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Abstract 

  Phase change materials (PCMs) possess a peculiar combination of properties. They 

are capable of switching rapidly and reversibly between the amorphous and the 

crystalline phase at high temperature. However, the two phases are thermally very 

stable at room temperature. The pronounced optical and electrical contrast between 

these phases has enabled the development of data storage and memory technology 

based on PCMs. The investigation of PCMs is not only driven by the demands of 

industry, but also by the fundamental questions underlying these fascinating materials, 

which have drawn the attention of scientists and engineers during the past few 

decades.  

  This thesis aims at providing an in-depth understanding of various aspects of PCMs 

at the atomic level by employing quantum mechanical simulations: density functional 

theory (DFT) and DFT based ab initio molecular dynamics (AIMD). The two 

methods are known as powerful tools in simulating real materials.  

  After an introduction to PCMs and a review of the methodology, I start with the 

discussion of crystalline PCMs, in particular crystalline GeSbTe (c-GST) systems, 

where a significant amount of atomic disorder is detected. Recently, compelling 

evidence of disorder-induced localization of the electronic states has been found in 

c-GST experimentally. By atomistic modeling and electronic structure calculations, 

we have identified the microscopic origin of localization and we have proposed a 

plausible scenario for a disorder-order transition, which explains the metal-insulator 

transition (MIT) observed experimentally. All these findings provide important 

insights on controlling the wavefunction localization, which could lead to the 

development of multi-level data storage and other conceptually new devices based on 

multiple resistance states. 

  In the second part, phase transformations between the amorphous and the 

crystalline state are investigated. The kinetic process of both amorphization and 

crystallization is modeled using AIMD. The structural properties of several 

amorphous PCMs are studied in detail. Chemical bonding in amorphous GeTe 
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(a-GeTe) is analyzed, and the importance of homopolar bonds is quantified. The 

crystallization of growth-dominated PCMs, Ag, In doped Sb2Te (AIST) and clean 

Sb2Te, is realized with large-scale AIMD simulations. The atomic processes at the 

very front of the crystalline-amorphous interface are investigated. At high temperature, 

the growth velocity and the dynamical properties compare well with time-resolved 

reflectivity measurements and the role of impurities is elucidated in this temperature 

regime. Besides, a remarkably strong dependence of the dynamical properties on the 

quenching rates is observed at low temperatures. 

  Recently, a variety of more sophisticated applications of PCMs have been proposed 

and designed, e.g. arithmetic, logical and bio-inspired (or neuromorphic) processing, 

phase-change control over ferromagnetism, one-dimensional phase change nanowires 

and so on. In the last part of the thesis, we focus on the doping of PCMs with 

magnetic impurities, and discuss the magnetic properties of these systems in both the 

crystalline and the amorphous phase. We explain the magnetic contrast in Fe-doped 

GST observed experimentally. Moreover, we predict different magnetic behaviors 

upon doping with different 3 d impurities. These studies may lead to new applications 

in data storage, multifunctional spintronic devices as well as fast magnetic switching 

devices. 
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Abstrakt 

  Phasenwechselmaterialien (PCM) besitzen eine sonderbare Kombination von 

Eigenschaften. Sie sind in der Lage, schnell und reversibel zwischen der amorphen 

und der kristallinen Phase bei hoher Temperatur zu schalten. Jedoch sind beide Phasen 

thermisch sehr stabil bei Raumtemperatur. Der ausgeprägte optische und elektrische 

Kontrast zwischen diesen Phasen hat die Entwicklung der auf PCM basierende 

Datenspeichertechnologie ermöglicht. Die Untersuchung von PCM ist nicht nur von 

der Nachfrage der Industrie angetrieben, sondern auch durch die grundlegenden 

Fragen, die diese faszinierenden Materialien aufwerfen und die Aufmerksamkeit von 

Wissenschaftlern und Ingenieuren in den letzten Jahrzehnten auf sich gezogen haben. 

  Die Dissertation zielt darauf ab, ein umfassendes Verständnis der verschiedenen 

Aspekte der PCM auf atomarer Ebene durch den Einsatz von quantenmechanischen 

Simulationen: Dichtefunktionaltheorie (DFT) und die darauf beruhende ab-initio 

Molekulardynamik (AIMD). Diese beiden Verfahren sind als wirksame Werkzeuge in 

Simulationen realer Materialien bekannt. 

  Nach einer Einführung in die PCM und einen Überblick der wissenschaftlichen 

Methoden, beginne ich mit der Diskussion der kristallinen PCM, insbesondere der 

kristallinen GeSbTe (c-GST) Systeme, bei denen eine erhebliche Menge an atomarer 

Unordnung festgestellt wurde. Vor kurzem wurden überzeugende, experimentelle 

Beweise für die durch Unordnung induzierte Lokalisation der Elektronenzustände in 

c-GST gefunden. Durch die atomistische Modellierung und die 

Elektronenstrukturberechnung haben wir den mikroskopischen Ursprung dieser 

Lokalisation identifiziert und ein plausibles Szenario für einen 

Ordnungs-Unordnungs-Übergang vorgeschlagen, das den experimentell beobachteten 

Metall-Isolator-Übergang (MIT) erklärt. All diese Erkenntnisse liefern wichtige 

Erkenntnisse zur Steuerung der Lokalisation der Wellenfunktion, die zur Entwicklung 

von Multi-Level-Daten-Speichern und anderen konzeptionell neueartigen Geräten 

führen können, die mehrere Widerstandszustände ausnutzen.
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  Im zweiten Teil werden die Phasenübergänge zwischen dem amorphen und dem 

kristallinen Zustand untersucht. Die kinetischen Prozesse der Amorphisierung und der 

Kristallisation werden mittels AIMD modelliert. Die strukturellen Eigenschaften von 

mehreren amorphen PCM werden im Detail untersucht. Die chemische Bindung in 

amorphem GeTe (a-GeTe) wird analysiert, und die Bedeutung von homopolaren 

Bindungen quantifiziert. Die Kristallisation von wachstumsdominierten PCM, mit Ag 

und In dotiertem Sb2Te (AIST) und reinem Sb2Te wurde durch umfangreiche 

AIMD-Simulationen realisiert. Die atomaren Prozesse, die an Grenzflächen zwischen 

der amorphen und der kristallinen Phase statfinden, werden untersucht. Bei hohen 

Temperaturen sind die Wachstumsgeschwindigkeit und die dynamischen 

Eigenschaften mit Resultaten von zeitaufgelösten Reflektivitätsmessungen 

vergleichbar und die Rolle der Verunreinigungen in diesem Temperaturbereich wird 

aufgezeigt. Außerdem ist eine bemerkenswert starke Abhängigkeit der dynamischen 

Eigenschaften  von den Abkühlraten bei niedrigen Temperaturen beobachtet. 

  Kürzlich wurde eine Vielzahl von ausgeklügelten Anwendungen von PCM 

vorgeschlagen und entwickelt, wie z.B. arithmetische, logische und bioinspirierte 

(oder neuromorphen) Datenverarbeitung, Kontrolle des Ferromagnetismus durch 

PCM, eindimensionale Phasenwechsel-Nanodrähte und so weiter. In diesem Teil 

konzentrieren wir uns auf die Dotierung der PCM mit magnetischen 

Verunreinigungen, und diskutieren die magnetischen Eigenschaften dieser Systeme 

sowohl in der kristallinen als auch in der amorphen Phase. Wir klären den 

experimentell beobachteten  magnetischen Kontrast in Fe-dotierten GST. Darüber 

hinaus sagen wir verschiedene magnetische Verhalten bei Dotierung mit 

verschiedenen 3d Verunreinigungen voraus. Diese Untersuchungen können zu neuen 

Anwendungen in Datenspeicherung, Multifunktions-Spintronik-Geräten sowie 

magnetisch schnell schaltenden Geräten führen. 
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Chapter 1   Introduction 

   

  Recording information has been one of the most important issues since the 

beginning of human civilization. The way to store information has developed from 

ancient cave paintings, to medieval book printing and to modern non-volatile 

electronic devices. In the new century, the demand for data storage is growing 

explosively, however, both magnetic hard drives and the silicon-based flash memories 

seem to have reached their limits of size and speed. Scientists and engineers spare no 

efforts to find new candidates that could break those limits. A particularly promising 

candidate is so-called Phase Change Materials (PCMs) [1,2].  

  The phase change recording concept dates back to 1968 when S. Ovshinsky firstly 

discovered the reversible electrical switching phenomena [3]. In late 1980s, fast 

switching (on nanosecond time scales) phase change compounds have been 

synthesized, which have led to successful commercial products for data storage, i.e. 

rewriteable CD, DVD and Blu-Ray Discs. Besides optical data storage, PCMs offer 

good opportunities for memory technologies as well. The PCRAM, a non-volatile 

random-access memory based on PCMs has been designed [4], which has the 

potential to become a universal memory technology [5]. In the report of International 

Technology Roadmap for Semiconductor (ITRS) 2011 [6], PCRAM has been 

evaluated to be the most promising emerging candidate for memory technology, see 

Figure 1.1. A comprehensive and thorough review of phase change memory 

technology can be found in Ref. [7]. 

 
Figure 1.1 Reproduced from Ref. [6]. Evaluations of the prototypical and emerging memory 
candidates.  
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1.1 Phase change materials 

  Phase change materials are compounds that can undergo ultra fast and reversible 

transitions between an amorphous and a crystalline phase upon heating or lasering [1]. 

Both phases are very stable at room temperature, moreover, they are characterized by 

very different physical properties, namely, electrical and optical properties. These 

differences are large enough make the two phases represent different logical states, 

namely, "0" (amorphous, low reflectivity / high resistivity) or "1" (crystalline, high 

reflectivity / low resistivity), which can be utilized for data storage and memory 

technology. A simplified phase change framework is sketched in Figure 1.2. Applying 

a short and high voltage pulse locally melts the crystalline region, and an amorphous 

region is obtained upon subsequent rapid quenching. Fast crystallization of the 

amorphous region is induced by applying a long, medium intensity voltage pulse. The 

amorphous and crystalline states are often referred as "RESET" and "SET" states. 

 

 
Figure 1.2 The underlying principle of phase change devices. 
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  Several crucial criteria defining good phase-change materials are listed in Table 1.1. 

Besides the rapid and reversible transition between the amorphous and the crystalline 

phase, data retention, cyclability, storage density and property contrast are also 

essential in determining a good phase change material.  
 
Crucial properties of phase change alloys 
Required property of PC materials Specification 
High-speed phase transition Induced by nanosecond laser or voltage pulse 
Long thermal stability of amorphous state At least several decades at room temperature 
Large optical change between the two states 
(for rewritable optical storage) 

Considerable difference in refractive index or 
absorption coefficient 

Large resistance change between the states (for 
non-volatile electronic storage) 

Natural consequence of the transformation from 
amorphous to crystalline state 

Large cycle number of reversible transitions More than 100,000 cycles with stable composition 
High chemical stability High water-resistivity 

Table 1.1 The crucial criteria to find good PCMs. Adapted from Ref. [1] 
 

 
Figure 1.3 Reproduced from Ref. [8]. Overview of different families of phase change materials.  
 

  Only a few materials possess all the desired properties mentioned above. Over the 

past decades, three main groups of PCMs have been identified:  
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Group 1, GeTe and GeSbTe compounds along the GeTe-Sb2Te3 pseudobinary line, e.g. 

Ge1Sb2Te4, Ge2Sb2Te5, Ge8Sb2Te11 etc. [9,10] 

Group 2, Sb-Te compounds near the eutectic composition Sb2Te, often combined with 

dopants like Ag, In, Ge, Ga etc. [11,12] 

Group 3, doped Sb alloys, e.g. Ge15Sb85, Ga15Sb85, etc. [12, 13] 

  Besides these three main families, an unconventional phase change alloy In3Sb1Te2 

has become popular recently [14,15]. The three families are indicated in the Ge-Sb-Te 

ternary diagram shown in Figure 1.3. 

 

1.2 Resonant bonding in phase-change materials 

  The very large optical/electrical property contrast between the amorphous and the 

crystalline phase indicates potentially different bonding mechanisms in the two phases. 

A first microscopic understanding of such phenomenon was given by Shportko and 

co-workers [16], who were able to demonstrate that a unique bonding scenario 

(resonant bonding) is present in the crystalline state, which differs significantly from 

the ordinary covalent bonding network in the amorphous state. Most PCMs crystallize 

into a cubic rock-salt like structure, where atoms possess roughly three valence p 

electrons on average, which are insufficient to form six covalent bonds with the 

nearest neighbors (the s valence electrons do not participate in chemical bonding here). 

The resonance between a bonding state and a non-bonding state is desirable to form, 

which reduces the total energy of the system. The pronounced electron delocalization 

in this resonantly bonded network leads to a significant increase of the electronic 

polarizability, as shown by the dielectric constant measurements. The increase of the 

dielectric constant from the amorphous to the crystalline state for non-phase change 

alloys (e.g. AgInTe2) is rather small and can be explained by a density contrast via the 

Clausius-Mossotti model [17,18]. No resonant bonding is observed in such alloys. 

  Resonant bonding is considered as a fingerprint of PCMs and can be used to search 

for better performing PCMs: resonant bonding ensures the good reflectivity in the 

crystalline forms, while, in the amorphous network, only ordinary covalent bonding is 
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present (the resonance behavior is suppressed by the angular disorder, see section 1.4), 

leading to a relatively low reflectivity -- hence, the optical contrast is guaranteed. 

Lencer and co-workers [19,20] were able to devise a map of materials, expressed in 

terms of hybridization and ionicity, to locate PCMs: most of them are located in a 

corner, where both the hybridization and the ionicity are very low -- resonant bonding 

prevails. Although the optical contrast of candidate materials can be optimized with 

this criterion, other important criteria also need to be fulfilled, such as the thermal 

stability of the amorphous state, the crystallizsation speed at elevated temperatures 

and so on, which calls for investigations of the amorphous states and the transition 

process.    
 

1.3 Amorphization and structure of the amorphous phase 

  Glasses or amorphous materials are disordered materials that lack long-range order. 

To obtain a glassy state, the most common way is to quench a liquid to low 

temperature with a very fast rate to avoid crystallization. In the diagram of 

time-temperature-transformation (Figure 1.4), the slope of quenching rate should be 

steep to avoid touching the crystalline region, where crystallization occurs very 

rapidly. For PCMs, typical quenching rates are 109-1010 K/s, due to the fact that PCMs 

are poor glass formers. The typical crystallization time in a phase change cell is on the 

order of few nanoseconds. By applying an external electrical field, the crystallization 

time can even be reduced to several hundreds of picoseconds [21].     

 
Figure 1.4 Time-temperature-transformation diagram  
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  The study of the structural properties of the amorphous state is essential to 

understand the fast transition kinetics and the origin of the physical property contrast 

between the amorphous and crystalline state. Although glasses lack long-range order, 

it is often observed that the local structure of amorphous states resembles that of their 

crystalline counterparts, e.g. in most silicon-based glasses. In 2004, Kolobov et al. [22] 

performed extended x-ray absorption fine structure (EXAFS) and x-ray absorption 

near-edge structure (XANES) measurements on amorphous Ge2Sb5Te5, and concluded 

that all Ge atoms are tetrahedrally coordinated with Te atoms, as opposed to their 

octahedral coordination in the crystalline phases. An umbrella-flip mechanism for Ge 

atoms was proposed for the rapid phase transformation (see Figure 1.5). 

 

 
Figure 1.5 Adapted from Ref. [22]. Umbrella-flip of Ge atoms in crystalline and amorphous 

GeTe/GST. 

  However, on the one hand, it is not common to have structural motifs in the 

amorphous phase that do not have a stable parent crystalline phase. The crystalline 

form that consists of purely tetrahedral Ge and Te, -- GeTe2 (where tetrahedral Ge 

atoms are bonded only with Te atoms), is highly unstable and quickly decomposes 

into GeTe and Te [23]. On the other hand, the umbrella-flip picture has been 

challenged by other EXAFS measurements [24], x-ray diffraction measurements 

together with reverse Monte-Carlo simulations [25] and ab initio molecular dynamics 

(AIMD) based on density functional theory (DFT) [26,27]. The AIMD simulations 

revealed that in the amorphous GST most of the Ge and Sb atoms are four-fold 
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coordinated, while Te is mostly three-fold coordinated in defective octahedral-like 

sites resembling the local environment of cubic crystalline GST. A fraction of Ge 

atoms has tetrahedral coordination ~20-30%; most of these atoms form at least one 

homopolar Ge-Ge or Ge-Sb bond. However, there is still a relatively big deviation 

(5-6%) in the Ge-Te bond lengths between AIMD and EXAFS. The structure of the 

amorphous phase and its evolution upon aging are still under debate.  

  The umbrella-flip model is intuitive in explaining the ultrafast phase transition and 

provides a possible scenario for the change of bonding mechanism. For these reasons, 

it has attracted much attention. However, it describes the transition between two 

crystalline states, not between an amorphous and a crystalline state. The real process 

of amorphization and crystallization involves more dramatic structural changes. It is 

noteworthy that in a recent experimental work, Simpson et al. [28] successfully 

produced a so-called interfacial phase change material, where the transition between 

two crystalline forms occurs by switching Ge atoms near the interface between the 

GeTe and the Sb2Te3 superlattice.   

 

1.4 Optical property contrast 

  The pronounced optical contrast between the amorphous and the crystalline states 

should originate from different bonding mechanisms, which lead to a large difference 

in the optical matrix elements. By applying DFT simulations, Wełnic et al. [29] have 

succeeded to reduce the optical matrix elements of the cubic GST/GeTe considerably 

by moving a fraction of Ge atoms to tetrahedral sites. In 2010, Huang and Robertson 

have shown that even in the absence of tetrahedral Ge, the medium range order loss, 

i.e. the misalignment of p-orbitals of neighboring rings, can already induce a 

reduction of the optical reflectivity [30]. Their DFT simulations were performed for 

GeTe in the crystalline form of orthorhombic GeSe, where the aligned p-bonds are 

absent. Later, Caravati et al. [31] considered more realistic amorphous models 

generated from AIMD. By comparing the amorphous models with (GeTe, GST) and 

without (Sb2Te3) tetrahedral units, the authors claimed that the change in the optical 
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response is mainly due to the angular disorder in p-bonding present in the amorphous 

phases, which supports the idea proposed by Huang and Robertson.  

 

1.5 Crystallization kinetics 

  Two processes determine the crystallization kinetics of amorphous materials, 

namely, nucleation and growth. Nucleation refers to the formation of critical 

crystalline nuclei and the subsequent growth of the nuclei within an amorphous mark. 

Crystal growth instead describes the crystallization process occurring at the interface 

between the amorphous mark and the surrounding crystalline matrix. The two 

processes are visualized in Figure 1.6.  

 

 
Figure 1.6 Nucleation process is described in the upper panels, while crystal growth is shown 
in the lower panels. Yellow and blue region refer to amorphous and crystalline phase, 
respectively. 
   
  As regards phase change materials, GeSbTe alloys are typically nucleation 

dominated, while doped Sb2Te compounds are growth dominated. For large 

amorphous bits (diameter ~ hundreds of nm), the crystallization time of nucleation 

dominated PCMs does not depend on the volume due to the formation of multiple 

nuclei, while that of growth dominated PCMs does exhibit a volume dependence, i.e. 

the smaller amorphous bit can be fully crystallized faster. After nucleation, the PCM 

is in a polycrystalline state with typical grain sizes of 20 nm (Ge1Sb2Te4 [32]). This 
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implies that, for smaller geometries of a few nm size, crystal growth could become 

dominant even for PCMs having high nucleation rates. Recently, such small 

phase-change memory cells have become feasible experimentally [33].   

  Three temperature regimes are relevant to the crystallization kinetics in PCMs, 

namely, a low temperature regime around the glass transition temperature Tg, a high 

temperature regime just below the melting temperature Tm and a middle temperature 

regime between Tg and Tm. In the first regime, the crystallization proceeds very slowly 

(on the order of minutes) due to the low diffusivities. This enables the direct 

experimental observation of nucleation and growth using high-resolution transmission 

electron microscopy (HRTEM) [34,34,35]. To measure the growth velocity or the 

incubation time, an alternative approach is to use atomic force microscopy (AFM) 

[36,37]. In the second regime, the crystallization also proceeds rather slowly due to 

the very small driving force, which enables the study of the undercooling of droplets 

[2]. By employing thermal measurements of the heat of fusion and differential 

thermal analysis, Kalb et al. [38] derived limits for the interfacial energy σ and the 

steady-state nucleation rate Iss for different PCMs. The larger Iss found for 

Ge2Sb2Te5/Ge4SbTe5, as compared to Ag5.5In6.5Sb59Te29/Ge12Sb88, explained why 

nucleation is dominant for the former ones and growth is dominant for the latter ones. 

In the third temperature regime, the most relevant to the phase change technology, 

crystallization proceeds extremely fast (on the order of a few nanoseconds). This 

ultrafast phase transformation poses a great challenge to experimental measurements. 

Only very recently, two experimental groups made breakthroughs on measuring the 

crystallization kinetics in this middle temperature regime, i.e. the ultrafast differential 

scanning calorimetry (DSC) measurements by Orava et al. [39] and the time-resolved 

reflectivity measurements by Salinga et al. [35]. 

  Thanks to the short time scales in this intermediate temperature regime, it becomes 

feasible to investigate the crystallization kinetics by (computationally heavy) AIMD 

simulations. A couple of computational works [40,41,42,43] have recently shed light 

on the nucleation and interface growth at the atomic level. Important quantities like 
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the growth velocity and the diffusion coefficients have been computed and compared 

with experimental findings. 

 

1.6 Advanced applications 

  Beyond the standard optical data storage and electronic memory technologies, 

several sophisticated applications of PCMs have been recently proposed and 

designed.  

  Some researchers have become interested in one-dimensional systems: the 

so-called phase change nanowires have been synthesized and investigated during the 

past few years [44,45,46]. Very recently, the diameter of the phase change nanowires 

has even been reduced to 1.1 nm by a carbon nanotube confinement [47].  

  In 2008, Song et al. [48] doped Ge2Sb2Te5 with Fe atoms experimentally and 

showed that both the crystalline and the amorphous phase are ferromagnetic and there 

exhibits a magnetic contrast. Later, Li and Mazzarello [49] provided a deeper 

understanding of the magnetic contrast in this compound. In the same year, Zhang et 

al. [50] predicted that Cr, Mn dopants could result in good, stable magnetic phase 

change materials, while Co, Ni dopants lead to non-magnetic states in both phases. 

Other than data storage, the combination of magnetic properities and phase-change 

properties could lead to possible spintronics applications, such as fast magnetic 

switching devices. 

  Some PCMs, such as Sb2Te3 [51] and GST [52,53], are also topological insulators 

[54,55], i.e. they are bulk insulators with conducting surface states due to time 

reversal symmetry. Recently, Sa et al. [56] predicted topological insulating behavior 

in GeTe/Sb2Te3 superlattices, known as interfacial PCMs [28]. Unlike Sb2Te3, the 

topological insulating character of the superlattice can be observed under small 

compressive strains. By combining the phase change behavior with the topological 

insulating properties, novel spintronics devices, quantum computing as well as 

multifunctional data storage could be achieved.  
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  Wright and coworkers extended the application of PCMs in a more advanced way. 

They designed arithmetic and biologically-inspired devices by utilizing the PCMs in 

an accumulation mode [57,58]. Suri et al. [59] also designed neuromorphic hardware 

using synapses based on Phase Change Memory (PCM) devices. All these studies 

paved the way for cognitive information processing [60]. 

 

1.7 Objectives and structure of this thesis 

  The goal of this thesis is to provide atomic level understandings of various aspects 

of phase change materials, including electronic properties of the crystalline phase, 

structural properties of the amorphous phase, crystallization kinetics as well as 

advanced applications based on PCMs. The thesis is divided into six chapters.     

  In Chapter 2, an overview of the methodologies is given, including density 

functional theory and ab initio molecular dynamics. Computational details for all the 

simulations performed in this thesis are provided.  

  In Chapter 3, first, the crystalline structures of several PCMs are introduced. Then, 

I provide a brief review of recent transport measurements in crystalline GeSbTe 

compounds (c-GST) showing an interesting metal-insulator transition, as well as a 

structural transition between a cubic and a hexagonal phase. These findings call for a 

thorough investigation of c-GST at the atomic level. By means of density functional 

theory calculations, we have investigated the effects of various sources of disorders 

and have linked them with the electronic and transport properties. We have identified 

the origin of electron wavefunction localization in c-GST, and we have shed light on 

the metal-insulator transition as well as the structural transition.  

  In Chapter 4, the amorphous phases of several PCMs are investigated. Models of 

these phases were generated by quenching from the melt. The structural properties of 

these phases are studied and compared to experimental measurements. Chemical 

bonding in amorphous GeTe is analyzed quantitatively and the importance of 

homopolar bonds is clarified.  

  In Chapter 5, the crystallization kinetics are studied for a growth dominated PCM, 
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AIST. The role of the Ag and In impurities is investigated at high temperature, where 

the dynamical properties compare well to experiments. Besides, a remarkably strong 

dependence of the dynamical properties on quenching rates at low temperature is 

found.   

  In Chapter 6, one possible advanced application of PCMs is discussed, namely, 

phase change control over ferromagnetism (inspired by the experiments on Fe doped 

Ge2Sb2Te5). We add 3d magnetic impurities into Ge2Sb2Te5, and study the stability of 

the configurations where the magnetic moments of the impurities are coupled 

ferromagnetically. Moreover, the observed distinct magnetic contrast between the two 

phases is understood at the atomic level.  

  In Chapter 7, the main results are summarized, and an outlook on future research is 

provided. 
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Chapter 2   Theoretical Background 

 

  Computers and supercomputers have developed explosively during the past 

decades. According to top500 [61], the most powerful supercomputers are able to 

perform 1015 basic Floating-point Operations Per Second (FLOPS) -- peta-FLOPS, 

which is more than 12 orders of magnitude faster with respect to the first 

supercomputer Atlas [62] invented in 1962. Researchers and engineers are already 

designing next-generation exa-FLOPS supercomputers (1018 FLOPS). Thanks to the 

booming development of superclusters, computer simulations become more and more 

important and are regarded as the third fundamental research tool supplementing 

experiment and theory (see Figure 2.1).  

 

 
Figure 2.1 The interplay between experiment, simulation, and theory. Adapted from [63] 

 

  Nowadays, computer simulations cover a wide range of applications with very 

different length- and time-scales, e.g. phenomena in cosmology, weather forecasting, 

mechanical engineering, drugs discovery, proteins folding, crystal growth, electronic 

structure and many others. At the microscopic scale, two (out of many other) methods 
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are very important in characterizing the physical properties of real materials, namely, 

Density Functional Theory (DFT) [64,65] and Molecular Dynamics (MD) [66,67].    

  Density Functional Theory is a quantum mechanical method to investigate the 

electronic structure of many-body systems (principally the ground state properties). 

The modern formulation of DFT originated from the famous paper written by 

Hohenberg and Kohn [68] in 1964, where they showed the ground state electron 

density can be used as a basic variable, and all the ground state properties of the 

system can be considered to be unique functionals of such variable. Later in 1965, 

another classic work by Kohn and Sham [69] has converted the original interacting 

many-body problem to an auxiliary non-interacting particle problem, which 

established the framework for present-day electronic structure calculations. As an 

extension of DFT, Time-Dependent DFT [70] has been developed to cope with 

excited states and time-dependent phenomena. In 1998, W. Kohn was awarded the 

Nobel prize in Chemistry for his development of density-functional theory. The honor 

was shared by another scientist, J. Pople, who made significant contributions to 

computational methods in quantum chemistry [71]. 

  Molecular dynamics describes the motions of interacting particles, which follow 

Newton’s equations. Depending on how the interactions between particles are treated, 

molecular dynamics methods can be categorized into several classes. In the so called 

ab initio (or first-principles) molecular dynamics, the forces between ions are derived 

directly from DFT simulations without any parameter [72]. In classical molecular 

dynamics, the atomic interactions are modeled by classical potential functions [73], 

which are often fitted against experiments or ab initio methods. In between ab initio 

and classical methods, there are two other important schemes. The first one employs 

semi-empirical potentials [74], which are based on a quantum mechanical description 

of the electrons but with several approximations to treat the matrix elements between 

the Hamiltonian and the basis set. Tight-binding based molecular dynamics belongs to 

this scheme. The other scheme is based on QM/MM methods [75], where certain parts 

of the system are treated at the quantum-mechanical level (e.g. where reaction 

processes occur) and the rest of the system is calculated with classical potentials. Very 
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recently, the Nobel prize in Chemistry (2013) has been awarded to Karplus, Levitt 

and Warshel for their crucial contributions in bridging classical physics with quantum 

physics in computer simulations [76]. 

  In this chapter, I provide a brief introduction to the framework of density functional 

theory and ab initio molecular dynamics, which are the primary tools employed in this 

thesis. Computational details, including software packages, functionals, pseudo- 

potentials, etc. are also provided.  

 

2.1 Density functional theory 

  The fundamental principle of density functional theory is that all the ground state 

properties of an interacting many-body system are functionals of the ground state 

electron density. Hohenberg and Kohn proved the existence of the energy functional 

in their original work [68], and later Kohn and Sham provided a way to compute 

approximate ground state energy functional for real systems [69]. I start with the 

discussion of Hohenberg-Kohn theorems and the Kohn-Sham ansatz. Afterwards, 

some widely-used approximations for the exchange-correlation functional are 

introduced. Then, I focus on the approach of plane waves, localized basis sets and 

mixed basis sets. Furthermore, pseudopotentials are introduced. The formalism and 

derivations in this section mainly follow the book by R. Martin [65] and the DFT 

lecture slides by R. Mazzarello.  

 

2.1.1 Hohenberg-Kohn Theorems 

  The Hamiltonian of an interacting electron gas in an external potential 𝑉𝑉�(𝑟𝑟) is 

given by, 

                             𝐻𝐻� = 𝑇𝑇� + 𝑊𝑊� + 𝑉𝑉�  ,                     (2.1) 

where 𝑇𝑇� =  −∑ ℏ2

2𝑚𝑚𝑒𝑒
∇2𝑁𝑁

𝑖𝑖=1  is the kinetic energy, 𝑊𝑊� = 1
2
∑ 𝑒𝑒2

|𝑟𝑟𝑖𝑖−𝑟𝑟𝑗𝑗 |𝑖𝑖≠𝑗𝑗  is the Coulomb 

interaction and 𝑉𝑉� =  ∑ 𝑉𝑉�(𝑟𝑟𝑖𝑖)𝑁𝑁
𝑖𝑖=1  is the external potential. For the sake of simplicity, 

the ground state Ψ𝐺𝐺𝐺𝐺  is assumed to be non-degenerate.  

  The Hohenberg-Kohn theorems can be divided into two parts: 1> the external 
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potential and the ground state wavefunction are determined uniquely (except for a 

constant in the definition of the external potential) by the ground state density ρGS(𝑟𝑟); 

2> a universal energy functional E[ρ] can be defined in terms of density, and the 

ground state energy and density can be obtained by minimizing this functional.  

  The proof proceeds by reductio ad absurdum. Assume that another external 

potential 𝑉𝑉�′(𝑟𝑟) with ground state Ψ𝐺𝐺𝐺𝐺′  gives raise to the same ground density ρGS(𝑟𝑟). 

The two external potentials lead to two different Hamiltonians 𝐻𝐻� and 𝐻𝐻�′. It is rather 

straightforward to show the bijectivity of 𝑉𝑉� ↔ Ψ𝐺𝐺𝐺𝐺 , thus Ψ𝐺𝐺𝐺𝐺′  is not the ground state 

of 𝐻𝐻�, from which follows that  

𝐸𝐸𝐺𝐺𝐺𝐺 =  �Ψ𝐺𝐺𝐺𝐺�𝐻𝐻��Ψ𝐺𝐺𝐺𝐺� <  �Ψ𝐺𝐺𝐺𝐺′ �𝐻𝐻��Ψ𝐺𝐺𝐺𝐺′ �  .              (2.2) 

The last term can be written as 

             �Ψ𝐺𝐺𝐺𝐺′ �𝐻𝐻��Ψ𝐺𝐺𝐺𝐺′ � = �Ψ𝐺𝐺𝐺𝐺′ �𝐻𝐻�′�Ψ𝐺𝐺𝐺𝐺′ � + �Ψ𝐺𝐺𝐺𝐺′ �𝐻𝐻� − 𝐻𝐻�′�Ψ𝐺𝐺𝐺𝐺′ � 

                         = 𝐸𝐸𝐺𝐺𝐺𝐺′ +  ∫d3𝑟𝑟  [𝑉𝑉�(𝑟𝑟) − 𝑉𝑉�′(𝑟𝑟) ] 𝜌𝜌𝐺𝐺𝐺𝐺(𝑟𝑟)  

so that  

𝐸𝐸𝐺𝐺𝐺𝐺 < 𝐸𝐸𝐺𝐺𝐺𝐺′ +  ∫d3𝑟𝑟  [𝑉𝑉�(𝑟𝑟) − 𝑉𝑉�′(𝑟𝑟) ] 𝜌𝜌𝐺𝐺𝐺𝐺(𝑟𝑟)  .          (2.3) 

By considering 𝐸𝐸𝐺𝐺𝐺𝐺′  in exactly the same way, the primed and unprimed quantities 

interchanged,  

𝐸𝐸𝐺𝐺𝐺𝐺′ < 𝐸𝐸𝐺𝐺𝐺𝐺 +  ∫d3𝑟𝑟  [𝑉𝑉�′(𝑟𝑟) − 𝑉𝑉�(𝑟𝑟) ] 𝜌𝜌𝐺𝐺𝐺𝐺(𝑟𝑟)  .          (2.4) 

If we add together (2.3) and (2.4), we obtain the contradictory inequality 𝐸𝐸𝐺𝐺𝐺𝐺 +

𝐸𝐸𝐺𝐺𝐺𝐺′ < 𝐸𝐸𝐺𝐺𝐺𝐺 + 𝐸𝐸𝐺𝐺𝐺𝐺′ . Thus 𝑉𝑉�  is a unique functional of 𝜌𝜌𝐺𝐺𝐺𝐺(𝑟𝑟) (except for a constant). 

