Contents

Preface XIII
List of Contributors XVII
Acknowledgments XXIII

1 Old and New Things in Thermoelectricity 1
Rudolf P. Huebener
1.1 Three Thermoelectric Effects 2
1.1.1 Seebeck Effect 2
1.1.2 Peltier Effect 3
1.1.3 Thomson Effect 3
1.2 Semiconductors 4
1.3 My Entry into Thermoelectricity 6
1.4 Peltier Cascades 9
1.5 Challenge of Materials Science 9
References 10

Part I: Synthesis of Nanowires, Thin Films, and Nanostructured Bulk 11

2 Electrodeposition of Bi₂Te₃-Based Thin Films and Nanowires 13
William Tollner, Svenja Bäßler, Nicola Peranio, Eckhard Pippel, Oliver Eibl, and Kornelius Nielsch
2.1 Introduction 13
2.2 Fundamentals of Bi₂Te₃-Based Electrodeposition 14
2.3 Electrodeposition of Bi₂Te₃ Thin Films 16
2.4 Electrodeposition of Thermoelectric Nanowires 21
2.4.1 Electrodeposition of Bi₂Te₃ Nanowires 21
2.4.2 Ternary Bi₂Te₃-Based Nanowires 28
2.5 Conclusion 31
References 31
3 Bi$_2$Te$_3$ Nanowires by Electrodeposition in Polymeric Etched Ion Track Membranes: Synthesis and Characterization 33
 Oliver Picht, Janina Krieg, and Maria Eugenia Toimil-Molares
3.1 Introduction 33
3.2 Synthesis of Bi$_2$Te$_3$ NWs with Controlled Size and Crystallography 36
 3.2.1 Fabrication of Etched Ion-Track Membranes 36
 3.2.1.1 Swift Heavy-Ion Irradiation 36
 3.2.1.2 Chemical Etching 37
 3.2.2 Electrodeposition of Bi$_2$Te$_3$ NWs 38
 3.2.2.1 Experimental Setup 38
 3.2.2.2 Electrodeposition of Bi$_2$Te$_3$ and Choice of the Electrolyte 40
 3.2.2.3 Chronoamperometric Current–Time Curves 41
 3.2.3 Morphological and Crystallographic Characterization of Bi$_2$Te$_3$ NWs 42
 3.2.3.1 NW Arrays 42
 3.2.3.2 Morphology of Individual Nanowires as a Function of the Deposition Parameters 43
 3.2.3.3 Adjusting the Nanowire Dimensions 44
 3.2.3.4 Investigation of the Nanowire Crystallinity and Composition by TEM 45
 3.2.3.5 Investigation of the Preferred Crystallographic Orientation of Wire Arrays by X-Ray Diffraction 49
3.3 Conclusions 50
 References 51

4 Fabrication and Comprehensive Structural and Transport Property Characterization of Nanoalloyed Nanostructured V$_2$VI$_3$ Thin Film Materials 55
 Markus Winkler, Torben Dankwort, Ulrich Schürmann, Xi Liu,
 Jan D. König, Lorenz Kienle, Wolfgang Bensch, Harald Böttner, and Kilian Bartholomé
4.1 Situation/State of the Art before the Start of Our Combined Research Project 55
4.2 Motivation for Research on V$_2$VI$_3$ Multilayered Structures 56
 4.2.1 Binary Thin Films 58
 4.2.2 Results Obtained for SL Structures 62
 4.2.3 Results Obtained from a Theoretical Analysis of V$_2$VI$_3$ Binaries and Nanoscale SL Structures 66
Part II: Structure, Excitation, and Dynamics 119

7 High Energy X-ray and Neutron Scattering on Bi$_2$Te$_3$ Nanowires, Nanocomposites, and Bulk Materials 121
Benedikt Klobes, Dimitrios Bessas, and Raphaël P. Hermann

7.1 Introduction 121
7.2 Review of Published High-Energy X-ray and Neutron Scattering Studies on Bi$_2$Te$_3$ and Related Compounds 122
7.3 Element Specific Lattice Dynamics in Bulk Bi$_2$Te$_3$ and Sb$_2$Te$_3$ 125
7.4 Nanostructure and Phonons in a Bi$_2$Te$_3$ Nanowire Array 130
7.5 Nanocomposites and Speed of Sound 134
7.6 Perspectives of High-Energy X-ray and Neutron Scattering 136
Acknowledgments 136
References 137

