Contents

1 Introduction

2 Fundamentals
2.1 Lithium-Ion Cells
2.1.1 Components and Working Principle of Lithium-Ion Batteries
2.1.2 Structures and Materials
2.1.3 Charge and Discharge Curves
2.1.4 Loss Mechanisms
2.1.5 General Terms and Definitions
2.2 Electrochemical Impedance Spectroscopy
2.2.1 Measurement Principle
2.2.2 Kramers Kronig Residuals
2.2.3 Distribution of Relaxation Times
2.2.4 Complex Non-Linear Least Squares Fit
2.3 Time Domain Measurements
2.3.1 GITT and PITT
2.3.2 Pulse-Fitting
2.4 Equivalent Circuit Models
2.4.1 Basic Elements
2.4.2 Randles Circuit
2.4.3 Transmission Line Models

3 State Of The Art
3.1 Equivalent Circuit Modelling of Lithium-Ion Electrodes
3.2 Electrochemical Analysis of Lithium-Ion Cells

4 Experimental
4.1 Experimental Cell Housings
4.2 Experimental Cell Configurations
4.2.1 Half-Cells
4.2.2 Symmetrical Cells
4.2.3 Full Cells
4.2.4 Reference Electrode
4.3 Opening Lithium-Ion Cells
4.4 Measurement Setup
4.5 Measurement Data Quality
5 Modelling of Lab-Scale Cathodes

5.1 Electrodes and Measurement Setup .. 61
5.2 Impact of Temperature and SOC .. 63
 5.2.1 LiFePO₄ Half-Cells .. 63
 5.2.2 Symmetrical LiFePO₄ Cells ... 66
 5.2.3 Symmetrical Lithium Cells ... 67
5.3 Pre-Processing of Impedance Spectra .. 70
5.4 Identification of Loss Mechanisms by DRT 76
5.5 Equivalent Circuit Elements and Model Structure 79
5.6 Parameter Dependencies and Physical Interpretation 81
5.7 Discussion and Conclusions .. 86

6 Optimization of Lab-Scale Cathodes

6.1 Electrode Structures and Measurement Setup 90
6.2 Impact of Cathode Structure on the Impedance Spectrum 95
6.3 Adjustment of the Impedance Model .. 95
6.4 Impact of Cathode Structure on Loss Processes 97
6.5 Correlation with Microstructure .. 99
6.6 Impact of Cathode Structure on Performance 101
6.7 Discussion and Conclusions .. 103

7 Modelling of Complex Anode Structures

7.1 Electrodes and Measurement Setup ... 105
7.2 Impedance Spectrum of Graphite-Anodes 107
7.3 Impact of SOC and Temperature .. 108
7.4 Equivalent Circuit Elements and Model Structures 110
7.5 Fitting Complex Impedance Models with Help of DRT and Microstruc­ture Parameters ... 112
7.6 Fit Quality and Model Evaluation ... 114
7.7 SOC-Dependency of Loss Processes .. 118
7.8 Temperature-Dependency of Loss Processes 120
7.9 Choice of Impedance Model and resulting Parameters 123
7.10 Transfer of Modelling Approach to other Graphite-Anodes 125
7.11 Discussion and Conclusions .. 128

8 Multi-Step Approach for the Analysis of 18650 Lithium-Ion Cells

8.1 Investigated 18650 Cell .. 133
8.2 Experimental Cell Measurements ... 134
 8.2.1 Experimental Cell Configurations and Reproducibility 134
 8.2.2 Identification of High Frequency Losses via EIS 140
 8.2.3 Identification of Low Frequency Losses via TDM 151
8.3 Transfer of Experimental Cell Results to the 18650 Cell 156
 8.3.1 Transfer of EIS Results .. 156
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.2 Transfer of TDM Results</td>
<td>163</td>
</tr>
<tr>
<td>8.4 Discussion and Conclusions</td>
<td>163</td>
</tr>
<tr>
<td>9 Summary</td>
<td>169</td>
</tr>
<tr>
<td>10 Appendix</td>
<td>175</td>
</tr>
<tr>
<td>A Commercially available Lithium-Ion Cell used in this Thesis</td>
<td>175</td>
</tr>
<tr>
<td>B Opening of 18650 Cells</td>
<td>176</td>
</tr>
<tr>
<td>C Measured Cells</td>
<td>177</td>
</tr>
<tr>
<td>D Supervised Diploma Theses and Study Projects</td>
<td>179</td>
</tr>
<tr>
<td>E Publications</td>
<td>180</td>
</tr>
<tr>
<td>F Conference Contributions</td>
<td>181</td>
</tr>
<tr>
<td>Acronyms</td>
<td>185</td>
</tr>
<tr>
<td>Symbols</td>
<td>187</td>
</tr>
<tr>
<td>Bibliography</td>
<td>189</td>
</tr>
</tbody>
</table>