As a consequence, the ground state expectation value of any observable O is a 

functional of the ground state density 

                𝑂𝑂[𝜌𝜌𝐺𝐺𝐺𝐺(𝑟𝑟)] ≡ �Ψ𝐺𝐺𝐺𝐺(𝜌𝜌𝐺𝐺𝐺𝐺)�𝑂𝑂��Ψ𝐺𝐺𝐺𝐺(𝜌𝜌𝐺𝐺𝐺𝐺)�    .         (2.5) 

  Since all properties are uniquely defined if 𝜌𝜌(𝑟𝑟) is specified, they can be viewed 

as a functional of 𝜌𝜌(𝑟𝑟), including the total energy functional, 

𝐸𝐸𝐻𝐻𝐻𝐻[𝜌𝜌] = �Ψ(𝜌𝜌)�𝐻𝐻��Ψ(ρ)� 

                              = �Ψ(𝜌𝜌)�𝑇𝑇� + 𝑊𝑊� �Ψ(𝜌𝜌)� + ∫ 𝜌𝜌(𝑟𝑟)𝑉𝑉(𝑟𝑟)d3𝑟𝑟 

                              = 𝐹𝐹𝐻𝐻𝐻𝐻[𝜌𝜌] + ∫𝜌𝜌(𝑟𝑟)𝑉𝑉(𝑟𝑟)d3𝑟𝑟   .         (2.6) 
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The functional 𝐹𝐹𝐻𝐻𝐻𝐻[𝜌𝜌] ≡ 𝑇𝑇 [𝜌𝜌] + 𝑊𝑊[𝜌𝜌] is universal and includes the kinetic and 

Coulomb energy of the interacting electron system.  

  Now consider a system with ground state density 𝜌𝜌𝐺𝐺𝐺𝐺(𝑟𝑟) corresponding to the 

external potential 𝑉𝑉�(𝑟𝑟). According to the discussion above, the Hohenberg-Kohn 

energy functional EHK calculated at 𝜌𝜌𝐺𝐺𝐺𝐺(𝑟𝑟) equals the expectation value of the 

Hamiltonian with respect to the unique ground state Ψ𝐺𝐺𝐺𝐺 , 

                        𝐸𝐸𝐺𝐺𝐺𝐺 = 𝐸𝐸𝐻𝐻𝐻𝐻[𝜌𝜌𝐺𝐺𝐺𝐺] =  �Ψ𝐺𝐺𝐺𝐺�𝐻𝐻��Ψ𝐺𝐺𝐺𝐺�  .            (2.7) 

If one considers a different density𝜌𝜌𝐺𝐺𝐺𝐺′′ (𝑟𝑟), which corresponds to the ground state 

wavefunction Ψ𝐺𝐺𝐺𝐺′′  for a different Hamiltonian 𝐻𝐻�′′, one obtains a larger energy, 

                     𝐸𝐸𝐺𝐺𝐺𝐺 =  �Ψ𝐺𝐺𝐺𝐺�𝐻𝐻��Ψ𝐺𝐺𝐺𝐺� <  �Ψ𝐺𝐺𝐺𝐺′′ �𝐻𝐻��Ψ𝐺𝐺𝐺𝐺′′ � = 𝐸𝐸′′  .       (2.8) 

Therefore, the ground state energy and density can be obtained by minimizing the 

energy functional,  

 𝐸𝐸𝐺𝐺𝐺𝐺 = 𝑚𝑚𝑖𝑖𝑚𝑚𝜌𝜌  𝐸𝐸[𝜌𝜌(𝑟𝑟)]   .                (2.9) 

The theorems can readily be extended to the degenerate case [77]. In the alternative 

formulation of the Hohenberg-Kohn theorems by Levy [78] and Lieb [79], the 

degenerate case is also included.   

 

2.1.2 Kohn-Sham scheme 

  The Kohn-Sham approach boils down to replacing the interacting many-body 

system with a different auxiliary non-interacting particle system. The basic 

assumption is that there exists some non-interacting system whose ground state 

density equals the ground state density of the original interacting system [69]. The 

new non-interacting system can be exactly solved (by numerical approaches) by 

incorporating all the difficult many-body terms into an exchange-correlation 

functional of the density. With proper approximations to the exchange-correlation 

functional, such as the local density approximation (LDA) and the generalized- 

gradient approximation (GGA), the Kohn-Sham approach leads to very accurate 

description of the original interacting many-body system, e.g. in group IV and II-V 

semiconductors, metals such as Na, Al and insulators like diamond, Bi2Se3, etc. 
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However, these approximations typically fail for strongly-correlated systems, such as 

Mott insulators NiO, CoO etc. Many corrective schemes have been formulated to 

solve these problems, e.g. DFT+U [80,81], Reduced Density Matrix Functional 

Theory [82], DFT+ Gutzwiller [83] and so on.  

  Now we consider the formulation of the Kohn-Sham scheme. For the 

non-interacting single particle system, the Coulomb interaction term is zero. In this 

case, the Hamiltonian reads,  

                         𝐻𝐻�𝑠𝑠 = 𝑇𝑇�𝑠𝑠 + 𝑉𝑉�𝑠𝑠 = 𝑇𝑇�𝑠𝑠 + ∑ 𝑣𝑣�𝑠𝑠𝑁𝑁
𝑖𝑖=1   .              (2.10) 

Assuming the ground state Φ𝐺𝐺𝐺𝐺  is non-degenerate, Φ𝐺𝐺𝐺𝐺  is given by the Slater 

determinant of the N lowest single-particle orbitals 𝜑𝜑𝑖𝑖  with the eigenvalues 𝜀𝜀𝑖𝑖 . For 

each single-particle orbital,  

                      − ℏ
2𝑚𝑚𝑒𝑒

∇2𝜑𝜑𝑖𝑖(𝑟𝑟) + 𝑣𝑣𝑠𝑠(𝑟𝑟)𝜑𝜑𝑖𝑖(𝑟𝑟) = 𝜀𝜀𝑖𝑖𝜑𝜑𝑖𝑖(𝑟𝑟)  ,        (2.11) 

and the total density of the system is given by  

                            𝜌𝜌(𝑟𝑟) = ∑ |𝜑𝜑𝑖𝑖(𝑟𝑟)|2𝑁𝑁
𝑖𝑖=1   .                 (2.12) 

In analogy with the interacting case, the effective potential 𝑣𝑣�𝑠𝑠 is uniquely determined 

by the ground state density of this system. The energy functional 𝐸𝐸𝑣𝑣𝑠𝑠  is given by, 

       𝐸𝐸𝑣𝑣𝑠𝑠[𝜌𝜌] =  �Φ𝐺𝐺𝐺𝐺[𝜌𝜌]�𝐻𝐻��Φ𝐺𝐺𝐺𝐺[𝜌𝜌]� + ∫ 𝜌𝜌𝑣𝑣𝑠𝑠 𝑑𝑑3𝑟𝑟  ≡ 𝑇𝑇𝑠𝑠[𝜌𝜌] + ∫ 𝜌𝜌𝑣𝑣𝑠𝑠 𝑑𝑑3𝑟𝑟  .  (2.13)  

Clearly, for any 𝜌𝜌 different from 𝜌𝜌𝐺𝐺𝐺𝐺 , 𝐸𝐸𝑣𝑣𝑠𝑠 > 𝐸𝐸𝐺𝐺𝐺𝐺 . The orbitals and the kinetic term T 

are also unique functionals of the density.  

                            𝜑𝜑𝑖𝑖(𝑟𝑟) = 𝜑𝜑𝑖𝑖([ρ], 𝑟𝑟)   ,                 (2.14) 

                      𝑇𝑇𝑠𝑠[𝜌𝜌] = ∑ ∫𝜑𝜑i
∗ �− ℏ2

2me
∇2�𝑁𝑁

𝑖𝑖=1 𝜑𝜑𝑖𝑖𝑑𝑑3𝑟𝑟    .        (2.15) 

  As stated above the new ground state density is assumed to be equal to that of the 

original interacting system, so that the interacting system can be mapped onto the 

non-interacting system 𝑇𝑇� + 𝑊𝑊� + 𝑉𝑉�  → 𝑇𝑇� + 𝑉𝑉�𝑠𝑠. The exact density of the interacting 

system can then be calculated with (2.14). Now we evaluate 𝑉𝑉�𝑠𝑠 explicitly. We rewrite 

the energy functional E[ρ] for the interacting system in the presence of an external 

potential 𝑉𝑉�(𝑟𝑟) as, 

𝐸𝐸[𝜌𝜌] =  𝑇𝑇[𝜌𝜌] + 𝑊𝑊 [𝜌𝜌] + �𝜌𝜌𝑉𝑉(𝑟𝑟)𝑑𝑑3𝑟𝑟 
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                       =  𝑇𝑇𝑠𝑠[𝜌𝜌] + 𝐸𝐸𝐻𝐻[𝜌𝜌] + ∫ 𝜌𝜌(𝑟𝑟)𝑉𝑉(𝑟𝑟)𝑑𝑑3𝑟𝑟 + 𝐸𝐸𝑥𝑥𝑥𝑥 [𝜌𝜌]  ,   (2.16) 

where the Hartree energy EH and the exchange-correlation energy Exc are defined as 

                       𝐸𝐸𝐻𝐻[𝜌𝜌] = 1
2 ∫d3 𝑟𝑟d3𝑟𝑟′ 𝜌𝜌(𝑟𝑟)𝜌𝜌(𝑟𝑟′)

|𝑟𝑟−𝑟𝑟′|
   ,              (2.17) 

and  

                      𝐸𝐸𝑥𝑥𝑥𝑥 [𝜌𝜌] ≡ 𝑇𝑇[𝜌𝜌] − 𝑇𝑇𝑠𝑠[𝜌𝜌] + 𝑊𝑊[𝜌𝜌] − 𝐸𝐸𝐻𝐻[𝜌𝜌]  .       (2.18) 

The Hartree energy EH is defined as the classical interaction energy between electrons. 

The exchange-correlation energy Exc includes all the many body interactions and 

correlations. Applying the variational principle to E[ρ],  

𝛿𝛿𝐸𝐸 = 𝐸𝐸[𝜌𝜌𝐺𝐺𝐺𝐺 + 𝛿𝛿𝜌𝜌] − 𝐸𝐸[𝜌𝜌𝐺𝐺𝐺𝐺] = 0 

   = 𝛿𝛿𝑇𝑇𝑠𝑠[𝜌𝜌𝐺𝐺𝐺𝐺] + ∫𝑑𝑑3𝑟𝑟 𝛿𝛿𝜌𝜌(𝑟𝑟)(𝑉𝑉(𝑟𝑟) + ∫ 1
|𝑟𝑟−𝑟𝑟′ |

𝜌𝜌𝐺𝐺𝐺𝐺(𝑟𝑟′)𝑑𝑑3𝑟𝑟′ + 𝑣𝑣𝑥𝑥𝑥𝑥 ([𝜌𝜌𝐺𝐺𝐺𝐺], 𝑟𝑟))    (2.19)  

where vxc is the exchange-correlation potential defined as 𝑣𝑣𝑥𝑥𝑥𝑥 ([𝜌𝜌𝐺𝐺𝐺𝐺], 𝑟𝑟) ≡ 𝛿𝛿𝐸𝐸𝑥𝑥𝑥𝑥
𝛿𝛿𝜌𝜌 (𝑟𝑟)

|𝜌𝜌=𝜌𝜌𝐺𝐺𝐺𝐺 . 

Similarly, one can apply the variational principle to Es[ρ], 

                   𝛿𝛿𝐸𝐸𝑠𝑠 = 𝐸𝐸𝑠𝑠[𝜌𝜌𝐺𝐺𝐺𝐺 + 𝛿𝛿𝜌𝜌] − 𝐸𝐸𝑠𝑠[𝜌𝜌𝐺𝐺𝐺𝐺] = 0 

                       = 𝛿𝛿𝑇𝑇𝑠𝑠[𝜌𝜌𝐺𝐺𝐺𝐺] + ∫ 𝛿𝛿𝜌𝜌(𝑟𝑟)𝑣𝑣𝑠𝑠 (𝑟𝑟)𝑑𝑑3𝑟𝑟     .          (2.20) 

By equating the two formulas, we obtain the effective potential, 

                    𝑣𝑣𝑠𝑠(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) + 𝑣𝑣𝐻𝐻[𝜌𝜌𝐺𝐺𝐺𝐺] + 𝑣𝑣𝑥𝑥𝑥𝑥 ([𝜌𝜌𝐺𝐺𝐺𝐺], 𝑟𝑟)   ,        (2.21) 

where the Hartree potential is 𝑣𝑣𝐻𝐻[𝜌𝜌𝐺𝐺𝐺𝐺] = ∫ 1
|𝑟𝑟−𝑟𝑟′ |

𝜌𝜌𝐺𝐺𝐺𝐺(𝑟𝑟′)𝑑𝑑3𝑟𝑟′ .  

  Up to now, we have shown that an interacting many-body system can be mapped 

onto a non-interacting system with the same ground state density. The next task is to 

solve the Kohn-Sham equations (2.11), (2.12) and (2.21) self-consistently. Normally, 

the procedure starts with a guessed electron density, then one calculates the effective 

potential, next solves the Kohn-Sham equations, then calculates the electron density 

again. After each such iteration, the obtained new density is compared to the previous 

one, if the difference between the two densities is sufficiently small, the 

self-consistency is reached and the ground state is obtained; otherwise, one needs to 

start another iteration. The procedure is summarized in the flow chart in Figure 2.2. 

The Kohn-Sham scheme can be extended to degenerate ground states and 

spin-polarized systems, for details, please refer to Ref. [65].  
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Figure 2.2 The scheme of a self-consistent loop for the solution of the Kohn-Sham equations. 

Reproduced from Ref. [65] 

 

2.1.3 Exchange-correlation potential 

  In this section, we introduce some very useful approximations to the exchange- 

correlation potential, including the local density approximation (LDA), the 

generalized gradient approximation (GGA) and the hybrid functional approximation.  

  As already proposed by Kohn and Sham in their seminal paper, LDA is a very 

instructive and useful approximation to the exchange-correlation potential, which 

works remarkably well for homogeneous solids and many inhomogeneous solids. The 

form of the LDA exchange-correlation energy functional is simple, i.e. it is an integral 

over all space of the exchange-correlation energy density, which at each point, equals 

the energy of the homogeneous electron gas with the given local density,  

                        𝐸𝐸𝑥𝑥𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿[𝜌𝜌] = ∫𝑑𝑑3𝑟𝑟𝜀𝜀𝑥𝑥𝑥𝑥ℎ𝑜𝑜𝑚𝑚 (𝜌𝜌(𝑟𝑟))   .             (2.22) 

  So now we need to calculate the exchange-correlation energy of the homogeneous 

Initial guess 𝜌𝜌(𝑟𝑟) 
 

Calculate effective potential 𝑣𝑣𝑠𝑠(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) + 𝑣𝑣𝐻𝐻[𝜌𝜌] + 𝑣𝑣𝑥𝑥𝑥𝑥 (𝜌𝜌) 

Solve KS equations − ℏ
2𝑚𝑚𝑒𝑒

∇2𝜑𝜑𝑖𝑖(𝑟𝑟) + 𝑣𝑣𝑠𝑠(𝑟𝑟)𝜑𝜑𝑖𝑖(𝑟𝑟) = 𝜀𝜀𝑖𝑖𝜑𝜑𝑖𝑖(𝑟𝑟) 

Calculate electron density 𝜌𝜌(𝑟𝑟) = ∑ |𝜑𝜑𝑖𝑖(𝑟𝑟)|2𝑁𝑁
𝑖𝑖=1  

Self-consistent? 
NO 

Yes 

Output quantities  Energy, forces, stresses, eigenvalues... 
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electron gas. This is a well-studied problem in many-body physics. The 

exchange-correlation energy can be split into two parts, the exchange energy Ex and 

the correlation energy Ec. The exchange energy can be calculated analytically, 

             𝐸𝐸𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿[𝜌𝜌] = ∫𝑑𝑑3𝑟𝑟𝜀𝜀𝑥𝑥ℎ𝑜𝑜𝑚𝑚 �𝜌𝜌(𝑟𝑟)� = − 3
4

(3
𝜋𝜋

)
1
3 ∫𝑑𝑑3𝑟𝑟 𝜌𝜌(𝑟𝑟)

4
3 .       (2.23) 

  As regards the correlation energy, it has no general analytical solution. In the low 

density limit, Coulomb interactions dominate over the kinetic energy and electrons 

tend to arrange themselves into a regular lattice, which is known as "Wigner crystal" 

[84,85]. The correlation energy in this limit can be computed by evaluating the 

Coulomb energy, harmonic vibration energies and anharmonic corrections of the 

Wigner crystal [86]. In the high density limit, Coulomb interactions become 

negligible compared to the kinetic energy and the correlation energy can be calculated 

using perturbation theory and diagrammatic techniques [87,88]. It is more challenging 

to estimate the correlation energy at intermediate densities. Several approaches have 

been employed, such as the random phase approximation (RPA) [89], quantum Monte 

Carlo (QMC) calculations [90,91] and so on. The most accurate results were obtained 

by QMC calculations. By fitting against the QMC calculations, analytical expressions 

for the correlation functional can be obtained. The most popular functionals were 

derived by Perdew and Zunger (PZ) [92], and Vosko, Wilk and Nusair (VWN) [93]. 

  There are a few shortcomings of LDA. The most obvious one is the unphysical 

self-interaction term. The electron does not interact with itself, however, in the 

Hartree energy term, self-interaction is included; since the exchange energy is 

approximated, it does not cancel out the self-interaction term exactly. To improve the 

LDA scheme, Perdew and Zunger [92] proposed self-interaction corrections (SIC) to 

the exchange-correlation energy, which make the simulations computationally more 

demanding. A further LDA+U scheme (DFT+U) [94,80] also leads to important 

improvements over the self-interaction effect. Another shortcoming of LDA is that it 

fails to describe accurately very inhomogeneous systems. With gradient corrections to 

the density, the results can be significantly improved in many cases.   
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  Generalized gradient approximations (GGAs) are based on a perturbative 

expansion with respect to the density gradient, 

                   𝐸𝐸𝑥𝑥𝑥𝑥𝐺𝐺𝐺𝐺𝐿𝐿 [𝜌𝜌] = ∫𝑑𝑑3 𝑟𝑟𝜀𝜀𝑥𝑥𝑥𝑥𝐺𝐺𝐺𝐺𝐿𝐿(𝜌𝜌,∇𝜌𝜌,∇2𝜌𝜌, … )   ,           (2.24) 

with  

   𝜀𝜀𝑥𝑥𝑥𝑥𝐺𝐺𝐺𝐺𝐿𝐿(𝜌𝜌,∇𝜌𝜌,∇2𝜌𝜌, … ) = 𝜀𝜀𝑥𝑥𝑥𝑥 ,00
𝐺𝐺𝐺𝐺𝐿𝐿 �𝜌𝜌(𝑟𝑟)� + 𝜀𝜀𝑥𝑥𝑥𝑥 ,22

𝐺𝐺𝐺𝐺𝐿𝐿 �𝜌𝜌(𝑟𝑟)�(∇𝜌𝜌(𝑟𝑟))2 

                     +𝜀𝜀𝑥𝑥𝑥𝑥 ,42
𝐺𝐺𝐺𝐺𝐿𝐿 �𝜌𝜌(𝑟𝑟)�(∇2𝜌𝜌(𝑟𝑟))2 + 𝜀𝜀𝑥𝑥𝑥𝑥 ,43

𝐺𝐺𝐺𝐺𝐿𝐿 �𝜌𝜌(𝑟𝑟)�(∇2𝜌𝜌(𝑟𝑟))(∇𝜌𝜌(𝑟𝑟))2 

                     +𝜀𝜀𝑥𝑥𝑥𝑥 ,44
𝐺𝐺𝐺𝐺𝐿𝐿 �𝜌𝜌(𝑟𝑟)�(∇𝜌𝜌(𝑟𝑟))4 + ⋯     ,              (2.25) 

where the notation 𝜀𝜀𝑥𝑥𝑥𝑥 ,𝑖𝑖𝑗𝑗
𝐺𝐺𝐺𝐺𝐿𝐿  indicates there are i gradient operators and j functions of the 

density. By definition, we have 𝜀𝜀𝑥𝑥𝑥𝑥 ,00
𝐺𝐺𝐺𝐺𝐿𝐿 �𝜌𝜌(𝑟𝑟)� = 𝜀𝜀𝑥𝑥𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿�𝜌𝜌(𝑟𝑟)�. The gradient corrections 

are calculated by assuming the system is very close to the homogeneous gas, with 

weak deviations from uniformity. In this limit 𝜀𝜀𝑥𝑥𝑥𝑥𝐺𝐺𝐺𝐺𝐿𝐿  can be expressed in terms of 

linear and higher order response functions of the homogeneous electron gas. Usually, 

the gradient correction is considered up to the second term 𝜀𝜀𝑥𝑥𝑥𝑥 ,22
𝐺𝐺𝐺𝐺𝐿𝐿  and all the 

high-order terms are neglected. Some widely used GGA functionals were formulated 

by Becke (B88) [95], Perdew and Wang (PW91) [96], and Perdew, Burke and 

Enzerhof (PBE) [97].  

  Hybrid functionals combine the exact exchange Hartree Fock term with the 

approximate functionals LDA and GGA. This hybrid approach, pioneered by Becke 

[98], provides a simple scheme to improve the descriptions of certain properties, such 

as atomization energies, bond lengths, vibrational frequencies, etc., which sometimes 

are poorly described by pure LDA and GGA functionals [99]. The hybrid 

exchange-correlation functional is constructed as a linear combination of the exact 

orbital-dependent exchange terms and the approximate LDA and GGA terms, 

               𝐸𝐸𝑥𝑥𝑥𝑥 = 𝐸𝐸𝑥𝑥𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑎𝑎(𝐸𝐸𝑥𝑥𝑒𝑒𝑥𝑥𝑎𝑎𝑥𝑥𝑒𝑒 − 𝐸𝐸𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿) + 𝑏𝑏𝐸𝐸𝑥𝑥𝐺𝐺𝐺𝐺𝐿𝐿 + 𝑥𝑥𝐸𝐸𝑥𝑥𝐺𝐺𝐺𝐺𝐿𝐿   ,     (2.26) 

where the coefficients a, b and c are fitted against atomic and molecular data. The 

functional becomes semi-empirical. Popular hybrid functionals are HSE [100] and 

B3LYP [101]. 
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2.1.4 Plane wave approach  

  In modern DFT calculations, the plane wave basis is the most popular approach to 

solve Kohn-Sham equations. Plane waves can provide an intuitive understanding for 

periodic solids, furthermore, their usage makes the calculation of important quantities, 

including the forces and the Hartree potential, simple and efficient. Many popular 

codes are constructed based on plane waves, such as Quantum Espresso, VASP, 

ABINIT, CASTEP, etc.  

  From the Kohn-Sham equations (2.12), (2.14) and (2.21), we have  

𝐻𝐻�𝑠𝑠(𝑟𝑟)𝜑𝜑𝑖𝑖(𝑟𝑟) = −
ℏ

2𝑚𝑚𝑒𝑒
∇2𝜑𝜑𝑖𝑖(𝑟𝑟) + 𝑣𝑣𝑠𝑠(𝑟𝑟)𝜑𝜑𝑖𝑖(𝑟𝑟) = 𝜀𝜀𝑖𝑖𝜑𝜑𝑖𝑖(𝑟𝑟) 

𝑣𝑣𝑠𝑠(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) + 𝑣𝑣𝐻𝐻[𝜌𝜌] + 𝑣𝑣𝑥𝑥𝑥𝑥 ([𝜌𝜌], 𝑟𝑟) 

In a solid, it is convenient to consider periodic boundary conditions in a volume Ω. 

We can then expand the eigenfunctions in a complete discrete set of Fourier 

components, 

                    𝜑𝜑𝑖𝑖(𝑟𝑟) = 1
√Ω
∑ c𝑖𝑖 ,𝑞𝑞�⃑  𝑒𝑒𝑖𝑖𝑞𝑞�⃑ ∙𝑟𝑟q ≡ ∑ c𝑖𝑖 ,𝑞𝑞�⃑ | ��⃑�𝑞〉q    ,           (2.27) 

where c𝑖𝑖 ,𝑞𝑞�⃑  are the expansion coefficients of the wavefunctions in the basis of plane 

waves | ��⃑�𝑞〉 = 1
√Ω

 𝑒𝑒𝑖𝑖𝑞𝑞�⃑ ∙𝑟𝑟 , and | ��⃑�𝑞〉 are orthonormal 〈�⃑�𝑞�′| ��⃑�𝑞〉 = δ𝑞𝑞�⃑ ′ ,𝑞𝑞�⃑ . Since the effective 

potential 𝑣𝑣𝑠𝑠(𝑟𝑟) has the periodicity of the crystal, one can write 

                       𝑣𝑣𝑠𝑠(𝑟𝑟) = ∑ 𝑣𝑣𝑠𝑠(�⃑�𝐺𝑚𝑚)𝑒𝑒𝑖𝑖𝐺𝐺𝑚𝑚 ∙𝑟𝑟𝑚𝑚       ,             (2.28) 

where �⃑�𝐺𝑚𝑚  are the reciprocal lattice vectors, and 

                      𝑣𝑣𝑠𝑠��⃑�𝐺� = 1
Ωcell

∫ 𝑣𝑣𝑠𝑠(𝑟𝑟)𝑒𝑒−𝑖𝑖𝐺𝐺∙𝑟𝑟 
Ωcell

𝑑𝑑3𝑟𝑟     ,       (2.29) 

with Ωcell  the volume of the primitive cell.  

  If we define the vector 𝑘𝑘�⃑  as �⃑�𝑞 = 𝑘𝑘�⃑ + �⃑�𝐺𝑚𝑚 , the eigenfunction (2.27) can be written 

as, 

              𝜑𝜑𝑖𝑖 ,𝑘𝑘�⃑ (𝑟𝑟) = 1
√Ω
∑ c𝑖𝑖 ,𝑚𝑚(𝑘𝑘�⃑ ) 𝑒𝑒𝑖𝑖(𝑘𝑘�⃑ +𝐺𝐺𝑚𝑚 )∙𝑟𝑟
𝑚𝑚 = 𝑒𝑒𝑖𝑖𝑘𝑘�⃑ ∙𝑟𝑟 1

�𝑁𝑁𝑥𝑥𝑒𝑒𝑐𝑐𝑐𝑐
 𝑢𝑢𝑖𝑖 ,𝑘𝑘�⃑ (𝑟𝑟) ,  (2.30)    

where Ω = 𝑁𝑁𝑥𝑥𝑒𝑒𝑐𝑐𝑐𝑐 Ω𝑥𝑥𝑒𝑒𝑐𝑐𝑐𝑐  and 

                     𝑢𝑢𝑖𝑖 ,𝑘𝑘�⃑ (𝑟𝑟) = 1
�Ω𝑥𝑥𝑒𝑒𝑐𝑐𝑐𝑐

∑ 𝑥𝑥𝑖𝑖 ,𝑚𝑚(𝑘𝑘�⃑ )𝑒𝑒𝑖𝑖𝐺𝐺𝑚𝑚 ∙𝑟𝑟𝑚𝑚      .          (2.31) 
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The new functions 𝑢𝑢𝑖𝑖 ,𝑘𝑘�⃑ (𝑟𝑟) have the periodicity of the crystal and are orthonormal in 

one primitive cell. This is the so called Bloch theorem and the solutions are called 

Bloch states. 

  If we consider the Kohn-Sham Schrödinger equations in terms of the vector 𝑘𝑘�⃑  

with �⃑�𝑞 = 𝑘𝑘�⃑ + �⃑�𝐺𝑚𝑚  and �⃑�𝑞′ = 𝑘𝑘�⃑ + �⃑�𝐺𝑚𝑚′  (�⃑�𝐺𝑚𝑚′′ = �⃑�𝐺𝑚𝑚 − �⃑�𝐺𝑚𝑚′ ), we obtain 

                 ∑ 𝐻𝐻𝑚𝑚 ,𝑚𝑚′ �𝑘𝑘�⃑ �𝑚𝑚′ 𝑥𝑥𝑖𝑖 ,𝑚𝑚′ (𝑘𝑘�⃑ ) = 𝜀𝜀𝑖𝑖(𝑘𝑘�⃑ )𝑥𝑥𝑖𝑖 ,𝑚𝑚′ (𝑘𝑘�⃑ )   ,           (2.32) 

with the matrix element 𝐻𝐻𝑚𝑚 ,𝑚𝑚′  given by 

  𝐻𝐻𝑚𝑚 ,𝑚𝑚′ �𝑘𝑘�⃑ � = �𝑘𝑘�⃑ + �⃑�𝐺𝑚𝑚�𝐻𝐻�𝑠𝑠�𝑘𝑘�⃑ + �⃑�𝐺𝑚𝑚′ � = ℏ2

2𝑚𝑚𝑒𝑒
|𝑘𝑘�⃑ + �⃑�𝐺𝑚𝑚 |2𝛿𝛿𝑚𝑚 ,𝑚𝑚′ + 𝑣𝑣𝑠𝑠(�⃑�𝐺𝑚𝑚 − �⃑�𝐺𝑚𝑚′). (2.33) 

Equations (2.32) and (2.33) are the basic Kohn-Sham Schrödinger equations in a 

periodic crystal. By solving these equations, the energy eigenvalues 𝜀𝜀𝑖𝑖(𝑘𝑘�⃑ ) and the 

eigenstates 𝜑𝜑𝑖𝑖 ,𝑘𝑘�⃑ (𝑟𝑟) at each 𝑘𝑘�⃑  can be obtained. 𝑘𝑘�⃑  is called crystal momentum and 

can always be confined to the first Brillouin zone. 

  To solve (2.32) numerically, a finite set of plane waves is used and the cutoff value 

is given by the inequality, 

                            ℏ2

2𝑚𝑚𝑒𝑒
|𝑘𝑘�⃑ + �⃑�𝐺|2 ≤ 𝐸𝐸𝑥𝑥𝑢𝑢𝑒𝑒𝑜𝑜𝑐𝑐𝑐𝑐                  (2.34) 

This cutoff value should be large enough to calculate the eigenstates accurately, but, 

on the other hand, it should be as small as possible to reduce the computational 

efforts.  

  To compute certain properties, such as the number of electrons in the bands, the 

total energy, etc., it is essential to integrate over 𝑘𝑘�⃑  in the first Brillouin zone. For 

practical calculations, only a finite set of k-points can be used, which calls for the use 

of an accurate and efficient sampling scheme. The most widely used method was 

proposed by Monkhorst and Pack [102],  

                 𝑘𝑘�⃑ 𝑚𝑚1,𝑚𝑚2,𝑚𝑚3 ≡ ∑ 2𝑚𝑚𝑖𝑖−𝑁𝑁𝑖𝑖−1
2𝑁𝑁𝑖𝑖𝑖𝑖=1,2,3 �⃑�𝐺𝑖𝑖 ,  ni = 1,...,Ni    ,            (2.35) 

where Ni is the number of k points along each direction i. (2.35) defines a 𝑁𝑁1 × 𝑁𝑁2 ×

𝑁𝑁3 k-point mesh over the first Brillouin zone. 
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  To solve the Kohn-Sham equations self-consistently, one of the most important 

operations is to calculate the electron density ρ. Equation (2.12) can be written as, 

                       𝜌𝜌(𝑟𝑟) = 1
𝑁𝑁𝑘𝑘
∑ 𝑐𝑐�𝜀𝜀𝑖𝑖 ,𝑘𝑘�⃑ �𝜌𝜌𝑖𝑖 ,𝑘𝑘�⃑ (𝑟𝑟)𝑖𝑖 ,𝑘𝑘�⃑    .              (2.36) 

This is an average over 𝑘𝑘�⃑  points: i denotes the bands at each 𝑘𝑘�⃑  and 𝑐𝑐�𝜀𝜀𝑖𝑖 ,𝑘𝑘�⃑ � denotes 

the Fermi function. The Fermi function is a step function at absolute zero temperature. 

To improve the convergence in metals, a smoother function is typically used. In 

crystals, the electron density is also periodic and by considering a plane wave basis, 

one obtains,  

                  𝜌𝜌(𝑟𝑟) = 1
Ω
∑ 𝑐𝑐�𝜀𝜀𝑖𝑖 ,𝑘𝑘�⃑ � ∑ 𝑥𝑥𝑖𝑖 ,𝑚𝑚∗ (𝑘𝑘)𝑥𝑥𝑖𝑖 ,𝑚𝑚′

 
𝑚𝑚 ,𝑚𝑚′ 𝑒𝑒𝑖𝑖(𝐺𝐺𝑚𝑚 ′ −𝐺𝐺𝑚𝑚 )∙𝑟𝑟    𝑖𝑖 ,𝑘𝑘�⃑ .  (2.37) 

The Fourier transform of the density 𝜌𝜌𝑖𝑖 ,𝑘𝑘�⃑ (𝑟𝑟) ≡ |𝜑𝜑𝑖𝑖 ,𝑘𝑘�⃑ |2 reads, 

                        𝜌𝜌𝑖𝑖 ,𝑘𝑘�⃑ ��⃑�𝐺� = 1
Ω
∑ c𝑖𝑖 ,𝑚𝑚∗ (𝑘𝑘�⃑ )c𝑖𝑖,𝑚𝑚′′ (𝑘𝑘�⃑ )  𝑚𝑚   ,           (2.38) 

where m'' denotes the �⃑�𝐺 for which �⃑�𝐺𝑚𝑚′′ = �⃑�𝐺𝑚𝑚 + �⃑�𝐺. To compute the electron density 

in Fourier space is computationally expensive, hence it is usually transformed into 

real space by Fast Fourier Transform (FFT) methods and calculated in real space. 