8 Advanced Structural Characterization of Bi$_2$Te$_3$ Nanomaterials 141
Nicola Peranio, Zainul Aabdin, Michael Dürrschnabel, and Oliver Eibl

8.1 From Bulk to Nanomaterials 141
8.2 Synthesis of Nanomaterials and Transport Measurements 142
8.3 Relevance of Advanced Microscopy and Spectroscopy for Bi$_2$Te$_3$ Nanomaterials 143
8.4 Nanostructure–Property Relations in Bulk and Nanomaterials 147
8.4.1 Chemical Modulations and Structural Disorder in Commercial Bulk Materials 147
8.4.2 Near Stoichiometric, Single Crystalline Nanowires for Transport in the Basal Plane 150
8.4.3 Epitaxial and Nano-alloyed Thin Films with Low Charge Carrier Densities and High Power Factors 152
8.4.4 Highly Dense, Ultra-fine Nanostructured Bulk with Low Thermal Conductivities 153
8.5 Simulation of Electron Transport and Electron Scattering in Bi$_2$Te$_3$-Based Materials 155
8.5.1 Calculation of Electronic Transport Coefficients 156
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5.2</td>
<td>Calculation of High-Energy Electron Scattering in Bi\textsubscript{2}Te\textsubscript{3}-Based Materials</td>
<td>158</td>
</tr>
<tr>
<td>8.6</td>
<td>Experimental Techniques and Simulation</td>
<td>161</td>
</tr>
<tr>
<td>9</td>
<td>Density-Functional Theory Study of Point Defects in Bi\textsubscript{2}Te\textsubscript{3}</td>
<td>167</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>167</td>
</tr>
<tr>
<td>9.2</td>
<td>Thermoelectric Properties</td>
<td>168</td>
</tr>
<tr>
<td>9.3</td>
<td>The Lattice Structure of Bi\textsubscript{2}Te\textsubscript{3}</td>
<td>173</td>
</tr>
<tr>
<td>9.4</td>
<td>Point Defects in Bi\textsubscript{2}Te\textsubscript{3}-Related Materials</td>
<td>174</td>
</tr>
<tr>
<td>9.5</td>
<td>Concentration of Point Defects</td>
<td>177</td>
</tr>
<tr>
<td>9.6</td>
<td>Calculation of Formation Energies from First Principles</td>
<td>178</td>
</tr>
<tr>
<td>9.7</td>
<td>Recent DFT Results for the Point Defect Energies in Bi\textsubscript{2}Te\textsubscript{3}</td>
<td>180</td>
</tr>
<tr>
<td>9.8</td>
<td>Summary and Outlook</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>184</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>184</td>
</tr>
<tr>
<td>10</td>
<td>Ab Initio Description of Thermoelectric Properties Based on the Boltzmann Theory</td>
<td>187</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>187</td>
</tr>
<tr>
<td>10.1.1</td>
<td>Low-Dimensional Thermoelectrics</td>
<td>188</td>
</tr>
<tr>
<td>10.1.2</td>
<td>Phonon-Glass Electron-Crystal</td>
<td>189</td>
</tr>
<tr>
<td>10.1.3</td>
<td>Phonon-Blocking and Electron-Transmitting Superlattices</td>
<td>191</td>
</tr>
<tr>
<td>10.2</td>
<td>Transport Theory</td>
<td>193</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Linearized Boltzmann Equation and Relaxation Time</td>
<td>193</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Transport Coefficients</td>
<td>194</td>
</tr>
<tr>
<td>10.3</td>
<td>Results</td>
<td>197</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Influence of Strain</td>
<td>197</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Superlattices</td>
<td>203</td>
</tr>
<tr>
<td>10.3.3</td>
<td>Thermal Conductivity - Toward the Figure of Merit</td>
<td>206</td>
</tr>
<tr>
<td>10.3.4</td>
<td>Lorenz Function of Superlattices</td>
<td>208</td>
</tr>
<tr>
<td>10.3.5</td>
<td>Phonons</td>
<td>211</td>
</tr>
<tr>
<td>10.4</td>
<td>Summary</td>
<td>213</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>214</td>
</tr>
</tbody>
</table>