sealing of anhydrite by the formed gypsum</td>
<td>148</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Governing equations for a closed system</td>
<td>150</td>
</tr>
<tr>
<td>5.3</td>
<td>Comparison of predictions with tests involving simultaneous anhydrite dissolution and gypsum precipitation</td>
<td>153</td>
</tr>
<tr>
<td>5.4</td>
<td>Factors governing the time development of hydration</td>
<td>156</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Introduction</td>
<td>156</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Evolution over time</td>
<td>158</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Limiting mechanism</td>
<td>159</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Duration of the hydration process</td>
<td>162</td>
</tr>
</tbody>
</table>