Another advantage of the calculation of the electron density in real space is that it can 

be used to evaluate the exchange-correlation energy. 

  In summary, by introducing a plane wave basis set, the third diagram in the 

self-consistency flow chart (Figure 2.2) is changed to "Solve KS equations in 

G-space". 

 

2.1.5 Localized basis and mixed basis 

  An alternative way of constructing the wavefunctions is to employ localized basis 

sets. Localized orbitals provide an intuitive description of the electronic structure and 

chemical bonding. They are widely used in chemistry and have become popular in 

recent years in physics for their efficiency in large-scale DFT simulations.    

  A local orbital basis is a set of orbitals 𝜒𝜒𝛼𝛼 ,𝜅𝜅(𝑟𝑟 − 𝜏𝜏𝜅𝜅 ,𝑗𝑗 − 𝑅𝑅�⃑ ) associated with atom j 

of atomic species 𝜅𝜅 at position 𝜏𝜏𝜅𝜅 ,𝑗𝑗 − 𝑅𝑅�⃑  (𝑅𝑅�⃑  is a Bravais lattice vector). For a given 
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atomic type 𝜅𝜅, 𝜒𝜒𝛼𝛼  can be written as a product of radial functions and spherical 

harmonics,   

                        𝜒𝜒𝑚𝑚 ,𝑐𝑐 ,𝑚𝑚(𝑟𝑟,𝜃𝜃,𝜑𝜑) = 𝜒𝜒𝑚𝑚 ,𝑐𝑐𝑌𝑌𝑐𝑐 ,𝑚𝑚(𝜃𝜃,𝜑𝜑)    ,           (2.39) 

where the quantum numbers (𝑚𝑚, 𝑐𝑐,𝑚𝑚) ≡ 𝛼𝛼. Consider a state in the cell at the origin 

and a state in the cell at the lattice vector 𝑅𝑅�⃑ , the matrix elements of the Hamiltonian 

with respect to these orbitals read, 

          𝐻𝐻𝛼𝛼𝜅𝜅𝑗𝑗 ,𝛼𝛼′ 𝜅𝜅′ 𝑗𝑗 ′ �𝑅𝑅�⃑ � ≡ ∫ d3𝑟𝑟𝜒𝜒𝛼𝛼 ,𝜅𝜅
∗ (𝑟𝑟 − 𝜏𝜏𝜅𝜅 ,𝑗𝑗 )𝐻𝐻𝜒𝜒𝛼𝛼′ ,𝜅𝜅′ (𝑟𝑟 − 𝜏𝜏𝜅𝜅′ ,𝑗𝑗 ′ − 𝑅𝑅�⃑ ) .    (2.40)  

Similarly, the overlap matrix is given by  

           𝐺𝐺𝛼𝛼𝜅𝜅𝑗𝑗 ,𝛼𝛼′ 𝜅𝜅′ 𝑗𝑗 ′ �𝑅𝑅�⃑ � ≡ ∫d3𝑟𝑟𝜒𝜒𝛼𝛼 ,𝜅𝜅
∗ (𝑟𝑟 − 𝜏𝜏𝜅𝜅 ,𝑗𝑗 )𝜒𝜒𝛼𝛼′ ,𝜅𝜅′ (𝑟𝑟 − 𝜏𝜏𝜅𝜅′ ,𝑗𝑗 ′ − 𝑅𝑅�⃑ )  .    (2.41) 

The matrix elements of S and H can be divided into one-, two-, three-, four-center 

terms and beyond.   

  Two types of basis functions are widely used, namely, Slater Type Orbitals (STOs) 

and Gaussian Type Orbitals (GTOs). They are given in the forms,  

                𝜒𝜒𝜍𝜍 ,𝑚𝑚 ,𝑐𝑐 ,𝑚𝑚(𝑟𝑟, 𝜃𝜃,𝜑𝜑) = 𝑁𝑁𝑌𝑌𝑐𝑐 ,𝑚𝑚(𝜃𝜃,𝜑𝜑)𝑟𝑟𝑚𝑚−1𝑒𝑒−𝜍𝜍𝑟𝑟      STOs  ,    (2.42) 

and  

              𝜒𝜒𝜍𝜍 ,𝑚𝑚 ,𝑐𝑐 ,𝑚𝑚(𝑟𝑟, 𝜃𝜃,𝜑𝜑) = 𝑁𝑁𝑌𝑌𝑐𝑐 ,𝑚𝑚(𝜃𝜃,𝜑𝜑)𝑟𝑟2𝑚𝑚−2−𝑐𝑐𝑒𝑒−𝜍𝜍𝑟𝑟2     GTOs  ,    (2.43) 

where the 𝜍𝜍  denotes the range of the orbitals. GTOs are more desirable for 

calculations due to the huge advantage that all the multi-center integrals can be 

performed analytically, which stems from the Gaussian product theorem, stating that 

the product of two Gaussian orbitals centered on different atoms is also a Gaussian 

orbital (page 300 Ref. [65]).  

  Mixed basis methods utilize a combination of localized and delocalized bases, e.g. 

localized Gaussian orbitals and plane waves. The hybrid Gaussian and plane waves 

(GPW) method [103] provides an efficient way to treat the non-linearly scaling terms 

(with respect to the system size, e.g. the Hartree energy) at a significantly reduced 

cost.  

  In the GPW scheme, a plane wave basis set is used for the electron density, which 

allows to calculate the Hartree energy easily and efficiently, and the Gaussian basis 
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sets are used to expand the Kohn-Sham orbitals and compute the kinetic and potential 

energy. Due to the localized nature of the Gaussian orbitals, the representations of the 

overlap and density matrix become sparse with increasing system size, which, in 

principal, leads to a linear scaling for solving the Kohn-Sham equations. A successful 

GPW scheme has been implemented in the DFT code QUICKSTEP as a part of the 

package CP2K [104, 105].    

 

2.1.6 Pseudopotentials 

  In this section we introduce ab initio pseudopotentials, which are crucial for 

practical DFT calculations. As introduced above, a plane wave basis set is very useful 

to describe the eigenstates of a periodic crystal system -- the Bloch states. However, 

when approaching the nuclei regions, the Bloch wavefunctions oscillate very rapidly 

and therefore a very large number of plane waves is needed to provide accurate 

descriptions, which makes the calculations impractical. To overcome this issue, 

several methods have been developed, e.g. pseudopotentials and augmented plane 

waves. In the pseudopotential method, only valence electrons are considered 

explicitly in the Hamiltonian and the original potential acting on the valence electrons 

is replaced with a smooth "pseudo" potential. The pseudopotential contains the 

average effects produced by the nucleus and the tightly bound core electrons. 

Augmented plane waves methods, on the other hand, constitute a new basis set that 

efficiently describes the rapidly varying parts of the Bloch states near the nuclei and 

the smoothly varying parts outside the nuclear region. Both core electrons and valence 

electrons are considered in this case. Compared to the pseudopotential method, the 

augmentation method is generally more accurate, but also computationally more 

demanding. Since the pseudopotential method is by far the most widely used method 

in DFT codes, here we mainly focus on this method. For more information about the 

augmentation methods, please refer to Chaps 16, 17 of Ref. [65]. 

  Ab initio pseudopotentials are widely used because they are accurate, smooth, 

transferable and can be used in many different chemical environments. They are based 

on the frozen core approximation. A pseudopotential is generated by performing a 
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DFT calculation for an isolated atom, where the so called all electron (AE) solution to 

the Kohn-Sham equations needs to be found. From (2.12) and (2.21), we have 

−
ℏ

2𝑚𝑚𝑒𝑒
∇2𝜑𝜑𝑖𝑖(𝑟𝑟) + 𝑣𝑣𝑠𝑠(𝑟𝑟)𝜑𝜑𝑖𝑖(𝑟𝑟) = 𝜀𝜀𝑖𝑖𝜑𝜑𝑖𝑖(𝑟𝑟) 

                      𝑣𝑣𝑠𝑠(𝑟𝑟) = −𝑍𝑍
𝑟𝑟

+ 𝑣𝑣𝐻𝐻[𝜌𝜌] + 𝑣𝑣𝑥𝑥𝑥𝑥 ([𝜌𝜌], 𝑟𝑟) .            (2.44) 

If we assume the effective potential vs is rotationally invariant, the wavefunctions can 

be separated into radial functions and spherical harmonics,  

                         𝜑𝜑(𝑟𝑟) = 𝑅𝑅𝑚𝑚 ,𝑐𝑐(r)𝑌𝑌𝑐𝑐 ,𝑚𝑚(θ,φ)  .                (2.45) 

By inserting (2.45) into (2.44), we obtain, 

                 �− ℏ2

2𝑚𝑚𝑒𝑒

d2

dr2 + 𝑐𝑐(𝑐𝑐+1)ℏ2

2𝑚𝑚𝑒𝑒r2 + 𝑣𝑣𝑠𝑠(r)� r𝑅𝑅𝑚𝑚 ,𝑐𝑐(r) = 𝜀𝜀𝑚𝑚 ,𝑐𝑐r𝑅𝑅𝑚𝑚 ,𝑐𝑐(r) ,  (2.46) 

where n is the principal quantum number and l is the angular momentum. For a 

many-electrons atom, the states with the same n and l are not degenerate due to the 

screening effect of the electrons. If a wavefunction reaches zero and changes its sign 

at some point, the point is termed as a node of the wavefunction. In general, a radial 

wavefunction Rn,l has n-l-1 nodes and radial orbitals corresponding to 1s, 2p, 3d, 4f ... 

are thus nodeless.   

  Now we need to introduce a cutoff radius rc and replace the original radial 

wavefunction of the valence electrons 𝑅𝑅𝑚𝑚 ,𝑐𝑐
𝐿𝐿𝐸𝐸  with a smoother, pseudized and 

normalized radial wavefunction 𝑅𝑅𝑚𝑚 ,𝑐𝑐
𝑃𝑃𝐺𝐺 . The pseudo radial wavefunction should fulfill 

the following properties: 

  - real and pseudo eigenvalues 𝜀𝜀𝑐𝑐  agree; 

  - real and pseudo wavefunctions coincide for 𝑟𝑟 ≥ 𝑟𝑟𝑥𝑥;  

  - the pseudo wavefunction is chosen to be smooth and nodeless for 𝑟𝑟 < 𝑟𝑟𝑥𝑥; 

There is still considerable freedom in choosing the form of 𝑅𝑅𝑚𝑚 ,𝑐𝑐
𝑃𝑃𝐺𝐺  within the cutoff 

radius, however, it is important to make 𝑅𝑅𝑚𝑚 ,𝑐𝑐
𝑃𝑃𝐺𝐺  satisfy the norm-conserving (NC) 

condition,  

                   Q𝑐𝑐 ≡ ∫ drr2𝑟𝑟𝑥𝑥
0 𝑅𝑅𝑚𝑚 ,𝑐𝑐

𝑃𝑃𝐺𝐺(𝑟𝑟)2 = ∫ drr2𝑟𝑟𝑥𝑥
0 𝑅𝑅𝑚𝑚 ,𝑐𝑐

𝐿𝐿𝐸𝐸(𝑟𝑟)2  .        (2.47) 
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which leads to transferability of the resulting pseudopotentials. The norm-conserving 

condition also ensures that the resulting pseudopotential is able to reproduce the 

scattering properties of the real potential at energies around 𝜀𝜀𝑚𝑚 ,𝑐𝑐 . As regards the cutoff 

radius, a balance needs to be reached, i.e. a large rc is desirable to keep the 

pseudopotential smooth, however, rc should be small enough to describe the region 

near the nuclei accurately.   

  Now we construct the pseudopotential 𝑣𝑣𝑚𝑚 ,𝑐𝑐
𝑃𝑃𝐺𝐺  by inverting the radial Schrödinger for 

each 𝑅𝑅𝑚𝑚 ,𝑐𝑐
𝑃𝑃𝐺𝐺 :   

                 𝑣𝑣𝑚𝑚 ,𝑐𝑐
𝑃𝑃𝐺𝐺 ,𝑠𝑠𝑥𝑥𝑟𝑟 = 𝜀𝜀𝑚𝑚 ,𝑐𝑐 −

𝑐𝑐(𝑐𝑐+1)ℏ2

2𝑚𝑚𝑒𝑒r2 + ℏ2

2𝑚𝑚𝑒𝑒

1
r𝑅𝑅𝑚𝑚 ,𝑐𝑐

𝑃𝑃𝐺𝐺 (r)
d2

dr2 [r𝑅𝑅𝑚𝑚 ,𝑐𝑐
𝑃𝑃𝐺𝐺(r)]  .     (2.48) 

This pseudopotential is smooth and does not have singularities, since 𝑅𝑅𝑚𝑚 ,𝑐𝑐
𝑃𝑃𝐺𝐺  is smooth 

and nodeless. Moreover, the pseudopotential is continuous if 𝑅𝑅𝑚𝑚 ,𝑐𝑐
𝑃𝑃𝐺𝐺  is chosen to have 

continuous derivatives up to the second order. Since the screening effects of the 

valence electrons are included in 𝑣𝑣𝑚𝑚 ,𝑐𝑐
𝑃𝑃𝐺𝐺 ,𝑠𝑠𝑥𝑥𝑟𝑟 , the pseudopotential needs to be unscreened. 

To achieve it, one subtracts the Hartree and the exchange-correlation potentials due to 

the valence electrons in their pseudo radial wavefunctions 𝑅𝑅𝑚𝑚 ,𝑐𝑐
𝑃𝑃𝐺𝐺 ,  

              𝑣𝑣𝑚𝑚 ,𝑐𝑐
𝑃𝑃𝐺𝐺(r) = 𝑣𝑣𝑚𝑚 ,𝑐𝑐

𝑃𝑃𝐺𝐺 ,𝑠𝑠𝑥𝑥𝑟𝑟 (r) − 𝑣𝑣𝐻𝐻,𝑣𝑣𝑎𝑎𝑐𝑐𝑒𝑒𝑚𝑚𝑥𝑥𝑒𝑒
𝑃𝑃𝐺𝐺 (r) − 𝑣𝑣𝑥𝑥𝑥𝑥 ,𝑣𝑣𝑎𝑎𝑐𝑐𝑒𝑒𝑚𝑚𝑥𝑥𝑒𝑒

𝑃𝑃𝐺𝐺 (r) .      (2.49) 

To solve this equation is not trivial due to the non-linearity of the vxc term: additional 

corrections and approximations are needed. Anyway, after properly treating this 

equation, we obtain the unscreened, ionic pseudopotentials 𝑣𝑣𝑚𝑚 ,𝑐𝑐
𝑃𝑃𝐺𝐺  within the frozen 

core-electron approximation. Since the pseudopotentials depend on the angular 

momentum l, the total pseudopotential is a semi-local operator, i.e. local in the radial 

variable and non-local in the angular variables. The Schrödinger equation (2.12) can 

be written as, 

              (− ℏ
2𝑚𝑚𝑒𝑒

∇2 + 𝑣𝑣𝑐𝑐𝑜𝑜𝑥𝑥𝑎𝑎𝑐𝑐𝑃𝑃𝐺𝐺 + 𝑣𝑣𝑚𝑚𝑜𝑜𝑚𝑚 −𝑐𝑐𝑜𝑜𝑥𝑥𝑎𝑎𝑐𝑐𝑃𝑃𝐺𝐺 )𝜑𝜑𝑠𝑠𝑃𝑃𝐺𝐺 = 𝜀𝜀s𝜑𝜑𝑠𝑠𝑃𝑃𝐺𝐺  .           (2.50) 

There are a number of popular norm-conserving pseudopotentials, e.g. Bachelet, 

Hamann and Schlüter (BHS) [106], Vanderbilt [107], Rappe, Rabe, Kaxiras and 
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Joannopoulos (RRKJ) [108], Troullier and Martins (TM) [109] and so on. Besides 

norm-conserving pseudopotentials, there exist two other successful schemes, namely, 

ultrasoft pseudopotentials [110] and the projector augmented wave method [111].  

 

2.2 Ab initio molecular dynamics 

  So far we have assumed nuclei are fixed and focused on the ground state electronic 

properties in the static external potential generated by the nuclei. If one wants to 

consider nuclear motions, e.g. to investigate finite temperature effects, more 

sophisticated methods are needed. An effective approach is to combine DFT 

electronic structure calculations with molecular dynamics simulations -- so called ab 

initio molecular dynamics or first principles molecular dynamics.  

  Ab initio molecular dynamics (AIMD) simulations, pioneered by Car and Parrinello 

in 1985 [72], have led to a revolution in the field of computational physics. Accurate 

forces can be derived from electronic structure calculations and used to determine the 

thermal motion of real, complex molecules, solids and liquids. Dynamical properties 

can be derived from AIMD. The Car-Parrinello method marks the beginning of the 

AIMD era with a unified algorithm for electrons and ions. A conceptually simpler 

scheme, the Born-Oppenheimer method, became popular several years later [112].  

  In this section, we introduce the basic assumption behind these methods, i.e. the 

Born-Oppenheimer or adiabatic approximation. Together with the Hellman-Feynman 

theorem for the force evaluations and Newton's laws of motion, we obtain the 

framework of the Born-Oppenheimer method. We also discuss the Car-Parrinello 

method, which involves simultaneous solutions of the classical nuclear motion and a 

fictitious electronic dynamics. At last, we introduce some recent developments of the 

Car-Parrinello method.   

 

2.2.1 Born-Oppenheimer approximation and nuclear motions 

  The Hamiltonian of the nuclei and electrons can be written as, 

  𝐻𝐻� = −∑ ℏ2

2𝑚𝑚𝑒𝑒

𝑁𝑁
𝑖𝑖=1 ∇2 + 1

2
∑ 𝑒𝑒2

|𝑟𝑟𝑖𝑖−𝑟𝑟𝑗𝑗 |𝑖𝑖≠𝑗𝑗 − ∑ 𝑍𝑍𝐼𝐼𝑒𝑒2

|𝑟𝑟𝑖𝑖−𝑅𝑅�⃑ 𝐼𝐼|𝑖𝑖 ,𝐼𝐼 − ∑ ℏ2

2𝑀𝑀𝐼𝐼
∇2 + 1

2
∑ 𝑍𝑍𝐼𝐼𝑍𝑍𝐽𝐽 𝑒𝑒2

|𝑅𝑅�⃑ 𝐼𝐼−𝑅𝑅�⃑ 𝐽𝐽 |𝐼𝐼≠𝐽𝐽𝐼𝐼  , (2.51) 
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where the lower and upper case in the subscripts denote electrons and nuclei, 

respectively. ZI and MI denote the charge and mass of the nuclei. Since the mass of the 

nuclei is much larger than the mass of the electrons, the kinetic energy of the nuclei 

can be ignored., and the Hamiltonian for the electrons can be solved as a function of 

the nuclear coordinates (on which the Hamiltonian depends parametrically). This is 

known as the Born-Oppenheimer approximation or the adiabatic approximation. For 

each nuclear configuration, the interaction between the (fixed) nuclei EII (the last term 

of (2.51)) is easy to compute. The difficulty lies in the solution of the many-body 

Hamiltonian for the electrons. In AIMD, this problem is solved using the Kohn-Sham 

scheme discussed above.  

  Furthermore, the nuclei are considered as classical objects, following Newton's 

equations. The challenge is to describe the potential energy and the forces acting on 

the nuclei accurately, which includes the contributions from both the interaction 

between nuclei and the electronic ground state energy. Hellman-Feynman theorem 

[113] is used to evaluate these forces from the electronic ground state energies.   

      �⃑�𝐹𝛼𝛼 = − 𝜕𝜕𝐸𝐸
𝜕𝜕𝑅𝑅�⃑ 𝛼𝛼

 = − 𝜕𝜕
𝜕𝜕𝑅𝑅�⃑ 𝛼𝛼

�Φ𝐺𝐺𝐺𝐺�𝐻𝐻��Φ𝐺𝐺𝐺𝐺� −  𝜕𝜕𝐸𝐸𝐼𝐼𝐼𝐼
𝜕𝜕𝑅𝑅�⃑ 𝛼𝛼

   

         = − �∂Φ𝐺𝐺𝐺𝐺
∂𝑅𝑅�⃑ 𝛼𝛼

�𝐻𝐻��Φ𝐺𝐺𝐺𝐺� − �Φ𝐺𝐺𝐺𝐺�𝐻𝐻��
∂Φ𝐺𝐺𝐺𝐺
∂𝑅𝑅�⃑ 𝛼𝛼

� − �Φ𝐺𝐺𝐺𝐺�
𝜕𝜕𝐻𝐻�

𝜕𝜕𝑅𝑅�⃑ 𝛼𝛼
�Φ𝐺𝐺𝐺𝐺� −  𝜕𝜕𝐸𝐸𝐼𝐼𝐼𝐼

𝜕𝜕𝑅𝑅�⃑ 𝛼𝛼
  .    (2.52) 

Since in the ground state Φ𝐺𝐺𝐺𝐺  the energy is extremal with respect to all possible 

variations of the wavefunction, the first two terms vanish, leading to 

                     �⃑�𝐹𝛼𝛼 = − �Φ𝐺𝐺𝐺𝐺�
𝜕𝜕𝐻𝐻�

𝜕𝜕𝑅𝑅�⃑ 𝛼𝛼
�Φ𝐺𝐺𝐺𝐺� −  𝜕𝜕𝐸𝐸𝐼𝐼𝐼𝐼

𝜕𝜕𝑅𝑅�⃑ 𝛼𝛼
 .                 (2.53) 

With the obtained forces, the nuclei move according to Newton's law. Usually, the 

Verlet algorithm is used to integrate Newton's equation of motion in molecular 

dynamics simulations:  

                𝑅𝑅�⃑ 𝐼𝐼(𝑒𝑒 + ∆𝑒𝑒) = 2𝑅𝑅�⃑ 𝐼𝐼(𝑒𝑒) − 𝑅𝑅�⃑ 𝐼𝐼(𝑒𝑒 − ∆𝑒𝑒) + �⃑�𝐹𝐼𝐼(𝑒𝑒)
𝑀𝑀𝐼𝐼

∆𝑒𝑒2  ,          (2.54) 

where ∆𝑒𝑒 is the time step.  

  This ab initio molecular dynamics scheme is called Born-Oppenheimer molecular 

dynamics (BOMD). At each MD step, a full self-consistent solution of the electronic 

Schrödinger equation needs to be reached. BOMD was not very efficient in the past 
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due to the time consuming minimization of the Kohn-Sham functionals. Some 

advanced algorithms have been developed to overcome this issue, e.g. 

conjugate-gradient methods [114,115], so that the Born-Oppenheimer method has 

become competitive to the Car-Parrinello method discussed in the next section. 

 

2.2.2 Car-Parrinello method 

  Car-Parrinello molecular dynamics (CPMD) does not require the self-consistent 

solution of the Kohn-Sham equations at every MD step. After reaching the true 

electronic ground state at the very beginning, the electronic wavefunctions will stay 

close to the ground state during the time evolution, if certain criteria are fulfilled. Also, 

there is no need to calculate forces with very high accuracy at each MD step after 

initialization. These advantages made CPMD the method of choice for many years.  

  Car-Parrinello method is achieved by introducing a fictitious dynamics for the 

electronic coefficients. If we expand the Kohn-Sham orbitals 𝜑𝜑𝑖𝑖(𝑟𝑟) in a suitable 

basis set, e.g. a normalized plane-wave basis set,  

                             𝜑𝜑𝑖𝑖 = ∑ 𝑥𝑥𝑖𝑖 ,𝐺𝐺𝑒𝑒
𝑖𝑖𝐺𝐺∙𝑟𝑟

𝐺𝐺  ,                    (2.55) 

the Kohn-Sham functional EKS becomes a functional of the coefficients 𝑥𝑥𝑖𝑖 ,𝐺𝐺. The 

ground state energy can be obtained by minimizing EKS with respect to 𝑥𝑥𝑖𝑖 ,𝐺𝐺 . Instead 

of diagonalizing the Kohn-Sham Hamiltonian matrix iteratively, another optimization 

technique, the so called "simulated annealing" [116], can be applied, and the 

Kohn-Sham functional is minimized by solving a fictitious equation of motion for 

𝑥𝑥𝑖𝑖 ,𝐺𝐺:       

                      𝜇𝜇 𝑑𝑑2

𝑑𝑑𝑒𝑒2 𝑥𝑥𝑖𝑖 ,𝐺𝐺 = −𝜕𝜕𝐸𝐸𝐻𝐻𝐺𝐺
𝜕𝜕𝑥𝑥

𝑖𝑖 ,𝐺𝐺��⃑
∗ + ∑ 𝜆𝜆𝑖𝑖 ,𝑗𝑗 𝑥𝑥𝑗𝑗 ,𝐺𝐺𝑗𝑗  ,                (2.56) 

where 𝜇𝜇 is a fictitious electronic mass (mass times squared length as units) and 𝜆𝜆𝑖𝑖 ,𝑗𝑗  

is Lagrange multipliers (which enforce the wavefunction orthonormality). In this way, 

the electronic system has an additional fictitious kinetic energy (due to the fictitious 

velocities �̇�𝑥𝑖𝑖 ,𝐺𝐺), which can assist the system to overcome the surrounding barriers. In 
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principle, by gradually reducing the fictitious temperature, the system can find its 

global minimum.  

  To unify this fictitious motion with the real motion of nuclei, we need to consider 

the contributions from nuclei, 𝐸𝐸 = 𝐸𝐸𝐻𝐻𝐺𝐺(�𝑥𝑥𝑖𝑖,𝐺𝐺�, �𝑅𝑅�⃑ 𝐼𝐼�) + 𝐸𝐸𝐼𝐼𝐼𝐼(�𝑅𝑅�⃑ 𝐼𝐼�),  

                            𝑀𝑀𝐼𝐼
𝑑𝑑2

𝑑𝑑𝑒𝑒2 𝑅𝑅�⃑ 𝐼𝐼 = − 𝜕𝜕𝐸𝐸
𝜕𝜕𝑅𝑅�⃑ 𝐼𝐼

 ,                     (2.57) 

                       𝜇𝜇 𝑑𝑑2

𝑑𝑑𝑒𝑒2 𝑥𝑥𝑖𝑖 ,𝐺𝐺 = − 𝜕𝜕𝐸𝐸
𝜕𝜕𝑥𝑥

𝑖𝑖 ,𝐺𝐺��⃑
∗ + ∑ 𝜆𝜆𝑖𝑖 ,𝑗𝑗 𝑥𝑥𝑗𝑗 ,𝐺𝐺𝑗𝑗  ,               (2.58) 

with 𝜕𝜕𝐸𝐸
𝜕𝜕𝑥𝑥

𝑖𝑖 ,𝐺𝐺��⃑
∗ = ∑ 𝐻𝐻𝐺𝐺𝐺𝐺′𝐺𝐺′ . Equations (2.57) and (2.58) are called Car-Parrinello equations 

of motion. The motions of the nuclei are generally different from BOMD, but will 

remain close to the BO ones by keeping the fictitious kinetic energy (or temperature) 

small enough during the whole simulation. Very importantly, the initial wavefunction 

must be fully optimized at the very first MD step. To keep the electronic subsystem 

close to the exact Born-Oppenheimer surface, it is very important to prevent any 

possible energy exchange from the "hot nuclei" to the "cold electrons" upon time 

evolution. This can be achieved if the system has a finite energy gap and the fictitious 

mass is sufficiently small. In the limit of small deviations from the ground state 

minimum, the electronic dynamics can be viewed as a superposition of harmonic 

oscillations. It has been shown by Pastore et al. [117] that the electronic frequencies 

are given by,  

                         𝜔𝜔𝑖𝑖 ,𝑗𝑗
(1)~(𝑐𝑐𝑗𝑗 (𝜀𝜀𝑖𝑖∗ − 𝜀𝜀𝑗𝑗 )/𝜇𝜇)1/2 ,                  (2.59) 

                      𝜔𝜔𝑖𝑖 ,𝑗𝑗
(2)~((𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑗𝑗 )(𝜀𝜀𝑖𝑖 − 𝜀𝜀𝑗𝑗 )/2𝜇𝜇)1/2 ,               (2.60) 

where 𝜀𝜀𝑖𝑖∗ indicates the eigenvalue of the i-th unoccupied state and 𝜀𝜀𝑗𝑗  the eigenvalue 

of the j-th occupied state, and fi, fj are the occupation numbers. If the system has a 

finite band gap, one can tune the fictitious mass µ, so as to make the electronic 

frequencies sufficiently large. In fact, if the electronic frequencies are much larger 

than the highest vibrational frequency of the nuclei, 𝜔𝜔𝐼𝐼
𝑚𝑚𝑎𝑎𝑥𝑥 , the electronic and ionic 

motions are decoupled. There is one drawback: the larger the electronic frequency, the 

smaller the time step size. Hence, the typical time steps of CPMD are one order of 

magnitude smaller than those of BOMD. The time step size of CPMD can be 
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significantly improved in the second generation Car-Parrinello method [118] (see next 

subsection). Another drawback of CPMD is the difficulty in dealing with metallic 

systems, where no band gap exists. By employing two different thermostats for ionic 

and electronic subsystems, one can overcome this issue [119].       

  At last, the Car-Parrinello equations of motion can be integrated with the Verlet 

algorithm: 

𝑥𝑥𝑖𝑖 ,𝐺𝐺(𝑒𝑒 + ∆𝑒𝑒) = 2𝑥𝑥𝑖𝑖 ,𝐺𝐺(𝑒𝑒) − 𝑥𝑥𝑖𝑖 ,𝐺𝐺(𝑒𝑒 − ∆𝑒𝑒) − ∆𝑒𝑒2

𝜇𝜇
[ ∑ 𝐻𝐻𝐺𝐺𝐺𝐺′ 𝑥𝑥𝑖𝑖 ,𝐺𝐺(𝑒𝑒) − ∑ 𝜆𝜆𝑖𝑖 ,𝑗𝑗 𝑥𝑥𝑗𝑗 ,𝐺𝐺(𝑒𝑒)]𝑗𝑗𝐺𝐺′ , (2.61) 

                 𝑅𝑅�⃑ 𝐼𝐼(𝑒𝑒 + ∆𝑒𝑒) = 2𝑅𝑅�⃑ 𝐼𝐼(𝑒𝑒) − 𝑅𝑅�⃑ 𝐼𝐼(𝑒𝑒 − ∆𝑒𝑒) + ∆𝑒𝑒2

𝑀𝑀𝐼𝐼
�⃑�𝐹(𝑒𝑒) .         (2.62) 

 

2.2.3 Recent developments of Car-Parrinello method 

  It is very desirable to extend ab initio molecular dynamics simulations up to 

thousands of atoms (few nanometers system size) and long simulation times (few 

nanoseconds) to access new phenomena. BOMD provides large time step intervals but 

requires full minimization of the Kohn-Sham functionals at each time step. CPMD 

does not require such full minimization but is limited by short integration time steps. 

In 2007, Kühne et al. [118] developed a promising algorithm that combines the 

advantages from both BOMD and CPMD. The method is often called "Second 

generation Car-Parrinello method ".   

  Similar to the Car-Parrinello scheme, a propagation of the electronic degrees of 

freedom is used instead of a self-consistent diagonalization of the Kohn-Sham matrix. 

However, the method employs a predictor-corrector scheme to propagate the 

electronic coefficients, instead of solving Car-Parrinello equations of motion. The 

authors have chosen the always stable predictor corrector (ASPC) method, firstly 

introduced by Kolafa [120], for the propagation, which enables long integration time 

steps comparable to BOMD. Up to now, Kühne's method has been successfully 

implemented in the Quickstep code (parts of the CP2K package), where the 

Kohn-Sham orbitals are expanded in a non-orthogonal Gaussian basis. Considering a 

M×N matrix C with the expansion coefficients of the N lowest occupied orbitals with 

respect to the M basis functions, the projector and corrector schemes are constructed 
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as, 

      𝐂𝐂𝑝𝑝(𝑒𝑒𝑚𝑚) = ∑ (−1)𝑚𝑚+1𝑚𝑚 � 2𝐻𝐻
𝐻𝐻−𝑚𝑚�
�2𝐻𝐻−2
𝐻𝐻−1 �

𝐂𝐂(𝑒𝑒𝑚𝑚−𝑚𝑚)𝐂𝐂𝑇𝑇(𝑒𝑒𝑚𝑚−𝑚𝑚)𝐒𝐒(𝑒𝑒𝑚𝑚−𝑚𝑚)𝐂𝐂(𝑒𝑒𝑚𝑚−1)𝐻𝐻
𝑚𝑚=1  , (2.63) 

                𝐂𝐂𝑥𝑥(𝑒𝑒𝑚𝑚) = 𝜔𝜔min[𝐂𝐂𝑝𝑝(𝑒𝑒𝑚𝑚)] + (1 − 𝜔𝜔)𝐂𝐂𝑝𝑝(𝑒𝑒𝑚𝑚) ,           (2.64) 

where S is the M×M overlap matrix of the basis functions, 𝜔𝜔 = 𝐻𝐻
2𝐻𝐻−1

 (𝐻𝐻 ≥ 2), and 

min[𝐂𝐂𝑝𝑝(𝑒𝑒𝑚𝑚)] is a single minimization step of the Kohn-Sham orbitals. The numerical 

coefficients of (2.63) are selected in order to ensure time reversibility up to O(hK+2) 

and ω is properly chosen to ensure a stable relaxation towards the minimum. This 

method is used in combination with the advanced orbital transformation (OT) method 

developed by VandeVondele and Hutter [121].  

  In the Kühne's method, the energy functional is constructed as: 

           𝐸𝐸𝑃𝑃𝑃𝑃[𝜌𝜌𝑝𝑝] = Tr[𝐂𝐂𝑇𝑇𝐻𝐻[𝜌𝜌𝑝𝑝 ]𝐂𝐂] − 1
2 ∫𝑑𝑑

3𝑟𝑟 ∫ 𝑑𝑑3𝑟𝑟′ 𝜌𝜌
𝑝𝑝 (𝑟𝑟)𝜌𝜌𝑝𝑝 �𝑟𝑟′ �

|𝑟𝑟−𝑟𝑟′ |
 

                    −∫𝑑𝑑3𝑟𝑟 𝑉𝑉𝑥𝑥𝑥𝑥 [𝜌𝜌𝑝𝑝]𝜌𝜌𝑝𝑝 + 𝐸𝐸𝑥𝑥𝑥𝑥 [𝜌𝜌𝑝𝑝] + 𝐸𝐸𝐼𝐼𝐼𝐼 ,              (2.65)                

where ρp is the density associated with 𝐂𝐂𝑝𝑝(𝑒𝑒𝑚𝑚) . EPC can be considered as an 

approximation to the Harris-Foulkes functional [122,123].  

  The dynamics of the predictor-corrector scheme is dissipative and the force �⃑�𝐹𝑃𝑃𝑃𝑃  

can be written as �⃑�𝐹𝑃𝑃𝑃𝑃 = �⃑�𝐹𝐵𝐵𝑂𝑂 − 𝛾𝛾𝐿𝐿
𝑑𝑑𝑅𝑅�⃑ 𝐼𝐼
𝑑𝑑𝑒𝑒

, with γD the intrinsic friction coefficient. The 

intrinsic dissipative behavior of the dynamics leads to difficulties in sampling the 

microcanonical ensemble (NVE--constant Number of particles, Volume and Energy). 

By carefully tuning the parameters of the method, it is possible to keep the dissipation 

very small in many cases [118,124]. The method is very useful to sample to the 

canonical ensemble (NVT--constant Number of particles, Volume and Temperature). 

Using a Langevin-type equation (Langevin thermostat [66]), the canonical ensemble 

can be properly sampled:  

            𝑀𝑀𝐼𝐼
𝑑𝑑2𝑅𝑅�⃑ 𝐼𝐼
𝑑𝑑𝑒𝑒2 = �⃑�𝐹𝑃𝑃𝑃𝑃 − 𝛾𝛾𝐿𝐿

𝑑𝑑𝑅𝑅�⃑ 𝐼𝐼
𝑑𝑑𝑒𝑒

+ 𝛯𝛯𝐼𝐼 = �⃑�𝐹𝐵𝐵𝑂𝑂 − (𝛾𝛾𝐿𝐿 + 𝛾𝛾𝐿𝐿) 𝑑𝑑𝑅𝑅
�⃑ 𝐼𝐼
𝑑𝑑𝑒𝑒

+ 𝛯𝛯𝐼𝐼 ,     (2.66) 

where γL is an imposed (i.e. non-intrinsic) friction coefficient, and 𝛯𝛯𝐼𝐼 = 𝛯𝛯𝐼𝐼𝐿𝐿 + 𝛯𝛯𝐼𝐼𝐿𝐿 is 

the total random noise corresponding to the intrinsic and non-intrinsic friction term. 

The random noise has to obey 〈𝛯𝛯�𝐼𝐼(0) �𝛯𝛯𝐼𝐼(𝑒𝑒)〉 = 6(𝛾𝛾𝐿𝐿 + 𝛾𝛾𝐿𝐿)𝑀𝑀𝐼𝐼𝑘𝑘𝐵𝐵𝑇𝑇𝛿𝛿(𝑒𝑒), in order to 

sample the Boltzmann distribution.  
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  In this way, the advantages of BOMD (the big integration time step) and CPMD 

(no self-consistent wave functions optimization at each step) are unified, leading to 

very high efficiency. Another big advantage of the Kühne's method is that its 

applicability does not depend on the energy gap of the systems. The method has been 

proven to be very efficient and accurate in many cases, e.g. liquid water [125], phase 

change materials [26], etc. Kühne's method yields a factor of 20-30 speedup over 

conventional BOMD for systems with 200-300 atoms. Thanks to the GPW scheme 

and the orbital transformation technique, the minimization procedure in the corrector 

scheme can be performed very efficiently for large system sizes. In fact, this method 

scales better than standard plane wave based BOMD and CPMD as a function of 

system size. 

 

2.3 Computational details 

  Two DFT codes are mainly employed in this thesis, namely, CP2K [105,126] and 

Quantum Espresso [127,126]. As mentioned before, CP2K is constructed based on a 

mixed scheme of the Gaussian and plane wave basis sets. In our calculations, the 

Kohn-Sham orbitals are expanded in Gaussian basis sets of triple-zeta plus 

polarization quality, and the charge density is expanded in plane waves, with a cutoff 

of 300 Ry. Scalar-relativistic Goedecker-Teter-Hutter (GTH) pseudopotentials [128] 

and gradient-corrected functionals (GGA-PBE) [97] are used. The hybrid functional 

HSE03 [100] is employed for some electronic property calculations. Only Gamma 

point is used to sample the Brillouin zone, which is sufficient for large supercells. As 

regards molecular dynamics, Kühne's method is used. All of the AIMD simulations 

are performed at constant volume (both NVT and NVE) and a stochastic Langevin 

thermostat is employed for NVT simulations. The change of mass density is achieved 

externally.   

  Quantum Espresso is a standard plane wave code. For most of our simulations, 

scalar-relativistic ultrasoft pseudopotentials [110] are used. In some cases, the 

full-relativistic corrections are considered for the calculation of spin-orbit coupling 
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effects. The generalized gradient approximation (PBE) for exchange-correlation 

potential is used. Both gamma point and the Monkhorst-Pack (MP) mesh [102] are 

considered for samplings of the Brillouin Zone.  
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Chapter 3 Crystalline Phase Change Materials 
 
  To understand the properties of phase change materials, many aspects need to be 

considered: the various phases involved in the phase change cycle (crystalline, liquid 

and amorphous), the kinetic process of amorphization and crystallization, the property 

contrast, the stability of the solid phases at room temperature, etc. I start with the 

discussion of the crystalline phase of PCMs, which is an important part of the phase 

change cycle. Furthermore, this phase is of great interest because some crystalline 

PCMs possess extraordinary electronic properties, which could lead to multilevel data 

storage applications and conceptually new devices based on multi-level resistance 

states [32, 129].  
 

3.1 Overview of crystalline PCMs  

  Group 1 PCMs: pseudobinary GeTe-Sb2Te3 line:  

  In Figure 3.1, GeTe is depicted. It has a rhombohedral (R3m) structure at low 

temperature, which can be viewed as a rock-salt structure with slight distortion along 

the <111> direction, see the left part Figure 3.1. Three short (2.85 Å) and three long 

(3.28 Å) bonds are formed due to the hybridization between p-type orbitals. This 

distortion reduces the total energy, opens a band gap and weakens the resonance 

bonding [19, 20]. It is often referred as Peierls distortion [130]. In the high 

temperature regime, it is believed that a phase transition to the displacive rock-salt 

structure (Fm3m) occurs (shown in the right part of Figure 3.1), however, this picture 

has been challenged by recent Extended X-ray Absorption Fine Structure (EXAFS) 

measurements [131]. The authors argued that the Peierls distortion does not disappear 

but only becomes invisible in the Bragg-diffraction data from 705 K (Curie 

temperature) [132] up to the melting temperature, due to the site averaging effects. 

Interestingly, the Peierls distortion could be detected again by neutron diffractions in 

liquid GeTe [133]. AIMD simulations should be an appropriate tool to tackle this 

issue.   
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Figure 3.1 The crystal structures of GeTe, rhombohedral (left) and rocksalt (right).  

 

 
Figure 3.2 The crystal structure of Sb2Te3  

 

  Sb2Te3 has a rhombohedral geometry (R-3m space group) with five atoms per unit 

cell [134]. It can be better visualized in the conventional hexagonal supercell with 

three quintuple layers (15 atoms per unit), shown in Figure 3.2. Each quintuple layer 
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is separated by a weakly coupled Te-Te layer, where van der Waals forces play a 

dominant role. The atomic arrangement within each layer is depicted in the right part 

of Figure 3.2, and the experimental distance ahex between nearest-neighbor atoms 

within a layer is 4.26 Å [135], suggesting the absence of covalent bonding. The 

atomic positions on each layer can be categorized into three types: A (0,0,0), B 

(2/3,1/3,0), C (1/3,2/3,0) in hexagonal units. A, B and C sites alternate along the 

z-direction.  

  GeSbTe compounds: 

  Popular GeSbTe alloys (GST) are Ge2Sb2Te5, Ge1Sb2Te4, Ge8Sb2Te11 etc., which 

are located in the middle part of the GeTe-Sb2Te3 pseudobinary line. There are two 

main crystal forms for GST under ambient pressure, namely, a metastable cubic phase 

(cub-GST) and a stable hexagonal phase (hex-GST). After rapid crystallization of 

amorphous samples at elevated temperatures, GST is known to form the cubic phase 

with Te atoms occupying one sublattice (anion) and Ge/Sb/Vacancies randomly 

distributing over the other sublattice (cation) (see Figure 3.3). Although cub-GST is 

metastable (hex-GST is lower in energy), it is thermally stable at room temperature 

for decades, which is crucial for data storage applications.   

 
Figure 3.3 The crystal structure of cubic GST 



42 
 

  The high amount of atomic vacancies in cub-GST is a generic feature and the 

underlying mechanism stabilizing these defective configurations has been elucidated 

by Wuttig et al. [10]. By performing ground state DFT calculations, large and 

negative vacancy formation energies were found by the removal of Ge/Sb atoms from 

a hypothetical Ge2Sb2Te4 alloy. This behavior is strikingly different from that of other 

compounds like Si, GaAs, where large and positive vacancy formation energies are 

found. The removal of Te, on the other hand, is energetically very unfavorable. 

Further, a quantum chemistry analysis COHP (Crystal Orbital Hamilton population) 

[136,137] provided a good explanation for this finding: the states at and close to the 

Fermi energy (EF) are energetically unfavorable antibonding states and are mainly 

contributed by 'cationic' Ge/Sb atoms; by creating certain amount of atomic vacancies 

on the cation sublattice, these antibonding states are annihilated and the whole system 

is therefore stabilized. 

  Hex-GST is lower in energy than cub-GST and can be obtained upon long thermal 

annealing of cub-GST at elevated temperatures (many orders of magnitude longer 

than crystallization times). The stacking sequence of hex-GST has been long debated, 

in particular for Ge2Sb2Te5. The unit cell of Ge2Sb2Te5 contains 9 layers and contains 

two weakly coupled Te layers. Three possible stacking sequences have been proposed, 

KH [138], Petrov [139] and mixed [140] (visualized in Figure 3.4): 

-Te-Ge-Te-Sb-Te-vac-Te-Sb-Te-Ge-(KH), 

-Te-Sb-Te-Ge-Te-vac-Te-Ge-Te-Sb-(Petrov),  

-Te-Ge/Sb-Te-Ge/sb-Te-vac-Te-Ge/Sb-Te-Ge/Sb-(mixed). 

  Using the experimental lattice parameters ahex= 4.25Å, c = 17.27 Å [140], the KH 

sequence is found to be the most energetically favorable sequence, although the 

energy difference between the three sequences is not big [141].  

  For hex-Ge1Sb2Te4, the periodicity is 21: 

-Te-Ge-Te-Sb-Te-vac-Te-Sb-Te-Ge-Te-Sb-Te-vac-Te-Sb-Te-Ge-Te-Sb-Te-vac-Te-Sb-. 

A disordered phase with random Ge/Sb occupation is also possible; actually, it is not 

easy to obtain a chemically ordered phase experimentally: for this purpose, very long 

thermal annealing at very high annealing temperature is necessary [142].  
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  Regarding GeTe-rich GST alloys, such as Ge8Sb2Te11, it is very difficult to obtain 

the hexagonal phase experimentally. More information can be found in Ref [143]. 

 

Figure 3.4 The crystal structures of hexagonal Ge2Sb2Te5. Ge, Sb and Te atoms are rendered 

with grey, yellow and green spheres. 

 
  Besides these two crystalline forms, layered superlattice-like structures, such as 

interfacial PCMs [28], cubic superstructures [144] and other layered-like superlattices 

[145], have been synthesized for GST under different experimental conditions. Under 

very high pressure (15 Gpa), GST can transform into a bcc phase with high 

coordination number 8 [146,147]. A very recent theoretical work predicts another type 

of bcc phase under high pressure [148]. 

  Group 2 and group 3 PCMs: 

  The parent phases of these two groups of PCMs are, respectively, a) Sb-Te 

compounds near the Sb2Te composition and b) pure Sb. Both systems have to be 

doped to raise their crystallization temperature (which, for Sb2Te, is 103 oC; for Sb, it 

is below 30 oC). Their crystalline structures are shown in the left part of Figures 3.5 

and 3.6. Sb2Te has a trigonal structure with the symmetry P-3m1 [149]. It consists of 

periodically repeated nonuple layers, which can be viewed as a combination of one 
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Sb2Te3 quintuple slab and 4 layers of pure Sb. The atomic distribution on each layer is 

similar to that of Sb2Te3 with ahex = 4.272 Å, however, no weakly coupled layers are 

found in this case. Pure Sb also has a trigonal cell with the periodicity of six, known 

as A7 structure, with ahex = 4.307Å.  
 

 
Figure 3.5 The crystal structures of Sb2Te and AIST 

 
Figure 3.6 The crystal structures of pure Sb and Ge15Sb85 

 
 



45 
 

  By introducing a few percentages of dopants like Ag, In, Ge, etc. into the system, 

both systems (after crystallization from the amorphous phase) form an A7 like 

structure, where the different types of atoms are randomly distributed over the 

crystalline lattice [43,150], as sketched in the right part of Figures 3.3 and 3.4. The 

most representative group 2 and 3 PCMs are AIST and Ge15Sb85.  

  Unconventional PCM In3Sb1Te2: 

  Compared to all the PCMs mentioned above, which roughly possess 3 valence p 

electrons per atom/site on average, In3Sb1Te2 is rather unconventional, in that it has 

only 2.3 valence p electrons per atom. The crystalline phase is rock-salt: In atoms take 

one sublattice, while Sb and Te atoms randomly occupy the other sublattice in this 

compound. This phase is shown in Figure 3.7.  
 

 
Figure 3.7 The crystal structure of In3Sb1Te2 

 
  The density of PCMs mentioned above is summarized in appendix A. 
 

3.2 Charge transport and metal insulator transition  

  To understand and tailor charge transport in crystalline solids is a very important 

challenge for physics, materials science and engineering. The electrical resistivity 

serves as a key parameter to characterize solids with different transport properties. 

Two different types of solids can be defined: metals and insulators. In the limit of zero 
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temperature, a metallic solid possesses a finite resistivity, while the resistivity of an 

insulating solid diverges. The temperature coefficient of the resistivity dρ/dT (TCR), 

is also often used to distinguish between metallic (dρ/dT >0) and insulating (dρ/dT <0) 

solids in experiments.  

  Studying solids that undergo a Metal-Insulator-Transition (MIT) is a very 

interesting topic. Besides MITs induced by crystallographic transformations, two 

well-known mechanisms can lead to such transitions, namely Anderson localization 

[151] and Mott transition [152]. According to Anderson, strong disorder can localize 

electronic states at the Fermi energy (EF), which triggers the transition to an insulating 

state. Mott instead emphasized the role of electron correlations: if the correlation 

energy exceeds the Fermi energy, a MIT occurs.  

  These two concepts differ significantly from the theoretical point of view, however, 

in practice, it is very challenging to separate them experimentally. Doped crystalline 

semiconductors, in particular phosphorus doped silicon [153,154,155], have been a 

rich playground to study electronically driven MITs. By doping silicon with one 

phosphorus atom, the system gains one more p electron, which is localized around the 

phosphorus atom with a large localization length (~5 Å). If the concentration of P 

atoms is small, the system is an insulator due to the localization of the excess 

electrons. The gradual increase in the concentration of the phosphorus atoms 

eventually changes the behavior of the system from insulating to metallic. This MIT 

can partially be explained by the Mott mechanism, i.e. the increase of carrier 

concentration reduces the difference between electron-correlation and Fermi-energy. 

However, disorder effects due to the random distribution of phosphorus atoms cannot 

be ignored.  

  Many theoretical methods have been developed to gain an understanding of MITs, 

both Mott type [156,157,158] and Anderson type [159,160,161,162] MITs. Most of 

them are based on model systems, owing to the challenges in modeling real solids. 

Density functional theory can describe the structural and electronic properties of real 

solids accurately, thus it can be a very appropriate platform to study MITs. However, 

to model the full insulating to metallic transition in doped semiconductors like P 
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doped Si, several hundreds of thousands of atoms are needed, due to the relatively low 

critical carrier concentration, nc = 3.8 × 10-18 cm3, which is beyond the capacity of the 

present DFT codes. However, this situation may change in the near future, since the 

development of supercomputers is explosively rapid [61] and DFT codes are already 

being developed and optimized on peta-scale supercomputers, such as Blue Gene. 

DFT codes, such as cp2k [104,126] and KKR-Nano [163,164], have the potential to 

allow investigations of systems containing up to one million atoms. 

  Recently, T. Siegrist et al. have found strong evidence for disorder-induced 

localization in crystalline GeSbTe compounds by a series of transport measurement 

[32]. The measurements show that typical carrier concentrations are of the order of 

2×10-20 cm3, which corresponds to one charger carrier per 150 atoms. It is highly 

desirable to study the localization and the subsequent transition to the metallic state 

using DFT. To capture the essence of localization, models containing several charge 

carriers are needed, which correspond to a few thousands of atoms. Such system sizes 

are now feasible for DFT methods. Moreover, unlike doped semiconductors, the MIT 

in crystalline GeSbTe alloys occurs at a fixed stoichiometry, so that a direct 

comparison of the total energies before and after the MIT can be made through DFT 

simulations. A set of models containing different degrees of disorder at the same 

stoichiometry has been generated and studied by DFT in this thesis. The origin of 

localization has been identified.   

 
Figure 3.8  Adapted from Ref. [32]. The annealing effects on the sheet resistance of Ge1Sb2Te4 is 

shown in the left figure. In the right figure, the non-metallic to metallic transition region is 

highlighted, and three other GeSbTe compounds are included.   
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  Before discussing the theoretical findings, the transport experiments are briefly 

reviewed. In the left part of Figure 3.8, the annealing effect on the resistivity of 

Ge1Sb2Te4 is shown. As-deposited thin-film amorphous Ge1Sb2Te4 was heated up to 

160 oC, at which the crystallization occurred and the resistivity droped significantly. 

The crystallized phase entered the metastable cubic phase, and upon gradually 

annealing at higher and higher temperatures, the cubic phase was transformed into the 

stable hexagonal phase. The two crystalline structures have been discussed in the 

previous section. The resistivity measured at room temperature changed gradually as a 

function of the annealing temperature. The resistivity of the initial cubic state was 

almost 3 orders of magnitude larger than that of the final hexagonal state. The 

low-temperature measurements down to 5 K showed that the sign of the TCR 

switched from negative to positive upon increasing the annealing temperature, 

indicating that a MIT took place: the resistivity of insulating samples diverged at low 

and the resistivity difference with respect to the conducting samples increased to 6 

orders of magnitude at T = 5 K (see Figure 3.9).  

 

 

Figure 3.9 Adapted from Ref. [32]. Resistivity measurements of Ge1Sb2Te4 films down to 5 K. 

  Similar transport measurements have been performed for other GeSbTe compounds, 

namely Ge3Sb2Te6, Ge2Sb2Te5, Ge1Sb4Te7, and all of them showed a MIT upon 

annealing, see the right part of Figure 3.8. Therefore, such behavior is generic for the 
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compounds in the middle part of the GeTe-Sb2Te3 pseudobinary line.  

  It turns out that the structural transition from the cubic to the hexagonal state was 

not the origin for the MIT, since the MIT took place in the hexagonal phase. From 

Figure 3.8 left, one can observe that the TCR changed its sign at about 275 oC, 

whereas the crystallographic transition occurred at 225 oC. Combining Hall effect, 

optical spectroscopy (FTIR and ellipsometry), low-temperature van der Pauw and 

X-ray diffraction experiments, the charge-carrier density and mobility could be 

measured. Upon annealing, the carrier density changed only by a factor of 3, whereas 

the carrier mobility increased by more than a factor of 100. So the change of carrier 

mobility is expected to be responsible for the pronounced change in the electrical 

resistivity and for the MIT.  

  The mean free path λc has been determined from the van der Pauw and Hall 

measurements. At the transition point, λc is measured to be 8.6 Å, whereas for the 

sample obtained by the highest annealing temperature, λc is 21.3 Å. Both of them are 

very small compared to the typical grain size, which is 200 Å. Hence grain boundary 

effects can be ruled out as the main scattering mechanism here.  

  So now there are only two possibilities for the MIT, electron correlation (Mott 

transition) or disorder-induced localization effects (Anderson transition). In GST 

compounds, such as Ge1Sb2Te4, a very high static dielectric constant ɛst 98 is found 

[20], which is the direct consequence of resonant bonding. The high dielectric 

constants screens the charge-carrier interactions efficiently, in other words, electron 

correlation effects are very small in crystalline GST. The only possibility left is the 

disorder-induced localization.  

 

3.3 Theoretical modeling of Anderson localization  

  In crystalline GST, there are various sources of disorders: a high amount of 

randomly distributed vacancies, local atomic distortions, compositional disorders, 

grain boundaries, etc. In collaboration with Thiess et al., we have clarified the role of 
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the different sources of disorders and we have identified the origin of localization by 

employing very large scale DFT simulations [163]. 
 
3.3.1 The origin of localization -- vacancy clustering  

  I start with the discussion of the cubic phase, where the model is fully disordered, 

despite the fact that MIT is demonstrated to occur in the hexagonal phase by 

experiments. Later we will prove that the underlying mechanism of localization is the 

same for both phases. As mentioned previously, the grain size is of the order of 200 Å 

for cubic Ge1Sb2Te4, while the electron mean free path is shown to be of the order of 

10 Å, indicating that the lattice disorder is much more important than grain 

boundaries in inducing localization.  
 

 
Figure 3.10 Metastable cubic Ge1Sb2Te4 built in (a) a conventional cubic lattice and (b) an 

orthorhombic supercell with its z-axis parallel to the (111)-direction of (a). Ge, Sb, the atoms 

and Vac sites are rendered with grey, yellow, green and red spheres. 

  

  We consider models of GST containing 1000-4000 atomic sites, which are 

sufficiently large to observe electron localization. If smaller models were employed, 

with supercell parameters comparable to the typical electron localization lengths, the 

relevant electron wavefunctions would look extended (i.e. spreading over the whole 

supercell). On the other hand, the localized states can be clearly distinguished from 
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delocalized states in our supercells. Here we consider two kinds of supercell, namely 

a conventional cubic supercell, and an orthorhombic supercell with its z-axis parallel 

to the (111) direction of the cubic supercell. In both cases, the cation sublattice is 

randomly occupied by Ge/Sb/Vac. The hexagonal supercell has some advantages with 

respect to the cubic one when studying structural transformations and metal-insulator 

transitions. The two models are depicted in Figure 3.10.  
 

 
Figure 3.11 The local density of p states on the Te, Ge and Sb sites. Different colors are used 

to distinguish between (Ge/Sb) Te atoms with different number of (fourth) nearest-neighbor 

vacancies, (pVac) nVac. The average LDOS is shown as a thick line in the corresponding color.  

  In the first step, we only calculate the electronic properties of the models 

self-consistently, without considering atomic distortions from the ideal lattice sites. It 

has been shown that p orbitals govern the electronic properties of PCMs at EF [16], so 

we focus on the local density of states (LDOS) of p orbitals of each atomic site. From 

this analysis, we find the LDOS is mostly affected by the distribution of vacancies in 
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the neighboring shells. The LDOS of Te atoms turns out to be more sensitive to the 

local vacancy distributions than the LDOS of Ge/Sb, since Te atoms have direct 

vacant neighbors in the first neighbor shell, whereas Ge/Sb have vacant neighbors at 

the second neighbor shell. An analysis of s and d states near EF can be found in [163], 

where they are shown to be irrelevant for the electron localization.  

  We define different types of Te atoms by considering the number of vacancies in 

the first shell, namely, nVac =0,1,...,6. Similarly, for Ge/Sb, the second neighbor shell 

is considered, pVac =0,1,...,6. The LDOS of each atom and the LDOS averaged over 

all Te atoms of a given type (thick lines) are shown in Figure 3.11 for a 1000-site 

model, Ge125Sb250Te500Vac125. A striking dependence of the LDOS of Te atoms with 

respect to nVac has been found. The larger the nVac, the larger the LDOS at and below 

EF. For nVac = 0, a minimum of the LDOS around EF is observed, due to the fact that 

the p orbitals of Te atoms hybridize with nearby Ge/Sb atoms. However, in the 

presence of vacancy neighbors, the hybridization is reduced, and the corresponding 

LDOS of the p orbitals of Te atoms is shifted towards higher energies. The more 

vacancies are present around a Te atom, the larger the energy shift is. In particular, a 

pronounced peak appears near EF for Te atoms with 3 or 4 vacant neighbors. To 

further quantify this effect and gain better statistics, we plot the averaged LDOS at EF 

as a function of nVac (shown in the inset), based on the 4000 site model 

Ge500Sb1000Te2000Vac500. The curve clearly reveals the sharp increase of LDOS as nVac  

increases. Since the shift in the LDOS peak depends almost exclusively on nVac, the 

LDOS can change dramatically from one Te to the next in the real space. In a spatial 

region with a high amount of vacancy (which we call vacancy cluster later on), many 

Te atoms have nVac = 3 or 4, thus the LDOS near EF will be very high inside vacancy 

clusters. Therefore vacancy clusters are expected to induce spatially localized 

electronic states near EF.   

  The LDOS dependence with respect to vacant neighbors, i.e. the next-nearest 

neighbor sites mVac and the fourth nearest neighbor sites pVac, are much weaker for Ge 

and Sb atoms. Interestingly, pVac turns out to have a stronger effect than mVac due to 

the strong directional nature of bonding between p states. For Ge and Sb with pVac =0, 
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a large peak above EF is present, which is reduced and shifted to higher energies when 

pVac increases. Overall, the effect on the LDOS of Ge and Sb is one order of 

magnitude smaller as compared to the LDOS of Te sites.  

  In summary, the shift due to the change of nearby vacancy neighbors affects the 

occupied peak on Te sites corresponding to bonding states, while on Ge and Sb sites 

the unoccupied anti-bonding states are shifted. The effect is much more pronounced 

on Te atoms than Ge, Sb atoms in affecting the electronic properties at EF, which are 

responsible for transport properties. Note, the above LDOS analysis is done by A. 

Thiess using KKR Nano.    

  

 
Figure 3.12 The averaged LDOS for Te sites in the disordered cubic phase (denoted 

Cub-25%), before and after relaxation. LDOS are averaged over all the sites having the same 

number of nearest neighbor vacancies, nVac. 
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  Now we consider the effects of atomic relaxation. We switch to the supercell 

depicted in Figure.3.10 (b), which is more convenient to study the structural transition 

and the MIT. We relax the atomic positions and calculate the electronic structure of 

the models with GGA (PBE) functionals using cp2k. The LDOS averaged over atoms 

with a given nVac is plotted for both the unrelaxed and the relaxed models in Figure 

3.12. From (a) we can learn that this model is totally equivalent to the previous one, 

and also the LDOS trends do not depend on the functional. After atomic relaxations, 

the LDOS trends with respect to nVac still hold, i.e. the occupied peak of the LDOS 

below EF increases and gets closer to EF for large nVac. Moreover, the relaxation opens 

up a small band gap of 0.12 eV just above EF. The band gap further increases by 

considering hybrid functional corrections to the GGA functionals, see the following 

subsection.  

 

 

Figure 3.13 The density of state and the inverse participation ratio of Cub-25%. 
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  We have already found convincing evidence that in the cubic phase a high density 

of Te p states is created at EF due to vacancy clusters: the corresponding states are 

expected to be well localized. To prove it, we perform the inverse participation ratio 

(IPR) analysis. The IPR of a Kohn-Sham eigenstate Ψα is defined as  

                            𝐼𝐼𝑃𝑃𝑅𝑅 ≡ ∑ |𝛹𝛹𝛼𝛼 ,𝑖𝑖|4
𝑖𝑖

(∑ |𝛹𝛹𝛼𝛼 ,𝑖𝑖|2𝑖𝑖 )2                        (3.1) 

where Ψα,i are the expansion coefficients of the state with respect to the localized 

Gaussian-type orbitals (GTOs) forming the basis set (see Chap. 2) and i runs over all 

the GTOs. For a localized state, the IPR is finite and provides an estimate for the 

inverse of the localization length. On the contrary, the IPR is zero (in an infinitely 

large system) for an extended state.  

  The IPR and DOS of the 1152-sites cubic model (Cub-25%) is plotted in Figure 

3.13. The typical IPR values of the states around EF are of the order of 1.5–4.4×10−2. 

These values are an order of magnitude larger than those of the extended states 

located deep in the valence band. The typical IPR values of these extended states are 

smaller than 2×10−3, which reveals that the electronic wavefunctions of these states 

spread over the whole supercell. These numbers also explain why very large models 

are necessary to distinguish between localized and extended state. The IPR value 

1.5–4.4×10−2 indicates that, in this fully disordered cubic Ge1Sb2Te4 model, the 

typical localization region of the states around EF covers 25-60 atoms.   

  To better visualize the shape of the localized states, we plot an isosurface of the 

Highest Occupied Molecular Orbital (HOMO) state, shown in Figure 3.14. The blue 

surfaces mark the localization region, and the vacancy concentration inside this region 

is particularly high, 200% higher than in the other region, which is in line with our 

previous analysis. Assuming that the distribution of vacancies is totally uncorrelated, 

vacancy clusters correspond to low-probability, local fluctuations, where the 

concentration exceeds its average value. Although vacancy clusters are energetically 

unfavorable, their presence cannot be avoided at low annealing temperatures.  
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Figure 3.14 The plot of the HOMO state of the disordered cubic model of GST. Vacancy 

voids are rendered with big red balls. Isosurfaces render a value of 0.012 a.u.  

 

 

Figure 3.15 The charge density of the localized HOMO state calculated at several y-z planes 

corresponding to several x values (rendered with different colors). 
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  The electronic states shown in Figure 3.14 are localized in a finite spatial region. 

Outside this region, the electron wavefunctions decay exponentially. We plot the 

charge density of the localized state calculated for several y-z planes corresponding to 

different values of x (see Figure 3.15). The rapid decays of the charge density are 

observed at 0.012 (a.u.) for all the planes. Therefore, the isovalue we used in Figure 

3.14 is reasonable.  

 

 
 

Figure 3.16 The two plots are snapshots of the HOMO state of two disordered cubic GST. 

Isosurfaces render a value of 0.012 a.u. Vacancy voids are rendered with big red balls.  

 

  To further study the correlation between localization and vacancy clustering, we 

generate two additional models with big vacancy clusters manually (see Figure 3.16). 

The two models contain a cluster of 30 and 15 vacancies, respectively. Certainly the 

vacancy concentration is at least 200% larger than in the other region. We plotted the 

HOMO state of the two models and found the electron wavefunctions are well 

localized inside these vacancy cluster regions. As expected, the larger the vacancy 

cluster is, the larger the localized radius of the corresponding state.  

  We can conclude that vacancy clusters are the origin of localization in the early 

annealed cubic Ge1Sb2Te4 sample. This localization mechanism is expected to hold 
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for other cubic Ge1Sb2Te4 samples upon subsequent annealing and some of hexagonal 

Ge1Sb2Te4 samples. Moreover, it is expected to be universal for other GST 

compounds.  
 
 
3.3.2 Non-stoichiometric excess vacancies  

  It is well known that non-stoichiometric excess vacancies are invariably present in 

the crystalline GST and turn it into a p-type degenerate semiconductor [165]. In Ref 

[166] it is shown that the formation energies (Eform) of Sb and Ge vacancies in 

Ge2Sb2Te5 are relatively low (Eform of Sb vacancy is even lower), while that of Te 

vacancy is high. So it is well possible that additional vacancies form on the cation 

sublattice of the system. From the experimental values of the carrier concentration 

(typically 1-2 × 1020 cm-3), the amount of excess vacancies is of the order of 0.1-0.2%, 

which corresponds to 1-2 additional vacancies in our models.  

 

 

Figure 3.17 The density of state and the inverse participation ratio of disorder GST with two 

excess Sb vacancies.  
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  We considered two excess Sb vacancies and studied localization properties. In 

Figure 3.17, the IPR and DOS are plotted. We can observe that although the Fermi 

level is shifted towards the valence band, it still lies in the region of localized states. 

Thus, we can conclude the vacancy clustering is the origin of localization in 

crystalline GST compounds. 

 

3.3.3 Hybrid functional corrections and spin-orbit coupling effects  

  Hybrid functional corrections usually describe better the electronic properties in 

GST system, in particular the band gap. We employed HSE03, as used in Ref. [166], 

for our cubic Ge1Sb2Te4 model. It turns out that the band gap increases to 0.23 eV, 

which is still smaller than the experimental value 0.5 eV. The IPR and DOS are 

depicted in Figure 3.18, and the localization turns out to be even stronger than the one 

produced by GGA functional. Moreover, the spatial shape of the localized state is 

very similar to that of GGA functional. The HOMO state is plotted in Figure 3.19, and 

compared to Figure 3.14 the changes are negligible.      

 

 
Figure 3.18 The density of state and inverse participation ratio of disorder GST calculated 

with hybrid functional corrections (HSE03).  
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Figure 3.19 Plot of the HOMO state of the disordered cubic model of GST with hybrid 

functional corrections (HSE03). Isosurfaces render a value of 0.012 a.u.  

 

  The spin-orbit coupling (SOC) is known to be important for heavy elements. In 

some cases, SOC changes the electronic structure significantly [55,167]. Therefore, it 

is useful to check the SOC effects on the localization property in GST. Due to the 

high computational cost of the SOC effect, usually the affordable system size is 

around a few hundreds of atoms. However, as we wrote before large supercell is 

necessary to observe localization. So it is challenging to generate a GST model that 

fulfills both criteria. We need to minimize both the size of the model and the size of 

the localization region.   

  We consider a GeTe-rich GST model, Ge9Sb2Te12, with 276 atoms and 12 

vacancies in total. The vacancies are arranged to form a cluster. The model is relaxed 

and its electronic structure is calculated at the GGA level firstly. The IPR and DOS 

are shown in Figure 3.20. The states around EF are localized and the HOMO state is 

plotted in Figure 3.21. Next we include the SOC effect in this relaxed model. Since 

the SOC is not implemented in cp2k, we use another DFT code, called Quantum 
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Espresso [127, 168]. The IPR and DOS with inclusion of SOC is drawn in Figure 3.20. 

One could see the localization near EF is hardly changed. Besides, the spatial 

distribution of the electron wavefunction is also very similar to that of the GGA one 

for the HOMO state, Figure 3.21. Therefore spin-orbit effects do not affect the 

localization of wavefunctions near the Fermi level. 

   

 
Figure 3.20 The inverse participation ratio and the density of states of Ge9Sb2Te12 

    

Figure 3.21 Plots of the HOMO state of the Ge9Sb2Te12 with (left) and without (right) 

spin-orbit effects. Isosurfaces render a value of 0.012 a.u. 
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  Up to now, we can conclude that the origin of localization in GST compounds is 

vacancy clustering and is independent from the functionals (LDA, GGA, hybrid 

HSE03) as well as SOC effects.    
 

3.4 Theoretical modeling of Anderson MIT 

  The remaining crucial task is to study the transition to metallic state and the role of 

disorder. I start with the discussion of vacancy diffusion in the cubic phase, which 

triggers the construction of a set of models that could describe the insulating to 

metallic transition. Next by comparing the model with experiments, both the 

structural transformation and metal-insulator transition are identified. Finally, the 

effects of non-stoichiometric excess vacancies are discussed. 
 
3.4.1 Vacancy diffusion in cubic phase 
  The final structure of GST upon thermal annealing is in hexagonal symmetry, 

which is layered-like structure. In comparison to the orthorhombic cubic model, one 

observes the similarity between the cubic and hexagonal phase. Exchanging the 

vacancy with the Ge/Sb atoms from the next nearest cation layer (fourth nearest 

neighbors) continuously seems to be a solution for the structural transformation. So it 

is useful to estimate the energy barrier for this vacancy diffusion process. 

  We performed NEB (nudged elastic band) [169,170] simulations to study this 

energy barrier. A much smaller model containing 84 atoms was constructed and 

further relaxed at 0 K. As shown in Figure 3.22 (a), the vacancy was exchanged with 

three nearby atoms, Ge, Sb and Te. The transition paths are plotted in Figure 3.22 (b). 

After exchanging Ge or Sb with the vacancy (Vac-Ge/Sb diffusion), the system 

gained energy, while after exchanging Te with the vacancy (Vac-Te diffusion) the 

system losed energy. In principle, this total energy variance depends on the statistical 

samplings, it is well possible that the system becomes slightly energetically 

unfavorable after Vac-Ge/Sb diffusion, but we do not expect the very large energy 

lose like Vac-Te diffusion in any statistical sample, since in the latter case, the system 

forms six energetically very unfavorable Te-Te bonds after vacancy diffusion. The 
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transition barriers for Ge and Sb are 0.84 and 0.74 eV respectively. Of course, the 

energy barriers also depend on the local chemical environment, but the general trend 

should be the same, i.e. Vac-Sb/Ge diffusion occurs rather than Vac-Te diffusion.  

 

 
Figure 3.22 (a) fully relaxed cubic GST model and three transition paths (b) NEB 

calculations of the three transition paths. 
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Figure 3.23 AIMD simulations of Cub-25% at 500oC. Ge, Sb and Te atoms are marked with 

small grey, yellow and green spheres. Two Sb atoms that undergo the Vac-Sb diffusion 

process are highlighted with bigger yellow spheres.  

 

  At high temperature, thermal effects can assist this diffusion process. On the one 

hand, the atoms become very mobile and can visit much larger spatial regions, the 

statistical motions can reduce the energy barrier at certain points. On the other hand, 

thermal effects directly provide energy for the transition. To further support the 

vacancy diffusion mechanism, we performed AIMD simulation at very high 

temperature for the cubic GST model. The typical AIMD simulation time scale is of 

tens to hundreds of picoseconds, therefore, to simulate the slow annealing process 

(hours-days) at relatively low T, e.g. 200 oC, is not possible. Therefore, we increase 

the annealing T to be very high (500 oC) to accelerate the annealing process. Within 

only 30 ps at 500 oC, we have already observed two Vac-Sb diffusion processes. 
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Several snapshots are given in Figure 3.23. The two Sb atoms are rendered with big 

spheres. The AIMD simulation is in line with the result obtained from NEB 

simulations, which show Vac-Sb diffusion occurs firstly, although the statistics is 

rather poor. 

 

3.4.2 Modeling of MIT 

  Since it is not feasible to simulate the whole annealing process, we construct 

several models mimicking this long time process and compare them with 

experimental X-Ray Diffraction (XRD) patterns. As discussed before, cubic 

Ge1Sb2Te4 is constructed in an orthorhombic supercell with its c-axis parallel to 111 

direction of the conventional cubic supercell, each cation layer is randomly occupied 

by 25%Ge 50% Sb 25% Vac (Cub-25%, Figure 3.24 (a)). The number of layers is 24, 

a multiple number of the periodicity 6 in the cubic phase, which is intended to fit to 

the hexagonal case, a 21 periodic layered structure, including 6 weakly coupled Te 

layers (we refer to the "vacuum region" between the two weakly coupled layers as 

vacancy layer later on).   

  Using a set of 1008-atoms models we could describe the structural transition from 

cubic to hexagonal phase. Starting from Cub-25%, by moving Ge and Sb from every 

fourth cation layer to the vacant sites in other cation layers, the number of vacancies 

in every fourth cation layer increases. For instance, the structure Cub-50% is plotted 

in Figure 3.24 (b), the three target cation layers have 24 vacancy sites on each layer. 

Meanwhile, we consider the rest of layers as three blocks (7 layers per block, clearer 

in Figure 3.24 (c)), and by shifting them in the [1,-1,0] direction by √3/3 ahex and 

2√3/3 ahex respectively, the hexagonal stacking is obtained. This shift could be 

performed for any percentage of the vacancy layer formation, however, only when the 

vacancy concentration is sufficiently high, e.g. 75%, the hexagonal stacking becomes 

energetically more favorable. Hex-75% is shown in Figure 3.24 (c). By moving the 

remaining Ge/Sb atoms from target layers to the remaining vacant sites in the three 

blocks, three vacancy planes are formed (Hex-100%a-d). In Hex-100%-a, there is still 
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compositional disorder made by Ge and Sb atoms. Further swapping of Ge/Sb atoms  

reduces the compositional disorder (Hex-100%-b and Hex-100%-c) and finally a 

perfect hexagonal Ge1Sb2Te4 is formed (Hex-100%-d, Figure 3.24 (d)).   

 
Figure 3.24 Supercells of GST (a) Cub-25%, (b) Cub-50%, (c) Hex-75% and (d) Hex-100%d. 

Small red spheres indicate the vacant sites.  
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  We employ the experimental lattice parameter a = 6.03 Å for cubic Ge1Sb2Te4. The 

equivalent orthorhombic unit cell has aortho= 7.385 Å, bortho = 4.264 Å, cortho = 13.926 

Å. The final cell parameters of the supercell are A = 29.541 Å, B = 25.583 Å and C = 

41.777 Å. For the hexagonal models, we use the lattice parameters ahex=4.272 Å and c 

= 41.686 Å (c is along the z-axis).The parameters of the corresponding orthorhombic 

supercell are A=29.598 Å, B=25.633 Å and C = 41.686 Å. 

 

 
Figure 3.25 The calculated and experimental x-ray diffraction pattern of cubic and hexagonal 

GST. The calculated pattern were obtained from the 4 models shown in Figure 3.24. 

 

  After the full atomic relaxation of all the models mentioned above, we simulated 

their XRD patterns and compared to the experimental XRD patterns measured for 

differently annealed samples, shown in Figure 3.25. The measured XRD patterns do 

not change significantly over samples annealed from 150 oC to 210 oC, and the one 
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annealed to 177 oC is shown in Figure 3.25. Similarly the XRD patterns within the 

hexagonal stacking (annealed above 270 oC) also do not change much, the one 

annealed to 452 oC is shown. Apparently, our cubic and hexagonal models compare 

very well with experiments. Models having the same stacking sequence but different 

distribution of Ge,Sb and vacancies yield very similar XRD pattern. In other words, 

the ordering of vacancy on the cation layers do not change the XRD pattern directly.  

  The experimental diffraction patterns are measured using CuK-α x rays in grazing 

incidence geometry on films of 750 nm thickness. For better comparisons with 

calculated diffraction patterns, they are divided by the Lorentz-Polarization factor. 

Both experimental and simulated XRD patterns are done by Zalden and co-workers 

[142,129]. 
 

 
Figure 3.26 Total energy difference of GST models with respect to Hex-100%-d. The insets 

are 1/3 in c-axis of the models shown in Figure 3.24 

 
  In Figure 3.26, the total energy difference of the whole set of models (with respect 

to Hex-100%-d) is shown, which clearly shows a trend of energy gain upon the 

reduction of disorder. In the left part of Figure 3.26, models with cubic stacking are 
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shown, the atomic vacancies become gradually ordered, indicating the formation of 

vacancy layers in the system. The models from Cub-75% until Cub-100% probably 

do not exist in the annealing experiments, since the system finds lower energy 

configurations in the hexagonal stacking sequence. Energy differences between cubic 

and hexagonal arrangements are relatively small, of the order of 5-7 meV per atom. 

The formation of vacancy layers yields the largest energy reduction, of the order of 50 

meV per atom. These findings show that the structural transition from cubic to 

hexagonal phase is driven by the ordering of vacancies and takes place before the full 

vacancy planes are formed. After the formation of vacancy layers, the system could 

still gain energy by further reducing the compositional disorder, shown in the right 

corner of Figure 3.5.5. This can be achieved by long thermal annealing at very high 

temperatures. Since at high temperatures, entropy effects play an important role, 

which can be larger than the energy difference between the (compositionally) 

disordered hexagonal phase and the ordered one. Therefore, the substitutional disorder 

on the Ge/Sb layers might not be completely removed thermal annealing [142]. Note 

the points in Figure 3.5.5 that contain disorder are averaged over four different 

samples. Further relaxations of the supercell lattice parameters do not change the 

energy trend qualitatively, the maximum change is 3 meV per atom. 

  Subsequently, we have investigated the electronic structure of these models in 

terms of IPR introduced before. Near the Fermi energy, Cub-25%, Cub-50%, 

Hex-75% and Hex-87.5% show large values that suggest localization of electron 

wavefuctions. The reduction of IPR values at EF suggests the increase of localization 

length. The localization in the hexagonal phase is similar to that of the cubic phase: 

the LDOS and HOMO state of the relaxed Hex-75% is shown in Figure 3.28. When 

approaching the end of vacancy layers formation, the MIT occurs. The IPR values of 

Hex-100% a-d are below 2 × 10-3, suggesting delocalization of the electron 

wavefunction, i.e. the metallic state is formed. The HOMO state of Hex-100%-d is 

shown in Figure 3.29. It is very delocalized along the x-y plane.  
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Figure 3.27 The inverse participation ratio of various models plotted in Figure 3.26 

 

 

Figure 3.28 Local density of p states of Te sites as function of nVac for Hex-75%. 

 

  From Figure 3.27, we observe that the localization to delocalization takes place 

after 87.5% vacancy layer formation in the hexagonal phase. The observation of 

localization becomes more and more difficult when approaches or enters this critical 

region, i.e. the localization length becomes comparable to or even exceeds the size of 
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the supercells we considered here. Much larger models are needed to describe the 

critical region, which might be achieved in the future with the support of much 

powerful supercomputing computers and DFT codes. 

  To assess the effect of compositional disorder on the localization properties, we plot 

the HOMO state of Hex-100%-a in Figure 3.30 (a): this structure has been proposed 

by Matsunaga et al. in 2004 [171]. From the shape of electron wavefuntion as well as 

the IPR value in Figure 3.27, it is clear that the electronic states of the system near the 

EF are extended. Therefore, compositional disorder alone cannot induce localization. 

  Interestingly, we also calculated the IPR of Cub-100% and its HOMO state (Figure 

3.30 (b)): it also shows delocalization. Although this state does not exist under 

standard experimental conditions, it might be formed under more complicated 

experimental environment. For example, some recent experiments show the 

possibility to obtain such state by synthesizing the film by MBE on Si-111 surface 

[144].   

 
Figure 3.29 Snapshots of the HOMO state of Hex-100-d%. Isosurfaces render a value of 

0.002 a.u. 
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Figure 3.30 (a) and (b) are snapshots of the HOMO state of Cub-100% and Hex-100%-a 

containing full vacancy layers and a large amount of compositional Ge/Sb disorder. 

Isosurfaces render a value of 0.002 a.u.  

 

  In summary, the analysis of the set of models provides a clear picture of the 

structural transition and the Anderson MIT upon thermal annealing on GST 

compounds. Both of them are driven by vacancy ordering, and the structural transition 

takes place well before the MIT, in line with the experiments showing that MIT 

occurs in the hexagonal phase [32]. Despite the same driving mechanism, the two 

transitions are of different nature and independent from each other. The fully ordered 

vacancy planes in cubic GST further demonstrates that the structural transition is 

irrelevant for the occurrence of the MIT.    

 

3.4.3 Excess vacancies  

  In Figure 3.31, the total DOS of several models is depicted. A finite band gap of 

0.42 eV is present in the hexagonal phase, which seems to be a contrast to the 

observed metallic behavior of GST annealed at high temperature. Firstly, the extended 

nature of the HOMO state already suggests very high conducting capability of the 

model. Secondly, in case of the spin-orbit coupling effects, the band gap vanishes. 

Most importantly, the presence of excess vacancies shifts the Fermi level towards the 
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valence band, where all the states are delocalized. In principle, these low 

concentrations (~ 0.4%) excess vacancies can segregate and form vacancy clusters to 

localize electrons, however, it is extremely unlikely to form such clusters and they can 

easily dissolve at high annealing temperatures. 
 

 
Figure 3.31 DOS of the some models of cubic and hexagonal GST. 

 
3.5 Summary and outlook 

  In this chapter, I provided an overview of several crystalline PCMs. We studied the 

cubic to hexagonal structural transition as well as the metal insulator transition 

observed in GST by DFT calculations. We identified the origin of electron localization 

in the insulating GST, i.e. the statistically formed vacancy clusters (disorder) induced 

the electron localization. Upon thermal annealing the vacancy clusters dissolved and 

eventually formed two dimensional vacancy planes, which triggered the structural 

transition from cubic to hexagonal phase and the insulating to metallic transition. In 
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agreement with experiments, we found the structural transition occurred well before 

the MIT. Moreover, the delocalization of the electronic states in the hypothetical 

ordered cubic GST further disentangled the different roles of the two transitions. 

Non-stoichiometric excess vacancies, hybrid functional corrections as well as 

spin-orbit coupling effects do not change our picture of localization and the MIT. 

  As an outlook, one very challenging task is to access the mobility edge in the 

disordered cubic phase by generating very large models containing several tens of 

thousands of atoms (~10 nm3), which would require a very large amount of 

computing powers and an appropriate simulation software. The same challenge also 

holds for the study of the critical region for the MIT in the hexagonal phase 

quantitatively. 

  Another interesting topic is to further control the atomic disorder in GST other than 

thermal annealing. The disorder-to-order transition could be accelerated by reducing 

the transition barrier for vacancy diffusion. Compressive stresses could be a good 

starting point. In a smaller volume (1-3%), the transition path is shortened for vacancy 

diffusion, and thereby the transition barrier might be reduced. Note, the compression 

cannot be too large, otherwise, the cubic GST amorphizes.  
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Chapter 4 Amorphous Phase Change Materials 
 

  In this chapter, I focus on the amorphous phase of PCMs, which is of even more 

importance than its crystalline counterpart in the studies of PCMs. Here I list a few 

aspects showing why it is important to study the amorphous state: 

  First, thermal stability. For data storage application, the amorphous phase should be 

very stable at room temperature for decades. Pure Sb, SnTe, etc. are not good PCMs 

because their amorphous states are not thermally stable at room temperature, i.e. they 

crystallize within a few minutes/hours. Upon doping with certain elements, the 

crystallization temperature can be raised considerably.   

  Next, physical property contrast. The amorphous state should have pronounced 

electrical/optical contrast with respect to its crystalline counterpart. The different 

atomic arrangement and/or bonding mechanism in the two states could shed light onto 

this question, which motivates the study of amorphous state from both theory and 

experiment.      

  Thirdly, the aging effect. It is known that in amorphous PCMs, the resistance drifts 

(increases) upon aging. Although this makes the electrical contrast, even more 

pronounced and does not affect the binary data storage, however, it hinders the 

development of multi-level data storage. Thus, it is very important to understand the 

origin of the drift phenomenon, and come up with a strategy to control it.  

  At last, the amorphous phase is the starting position of two important research 

directions in PCMs, namely, crystallization and threshold switching. Therefore, a 

good understanding of amorphous phase is necessary.  

  AIMD is a very useful tool to study the properties of amorphous phase at the 

atomic level and has been applied extensively to study the structural properties of 

amorphous PCMs in this chapter. After a short review of AIMD studies of amorphous 

PCMs, I discuss the structural properties of the several PCMs in detail. Besides, we 

performed further chemical bonding analysis for amorphous GeTe (a-GeTe), and 

provided a quantitative understanding of the local bonding environments. We found 
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that homopolar GeGe bonds are essential in stabilizing tetrahedral Ge units, while 

they do not play any role in stabilizing defective octahedral Ge configurations. 

  

4.1 Generating amorphous phase with AIMD 

  In 2007, Cavarati et al. [26] firstly generated the amorphous Ge2Sb2Te5 

(a-Ge2Sb2Te5) by means of AIMD. A melt-quench scheme was employed: starting 

from a metastable cubic configuration, the system was heated to a very high 

temperature to eliminate all possible atomic order (6 ps at 2300K), quenched (16 ps) 

to the melting temperature (990K) and equilibrated there for 18 ps, and finally the 

liquid was brought to 300K within 18 ps to generate the amorphous state. The whole 

simulation was performed at the amorphous atomic density, 0.030 at/Å3. In the same 

year, independently, Akola and Jones also generated amorphous GeTe and Ge2Sb2Te5 

using a similar melt-quench procedure [27]. Many other groups have studied 

melt-quenched Ge2Sb2Te5 [172,173,174] and GeTe [175,176] using AIMD since then.  

  Up to now, many other melt-quenched amorphous PCMs have been generated and 

investigated by means of AIMD, Ge1Sb2Te4 [177], Ge8Sb2Te11 [178], Sb2Te3 [179], 

Sb2Te [180], AgInSbTe [150], Ge15Sb85 [181], InSb [182], In3Sb1Te2 [8] etc. These 

simulations provided useful insights on to the properties of the amorphous phase.   

  Although the melt-quench amorphous phase is relevant to real applications, 

experimentally, researchers also study as-deposited amorphous thin film, due to easier 

productions and measurements. Typically, as-deposited and melt-quench amorphous 

samples of the same material have different properties, e.g. As-S glasses [183] and 

Fe80B20 [184]. In PCMs, many melt-quench samples crystallize much faster than 

as-deposited ones [35,185,186], which motivates atomically investigation from 

AIMD. In 2011, Akola and Jones performed the first AIMD simulation of 

as-deposited Ge2Sb2Te5 [187]. The simulation was performed at 300 K. Starting with 

a fixed thin layer of randomly distributed GST, another 17 sparse layers were 

deposited step by step and all the randomly initialized Ge, Sb and Te atoms in each 

sparse layer were allowed for relaxation (5-10 ps). During the simulation, the vertical 
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box dimension was adjusted for each layer to avoid possible interactions with the 

replica (vacuum region 10Å). The final simulation box was reduced in the vertical 

dimension continuously (19 times at 300K) to obtain a cubic supercell (0.0308 at/Å3). 

The fixed template layer was released during this simulation and the whole process 

lasted 67 ps. The system was equilibrated for 34 ps before final data collection (25 ps). 

A similar as-deposited amorphous state has been generated for GaxSb1-x [188].  

  Besides, stress/pressure-induced amorphization [147,189,190] has also been 

realized by means of AIMD simulations for GST and GeTe. The compressive stress is 

introduced by placing the amorphous model in a smaller simulation box than its 

equilibrium volume.  

  The amorphous models are usually generated using standard GGA functionals, 

however, more sophisticated methods employing hybrid functional corrections or 

vdW corrections have been considered in some recent studies [191,192]. 

  In this thesis, I mainly focus on the melt-quenched amorphous phase. Several 

typical amorphous PCMs are considered, and all of them are generated following the 

same melt-quench procedure as discussed above, the only difference is that our 

quenching times are slightly longer: the liquid PCMs are brought to room temperature 

within 30-90 ps. The amorphous models are usually quenched to 0 K to optimize the 

geometry further.  

 

4.2 Structural properties of amorphous PCMs    

  We characterize the structural properties of the amorphous phase. The pair 

correlation function g(r) characterizes how the density varies as a function of distance 

from a reference particle. The g(r) can be converted to the structure factor S(q) via a 

Fourier transform. Experimental approaches like X-ray diffraction or neutron 

diffraction can determine S(q), thus one can compare the amorphous phase obtained 

from AIMD directly with experiments. The partial g(r) further distinguishes the 

contributions from different type of elements. By setting the decay of the first peak(s) 

in g(r) (partial) as the cutoff(s) (assuming atoms are bonded within the cutoff(s)), one 
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can compute the averaged coordination number (CN) and the distribution of CNs. The 

angular distribution function (ADF) describes the local bond environment. In PCMs, 

defective octahedral and tetrahedral units are the most common structural motifs. A 

bond order parameter is often used to distinguish them 𝑞𝑞 = 1 −  3
8
∑ (1

3
+ cos𝜃𝜃𝑖𝑖𝑗𝑗𝑘𝑘𝑖𝑖>𝑘𝑘 )2 

[26]. To describe the medium range order in the amorphous network, the primitive 

rings statistics is often employed. The distribution of vacancy voids is also commonly 

investigated in amorphous PCMs. The concentration and distribution of vacancy 

voids can be described by different methods, e.g. tetrahedron method [27], Electron 

Localization Function (ELF) analysis [146] or Voronoi-Delaunay analysis [179]. 

  

 
Figure 4.1 A snapshot of amorphous Ge2Sb2Te5 at 300K (900 atoms), Ge, Sb and Te atoms 

are rendered with grey, yellow and green spheres.  
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  In the following, I discuss the structural properties of various amorphous PCMs, 

using the quantities mentioned above. The amorphous models are generated by the 

melt-quenched scheme and the system size varies from a few hundreds to 1000 atoms. 

As mentioned in Chapter 2, computational efforts of DFT based simulations increase 

very rapidly with the system size: the model containing 1000 atoms is the largest 

model considered in this thesis. In Figure 4.1, a snapshot of amorphous Ge2Sb2Te5 

containing 900 atoms is shown.  

 

4.2.1 Finite size effect 

  First, I discuss the possible finite size effects on the structural properties of the 

amorphous models generated by means of AIMD. We considered three amorphous 

GeTe models, containing 216, 512 and 1000 atoms. The pair correlation function g(r) 

and partial pair correlation functions (PPCFs), evaluated based on AIMD trajectories 

at 300 K for 10 ps, are shown in Figure 4.2. 

 

Figure 4.2 The total g(r) and PPCFs of amorphous GeTe containing 216, 512 and 1000 atoms, 

which are rendered with green, blue and red curves. Calculated at 300K. 
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  No sizeable difference is observed in the total g(r) and the GeTe PPCF. There are 

certain deviations in the GeGe and TeTe PPCFs, in particular for the first peak in 

GeGe PPCFs, where the 512 atoms model has a slightly higher peak. However, this 

change is not monotonic from the 216 atoms to 1000 atoms model, therefore, the 

difference is rather due to statistical fluctuations. Sampling over many different 

amorphous models should lead to convergence. Of course, the larger the system size 

is, the faster the convergence is. We also checked other quantities such as bonding 

angles, number of tetrahedral Ge, primitive rings statistics and total energy per atom, 

all of them are very close for these three models. We can conclude that the periodic 

boundary conditions do not affect the structural properties much, and models 

containing a few hundreds of atoms (216 atoms) are capable of describing the 

structural properties of the amorphous state. It is worth mentioning that, for certain 

purposes, such as the study of nucleation processes or electron localizations in the 

amorphous phase, very large models are necessary, i.e. the size of the supercell must 

be much larger than the size of critical nuclei or the localization length of the system.  

 

4.2.2 Group 1 PCMs GeTe-Sb2Te3 pseudobinary line 

  As discussed before, many successful PCMs alloys are pseudobinary alloys made 

of (GeTe)1-x(Sb2Te3) x. The study of the amorphous phase of these compounds draws 

great attentions from both experiments [22,25,142] and theory [26,27,173]. In this 

section, we considered four different amorphous materials, namely, GeTe, Ge8Sb2Te11, 

Ge2Sb2Te5 and Sb2Te3. By employing AIMD simulations, the amorphous models were 

generated by quenching from the melt at densities close to their experimental values 

(see Appendix A). 

  We calculated the total and partial pair correlation functions g(r) based on the 

AIMD trajectories at 300 K for all the four amorphous models, shown in Figure 4.3. 

From the total g(r), we can observe a gradual shift of the whole curve towards a larger 

distance from GeTe over GST to Sb2Te3, which is due to the change of bonding 

tendency from Ge-Te rich (shorter bonds) to Sb-Te rich (longer bonds). The most 

common chemical bonds in these compounds are heteropolar Ge-Te/Sb-Te bonds 
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(~85-90%), followed by homopolar Ge-Ge/Ge-Sb/Sb-Sb bonds (~7-9%). The least 

common bonds are homopolar Te-Te bonds.  

 

 
Figure 4.3 The total g(r) and PPCFs of amorphous GeTe (red), Ge8Sb2Te11 (green), Ge2Sb2Te5 

(blue) and Sb2Te3 (black) at 300K. 
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  The calculated x-ray scattering factor S(q), obtained by Fourier transform of g(r) 

and PPCFs, enables a direct comparison to X-Ray Diffraction (XRD) experiments. 

Good agreement between calculated and measured S(q) has been reported for 

a-Ge2Sb2Te5 in ref [26].  

  Extended x-ray absorption fine structure (EXAFS) and x-ray absorption near-edge 

structure (XANES) experiments provide information about the local geometry of 

amorphous states. Quantities, such as the nearest neighbor bond length r and the 

averaged coordination numbers (CN), can be derived from these experiments. These 

quantities can be calculated from AIMD simulations as well: the first peak position of 

g(r) or PPCFs indicates average or pairwise bond length(s); by integrating g(r) or 

PPCFs up to certain cutoffs, average or pairwise coordination numbers are obtained.  

 

   GeTe Ge8Sb2Te11 Ge2Sb2Te5 Sb2Te3 

  AIMD/EXP   

rtot [Å] 2.78  2.82  2.86 2.73a 2.94  

rGeTe [Å] 2.79 2.61b 2.76  2.76 2.61a / / 

rGeGe[Å] 2.65 2.46b 2.67  2.63  / / 

rGeSb[Å] / / 2.76  2.76  / / 

rSbTe [Å] / / 2.94  2.94 2.85a 2.94  

rSbSb [Å] / /     2.93  

rTeTe [Å] 3.0  2.94  2.95  2.93  

CN. Ge 3.9(4) 3.7b 3.8(4)  3.7(4) 3.9(8)c / / 

CN. Sb / / 3.7(5)  3.6(5) 2.8(5)c  3.4(5)  

CN. Te 3.3(3) 2.5b 3.1(3)  2.7(4) 2.4(8)c 2.3(3)  

Table 4.1 The nearest neighbor bond length r and the averaged coordination numbers (CNs) 

from AIMD simulations at 300K and EXAFS measurements at 10K. Numbers in the 

parenthesis indicate the error bars of the last digit. The error bars of AIMD simulations are 

calculated within certain range of cutoffs. The cutoffs of Ge, Sb and Te elements are set to be 

3.0±0.1, 3.1±0.1 and 3.1±0.1 Å, respectively. Experimental references: a [22] b [142] c [24].  
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  In Table 4.1, we compare the bond lengths and coordination numbers obtained from 

simulations and experiments. We observe that Ge-Ge and Ge-Te bond lengths from 

simulations are much larger than those from experiments for both a-GeTe and 

a-Ge2Sb2Te5, while Sb-Te bonds are well matched. The mismatch of Ge-Ge and 

Ge-Te bond length between simulations and experiments is not fully understood yet. 

As regards the coordination numbers, the calculated and experimental values compare 

fairly well (within the error bars).  

  To gain more insights about the local bonding environment, we turn to the 

discussion of bonding angles. We computed the angular distribution function (ADF) 

at 300 K for all the four amorphous models and plotted them in Figure 4.4. They are 

averaged over all atoms (tot-ADF, black solid curve) and over each element (dash dot 

curves). The four tot-ADF curves are very similar: there exhibits a pronounced peak 

at ~90o and a smaller peak ~165o, indicating most of the atoms are in a defective 

octahedral-like environment (d-octa) (see Figure 4.5). Sb-ADF curves are rather 

similar to tot-ADF, possessing an additional peak at large angles, while Te-ADF 

curves do not have such peak. This suggests most d-octa Sb atoms have at least 4 

neighbors, while most d-octa Te atoms have 3 or 2 neighbors. The distribution of 

coordination numbers further confirms this point, see the insets in Figure 4.4. As 

regards Ge-ADF curves, the main peak ~90o is shifted towards larger angles, which is 

due to the formation of tetrahedral-like (tetra) units around Ge atoms. Meanwhile, a 

secondary peak is present at ~165o, suggesting the co-existence of d-octa and tetra Ge 

structural motifs.   
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Figure 4.4 The angular distribution functions for amorphous GeTe, Ge8Sb2Te11, Ge2Sb2Te5 

and Sb2Te3 at 300K. The tot-ADFs are marked with black solid line, while Ge-, Sb- and 

Te-ADFs are rendered with red, blue and green dash dot line. The insets show the distribution 

of coordination numbers. The cutoffs are 3.05, 3.10, 3.22, 3.25, 3.40 and 3.20 Å for Ge-Ge, 

Ge-Sb, Ge-Te, Sb-Sb, Sb-Te and Te-Te. 
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Figure 4.5 Defective octahedral and tetrahedral structural motifs, Ge and Te atoms are 

rendered with grey and green spheres. 

 

 
Figure 4.6 A possible crystalline form of GeTe2 with tetrahedral Ge atoms (grey) purely 

bonded to Te atoms (green).   

   

  By employing the order parameter q we introduced before, we can better 

distinguish tetra from d-octa atoms. We found 25%, 23% and 29% tetra Ge for 

amorphous GeTe, Ge8Sb2Te11 and Ge2Sb2Te5, while no tetra units in amorphous 

Sb2Te3. This observation is puzzling: why there exist certain structural motifs that 

cannot be found in their parent crystalline forms? In crystalline GST or GeTe, all the 

Ge atoms are in octahedral or slightly distorted octahedral configurations. Crystal 
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forms made of tetrahedral Ge and Te, such as GeTe2 (see Figure 4.6), are highly 

unstable and would quickly decompose into crystalline GeTe and Te. The total energy 

of crystal GeTe2 is 0.227 eV higher than rhombohedral GeTe and trigonal Te, 

calculated from DFT. Clearly tetra Ge made of Ge-Te4 is not a stable configuration in 

the crystalline form, thus, it is important to check if amorphous tetra units are made of 

Ge-Te4 or not.  

  In a-GeTe or a-Ge2Sb2Te5, over 90% of the tetra Ge are found to be bonded with at 

least one Ge or Sb atom. Then, the story is different, since there exist stable 

crystalline forms, consisting of tetra Ge, for pure Ge and GeSb. Very recently, 

together with V. Deringer et al. [193], we studied chemical bonding in a-GeTe and 

quantified the role of homopolar Ge-Ge bonds in stabilizing tetra Ge local motifs.  

  Chemical bonding in a-GeTe: 

  To define the bonding (antibonding) character in a solid is generally challenging. 

Based on the electronic wavefunctions generated by DFT, the crystal orbital overlap 

population (COOP) [194,195] and the crystal orbital Hamilton population (COHP) 

[136] analysis can extract this essential chemical information. In some recent works, 

Deringer and co-workers have shown how to extract bonding information from 

numerically efficient plane-wave basis sets [196,197] that are often used for large 

DFT simulations (containing hundreds of atoms). The method is proved to be 

applicable even for very disordered systems, such as amorphous materials.  

  The COOP shows different bonding characters at different energies. The positive 

and negative COOP values stand for bonding and antibonding states, respectively. 

The behavior of COOP at the Femi level EF indicates the stability of the system. By 

projecting the COOP (pCOOP) onto different structural motifs in a-GeTe, we can 

learn the stability of local environments. In Figure 4.7, we present pCOOP data for 

four-coordinated Ge bonding units, namely, tetra Ge-X4 and d-octa Ge-X4.  
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Figure 4.7 pCOOP analysis for Ge-X4 motifs in a-GeTe. The geometry has been fully relaxed 

at 0 K. The tetra and d-octa units contain 0, 1 and 2 homopolar Ge-Ge bond(s). pCOOP 

curves are given per structural fragment (containing four bonds each) and are averaged 

separately over all the tetra and d-octa motifs in the amorphous model. Produced by V. 

Deringer. 

 

  All the pCOOP data for different tetra and d-octa-4 units have been collected and 

averaged. By sorting them into motifs that have 0, 1, and 2 homopolar Ge-Ge bonds, 

one learns the influence of homopolar bonds on the stabilization of local structures. In 

the left panel of Figure 4.7 (red curve), one can see a pronounced antibonding peak at 
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EF for fully heteropolar tetra unit Ge-Te4, indicating high instability of this 

configuration. The antibonding character at EF decreases drastically in the presence of 

homopolar Ge-Ge bonds, see middle and right panel. These data clearly show that 

Ge-Ge bonds are indeed stabilizing the local tetra motifs. This is in line with the 

observation that, in the amorphous network, over 90% tetra Ge atoms are bonded with 

at least one Ge-Ge bond. Interestingly, homopolar Ge-Ge bonds cannot help stabilize 

the d-octa-4 units. The antibonding contribution at EF does not change much upon 

variation of the number of Ge-Ge bonds in the motifs (Figure 4.7 black curves), and 

the antibonding strength even increases slightly when a tetra Ge bonded with two 

Ge-Ge bonds. The majority of d-octa-4 units contain only heteropolar bonds.  

  The comparison of the pCOOPs between tetra and d-octa-4 units also shows that 

d-octa-4 units are generally more stable than tetra units: black curves at EF give 

smaller values than those of red curves (see Figure 4.7). This agrees with the fact that 

d-octa units are the majority (~70-80%) and tetra units are the minority (~20-30%).  

  At melting temperatures, homopolar Ge-Ge bonds inevitably exist in liquid GeTe 

due to the very high kinetic energy of the atoms, and they cannot be completely 

removed in the subsequent fast cooling process. These "frozen" homopolar Ge-Ge 

bonds are essential for the formation of tetra Ge units.  

  It is known from experiments that the resistance of amorphous PCMs increases 

[198,199], the energy band gap widens [200] and the internal stress releases [201] 

upon time evolution, implying that there are structural relaxations in the amorphous 

phase. The current analysis is not yet sufficient to make any prediction about the 

evolution of the amorphous network upon aging, since it is an analysis of the stability 

of local structures. When considering the structural evolution, the global stability of 

the amorphous network also needs to be considered. The evolution of amorphous 

network and aging effects are still under investigation. 

  After discussing the local bonding environment, we turn to the discussion of 

medium range order. As mentioned before, the distribution of primitive rings (the 

shortest closed loops) provides important information about the medium range order 

of the amorphous network. In Figure 4.8, we present the analysis of rings statistics. 
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Obviously, the four-membered rings dominate over other primitive rings in all the 

four amorphous models. The majority of the four-membered rings (>80%) have 

ABAB alternation (A-Ge/Sb, B-Te), without homopolar bonds. This is a generic 

feature in group 1 PCMs.  

 

 
Figure 4.8 The statistics for primitive rings in GeTe, Ge8Sb2Te11, Ge2Sb2Te5 and Sb2Te3. The 

ring length is the number of atoms in the ring.  

 

  The concentration of vacancy voids is also calculated for these amorphous models. 

We used the method developed in Ref. [202], which is implemented in the program 

VNP [203]. Atomic radii are set as 50 % of the average bond length for each atom 

species, and the radius of the testing sphere is set to 1.3 Å. The voids concentration is 
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found to be 7%, 12%, 13% and 18% for amorphous GeTe, Ge8Sb2Te11, Ge2Sb2Te5 and 

Sb2Te3, respectively. Generally, vacancy voids take a relatively large volume of the 

whole cell for all the four amorphous models. The large voids concentration is 

believed to be important for fast crystallization kinetics of these amorphous PCMs, 

for instance, the atomic mobility might be enhanced due to the large "free" space for 

atomic rearrangement [27,42]. Compared to amorphous GST and Sb2Te3, a-GeTe has 

smaller voids volume. The large void concentration in Sb2Te3 may partially due to the 

use of theoretical equilibrium density, but it should still be large even if the volume is 

slightly compressed. Overall, the amorphous network of group 1 PCMs is quite open.     

 

4.2.3 Group 2 PCMs doped Sb-Te 

  Sb-Te binary alloys, such as Sb2Te, Sb2Te3, are able to undergo very rapid phase 

transitions. However, their crystallization temperatures are quite low (80-110oC), 

which hinders real applications. The group 2 PCMs consists of doped Sb-Te systems 

(such as around Sb2Te) with a few percent (4-8%) of dopants like Ag, In, Ga, Ge, etc. 

[12]. Doping effects increase the crystallization temperature of Sb-Te systems 

considerably. Among the doped materials, AIST (Ag, In doped Sb2Te) has been 

shown to be excellent [204,205], and has been commercialized for rewritable optical 

discs for decades.  

  Here we study the structural properties of amorphous AIST (Ag4In3Sb67Te26) and 

Sb2Te. In Figure 4.9, the total g(r) and PPCFs are plotted. The total g(r) is not 

significantly affected by the seven percent Ag/In dopants. The first peak positions of 

PPCFs of Ag and In atoms are slightly shifted to lower r compared to that of Sb and 

Te. In the partial g(r) of Sb and Te, the width of the first peak decreases slightly in the 

presence of Ag/In dopants, i.e. certain long bonds (3.2-3.6A) around Sb and Te atoms 

are shortened, indicating a slightly more compact surroundings around Sb and Te 

atoms. This can be better visualized by the distribution of coordination numbers at the 

same cutoffs, see insets of Figure 4.10. In Sb2Te, most Sb atoms have 4 neighbors and 

then 3 neighbors; after doping, the number of 5 coordinated Sb atoms increases. 

Similar trends also hold for Te atoms. As regards Ag and In, most of the atoms are 5 
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fold coordinated. 6 coordination is also common for Ag. A detailed discussion of 

nearest neighbor bond length and averaged coordination numbers will be presented in 

Chap 5 together with EXAFS measurements. Here we just mention that the 

amorphous structures generated by AIMD compare well with experiments.      

 

 
Figure 4.9 The total g(r) and PPCFs of amorphous AIST (red) and Sb2Te (black) at 300 K.  

 

  To further shed light on the local bonding environment, we calculated the angular 

distribution functions, shown in Figure 4.10. They exhibit a large peak at ~90o and a 

secondary peak at ~165o. After distinguishing the contribution from different 

elements, it is found that the secondary peak is mainly contributed by Sb atoms, 
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suggesting quite some Sb atoms are in a d-octa configuration with coordination 

number larger than 3. The majority of Te atoms is in d-octa-3 configuration. d-octa-4 

configuration for Te atoms increases slightly after doping. No tetrahedral units are 

found in these compounds.  

 

 
Figure 4.10 The angular distribution functions and coordination number distribution of  
amorphous AIST and Sb2Te.   
 

  The medium range order of AIST and Sb2Te is drastically different from group 1 

PCMs (shown in Figure 4.11): 5-fold primitive rings dominate over 4-fold rings and 

other primitive rings. In AIST, the fraction of 4-fold rings further decreases. Within 

the four membered rings, the ABAB alternation no longer prevails (only a fraction of 

20-25%). The concentration of voids is quite small in AIST and Sb2Te (only 2-3%).   
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Figure 4.11 The statistics of primitive rings in amorphous AIST and Sb2Te. 

 

4.2.4 Group 3 PCMs doped Sb 

  The group 3 PCMs are located around the Sb corner in the ternary diagram. 

Dopants are necessary to stabilize the amorphous state at low temperatures. Note that 

amorphous Sb thin films crystallize in a few minutes at room temperature. Popular 

compounds like Ge15Sb85, In15Sb85, Ga15Sb85 belong to this group. Although 

amorphous Sb is not thermally stable at room temperature, the amorphous structural 

properties can still be accessed by AIMD simulations, which are performed at time 

scales of hundreds of picoseconds. Very recently, together with Ronneberger et al., 

we studied the melt-quenched amorphous Sb by means of AIMD. Due to the lack of 

information about the experimental density of amorphous Sb, we used 6.48 g/cm3, 

which is close to the measured liquid density. We also tested few other densities, and 

found the structural properties do not depend strongly on the density (at close to 

ambient pressure level).  
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Figure 4.12 Structural properties of amorphous Sb: g(r), ADF and primitive rings statistics.  

 

  The structural properties are summarized in Figure 4.12. The nearest neighbor bond 

length can be derived from the pair correlation function. It turns out to be 2.95 Å. The 

first peak of g(r) decays smoothly and reaches the first minimum until 3.5 Å. A 

primary peak and a secondary peak are present at ~90o and ~165o in the ADF curve, 
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indicating most of Sb atoms are in d-octa configurations. No tetra Sb units exist in 

amorphous Sb. Most of the Sb atoms are 4-fold coordinated, followed by 3 and 5 

coordination. The medium range order of amorphous Sb is dominated by 5-membered 

ring. 4- and 6- membered rings are also present in significant number. The 

concentration of voids is very small, only 1%. 

 

4.3 Summary and outlook 

  To conclude, we studied the structural properties of several typical amorphous 

PCMs by means of AIMD. As regards Ge-free PCMs, the comparison of structural 

properties between theory and experiment is good. As regards Ge-related PCMs, such 

as GeTe and GST, the nearest neighbor bond lengths for Ge atoms are found to be 

larger than the experimental ones. We are currently working on this issue by 

considering more sophisticated non-local van der Waals correction. For amorphous 

GeTe/GST, a fraction of 20-30% Ge atoms is in a tetrahedral configuration. We 

performed a detailed chemical bonding analysis for a-GeTe, and found the homopolar 

Ge-Ge bonds stabilize the tetrahedral units significantly. 



96 
 



97 
 

Chapter 5  Crystallization Kinetics 

 

  In this chapter, I focus on the ultrafast crystallization phenomenon, which is one of 

the most fascinating feature of PCMs. A PCM amorphous mark (e.g. Ge2Sb2Te5) can 

remain stable at room temperature for more than 10 years, while it can crystallize very 

rapidly (nanoseconds level) at high temperatures (600K-700K). In other words, the 

crystallization kinetics changes by almost 17 orders of magnitude only by heating the 

samples by a few hundreds of Kelvin [206]. Very recently, sub-nanosecond 

crystallization has been realized by applying an external electric field to Ge2Sb2Te5 

[21]. The very rapid crystallization speed can already compete with volatile dynamic 

random access memories; moreover, PCMs are non-volatile materials, so that 

non-volatile phase change random access memories (PCRAM) are becoming feasible 

[207, 208].  

  To understand the fast crystallization phenomena, the study of the amorphous state 

and its comparison with the corresponding crystalline state help considerably [22, 27, 

150]. However, the analysis of structural properties alone is not sufficient to clarify 

this strong temperature dependent behavior of crystallization speed. The 

crystallization process at elevated temperature involves dramatic structural changes 

due to the high mobility of atoms. Therefore, more direct measurements and 

simulations are needed to access the dynamical process at high temperatures.     

  I divide this chapter into two parts: 1> I review the recent theoretical and 

experimental progress on the crystallization kinetics of PCMs. 2> I focus on the 

crystallization process in growth-dominated PCMs, in particular, Ag, In doped Sb2Te 

(AIST) and clean Sb2Te. The stoichiometry of AIST considered here is 

Ag4In3Sb67Te26.  

 

5.1 Recent progress on crystallization kinetics of PCMs 

  In 2008, for the first time Hegedüs and Elliott [172] succeeded in crystallizing 

Ge2Sb2Te5 by slowly quenching the liquid to 600 K using AIMD. Due to the too small 
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system size (only 60-70 atoms), periodic boundary effects are so strong that the 

estimation of critical nuclei was not feasible. Later in 2011, the same group succeeded 

to crystallize a bigger a-Ge2Sb2Te5 model (180 atoms) by heating the amorphous state 

to 600K, and they observed the incubation process and determined the critical nucleus 

to be made of 5-10 connected GST cubes (less than 50 atoms) [40]. Besides, not 

vacant site is present in the recrystallized part, i.e. all the vacancy voids segregate to 

the amorphous-crystal interface. They authors claimed that the vacancy voids would 

slowly diffuse into the recrystallized part and exchange with the cationic atoms Ge/Sb 

upon long time thermal annealing [209]. In 2012, Kalikka et al [41] has generated 

much bigger amorphous Ge2Sb2Te5 models containing 460 atoms with a fixed 

crystalline seed (58 atoms + 6 vacancies). By reheating the model up to 500K, 600K 

and 700K, the authors studied the growth process from the fixed nucleus. In this work, 

the finite size effect is reduced to a certain extent. No cavity segregation near the 

amorphous-crystal interface was observed and a certain amount of "wrong" bonds (e.g. 

Te-Te bonds) was inevitably present in the recrystallized state. These "wrong" bonds 

are expected to be "healed" upon long time thermal annealing.  

  Besides AIMD simulations, there were also breakthroughs in experiments. In 2012, 

Orava and coworkers [39] were able to measure the crystallization kinetics of 

as-deposited a-Ge2Sb2Te5 up to 650 K, and an in-depth quantification of the 

crystallization process was provided by taking advantage of ultrafast differential 

scanning calorimetry (DSC) measurements. The fast crystallization of as-deposited 

amorphous Ge2Sb2Te5 was linked to the high fragility of the supercooled liquid phase, 

as well as to the breakdown in the Stokes-Einstein relation between viscosity and 

diffusivity near the glass transition temperature Tg. Molecular dynamics (MD) 

simulations of melt-quenched GeTe employing classical neural-network potentials 

[42,210] seem to corroborate these conclusions.  

  In 2013, Salinga and co-workers [35] designed a new laser based device, which 

allowed them to investigate of the melt-quenched amorphous phase under isothermal 

conditions up to 550 K (highest feasible temperature, above this temperature, the 

amorphous mark crystallized too rapidly). Also the new device can address a large 
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range of growth velocities, spanning over 8 orders of magnitude. The authors 

investigated a growth-dominated PCM, AIST. A smooth interface growth from the 

surrounding crystalline matrix has been observed and measured. It was also shown 

that for very fast quenching rates, on the order of 1010 K/s (comparable to the rates 

occurring in memory cells), a glassy state was already formed at temperatures above 

the calorimetric glass transition temperature Tg determined based on as-deposited 

amorphous samples. This observation challenged the view by Orava et al. Besides, 

the growth velocity of this glassy state exhibits Arrhenius behavior as a function of T 

down to 380 K and such behavior cannot be explained solely by a decoupling between 

viscosity and diffusivity. At last, it is shown that the melt-quenched amorphous state 

differs very significantly from the as-deposited amorphous state in terms of growth 

velocity at low T, i.e. the melt-quenched state is almost 1000 times faster than the 

as-deposited state in the range 400-450K.     

 

5.2 Interface growth in group 2 PCMs -- AIST 

  The experimental works by Salinga et al. [35] and Orava et al. [39] demonstrate the 

very high growth speed of phase change materials at elevated temperatures. Besides, 

further downscaling of the cell size is an important goal driven by industrial purposes, 

and recently, less than 8 nanometers phase change cells have been produced 

experimentally [33]. All of these findings encourage further ab initio calculations of 

crystallization kinetics in phase change materials. The time- and length-scales are so 

small that heavy computational approaches, such as ab initio molecular dynamics 

based on density functional theory, becomes feasible.     

  In this chapter, I mainly focus on the crystal growth phenomena instead of 

nucleation, since for very small phase change cells, i.e. few nanometers in length, 

crystal growth at the crystalline-amorphous interface becomes more and more 

important, even for PCMs having high nucleation rates (e.g. GST). Note the grain size 

of Ge1Sb2Te4 is 20 nm [32], and for a 8-nm phase change cell made of GST 
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compounds, interface growth may be dominant. Here, we focus on the well-known 

growth-dominated PCM, AIST. 

  By means of AIMD, we generate large melt-quenched amorphous models 

containing a fixed two dimensional crystalline matrix and study the interface growth 

from this matrix after reheating them to target temperatures. The models are 

randomized at 3000K and brought to melting temperature (850K) within 30ps. After 

equilibrations for 30ps at the melt and they are quenched to 300K within 30ps, and 

they are equilibrated at room temperature for another 30ps. The models contain 810 

atoms, which corresponds to 27 atomic layers in the crystalline phase (see Chap 3). 

Two atomic layers are fixed at the crystalline positions along the y-z plane during 

randomization and melt-quench procedure, and 2-3 additional crystalline layers are 

formed during quenching. We set the x-axis as the growth direction. The cell size 

along x is more than 5 nm in total and a 4 nm thick amorphous slab remains after 

quenching, which is sufficiently large to study interface growth process. Snapshots of 

amorphous AIST (a-AIST) and Sb2Te (a-Sb2Te) with crystalline seeds are depicted in 

Figure 5.1. 

 
Figure 5.1 The melt-quenched amorphous (a) AIST and (b) Sb2Te with crystalline seed. Ag, 

In, Sb and Te atoms are rendered with blue, red, yellow and green spheres.  
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   In order to investigate the crystallization process, we consider different target 

temperatures and perform canonical (NVT) simulations there. We fix the density at 

the experimental value of the crystalline AIST during these crystallization simulations. 

Although the density contrast between amorphous and crystalline AIST is not 

negligible, 5 % [211], our procedure is relevant to practical experimental setups [35] 

and phase change memory cells [33], wherein the amorphous spots are constrained by 

the crystalline surroundings during the recrystallization process.  

 

5.3 Structural properties of amorphous and recrystallized AIST  

  First, we investigate the structural properties of amorphous AIST by comparing the 

model generated by AIMD with the as-deposited sample produced experimentally. 

The partial pair-correlation functions (PPCFs) are computed based on the AIMD 

trajectory at 10 K, shown in Figure 5.2. The vertical dashed lines mark the first peak 

positions, indicating the nearest-neighbor bond lengths r. We present them together 

with the ones derived from the EXAFS measurements in Table 5.1. It is worth 

mentioning that the measurements of EXAFS spectra and X-ray diffraction (XRD) 

pattern (see below) as well as the simulations of EXAFS spectra (see below) were 

done by P. Zalden. 

 

Figure 5.2 PPCFs of both amorphous and recrystallized AIST at 10 K. The vertical dashed 

lines indicate the primary peak positions.  
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  Obviously, the first peak positions of both impurities (Ag-X, In-X) and Sb, Te 

(Sb-X, Te-X) are in good agreement with the EXAFS measurements. The bond length 

difference is smaller than 3%, which is within the tolerance of GGA functionals. As 

discussed before, the coordination numbers (CNs) are obtained by integrating the 

PPCFs curves up to certain cutoffs (3.1 Å is used for all four edges). The coordination 

numbers of Ag, In and Sb from AIMD simulations compare well with the EXAFS 

ones, while the coordination number of Te from AIMD simulations is slightly larger 

than that of EXAFS measurements.  
 

Atom rEXAFS(Å) rAIMD(Å) NEXAFS NAIMD 

Amorphous 

Ag 2.81(1) 2.85 4.0±0.7 4.5 

In 2.82(1) 2.90 2.7±0.5 3.0 

Sb 2.87(1) 2.92 3.4±0.6 3.2 

Te 2.83(1) 2.90 1.6±0.4 2.3 

Recrystallized 

Ag 2.84(3),3.02(3) 2.92,3.07 7.2±0.7 6.2 

In 2.80(1),2.99(1) 3.00,3.14 6.6±0.7 6.0 

Sb 2.89(1),3.32(1) 2.97,3.28 6.2±0.6 5.9 

Te 2.94(1),3.39(3) 3.07,3.30 3.8±0.5 5.4 

 
Table 5.1 The nearest neighbor bond lengths and coordination numbers for the amorphous 

and the recrystallized AIST, obtained from AIMD simulations and EXAFS experiments. The 

AIMD coordination numbers are calculated using the cutoff radius of 3.1 Å (amorphous) and 

3.4 Å (recrystallized).  

 

  To gain further information about the local structure, we perform direct simulations 

of EXAFS spectra based on the atomic coordinates from AIMD simulations using 

FEFF code [212], and plot them together with measured EXAFS in Figure 5.3. More 

details about EXAFS experiments and simulations can be found in Appendix C.  
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Figure 5.3 Experimental (red) and theoretical (blue) EXAFS spectra of amorphous AIST at 

10 K. 

 

  Apparently, the primary peak position of the experimental and theoretical spectra 

overlap, suggesting very similar nearest neighbor bond lengths. The peak heights in 

EXAFS are dominated by the atomic disorder at the given distance and partially 

influenced by the CNs. One can observe that the disorder around In and Sb atoms is 

perfectly reproduced by AIMD, whereas discrepancies are observed at Ag and Te 

edges. These deviations indicate that the Te (Ag) atoms have a higher (lower) ordering 

tendency in the measured, as-deposited sample than in the melt-quenched simulated 

model.   



104 
 

  More information about the amorphous network of AIST, including angular 

distribution function, primitive rings statistics, etc., can be found in Chap 4. It is 

worth mentioning that our results match quite well with a previous AIMD/EXAFS 

work on a slightly Sb-richer AIST, Ag3.5In3.8Sb75.0Te17.7 [150].  

  In the same work [150], the authors generated crystalline AIST by distributing Ag, 

In, Sb and Te atoms randomly onto a perfect crystalline Sb lattice (A7). After 

geometry optimizations, distorted octahedral local structural motifs were obtained. 

Since (defective) distorted octahedral units were also detected in the amorphous phase, 

the authors proposed a bond-interchange model based on this structural similarity for 

the fast crystallization mechanism at high temperatures. In the following, we directly 

simulate the crystallization process of AIST. We shall see that the recrystallized model 

contains more atomic disorder than the previous thoughts; during the crystallization 

process at high temperatures, atoms are mobile and diffusive, leading to more 

dramatic structural changes than a simple bond-interchange model.  

  By reheating the model shown in Figure 5.1 (a) to high temperature, 585 K, we 

obtain a recrystallized model within 180 ps. Similarly, the recrystallized model forms 

a trigonal crystal (A7) lattice with random occupation of Ag, In, Sb and Te atoms, in 

line with the XRD measurements. We also simulate the XRD patterns based on the 

atomic coordinates obtained from AIMD. The relative peak intensities as well as peak 

positions in the two patterns are in good agreement, as shown in Figure 5.4. The small 

shift of the peak positions is due to the slightly different density employed in the 

simulations compared to the XRD experiments.  
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Figure 5.4 Theoretical (top) and experimental (bottom) XRD patterns of recrystallized AIST. 
 
  From the PPCFs of the recrystallized AIST (Figure 5.2 (b)), we observe double 

peaks for all four edges, indicating 3+3 coordination due to Peierls distortion. The 

EXAFS measurements also show such feature, and the nearest neighbor bond lengths 

as well as CNs show compatible results with our AIMD simulations for Ag, Sb and Te 

atoms. As regards In atoms, larger deviations 5-6% occur (summarized in Table 5.1). 

In a perfect A7 crystalline lattice, every atom on the lattice should have a maximum 

CN of 6, however, Ag and In atoms in experimental samples have higher CN of 7.2 

(0.7) and 6.6 (0.7) respectively, which suggests a significant fraction of Ag and In 

atoms occupy interstitial sites, which yield a CN of 7 or even 8. A typical interstitial 

Ag is shown in Figure 5.5 together with a standard substitutional Ag. It is also 

obvious that interstitial sites result in shorter averaged bond lengths. In the 

recrystallized model we show in Table 5.1, we observe 10% interstitial Ag but no 

interstitial In, which is due to the poor statistics, since there are only 20 Ag and 16 In 

atoms in our 540 atom model. In the subsequent simulations of crystallization, we 

also observe interstitial In atoms.   
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Figure 5.5 Interstitial and substitutional Ag (blue sphere) in the recrystallized AIST. CN of 

such interstitial Ag is 7.  

 

 
Figure 5.6 Experimental (red) and theoretical (blue) EXAFS spectra of recrystallized AIST at 

10 K.  
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  From the above analysis, we learn that many Ag and In atoms are located at 

interstitial sites in the oven crystallized as-deposited AIST, derived from the very high 

CNs. We also simulate the EXAFS spectra based on the recrystallized AIMD model, 

and depict them together with the experimental ones in Figure 5.6. For all edges 

except Sb, the atomic order resulting from the oven-heated crystallization is lower 

than the ordering from the simulated crystallization, in particular for the Te edge. This 

is also reflected in the averaged CN of Te in the recrystallized phase, which is 3.8 

(0.5), significantly lower than 6. In principle, the local structure of recrystallized AIST 

might depend on the nature of the initial amorphous phase (as-deposited or 

melt-quenched), given also the very pronounced difference in crystallization speed, 

e.g. at 450K, AD is roughly 1000 times slower than MQ sample [35].  

  In summary, the recrystallized AIST has more atomic disorder than the previous 

thoughts, and it is difficult to predict the dynamical behaviors of the amorphous state 

at higher temperatures solely based on structural properties at room temperature, due 

to the fact that at room temperature, the structural properties of the simulated 

amorphous MQ model are similar to that of the experimental amorphous AD sample, 

while at 450 K, a factor of 1000 in growth velocity has been observed between MQ 

and AD sample. Thus, direct simulations of crystallization at high temperatures are 

desirable. In the following sections, we focus on the discussion of dynamical 

processes in amorphous AIST at high temperatures.  

 

5.4 Growth velocity versus temperature, quenching rate effects 

  In this section, we derive the growth velocities vg during the simulations of 

crystallization at different temperatures and compare them with the experimental ones.  

We compute the evolution of the number of crystalline-like atoms, Nc (see Figure 5.7). 

The ratio Nc/N (where N is the total number of atoms) marks the interface evolution 

along the growth direction (x-axis): by multiplying it by the x-axis cell parameter and 

dividing by the corresponding crystallization time Δt, one obtains vg. To distinguish 

crystalline-like and amorphous-like atoms, we employ a bond order parameter 
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"dot-product", qdot
4, which can clearly discriminate the two phases (see Figure 5.8). 

Details about qdot
4 are provided in Appendix B.  

 

 
Figure 5.7 Evolution of number of crystalline-like atoms during crystallization at 585 K of 

AIST-810atoms model (blue line). The red straight line indicates the linear regression of the 

blue line. The last past of the growth (larger than 150 ps) is removed for the linear regression.  

 

 

Figure 5.8 Distribution of the values of order parameter q4
dot (i) for amorphous and 

crystalline AIST. Produced by I. Ronneberger. 
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  Several target temperatures are considered, ranging from 585 K to 455 K. The 

simulated growth velocity changes from 8 m/s to 5 m/s, as shown in Figure 5.9. 

Above 550 K, the growth velocities are in good agreement with time-resolved 

reflectivity measurements [35], however, large deviations are found at lower 

temperatures in the  range 450K-500K, the experimental growth velocities are 

10−2-10−5 m/. This discrepancy stems from the large difference between the calculated 

and experimental diffusion coefficients D at these temperatures, as shown in Figure 

5.10. We compute the bulk diffusion coefficients D independently based on AIMD 

trajectories of purely amorphous models (no crystalline seeds) at different 

temperatures:  

𝐿𝐿 = <𝑟𝑟2>
6𝑒𝑒

                         (5.1) 

where <r2> is the mean square displacement, t is the simulation time. All these 

simulations are performed on a 80 ps time scale. (These calculations of diffusion 

coefficients were performed by I. Ronneberger.) As regards the experimental D, it is 

very challenging to measure it directly, instead D is obtained from the measured 

growth velocities by assuming the validity of Wilson-Frenkel (WF) equation 

[213,214],  

𝑣𝑣g(𝑇𝑇) = 6𝐿𝐿(𝑇𝑇)
𝜆𝜆

�1 − exp(−∆𝜇𝜇 (𝑇𝑇)
𝑘𝑘B𝑇𝑇

)�                (5.2) 

(where Δμ(T) is the chemical potential difference between the supercooled liquid and 

the solid phase and λ is the average inter-atomic distance). Usually the chemical 

potential difference is estimated by employing Thompson-Spaepen formula [215],  

∆𝜇𝜇(𝑇𝑇) = ∆𝐻𝐻𝑚𝑚
𝑇𝑇𝑚𝑚−𝑇𝑇
𝑇𝑇𝑚𝑚

( 2𝑇𝑇
𝑇𝑇𝑚𝑚+𝑇𝑇

)                 (5.3) 

where ∆𝐻𝐻𝑚𝑚  is the heat of fusion (173 meV/at) and Tm is the melting temperature 

(808 K).  
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Figure 5.9 Growth velocities derived from AIMD simulation for AIST and Sb2Te at different 

temperatures. Four different models containing 810 atoms and 540 atoms are considered to 

gain better statistics.  

 

 

Figure 5.10 Experimental and simulated diffusion coefficients at different temperatures. The 

simulated diffusivity is obtained by linear fitting of mean-square displacement, see main text. 

The experimental values at the melting and 600K-450K are taken from ref [216] and [35]. 
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  By fitting the D(T) data with formula 

𝐿𝐿(𝑇𝑇) = 𝐿𝐿0 exp �− 𝐸𝐸𝑎𝑎
𝑘𝑘B𝑇𝑇

�,                      (5.4) 

one can obtain an activation energy and a pre-factor D0. We fitted both the theoretical 

and experimental data from 450K to 550K, and obtained Ea = 0.30 eV, D0 = 

2.15⋅10-7 m2/s (simulations) and Ea = 2.78 eV, D0 = 2.03⋅1015 m2/s (experiments). The 

theoretical Ea and D0 deviate strongly from the experimental ones obtained by 

reflectivity measurements; instead, they are closer to the experimental data of liquid 

Sb4Te at much higher temperatures (810K-950K, Figure 5.10), where Ea = 0.24 eV 

and D0 = 4.10×10-8 m2/s. These smaller Ea and D0 are comparable to the values 

observed in diffusion processes in crystals and glasses [217], where the atomic 

rearrangements are governed by the motion of single atoms. On the other hand, 

collective atomic motion has been observed in some supercooled liquid metals [218], 

where large Ea and D0 were found. The experimental D0 of AIST is even larger, 

suggesting a rearrangement process involving a considerable number of atoms below 

550K, which eventually leads to the slowing down of the kinetics [219]. These Ea and 

D0 data are summarized in Figure 5.11. Remarkably, the very large activation energies 

and pre-factors are crucial for PCMs to form stable amorphous states at low 

temperatures. From the experimental diffusivity data, a clear change of slope occurs 

near 550K, suggesting a change of motion mode from single-atom motion 

(supercooled liquid) to collective motion (glass), or vice versa. Interestingly, the small 

activation energies and pre-factors at high temperatures indicate the very high atomic 

mobility, which ensures the fast crystallization capability of PCMs.   
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Figure 5.11 The map of Ea and D0 for various systems. Contributed by M. Xu. 

 

  In order to make sure that the large growth velocity and diffusivity observed in our 

low temperature (below 550K) simulations are not due to artifacts, we discuss several 

spurious effects that can lead to an overestimate of vg and D, but we argue none of 

them can be responsible.  

  1> approximated functional: we employed approximate GGA functionals in all our 

simulations. Although these functionals may well underestimate activation barriers, 

we believe that the a factor of 10 discrepancy between experiments and simulations is 

far too large to be attributed to them. On the other hand, the very reasonable 

amorphous structure as well as its dynamical properties at high temperatures support 

the usage of GGA functionals.  

  2> finite size effects: although the large system size already reduces finite size 

effects considerably, non-negligible errors should still exist when evaluating both the 

growth velocity and the diffusion coefficients. We think finite size effects cannot 

account for such a huge mismatch either. In fact, if one assumes that, at T above the 

experimental Tg, the system is in a supercooled liquid phase obeying Stokes law (this 

assumption may not hold for PCMs though [210]), then finite size effects would lead 
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to an underestimation of D [220]. 

  3> quenching procedure: in our simulations, the systems were firstly quenched to 

room temperature, equilibrated there for 30 ps, and then reheated to the target 

temperatures (RH procedure), while experimentally the amorphous films were 

directly quenched to the target temperature from the melt (DQ procedure). The two 

procedures lead to different diffusivities, e.g. the latter D are 4 times larger than the 

former at 500K for GeTe (at a fixed quenching rate) [221]. This difference is much 

smaller than the difference between the simulated and experimental D of AIST at 500 

K, a factor of 103. Moreover, this difference will become even larger if DQ procedure 

is adopted for simulations. Since the DQ procedure is less relevant to industrial 

applications, we don't consider it here.  

  4> thermostat: we calculated the bulk diffusivity of the purely amorphous state by 

using a stochastic Langevin thermostat. It is well known that thermostats (in particular, 

stochastic thermostats) can affect the dynamical properties significantly. In general, 

NVE simulations are recommended for the calculation of diffusion coefficients [66]. 

Since we have to use stochastic thermostats for the simulations of crystallization, we 

use the same thermostat to calculate the bulk diffusion coefficients for the sake of 

consistency. In order to estimate the error due to the thermostats, we performed some 

crosscheck simulations within the NVE ensemble, and we found the resulting D are 

about 2 times larger than the D calculated using Langevin thermostats. This effect will 

not change the temperature dependence of D significantly.  

  From the above analysis, we learn that none of the effects can lead to the huge 

discrepancy in vg and D below 550K between experiment and theory, hence, the most 

plausible explanation is the difference in quenching rates, 1013 K/s (simulations) 

versus 1010 K/s (experiments). Is has been suggested that if the quenching rate is too 

large and exceeds the so called critical quenching rate, the resulting glass is less stable 

against crystallization [222]. This should hold in particular for fragile systems that 

have complex energy landscape. The higher vg and smaller Ea observed in our 

simulations should be related to this property, i.e. the system stuck in some shallow 

minimum in the energy landscape due to fast cooling [223]. At sufficiently high 
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temperatures (supercooled liquid regime), atoms move very rapidly and the network 

develops very fast; hence, quenching rate effects are weak, while they become much 

stronger when approaching lower temperatures (glass regime).  

  Naively, one expects to see structural differences at room temperature between the 

samples with very different dynamical properties at elevated temperatures. However, 

even the structural properties between fast-quenched and as-deposited (in some sense 

extremely slowly quenched) amorphous samples are quite similar, despite that there 

exhibits a factor of 1000 difference in their dynamical behaviors at for instance 430K.  

  Since our model is still dominated by single-atom motion at low temperatures 

(mostly probably due to too large quenching rate), the simulations cannot grasp the 

dynamical processes that occur in experiments, therefore, we instead focus on the 

crystallization process in the supercooled liquid regime, where the simulated 

dynamical properties compare well with experimental ones. A thorough investigation 

of the quenching rate effects will be our future work. 
 

5.5 Crystallization kinetics at high temperature, role of impurities 

  In this section, we discuss in detail the crystallization process at high temperatures, 

where both the growth velocity and bulk diffusion coefficients are in good agreement 

with experiments. We show that the transition involves very dramatic structural 

changes and can be categorized as diffusion-limited interface-controlled growth. 

Moreover, our simulation of crystal growth is able to quantify the role of small 

concentrations of impurities.  

  To gain deeper understanding of the crystallization mechanism, we focus on the 

amorphous-crystalline interface region. We divided the supercell into slabs along the 

crystal growth direction (x-axis) and calculated the profiles of the order parameter 

Q4
dot

 (which denotes the average of q4
dot

 over a set of atoms), the atomic population 

and the diffusion coefficients along x-axis Dx, shown in Figure 5.12. The atomic 

population was obtained by computing the total number of atoms in each slab 

averaged over 600 fs. We chose a set of very thin slabs for this calculation in order to 

distinguish between the crystalline region and the amorphous region, while much 
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thicker slabs were chosen for calculations of Q4
dot and Dx to gain better statistics. Q4

dot 

and Dx within each slab were averaged over atoms and over time (600 fs and 30 ps, 

respectively).   

  In Figure 5.12 (a), we show a snapshot of the early stage of crystallization, which 

contains roughly 20% crystalline-like atoms. Initially, only two layers were fixed as 

the crystallization seed, a few more (2-3) crystalline layers were formed during very 

rapid quenching from Tm to Troom and the subsequent re-heating to 585 K. The models 

must be sufficiently large along the growth direction, otherwise, they would fully 

crystallize during the fast quenching process, e.g. a model containing 9 crystalline 

layers in total is not sufficient.  

  By calculating the averaged order parameter within each slab, we can better 

characterize the local structure as crystalline (Q4
dot ~ 0.9), amorphous (Q4

dot ~ 0.3) or 

interface region (rapid reduction of Q4
dot). The interface extends over 3 slabs (7-8 Å), 

indicating a sharp transition region, which is also reflected in the atomic population 

profile. The thin interface suggests the interaction between the two interfaces is 

negligible at the initial stages of the crystallization process. 

  In Figure 5.12 (d), the profile of the diffusion coefficients along x-axis is shown, 

which can shed light onto the applicability of the WF equation (5.2) to AIST. We 

calculate vg as a function of T from WF formula, using the bulk values of D from 

simulations (purely amorphous, no crystalline seeds) and Thompson-Spaepen 

expression for Δμ(T), and we obtain growth velocities comparable to the directly 

computed values of vg shown in Table 5.2, the biggest deviation being a factor of 2 at 

450K. So we can conclude the WF formula is generally applicable for AIST. 
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Figure 5.12 Profiles of the amorphous-crystalline interface of AIST at T=585K. (a) A 

snapshot of AIST containing 810 atoms at the initial stages of crystallization. Ag, In, Sb and 

Te atoms are rendered with blue, red, yellow and green spheres, respectively. Profiles of (b) 

the order-parameter Q4
dot, (c) the atomic population and (d) the diffusion coefficients. 
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Temperature [K] 585 543 503 455 

WF formula 

D [× 10-10 m2/s] 4.97 3.27 1.72 1.00 

1−exp[−Δμ(T)/(kBT)] 0.54 0.62 0.68 0.75 

vg [m/s] 8.09 6.05 3.50 2.23 

General form vg = λk+S 

τ [ps] 8.30 11.27 14.37 20.15 

k+ [ps-1] 0.1204 0.0884 0.0696 0.0496 

S 0.38 0.44 0.46 0.50 

vg [m/s] 9.15 7.78 6.40 4.96 

Simulations 

vg [m/s] 7.80 7.28 6.68 5.33 

Table 5.2 Comparison of the growth velocities vg obtained from the Wilson-Frenkel (WF) 

formula, from the general form λk+S and directly from the simulations (see Figure 5.9 here 

only the averaged values are shown). λ is assumed to be equal to 2 Å. 

 

 
Figure 5.13 Sticking process at the crystalline-amorphous interface. An empty site is marked 

with dashed circle. The gap between the amorphous and the crystalline region is increased for 

the purpose of visualization. 
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  During the crystallization process, atoms can jump from the amorphous phase to 

crystalline phase by sticking to the crystalline interface. Imagine there are certain 

empty sites (see Figure 5.13) formed near the crystalline interface, after occupying the 

site, the atom can form stable bonds with the nearest crystalline neighbors and 

become part of the crystal. Alternatively, the atom could jump out of the site. We 

name these atomic processes as "landing" and "escaping" events. Now we can better 

quantify the growth process by calculating the deposition rate k+ and the sticking 

coefficient S. k+ is defined as the rate of which atoms land on the crystalline part, and 

is given by the number of landing events per unit time. S is defined as the probability 

for atoms to stick to the crystalline interface and become part of the crystal after 

landing on it. S is computed as (nl − ne)/nl, where nl and ne is the total number of 

landing and escaping events, respectively. Figure 5.13 is the schematic plot of the 

sticking process. More details about k+ and S can be found in Appendix D.  

  In general, the crystal growth velocity is given by: vg ∝ k+⋅S. In the WF limit, k+ ∝ 

D and S = 1−exp[−Δμ(T)/(kBT)]. After calculating k+ and S, we can evaluate the 

growth velocity as  

𝑣𝑣𝑔𝑔 = λ𝑘𝑘+𝐺𝐺 ,                      (5.5) 

where λ is a constant factor having the unit of length (λ=2Å is used). The resulting vg 

are shown in Table 5.2. Compared to the vg from simulations, the ratio between the 

two sets of vg changes about 20% in the range 585 K - 455 K. This good comparison 

supports our derivation of k+ and S, despite the method we used is rather simple. By 

decomposing the role of k+ and S in our simulations, we could learn that the decrease 

of vg upon temperature reduction in our simulations is fully contributed by the k+ term, 

since the S term increases. This is in line with WF theory, although k+(T) is not 

exactly proportional to D(T). The ratio k+/D changes by a factor of two from 585 K to 

455 K. These deviations may be due to finite size effects. 

  Some snapshots during crystallization at 585 K are displayed in Figure 5.14, 

together with the corresponding profiles of Q4
dot. The whole trajectory shows a 

smooth growth from the crystalline boundaries, no nucleation occurs inside the 

amorphous slab, which is in line with the experimental observations of Ref. [35]. In 
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the final stages of the crystallization process, the two interfaces interact with each 

other, which slightly accelerates crystallization. Therefore, the very last part of the 

trajectory is not included in the evaluation of the growth velocity.   

  Now we turn to the discussion of the impurity effects to the crystallization process. 

To have a direct comparison, we performed similar simulations on Sb2Te without 

Ag/In dopants at 585 K. We found the crystallization is faster for Sb2Te, i.e. vg is 1.7 

times higher than that of AIST (see Figure 5.9). Apparently, Ag/In impurities hinder 

the crystallization of Sb2Te.  

 

 

Figure 5.14 a) Snapshots of the crystallization of AIST containing 810 atoms (T=585 K) at 0, 

60, 120 and 170 ps. b) Plots of the corresponding profiles of order parameter Q4
dot. 
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  In order to make sure this acceleration is not caused by additional nucleation effects 

inside the amorphous slab, several snapshots during crystallization are presented in 

Figure 5.15 together with the corresponding Q4
dot. Clearly, no nucleation is observed 

and the growth process is very similar to that of AIST.  

  Then we check the deposition rate k+ and the sticking coefficient S. We find the 

deposition rate roughly stays the same,1/8.7 ps-1 (Sb2Te) and 1/8.3 ps-1 (AIST), while 

the sticking coefficient differs significantly. Without Ag/In impurities, the sticking 

coefficient S of Sb2Te is 0.51, however, this number decreases significantly to 0.38 

upon doping. These numbers are averaged over 4 samples at 585 K.  

 
Figure 5.15 a) Snapshots of the crystallization of Sb2Te containing 810 atoms (T = 585 K) at 

0, 45, 90 and 135 ps. b) Plots of the corresponding profiles of order parameter Q4
dot. 
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  To further elucidate the effects of impurities, 4 additional simulations are 

performed, in which the Ag and In impurities in amorphous AIST at 300 K are 

replaced with all Ag, In, Te or Sb atoms, respectively. The models are then heated to 

585 K for crystallization. We compute the sticking coefficients for these four models, 

and find that three of them are very similar, 0.47, 0.51 and 0.50 (In-, Te- and Sb- 

"doped" Sb2Te), while that of Ag- doped Sb2Te has a much smaller value, 0.35. This 

finding suggests Ag plays a more significant role in reducing the growth velocity of 

Sb2Te than In does at high temperatures (see corresponding vg in Table 5.3). The 

observation of growth velocity reductions due to impurities are in line with previous 

experiments [12].      

 

 vg [m/s] S SAg SIn SSb STe 

AIST 7.80 0.38 0.26 0.30 0.39 0.40 

Sb2Te 13.16 0.51   0.51 0.50 

Ag-Sb2Te 5.99 0.35 0.21  0.37 0.36 

In-Sb2Te 11.98 0.47  0.34 0.49 0.47 

Sb-Sb2Te 13.22 0.50   0.50 0.49 

Te-Sb2Te 13.83 0.51   0.51 0.51 

Table 5.3 Growth velocities and total and elemental specified sticking coefficients. For AIST 

and Sb2Te, the amorphous models are generated 4 times independently (only averaged values 

are shown), while the other four simulations Ag-, In-, Sb- and Te- "doped" Sb2Te are obtained 

by replacing one of amorphous AIST models.  

 

  By evaluating the elemental contributions to the sticking coefficients, we can 

understand the atomic process near the interface one step forward. From table 5.3, we 

observe that in AIST the sticking coefficients of impurities SAg and SIn are quite low 

0.26 and 0.30, moreover, SSb = 0.39 and STe = 0.40 are also low, in particular lower 

than SSb = 0.51 and STe = 0.50 in the clean Sb2Te system. This reveals that not only the 
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impurities themselves have a higher probability to escape from the interface, but also 

they disturb the sticking process of the major contents Sb and Te. Therefore the 

overall sticking coefficient of AIST reduces.     

  We can understand this behavior from the electronic properties. In PCMs, it is well 

known that p type bonding plays an important role [19], and for doped Sb2Te alloy, 

there is no exception. In AIST, the crystalline interface is mainly made of Sb (3 p 

valence electrons) and Te (4 p valence electrons), and would preferentially form p 

type bonds with the atom that occupies the empty site. If the atom is Sb or Te, the 

bonding would be stable, leading to a high sticking coefficient. However, in the case 

of In, there is only 1 p valence electron, the bonding would be relatively weaker, so 

that In atom has a higher probability to escape from the site, which means a smaller 

sticking coefficient. From this point of view, the sticking coefficient should be the 

smallest for Ag, since it has no p valence electron at all, which is in line with our 

observation, shown in Table 5.3.  

  From the above analysis, we could also learn that only the impurities close to the 

interface region play a role in reducing the effectiveness of the sticking process. 

Impurities at other regions (amorphous or crystalline) have no contributions. Since the 

amount of impurity atoms is quite small in our simulations, the statistical distribution 

of them after melt-quench affects the growth velocity strongly, leading to a relatively 

large error bar (±1.43m/s). In the case of Sb2Te, the error bar is much smaller (±0.41 

m/s), where the growth velocity does not depend on the statistical distribution of 

impurities. 

  In conclusion, impurities Ag/In near the crystalline interface affect the overall 

sticking process and lead to a slower growth process at high temperatures. Ag works 

more effectively than In in reducing the growth speed of the Sb2Te system. At low 

temperatures, in particular at room temperature, Ag/In should increase the viscosity of 

amorphous Sb2Te systems very significantly yielding a good thermal stability [12]. 

Our current simulations cannot provide useful information in such temperature range, 

due to the quenching rate effects. 
 



123 
 

5.6 Summary and outlook 

  In this chapter, I firstly reviewed the recent progress of crystallization of PCMs, 

then I focused on the discussions of growth dominated PCMs -- AIST and Sb2Te. We 

found good comparisons of the structural properties of a-AIST between AIMD 

melt-quenched models and experimental as-deposited samples. The recrystallized 

AIST from simulations was in reasonable agreement with that from experiments. Our 

simulations of crystallization showed that the atomic processes near the 

crystalline-amorphous interface involved dramatic structural changes and could be 

classified as diffusion-limited interface-controlled growth.  

  At low temperatures (below 550 K), the dynamical properties of the amorphous 

models, obtained by extremely fast melt-quench simulations (with a quenching rate of 

1013 K/s), differed very significantly from the experimental samples quenched at 

slower rates (1010 K/s), suggesting that the quenching rate plays a very important role. 

This property is expected to be related to the very high fragility of AIST, and it should 

hold for other fragile PCMs, such as GeTe and Ge2Sb2Te5. 

  Good agreement between the dynamical properties of AIMD simulated AIST and 

experiments was found at higher temperatures. The simulations showed that AIST and 

Sb2Te possessed a rather sharp crystalline-amorphous interface and the presence of 

Ag and In impurities led to a decrease in the crystal growth velocity of Sb2Te, due to a 

reduction in the sticking coefficients. These results are in good agreement with 

previous experimental works.  

  In the future, we will continue our work on the doped Sb-Te systems to find 

optimal dopants for rapid crystallization at high temperatures. Also, we will consider 

the crystal process for other systems, even for the systems having high nucleation rate, 

e.g. Ge2Sb2Te5. Besides, we anticipate a thorough understanding of quenching rate 

effects on dynamical properties of fragile systems. Such simulations are currently not 

feasible for ab initio simulations, since they require very long simulation time, on the 

order of tens to hundreds of nanoseconds. We may achieve this with the development 

of supercomputers and AIMD codes in the future.     
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Chapter 6 Magnetically doped Phase Change Materials 

 
  In this chapter, I focus on the magnetic properties in 3d impurities doped PCMs. 

Both crystalline and amorphous states are considered. The chapter is divided into five 

parts, 1> an introduction of magnetic phase change materials (MPCMs) is provided; 

2> the exchange mechanisms in dilute magnetic semiconductors (DMSs) are briefly 

reviewed; 3> I focus on 3d impurities in stable hexagonal Ge2Sb2Te5; 4> the phase 

change cycle of MPCMs is discussed; 5> a summary and outlook is provided. It is 

worth mentioning that Y. Li and I. Ronneberger have also contributed to this work.  

     

6.1 Magnetic Phase Change Materials  

  All the known PCMs so far are nonmagnetic materials. In 2008, Song et al. [48] 

synthesized the first MPCM by doping Ge2Sb2Te5 with Fe impurities (Fe-GST). Later 

in 2011, Fe doped GeTe has been synthesized and measured [224]. These new 

materials preserve the phase change properties, namely, reversible and rapid 

crystalline-amorphous phase transitions, and electrical/optical contrast between the 

amorphous and the crystalline states; moreover, they have been proved to be 

ferromagnetic in both phases and to exhibit a non-negligible magnetic contrast 

between the two phases. These findings open up the possibility to design new data 

storage, sensor and logical devices as well as multi-functional spintronic devices.  

  FeGST is classified as a diluted magnetic semiconductor (DMS). DMSs have 

drawn great attentions during the past decades [225,226,227] owing to their great 

technology importance (e.g. spintronic semiconducting devices) as well as 

fundamental research interests (e.g. spin dynamics). Curie temperature TC is an 

important quantity of DMSs, which is the critical temperature at which a transition 

from a ferromagnetic state to a paramagnetic state occurs. For practical application of 

DMSs, TC should be as high as possible, ideally above room temperature. However, 

usually TC in DMSs is quite low and Fe-GST is no exception: the measured TC for 

hexagonal Fe-GST (7 % Fe atoms) is 173 K. By increasing the concentration of Fe, 
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TC is expected to increase, however, so far, no experimental TC has been reported for 

Fe-GST close to its dilute limit -- 19% Fe atoms (above this value Fe atoms segregate 

and form Fe clusters inside the host [48]).  

  Although it has been proved by experiments that phase change control over 

ferromagnetism works in Fe-GST, there are a number of things that require further 

investigations, namely, 1> the physical mechanisms that stabilize the ferromagnetic 

state in both phases, 2> the microscopic origin of the magnetic contrast, 3> the effect 

of magnetic impurities on the phase-change properties, 4> find better performing 

MPCMs.  

 

6.2 Exchange mechanisms in dilute magnetic semiconductors  

  Theoretical studies employing density functional theory have significantly 

contributed to the understanding of exchange mechanisms that stabilizing magnetism 

in several classes of crystalline DMSs, for instance, III-V and II-VI semiconductors 

with magnetic dopants [227,228]. Here I briefly review the exchange mechanisms that 

stabilize ferromagnetism or antiferromagnetism in DMSs [228].  

  It is generally accepted that Zener’s double exchange mechanism [229] and Zener’s 

p-d exchange mechanism [230] lead to ferromagnetic couplings in DMSs, while 

superexchange [231,232] usually results in antiferromagntic couplings. In some cases, 

superexchange also favors ferromagnetism [231,232].   
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Figure 6.1 Adapted from Ref. [228]. (a) double exchange and (b) p-d exchange for 

ferromagnetism, and (c) superexchange for antiferromagnetism.  

 

  In transition metal impurity doped wide-band-gap semiconductors, such as Mn or 

Cr doped GaN, double exchange usually dominates. The stabilization of a 

ferromagnetic state depends on the width of the impurity band and the position of the 

Fermi level. In Figure 6.1 (a) a schematic spin-polarized DOS is shown. We assume 

the Fermi level lies in the middle of the impurity so that the bonding states are fully 

occupied while the antibonding states are completely empty. In this case, the system 
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obtains a maximum energy gain for ferromagnetically coupled impurities ~ |𝑒𝑒|√c, 

where |t| is the hopping matrix element between the impurity states (Figure 6.1 (a)), 

and c is the impurity concentration [228]. This energy gain, caused by the 

double-exchange mechanism, vanishes if EF lies on either side of the band edge. In 

other words, the system gains no energy if either the impurity band is completely 

filled or completely empty.  

  Another exchange mechanism that stabilizes the ferromagnetic state is p-d 

exchange (shown in Figure 6.1 (b)), which often dominates in narrow-gap 

semiconductors like GeSb or InSb. In such compounds, after doping with Mn 

impurities, the majority d band of Mn lies below the p band of Sb, while the minority 

d band of Mn lies well above the Fermi level. Before interacting with the host, Mn has 

a well-localized local moment of 5 μB. In the neutral state Mn donates one electron 

per Mn atom, which is indicated in the p band at EF (solid curve), 1/2 for both spin-up 

and spin-down. After interaction between Mn and nearby Sb, the hybridization of the 

majority d band (Mn) and the minority p band (Sb) leads to the shift of the majority p 

band towards higher energy, while the minority p band is shifted towards lower 

energy (dashed curve). In case of strong enough hybridization, the minority p band 

becomes completely filled, while one electron per Mn impurity is missing in the 

spin-up p band, leading to a half-metallic density of state. Therefore, Sb atoms carry 

small antiparallel moments with respect to the local moment of Mn, resulting in an 

effective moment per Mn impurity of 4 μB. In short, the hybridization of occupied 

spin-up and unoccupied spin-down d states of Mn induces a magnetic field on the 

valence band states, leading to a spin-polarization of the system. 

  Superexchange mechanism [231,232] is also very important in DMS. Typically, it 

stabilizes the antiferromagnetic state. It differs from the previous two mechanisms 

since it does not require a finite density of states at EF. The hybridization is actually 

between the state localized well below EF and the state localized well above EF. 

Usually the superexchange is explained by a magnetic coupling transferred by the 

ligands (the p orbitals of the anions), although these states themselves are hybrids 

between impurity d states and anion p states. A schematic plot is given in Fig 6.1 (c). 
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It shows the schematic density of states for two impurity systems, which have 

moments S1 and S2, equal concentrations c/2, and are antiparallelly aligned. The 

electronic states with the same spin direction hybridize with each other, which shifts 

the lower occupied energy peaks to even lower energies and shifts the higher empty 

energy peaks to higher energies, indicated by the dotted bands. The downward shift of 

the lower occupied level yields a band energy gain, which stabilizes the 

antiferromagnetic couplings. In some cases, such as V doped GeAs, superexchange 

also stabilizes ferromagnetic couplings, a detailed discussion can be found in Ref. 

[228], [231] and [232]. 

 

6.3 3d impurities in hexagonal GST 

  We perform DFT and AIMD simulations to study the structural, electronic and 

zero-temperature magnetic properties of both the crystalline and the amorphous 

Ge2Sb2Te5 doped with 3 d impurities, namely, Cr, Mn, Fe, Ni and Co (MI-GST). Two 

popular methods are currently employed in DFT to study magnetic materials, the 

coherent potential approximation (CPA) and the supercell method. The latter one is 

chosen for the current study because of the complexity of the materials, i.e. the 

complicated local environment of the impurities in the crystalline phases and the even 

more complicated amorphous network. Although it is possible that both ferromagnetic 

and antiferromagnetic exchange interactions play a role in MI-GST, for two reasons, 

we only consider ferromagnetic couplings in this study: 1> in experiments, the 

primary magnetic interaction has been demonstrated to be ferromagnetic for Fe-GST 

[48], 2> more complicated magnetic structures within the supercell method would be 

computationally extremely heavy, in particular for the amorphous phase.  

  We start with the discussion of the hexagonal Ge2Sb2Te5 phase (hex-GST), since 

the first MPCM (Fe-GST) was synthesized in this phase experimentally. The 

subsequent amorphization and crystallization were based on it. As discussed in Chap3, 

the KH sequence is energetically more favorable than the Petrov sequence. Here, we 
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only consider KH sequence for the hexagonal phase. The experimental lattice of 

hexagonal Ge2Sb2Te5 are used, a = 4.25 Å and c = 17.27 Å. 

  The first step is to understand the defect formation energy of 3 d impurities in 

hexagonal GST. We consider several non-equivalent substitutional and interstitial 

sites as shown in Figure 6.2. The simulations are based on supercells contain 108 

atoms and 1 impurity and on a 2 × 2 × 2 Monkhorst-Pack (MP) k-point mesh [102]. 

GGA-PBE exchange-correlation functionals and ultrasoft pseudopotentials are 

employed. The plane wave code Quantum Espresso [127] are used.   

 

Figure 6.2 Hex-GST with several non-equivalent substitutional and interstitial sites. 

 

  The defect formation energy of the magnetic impurity (MI) is calculated with 

respect to the clean hex-GST and the crystalline phase of each element. The transition 

metals are calculated in their magnetic ground state.  
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𝐸𝐸𝑐𝑐𝑜𝑜𝑟𝑟𝑚𝑚 = 𝐸𝐸𝑀𝑀𝐼𝐼−𝐺𝐺𝐺𝐺𝑇𝑇 − 𝐸𝐸𝐺𝐺𝐺𝐺𝑇𝑇 + 𝐸𝐸𝐺𝐺𝑒𝑒/𝐺𝐺𝑏𝑏/𝑇𝑇𝑒𝑒 − 𝐸𝐸𝑀𝑀𝐼𝐼  .           (6.1) 

  The defect formation energies are summarized in Table 6.1. The most energetically 

favorable sites are substitutions Sb for Cr, Fe and Co and substitutional Ge for Mn, 

while for Ni, the energy of the interstitial i2 site is comparable to that of the 

substitutional Ge and Sb sites. For the other impurities, interstitial sites are generally 

much higher in energy. For all the five 3 d impurities at substitutional Te sites, the 

formation energies are very high. 

  

Site Cr-GST Mn-GST Fe-GST Co-GST Ni-GST 

Eform [eV] 

Ge 0.16 −0.34 0.76 0.56 0.53 

Sb −0.10 −0.18 0.71 0.16 0.62 

Te1 2.91 2.83 3.19 1.71 1.61 

Te2 2.67 2.42 2.89 1.48 1.39 

Te3 1.50 1.30 2.14 1.11 1.41 

i1 1.33 1.22 1.61 1.01 0.83 

i2 1.62 1.23 1.60 0.82 0.62 

Total Moments (Local moments) [μB] 

Ge 4.04 (3.71) 5.01 (4.33) 3.89 (3.19) 0.00 (0.00) 1.89 (0.93) 

Sb 3.04 (3.25) 4.57 (4.29) 4.70 (3.43) 0.00 (0.00) 1.56 (0.84) 

i1 4.66 (3.86) 4.07 (4.03) 1.93 (2.37) 0.93 (1.07) 0.00 (0.00) 

i2 3.96 (3.43) 2.99 (3.40) 2.14 (2.57) 0.00 (0.00) 0.00 (0.00) 

Table 6.1 The formation energies and magnetic moments of substitutional and interstitial 

impurities in hex-GST. 

 

  In Table 6.1, the total (local) magnetic moments of the MI are also shown. Some 

models have finite magnetic moments, while some of them are non-magnetic. Taking 

Cr for instance, for all considered sites, the system is magnetic and the total moment 

is almost an integer number, 4 and 3 μB at substitutional Ge and Sb sites. This can be 
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understood within a simple ionic model, i.e. Cr donates 2 and 3 electrons to form 

bonds with nearby Te atoms at the two sites. Similar behavior is observed for Mn and 

Fe. As regards Co and Ni, the magnetic interactions become unstable for some sites. 

In particular, the most energetically favorable configurations are non-magnetic, which 

already suggests they are not good candidates as MPCMs. More importantly, we will 

show that Co- and Ni- doped GST is always non-magnetic in the phase change cycle. 
             

 Fe  Co  

 low spin high spin low spin high spin 

Subst. Ge     

Moments (μB) 0.00 3.89 0.00 2.89 

MI-Te bonds 2.65-2.69 2.82-2.87 2.68-2.71 2.79-2.94 

Δ E (eV) 0.69 0.00 -0.18 0.00 

Subst. Sb     

Moments (μB) 0.87 4.70 0.00 1.94 

MI-Te bonds 2.62-2.70 2.75-2.97 2.62-2.69 2.62-3.33 

Δ E (eV) 0.37 0.00 -0.22 0.00 

Table 6.2 Different magnetic configurations for Fe and Co dopants 

 

  As regards Fe and Co, there exists another magnetic state, which, is however, less 

energetically favorable, as shown in Table 6.2. The metastable states have different 

bond lengths (between the impurity atoms and their nearest neighbors) and different 

magnetic moments.  

  In Fe-GST, the metastable configuration has no magnetization at subst. Ge site, and 

a rather small magnetic moment (0.87 μB) at subst. Sb site. These two low spin states 

are 0.69 and 0.37 eV higher in energy than the corresponding high spin state. The 

shorter bond lengths between the impurity atom and the nearby Te atoms in the low 

spin state reflect a stronger p-d hybridization. In these states, the crystal field prevails 

over the exchange splitting. In Ref. [233], Ding et al. also find this low spin state at 

subst. Sb site by means of DFT, which seems to fit their experiments better. However, 
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we argue this state is higher in energy than the high spin state, and the observed small 

magnetization in experiments may rather result from the interplay of both 

ferromagnetic and antiferromagnetic couplings between Fe impurities.  

  For the case of Co, the trend is opposite, i.e. the high spin state at subst. Ge (2.89μB) 

and subst. Sb (1.94 μB) site is energetically less favorable than the corresponding 

non-magnetic states. The Co-Te bond lengths are generally bigger in the high spin 

states.   

   

 
Figure 6.3 One relaxed hexagonal supercell with 7% 3d impurities. 

 

  Based on the understanding of the energetics, we construct big models containing 

216 atoms with 7% substitutional 3 d impurities (15 atoms) at cation sites (randomly 

distributed). We relax these models and study their electronic and magnetic properties 

at 0K. A typical relaxed model is depicted in Figure 6.3. These big models are also 

the starting point to generate the amorphous phase, as will be discussed later. 
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Figure 6.4 The DOS of hexagonal Fe-GST, single impurity model. 

 

  We calculate the total DOS and the projected DOS onto the 3 d orbitals of the 

impurities that have finite magnetic moments, e.g. Fe. In Figure 6.4, the DOS of the 

small models of Fe-GST at energetically favorable substitutional Ge and Sb sites are 

shown, which suggest that the ferromagnetic state is stabilized due to the interplay of 

two exchange mechanisms. On one hand, GST has a small band gap and a relatively 

large carrier concentration, suggesting carrier-mediated p-d exchange is important. 

This has been already discussed by Song et al. [48]. We note that the p-d exchange 

would be further enhanced by non-stoichiometric Ge/Sb excess vacancies (not 

considered in our model), which are invariably present in crystalline GST and turn it 
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into a p-type semiconductors [234]. On the other hand, the large DOS of the minority 

impurity band at the Fermi level suggests that double exchange could be relevant as 

well. 
 

 
Figure 6.5 The DOS of hexagonal Fe-,Cr-, Mn-GST, multiple impurities. 
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  The bigger model of hexagonal Fe-GST is qualitatively similar to the small model 

(Figure 6.5). The larger impurity concentration broadens the impurity bands. Similar 

spin-polarized DOS plots are also shown for hexagonal Mn-GST and Cr-GST in 

Figure 6.5. In these two cases, the minority bands are completely empty and well 

above the Fermi level and the main peaks of the majority bands are relatively deep in 

the valence band. Thus suggests that p-d exchange mechanism should play an 

important role in hexagonal Fe-GST. However, the majority impurity bands of Mn- 

and Cr-GST at the Fermi level are relatively large, suggesting double exchange may 

be involved as well.  

 

6.4 3d impurities in phase change cycle and magnetic contrast 

  Now we turn to discuss the more relevant phases in the phase change cycle of 

MI-GST, namely the metastable cubic phase and the melt-quenched amorphous phase. 

As introduced before, cubic GST is obtained after rapid crystallization, and only after 

sufficiently long thermal annealing at high temperature, the cubic state develops into 

the stable hexagonal phase (see Chap 3). A "small" concentration of impurities (e.g. 

7%) is not expected to change this picture. In fact, in the experimental work by Song 

et al. [48], the recrystallized state has a smaller magnetization than the initial 

hexagonal state, which also suggests the two crystalline forms to be different. Very 

recently, Elliott et al. [235,236] have performed AIMD crystallization simulations of 

amorphous transition metal doped Ge2Sb2Te5 and they showed that the recrystallized 

state was in cubic phase.      

 

6.4.1 3d impurities in cubic GST 

  In Figure 6.6, we show the cubic model together with four non-equivalent 

substitutional sites (Te/Ge/Sb/vacancy) and one interstitial site (i3). In this phase, 

disorder plays a much important role (see Chap 3), which affects the formation energy 

and magnetism. Therefore, we need to generate several models to gain better statistics 

over different local environments: for each type of defect we choose randomly four 
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configurations and calculate the average values of the formation energies and the 

magnetic moments. The cubic models contain 130 atoms (corresponding to a 3×3×2 

supercell of the standard standard cubic cell) and one additional impurity atom have 

been investigated with a MP k-point mesh 2×2×2. We use the experimental lattice 

parameter 6.029 Å. 

 

 

Figure 6.6 Cub-GST with substitutional and interstitial sites  
 
  From Table 6.3, we observe that Cr, Mn, Fe and Co prefer to occupy the cation 

sites (Ge/Sb/vacancy), while for Ni, the interstitial i3 site is equally favorable. The 

formation energy for the subst. Te site is generally large for all the five impurities we 

consider here. As regards the i3 site, the formation energy for Cr, Mn, Fe and Co is 

high.  

  The total and local magnetic moments of impurities in cub-GST are presented in 

Table 6.3. Interestingly, Cr, Mn and Fe display large magnetic moments at 

substitutional cation sites, which are comparable to the corresponding subst. Ge/Sb 

sites in hex-GST. Co and Ni are shown to be non-magnetic. Small relaxations take 
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place in Cr-, Mn- and Fe-GST, whereas much stronger relaxations occur in Co- and 

Ni-GST. At subst. Te sites, the magnetic moments of the impurities have much bigger 

fluctuations due to the more direct effects of the disorders. At the interstitial i3 site, Ni 

and Co are non-magnetic, Cr and Mn are in a high spin state, while Fe is in a low spin 

state.  

 

Site Cr-GST Mn-GST Fe-GST Co-GST Ni-GST 

Eform [eV] 

Ge/Sb 0.05 ± 0.19 −0.22 ± 0.11 0.51 ± 0.08 0.17 ± 0.18 0.39 ± 0.15 

Te 1.38 ± 0.15 1.07 ± 0.22 1.08 ± 0.41 0.72 ± 0.05 0.72 ± 0.02 

i3 0.81 ± 0.02 0.47 ± 0.02 0.91± 0.03 0.38 ± 0.03 0.36 ± 0.03 

Total Moments (Local moments) [μB] 

Ge/Sb 3.72 (3.48) 

±0.36 (0.09) 

4.68 (4.13) 

± 0.22(0.08) 

4.08 (3.18) 

± 0.14(0.09)  
0.00 ± 0.00 0.00 ± 0.00 

i3 3.97 (3.37)  

±0.20 (0.01) 

4.43 (3.88) 

± 0.10(0.00) 

2.61 (2.60) 

± 0.20(0.03) 
0.00 ± 0.00 0.00 ± 0.00 

Table 6.3 Formation energy and magnetization of cubic GST doped with single impurity 

 

  To simulate transition metal impurities, in particular to describe the correlations of 

the localized d electrons, GGA often leads to spurious artifacts due to self-interaction 

effects. A Hubbard U parameter applied to the d states of the magnetic impurities is 

often considered to heal this effect [20]. We calculated the U parameter 

self-consistently using the linear response method introduced by Cococcioni and de 

Gironcoli [21]. We only consider the U for the stable subst. cation sites in c-GST. The 

values obtained for c-GST are 2.7, 5.1, 3.9 ,7.3 and 9.3 eV for Cr, Mn, Fe, Co and Ni 

respectively. Further simulations have been performed with the GGA+U approach, 

and the results are in agreement with pure GGA calculations. The details to obtain U 

parameters can be found in the appendix E.  
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Figure 6.7 The bond length distributions and magnetic moments distributions of impurity 

atoms in cubic phase. Large models with multiple impurities  

 

  Larger cubic models containing 199 atoms (corresponding to a 3×3×3 standard 

cubic cell) with 7% substitutional impurities placed at energetically favorable cation 

sites are constructed and relaxed (k-points 2×2×2). The magnetic properties are the 

same of the corresponding smaller models. Since we have better statistics in the big 

models, we compute the distribution of the bond lengths between impurity atoms and 

their nearest neighbors, which is plotted in Figure 6.7 together with the magnetic 

moments distribution. These results confirm that relative small relaxations occur 

around Cr, Mn and Fe atoms, with typical bond lengths 2.8-3.0 Å, while strong 

relaxations take place around Co and Ni atoms, with typical bond lengths 2.6-2.7 Å. 

The hybridization between the d electrons of Co and Ni and the nearby p electrons of 

Te is strong enough to quench the magnetic moments. In other words, the crystal field 

produced by the host cubic GST dominates over the exchange splitting of the d states 

of Co and Ni. The magnetic moments of Cr, Mn and Fe do not fluctuate significantly 

in these cubic models. Similar trends of magnetic properties over these 3 d impurities 
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(except Fe) have been observed in some other doped semiconductors, like doped 

GaAs [237]. Fe impurities are in a low spin state in doped GaAs. We visualize one of 

the relaxed cubic MI-GST structures in Figure 6.8 (a).  

 

 
Figure 6.8 Snapshots of one relaxed cubic and one amorphous MI-GST. 

 

6.4.2 3d impurities in amorphous GST 

  Now we generate amorphous MI-GST models. In the absence of experimental data 

of the amorphous density, we use the experimental density of clean amorphous GST 

0.03 at / Å3 [238] and assume the relatively small concentrations of impurities do not 

change the atomic density significantly. To generate amorphous models, we follow 

the similar melt-quench scheme discussed in Chap 4 and 5, using CP2K. The 

computational details, including methods, functionals, basis sets, k-points, etc. are the 

same as before, except that we consider spin polarizations during the melt-quenched 

molecular dynamics simulations. 

  The amorphous models contain 216 atoms with 7% impurities and the different 

MI-GST models are produced from independent AIMD simulations. The melt-quench 

loop starts with randomization at 2500K for 10 ps, and then the systems are brought to 

1000K in 20 ps and further equilibrated at this temperature for 50 ps. The amorphous 

states are obtained by subsequent quenching to 300K in 100 ps. The equilibrations at 

300K last 30 ps and finally the systems are quenched to 0K and further relaxed using 



141 
 

Quantum Espresso with a 2×2×2 k-point mesh. One of the fully relaxed amorphous 

MI-GST is visualized in Figure 6.8 (b).  

 

 
Figure 6.9 The total g(r) of the five magnetically doped amorphous models. 

 

  We observe interesting differences in the magnetic properties of these amorphous 

MI-GST: Cr-, Mn- and Fe-GST exhibit finite magnetic moments, while Co- and 

Ni-GST are non-magnetic. To understand this difference, we study their structural 

properties first. The natural choice is to calculate the pair correlation function g(r). 

We collect data at 300K for the five amorphous models and plot them in Figure 6.9. 

Apparently, the g(r) of Cr- and Mn-GST are similar, and they differ from that of Co- 

and Ni-GST; the g(r) of Fe-GST is in between. The primary peak positions of the five 

models are rather similar and are comparable to that of the clean GST model. The 

width of the first peak of Cr- and Mn-GST is comparable to the clean GST, while that 

of Fe-GST is slightly broader and that of Co- and Ni-GST is much broader.  
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Fig 6.10 PPCFs of the five magnetically doped amorphous models. 

 

  To understand it better, we plot the partial g(r) to distinguish the contributions from 

different pairs of elements, shown in Figure 6.10. Very big differences around 

impurity atoms in terms of peak positions, peak heights as well as peak widths are 

detected. We perform a more careful analysis around impurity atoms by counting the 

bond length distribution within the nearest neighbor shell, shown in Figure 6.11. The 

typical bond lengths are 2.7 - 2.8 Å for Cr and Mn atoms, 2.6-2.7 Å for Fe atoms, and 

2.5-2.6 Å for Co and Ni atoms. The smaller bond lengths imply stronger p-d 

hybridizations with nearby atoms, which leads to a reduction of magnetization. In 

particular, the magnetic moments of Co and Ni become fully quenched. In the case of 

Fe, the magnetic moments of the impurities are quite sensitive to the local 

environment and are affected by the strength of the local p-d hybridizations. The 

magnetic moments of Fe range from 0 to 3 μB, see Figure 6.11 (g). Mn and Cr, on the 
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other hand, have much more robust moments, implying much weaker p-d 

hybridizations, see Figure 6.11 (f), (g).    

 
Figure 6.11 Bond lengths distribution and magnetic moments distribution of the five 

magnetically doped amorphous models. 

 

  To understand more about the local bonding environment, we study the angular 

distribution function (ADF), shown in Figure 6.12. The curves are calculated by 

averaging over all atoms of each type and over 30 ps at 300K. Similar to the case of 

clean amorphous GST phase, Sb and Te curves display a large peak at 90o, and the Sb 

curve also has a smaller peak at 165o, suggesting they are in a defective octahedral 

environment and the coordination numbers are much lower than 6. The missing peak 

in the Te curve at 165o suggests most Te atoms have a twofold or threefold 

coordination -- without neighboring atoms on the opposite sides. The distribution for 

Ge around 90 o is broader, and extended to large angles, which also suggests a 

sizeable amount of tetrahedral configurations. By computing the order parameter we 

discussed in Chap 4 for each atom, we confirm the above findings. The majority of 

the Ge atoms (65-77%) are in a defective octahedral coordination, while the rest of 
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them are tetrahedrally coordinated. The local bonding environment of Ge, Sb and Te 

in amorphous MI-GST is similar to that of the pure amorphous GST [Chap4, 26,27]. 

Around impurities, the picture is more complicated, the distribution of angles is rather 

broad and the average coordination numbers of Cr, Mn, Fe are slightly smaller than 6, 

while that of Co and Ni are a bit larger than 6. The coordination numbers are 

determined by using the first minimum in the partial g(r) plotted in Figure 6.10 and 

are summarized in Table 6.3.  

 
Figure 6.12 The angular distribution function of amorphous MI-GSTs. 
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 Cr Mn Fe Co Ni 

CN. MI 5.93 5.53 5.90 6.47 6.40 

CN. Ge 3.85 4.20 4.10 4.13 4.48 

CN. Sb 3.49 3.56 3.50 3.37 3.68 

CN. Te 2.82 2.89 2.80 2.73 2.88 

tetra Ge 35% 25% 25% 25% 23% 

Table 6.3 The average coordination numbers and the number of tetrahedral Ge atoms in the 

magnetically doped amorphous states.  

 

  Next, we focus on the medium range order of the amorphous network and try to 

assess the effects of magnetic impurities. The distributions of primitive rings are 

reported in Figure 6.13. As regards Cr- and Mn-GST, the ring statistics is very similar 

to that of the pure GST, namely, 4-fold rings are dominant, followed by 5- and 6-fold 

rings. The 3-fold rings are rather rare. In Fe-GST, the primary ring distribution is also 

similar, with the exception of a relatively large number of 3-fold rings. Most 3-fold 

rings have at least one Fe atom. Most 4-fold rings of Cr-, Mn- and Fe-GST are 

consisted of ABAB alternation (A=Ge,Sb; B=Te). However, for Co- and Ni-GST 

pronounced differences are observed: 3-, 4- and 5-fold rings are almost equivalently 

common in these two amorphous networks. Since the peculiar structural properties of 

a-GST -- large number of pre-existing ABAB rings and cavities, are believed to be 

essential for fast crystallizations [27], we speculate that the crystallization rate of 

MI-GST should not be affected significantly at moderate Cr, Mn or Fe doping, 

whereas Co and Ni doping might deliver bigger effects. From the experiments by 

Song et al.[48], it has been shown that moderate doping of Fe does not change the 

crystallization rate of a-GST much. However, the presence of impurities will affect 

much more significantly the structural and dynamic properties of GST when 

approaching the solubility limit.    
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Figure 6.13 Rings statistics of amorphous MI-GSTs. 
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6.4.3 Magnetic contrast and exchange mechanism 

  In this sub-section, we focus on the magnetic contrast between crystalline and 

amorphous MI-GSTs as well as on the possible exchange mechanisms that stabilize 

ferromagnetism.  

    From previous discussions, we learned that Co- and Ni-GST are non-magnetic in 

both cubic and amorphous phases, so that they can be ruled out as magnetic phase 

change materials. Cr-, Mn- and Fe-GST, on the other hand, show finite magnetization 

in both crystalline and amorphous phases and a non-negligible contrast between the 

two phases (see below), suggesting they can be good magnetic phase change materials. 

In the following, we mainly focus on these good magnetic phase change materials.  

 

Site Cr-GST Mn-GST Fe-GST Co-GST Ni-GST 

Total Moments (Local moments) [μB] 

Cubic 4.96(3.83) 4.91(4.28) 4.08 (3.18) 0.00(0.00) 0.00(0.00) 

Amorphous 2.96(3.09) 3.95(3.75) 2.76 (2.33) 0.00(0.00) 0.00(0.00) 

Table 6.4 The total (local) moments of impurities in cubic and amorphous MI-GSTs.  

  The magnetic contrast between the cubic and the amorphous Fe-GST turns out to 

be the largest: the magnetic moments in the amorphous Fe-GST are about 30% 

smaller than in the cubic Fe-GST (see Table 6.4). This large difference stems from the 

different local bonding environments around Fe atoms. It has been shown previously 

that Fe is quite sensitive to the local environment, in particular the bond length, which 

is a direct indication of the strength of p-d hybridization between the d orbitals of the 

impurities and p orbitals of the neighbors. In the amorphous phase, the magnetic 

moments vary considerably from Fe atom to Fe atom, as can be seen in Figure 6.11 In 

crystalline phases, high spin state should naturally exist due to the lowest formation 

energy, while the low spin state might also exist with a bigger penalty in the 

formation energy. In the perfectly cation-sites substituted cubic Fe-GST, only high 

spin states of Fe are detected, which leads to a big magnetic contrast. This is also 



148 
 

reflected in the local bond length distributions shown in Figure 6.9 (c) and 6.11 (c): 

the typical bond lengths around Fe in cubic phase are 2.7-2.8 Å, while those in 

amorphous phase are 2.6-2.7 Å.  

  In the experiments by Song et al. [48], the initial hexagonal phase and the 

recrystallized state (we speculate it to be the cubic phase) have different magnetic 

moments, i.e. the recrystallized state has smaller magnetization then the initial state. 

In principle, if we assume Fe atoms substitute only at Sb sites in the hexagonal phase, 

we would have a larger magnetic moment 5 μB than that in the cubic phase, 4.08 μB. 

In a more realistic picture, the magnetization of the hexagonal state should be between 

4 and 5 μB, since the formation energy of subst. Ge (4 μB) is quite close to that of 

subst. Sb.  

  As regards Cr and Mn, the magnetic moments are more robust, even in the most 

complicated amorphous phase. Only high spin states have been found in both 

amorphous and crystalline states. The bond length distribution in Figure 6.9 and 

Figure 6.11 shows the different peak positions of the amorphous and the cubic Cr- 

and Mn-GST. In the amorphous phase, the typical bond lengths are 2.7-2.8 Å, which 

are smaller than those in the cubic phase, 2.8-2.9 Å, suggesting slightly stronger p-d 

hybridizations in the former state. The average magnetic moments are about 20% 

smaller in the amorphous than in the cubic phase for both Cr- and Mn-GST. Although 

the absolute magnetic contrast is not as pronounced as in Fe-GST, the magnetic 

properties of Cr- and Mn-GST are rather robust and should be more stable than the 

environment-sensitive Fe-GST in phase change cycles. In other words, we speculate 

Cr- and Mn-GST have better cyclicality than Fe-GST, which is very essential from 

the perspective of possible applications.  

  The remaining important task is to understand the possible exchange mechanisms 

that stabilize the ferromagnetic state in both cubic and amorphous phases. The 

spin-polarized DOS of cubic and amorphous Cr-, Mn- and Fe-GST are shown in 

Figure 6.13. In cubic Mn-GST, the majority d levels of Mn lie well below EF, whereas 

the minority d levels of Mn are completely empty and well above EF. Together with 

the fact that the cubic GST has a narrow band gap of 0.5 eV, we speculate that the 
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carrier-mediated p-d exchange interactions stabilize the ferromagnetic state. The 

unavoidable excess non-stoichiometric Ge/Sb vacancies should further enhance this 

mechanism. These excess vacancies are believed to be the main reason for the large 

concentrations of hole carriers [234]. As regards cubic Cr-GST, there are some 

spin-up impurity states at the EF, whereas Fe-GST has a clear peak of the minority d 

levels cutting the EF, suggesting a more complex picture of magnetic interactions, i.e. 

double exchange may also be involved.  

 

Figure 6.13 The DOS of cubic and amorphous Cr-, Mn- and Fe-GST. 

 

  In all the amorphous phases of Cr-, Mn- and Fe-GST, both the spin-up and 

spin-down impurity d bands are broader with respective to that of the cubic phase due 

to wider distributions of local moments; moreover, the pure amorphous GST has a 

slightly larger band gap and a lower hole concentration than those in cubic phase. All 

these facts suggest the p-d exchange mechanism plays a less important role in 

stabilizing the ferromagnetic state in amorphous MI-GST. Other exchange 

mechanisms can be more important. 
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  So far we have only assumed ferromagnetic configurations for the simulations, and 

discussed possible exchange mechanism that can stabilize ferromagnetism. In 

principle, more complicated ferrimagnetic or antiferromagnetic state could exist, in 

particular for the systems without experimental support, namely Cr- and Mn-GST. A 

more thorough analysis of the magnetic states and exchange mechanisms is necessary, 

e.g. calculate the distance dependence of the exchange integrals 𝐽𝐽𝑖𝑖 ,𝑗𝑗
𝑄𝑄𝑄𝑄  between two 

magnetic impurities at different sites.  

  In recent theoretical works on Mn, Cr doped crystalline GeTe [239,240], 

antiferromagnetic couplings between Mn impurities were obtained by calculating 𝐽𝐽𝑖𝑖 ,𝑗𝑗
𝑄𝑄𝑄𝑄 . 

Interestingly, the magnetic interactions changed to ferromagnetic in the presence of 

the non-stoichiometric excess vacancies. Since the cubic GeTe is the parent phase of 

cubic GST, it is well possible that Mn doped cub-GST is also in an antiferromagnetic 

state, however, since the excess vacancies inevitably exist in this system, we believe 

that ferromagnetism can be observed in Mn-GST. In the same work, ferromagnetic 

couplings between Cr impurities were found in Cr doped GeTe, which supports our 

observation of ferromagnetism in Cr-GST.        

6.5 Summary and outlook   

  To summarize, I discussed the structural, electronic and magnetic properties of 3 d 

transition metal doped GST, and considered the stable hexagonal phase and the 

metastable cubic and amorphous phases. We explained the physical origin of the 

magnetic contrast in Fe-GST observed in experiments, moreover, we predicted Cr- 

and Mn-GST to be good magnetic phase materials, while Co- and Ni-GST were not. 

We also predicted Cr- and Mn doped GeTe to be good magnetic phase change 

materials, in particular with non-stoichiometric excess vacancies [241]. 

  In the future, we will study in detail the magnetic interactions between impurities in 

MI-GST, and the exchange mechanisms that stabilize the interactions, with and 

without non-stoichiometric excess vacancies. Also, we will consider other doped 

PCMs with the aim of finding better performing magnetic phase change materials.  
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Chapter 7  Summary and Outlook 

  

  In this thesis, we provided an in-depth understanding of phase change materials by 

ab initio simulations. The study covered several important aspects of phase change 

materials, namely, the structural and electronic properties in both the crystalline and 

the amorphous phase; the kinetic properties of phase transformations between the two 

phases; and the magnetic properties of doped phase change materials. In this chapter, 

I summarize all the results and provide an outlook for future works.   

  In Chapter 3, we studied the structural and electronic properties of the crystalline 

GST. We identified the origin of electron localization in the insulating GST: the 

statistical distribution of intrinsic atomic vacancies led to the formations of vacancy 

clusters (disorder), which localized the electronic wavefunctions near the Fermi level. 

Upon thermal annealing, these vacancy clusters dissolved and eventually formed two 

dimensional vacancy planes. This vacancy ordering process also triggered the 

structural transition from cubic to hexagonal phase and the transition from insulating 

to metallic behavior. As an outlook, we will investigate the atomic disorder in GST 

further, and consider additional approaches to control the vacancy ordering process, 

for instance, by compressive stresses.  

  In Chapter 4, we studied the structural properties of several typical amorphous 

PCMs. We found good comparisons of structural properties between simulations and 

experiments for Ge-free PCMs. As regards Ge-related PCMs, such as GeTe and GST, 

larger discrepancy was found for Ge-Ge and Ge-Te bond lengths. We performed a 

detailed quantum chemistry analysis for chemical bonding in these systems, and 

quantified the importance of homopolar Ge-Ge bonds in stabilizing the local 

tetrahedral Ge units. We aim at solving the discrepancy of bond lengths in amorphous 

GeTe and GST in the near future. 

  In Chapter 5, we simulated the crystallization process of AIST and Sb2Te in the 

presence of a two-dimensional crystalline seed. Smooth crystal growth process from 

the crystalline-amorphous interface was found, and the obtained growth velocities of 
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AIST at high temperatures were comparable to the experimental values. Impurities 

Ag/In were found to hinder the crystal growth of Sb2Te by reducing the atomic 

sticking probability to the crystalline interface. At low temperatures, a large deviation 

of dynamical properties between theory and experiment was observed. We believed 

that the large deviation was due to the very high fragility of the system together with 

the very different quenching rate adopted in simulations 1013 K/s, which was three 

orders of magnitudes larger than that adopted in experiments. In the future, we 

anticipate a thorough investigation of quenching rate effects. 

  In Chapter 6, we studied the magnetic properties of 3 d impurities doped PCMs. 

We found Cr-, Mn- and Fe-doped Ge2Sb2Te5 were magnetic, while Co- and Ni-doped 

Ge2Sb2Te5 were not. With the assumption of ferromagnetic couplings, a 

non-negligible contrast in the magnitude of magnetic moments between the 

amorphous and the crystalline state were observed for Cr-, Mn- and Fe-doped 

Ge2Sb2Te5. The more compact surroundings (shorter bond lengths) near the impurity 

atoms in the amorphous state led to a stronger p-d hybridization (thus a smaller 

magnetic moment) than that in the crystalline state. Possible exchange mechanisms 

that could stabilize ferromagnetic couplings were discussed. In the future, we will 

investigate the magnetic interactions between impurities further by considering more 

sophisticated calculations of the exchange integrals. Non-stoichiometric excess 

vacancies will be considered as well.  
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Appendix A  Density of PCMs 
  For ab initio methods, such as DFT and AIMD simulations, reasonable atomic 

density is important. In particular for complicated systems like amorphous states, 

experimental density is often used. Here I provide a list of (number) density for the 

PCMs that have been investigated in this thesis. Most of them are obtained 

experiments, and some of them are theoretical values.  

 

atom Å-3 Crystalline Amorphous 

GeTe 0.0358 [242] 0.0334 [243] 

Ge8Sb2Te11  0.0309 [242] 

Ge2Sb2Te5 0.0335 [242] a) 

0.0348 [242] b) 

0.0300 [238] 

Ge1Sb2Te4 0.0331 [242] a) 

0.0316 [242] b) 

0.0304 [242] 

Sb2Te3 0.0313 [135] 0.0289 c) 

Ag4In3Sb67Te26 0.0324 [211] 0.0309 [211] 

Sb2Te  0.0309 d) 

Sb  0.0321 e) 

In3Sb1Te2 0.0351 [142]  

 

Table A1 Number density of several PCMs. a) the stable hexagonal phase; b) the metastable 

cubic phase; the experimental density was not known to the author, c) theoretical value was 

used, d) the experimental value of a-AIST was used, and e) a value close to experimental 

Ge15Sb85 was used 
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Appendix B 

Details about EXAFS measurements and simulations of AIST 

  In order to obtain chemical contrast and element-specific information on the atomic 

structure, EXAFS measurements have been performed at beamline CEMO of the 

accelerator ring DORIS III, as part of Hasylab, DESY. All four K-edges of AIST were 

measured in trans-mission geometry on powderous samples pressed to pellets. The 

samples were cooled to 10K and measured at least twice to check for statistical 

deviations between subsequent scans. The resulting data were normalized to pre- and 

post-edge ranges and Fourier transformed using the computer code Athena [244]. In 

this way, experimental EXAFS spectra on the as-deposited amorphous and 

oven-crystallized phases were obtained. They are compared in Figures 5.3 and 5.6 

with simulated data from the AIMD models of melt-quenched amorphous and 

re-crystallized phases. Since the EXAFS measurements were performed at T = 10 K, 

AIMD simulations were carried out at this temperature as well. As regards the 

theoretical spectra, the atomic coordinates of 36 AIMD steps were used to calculate 

the absorption spectra of each individual atom. All possible multiple scattering effects 

were taken into account, as implemented in the state-of-the-art FEFF 8.4 [212] 

computer code. 

  Thermal broadening effects were already contained in the atomic coordinates as a 

result of AIMD and, therefore, no further model for the vibrational states was required 

to match the experimental and calculated spectra. The absorption spectra of each 

chemical species were summed/averaged until a convergence of at least 5 % was 

achieved for the least abundant element. This required averaging at least 500 spectra 

per atomic species. The energy difference between the calculated and experimental 

Fermi level was corrected for, based on a refinement of the scattering paths in the 

experimental data (Table B1). The resulting data were Fourier transformed over the 

same energy range as the experimental data to allow for direct comparisons. 
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Atom rEXAFS (Å) NEXAFS σ2 in Å2 E0 in eV 

Amorphous 

Ag 2.81(1) 4.0±0.7 0.007(1) 3.0(5) 

In 2.82(1) 2.7±0.5 0.002(1) 4(2) 

Sb 2.87(1) 3.4±0.6 0.0025(3) 9.7(4) 

Te 2.83(1) 1.6±0.4 0.0034(3) 9.4(3) 

Recrystallized 

Ag 2.84(3), 3.02(3) 7.2±0.7 0.010(6), 0.011(8) 0.9(8) 

In 2.80(1), 2.99(1) 6.6±0.7 0.006(1), 0.004(1) 2.3(8) 

Sb 2.89(1), 3.32(1) 6.2±0.6 0.002(1), 0.006(1) 6.0(3) 

Te 2.94(1), 3.39(3) 3.8±0.5 0.007(2), 0.019(6) 4.9(7) 

Table B1 The nearest neighbor bond lengths (1st column) and coordination numbers (2nd 

column) for as-deposited amorphous and oven-crystallized AIST, obtained from EXAFS 

experiments. In the 3rd and 4th column, the edge shift E0 and the Debye-Waller parameter σ2 

of each path are shown (see text). Numbers in parenthesis indicate the statistical error on the 

last digit. 

 

  All experimental data were also refined by the scattering path expansion method, as 

implemented in the computer code Artemis [244]. Due to the similar atomic numbers, 

the chemical contrast originates solely from the nature of the absorber atom, not from 

the backscattering atom. In consequence, it does not matter which atomic species of 

AIST is assumed to facilitate the backscattering of the photoelectrons, but for 

completeness we men-ion that we simulated Sb (the most abundant atom) at the Ag, 

In and Te edges and Te (the second most abundant atom) at the Sb edge. All results 

from a refinement of the scattering paths in the first shell are compiled in Table B1. 

The treatment involves the energy difference between simulations and experiments, 

E0 (edge shift), the Debye-Waller parameter of each path σ2 , a coordination number N 

and an interatomic distance ri . In the absence of reference data for a well crystallized 

structure, the central atom loss factor 𝐺𝐺0
2, was set to 0.7 for all data sets to extract the 
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coordination numbers. The resulting systematic error of about 10% was included in 

the presentation of the coordination numbers (CNs). The resulting values of the 

nearest neighbor bond lengths and CNs are shown in Table 5.1, together with the data 

obtained from AIMD. 

 

Appendix C  Order parameter Q4
dot 

  The local Steinhardt order parameter ql (i) is defined as a rotationally invariant 

norm of the local bond order function qlm (i): 

 

 𝑞𝑞𝑐𝑐(𝑖𝑖) =  � 4𝜋𝜋
2𝑐𝑐+1

∑ |𝑞𝑞𝑐𝑐𝑚𝑚 (𝑖𝑖)|2𝑐𝑐
𝑚𝑚=−𝑐𝑐                (1)                   

where qlm (i) is chosen to be the average value of the spherical harmonics in the 

neighborhood Ωi of the atom i, 

𝑞𝑞𝑐𝑐𝑚𝑚 (𝑖𝑖) = 1
𝑁𝑁𝑖𝑖
∑ 𝑐𝑐�𝑟𝑟𝑖𝑖𝑗𝑗 �𝑌𝑌𝑐𝑐𝑚𝑚 �𝒓𝒓�𝑖𝑖𝑗𝑗 �𝑗𝑗∈𝛺𝛺𝑖𝑖                  (2) 

  The spherical harmonics 𝑌𝑌𝑐𝑐𝑚𝑚�𝒓𝒓�𝑖𝑖𝑗𝑗 � depend only on the relative orientation of the 

vector rij = ri - rj connecting the atom i to its neighbor j and the average over the Ni 

atoms in the neighborhood i is smoothened by a radial cutoff function f: 

𝑐𝑐�𝑟𝑟𝑖𝑖𝑗𝑗 � =  
1−(

𝑟𝑟𝑖𝑖𝑗𝑗
𝑟𝑟𝑥𝑥

)𝑝𝑝1

1−(
𝑟𝑟𝑖𝑖𝑗𝑗
𝑟𝑟𝑥𝑥

)𝑝𝑝2
                        (3) 

where rc is a cutoff radius and p1 < p2 are suitably chosen exponents yielding a 

sufficiently sharp cutoff function. One can simplify the notation by introducing a (2l + 

1) dimensional vector ql (i), the components of which are the qlm values:  

𝐪𝐪𝑐𝑐(𝑖𝑖) =

⎝

⎜
⎛

𝑞𝑞𝑐𝑐 ,𝑐𝑐
𝑞𝑞𝑐𝑐 ,𝑐𝑐−1

…
𝑞𝑞𝑐𝑐 ,−𝑐𝑐+1
𝑞𝑞𝑐𝑐 ,𝑐𝑐 ⎠

⎟
⎞

= (𝑞𝑞𝑐𝑐𝑚𝑚 (𝑖𝑖))𝑚𝑚=−𝑐𝑐 ,𝑐𝑐               (4) 

Then ql (i)can be written as: 
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𝑞𝑞𝑐𝑐(𝑖𝑖) = � 4𝜋𝜋
2𝑐𝑐+1

||𝐪𝐪𝐥𝐥(𝑖𝑖)||                    (5) 

  The new order parameter ql
dot (i) is constructed from the so called bond order 

correlations Cij between neigh- boring atoms, which were first introduced by Frenkel 

and coworkers to analyze the solid-like connections between particles. The bond order 

correlations Cij are defined as the dot product of the vector ql (i) with the complex 

conjugate of ql (j), divided by the rotationally invariant norms of the two vectors: 

𝑃𝑃𝑖𝑖𝑗𝑗 = 𝐪𝐪𝑐𝑐(𝑖𝑖)∙𝐪𝐪𝑐𝑐
∗(𝑗𝑗 )

‖𝐪𝐪𝑐𝑐(𝑖𝑖)‖ ‖𝐪𝐪𝑐𝑐(𝑗𝑗 )‖
                       (6) 

We define ql
dot (i) as the average of the Cij 's taken in the neighborhood i, in a similar 

fashion as for ql (i), 

𝑞𝑞𝑐𝑐𝑑𝑑𝑜𝑜𝑒𝑒 (𝑖𝑖) = 1
𝑁𝑁𝑖𝑖
∑ 𝑃𝑃𝑖𝑖𝑗𝑗𝑗𝑗∈Ω𝑖𝑖                    (7) 

and employ it as an order parameter to characterize each atom. 

  For solid-like atoms, the average correlation of the bond order to its neighbors will 

take values close to one, whereas for particles with disordered surrounding it has 

values around zero. The local symmetry of the solid phase determines the value of the 

bond order parameter ql. To ensure that the typical values of ql in the two phases differ 

significantly, one has to select a suitable angular momentum l. 

  Using the parameters l = 4, p2 = 2, p1 = 24 and rc = 4 Å, the dot product can nicely 

discriminate between the crystalline and amorphous phase of AIST, as shown in 

Figure 5.8. 
 

Appendix D 

Calculations of deposition rate and sticking coefficient 
  As discussed in Chap 5, we calculated the deposition rate k+ and the sticking 

coefficient S near the crystalline-amorphous interface of AIST. Here we provide some 

technical details about the calculation. Firstly, we defined the empty crystalline sites 

as small spheres with a cutoff radius R, centered at the final positions of the atoms in 

the fully re-crystallized phase. The radius R was chosen to be equal to twice the mean 

squared displacement (MSD) of the atoms in the recrystallized phase at the target T, 
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calculated from a MD trajectory. Although the absolute values of k+ and S obviously 

depend on the value of R, the temperature dependence of the product k+S is weakly 

affected by the choice of R (for reasonable values of R ranging from the MSD of the 

atoms to twice this quantity). Secondly, we defined the time TEND at which a 

crystalline site is no longer available for hopping, in that it is stably occupied by an 

atom. Thirdly, we determined the time TSTART at which a crystalline site started to be 

available for an atom to hop. For a given crystalline site, TSTART was set to be equal to 

the time at which at least one (out of three) nearest neighbor crystalline site (close to 

the crystalline part) became occupied by an atom. Hence, TEND and TSTART of 

nearest-neighbor sites are generally correlated. In other words, TSTART of a site always 

coincides with TEND of one of its nearest-neighbor sites. To evaluate the deposition 

rate k+, we calculated the averaged time interval between the TSTART of a site and the 

first landing event. The inverse of this quantity is equal to k+. As regards S, we simply 

counted the numbers of landing and escaping events nl and ne for each site between its 

TSTART and TEND, and calculated as (nl-ne)/nl. 

 

Appendix E 

Calculations of Hubbard U in 3d impurities doped GST 
  In this section, I provide details about the self-consistent calculation of the Hubbard 

U parameter. We employed the self-consistent linear response method developed by 

Cococcioni and de Gironcoli [245]. Hubbard U was calculated for single impurity 

models in both hexagonal (108 atoms) and cubic phase (130 atoms). Only 

energetically favorable substitutional cation sites were considered. Two different 

values of α = ± 0.15eV (denotes the strength of the potential shift) were used for the 

derivatives. The consistency was checked for several smaller values of α. The 

numerical accuracy with respect to the variation of α was estimated to be less than 0.1 

eV. Besides, U values showed small fluctuations (~ 0.2 eV) between the relaxed and 

unrelaxed structures. In hexagonal phase, the calculated U values for each type of 
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impurities are similar at subst. Ge and subst. Sb sites. The same holds for subst. cation 

sites in the cubic phase. Here we summarized the U values in Table E1. 

 

[eV] Cr Mn Fe Co Ni 

Hexagonal 2.6 5.0 4.0 6.9 4.8 

Cubic 2.7 5.1 3.9 7.3 9.3 

 

Table E1 Hubbard U values calculated self-consistently for crystalline Ge2Sb2Te5 having one 

magnetic impurity. Only substitutional sites were considered. 
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