Contents

Nomenclature ... i
Kurzzusammenfassung iii
Table of content ix

1 Introduction ... 1

2 Superconducting nanowire single-photon detector (SNSPD) 5
 2.1 The principle of an SNSPD 5
 2.1.1 The hot-spot model and electro-thermal model 5
 2.1.2 Two-temperature model of superconductors 8
 2.1.3 Voltage response of a superconductor to absorbed energy ... 9
 2.2 Typical detector parameters and ongoing state of research 11
 2.2.1 Detection efficiency and absorptance 11
 2.2.2 Dark counts 14
 2.2.3 Kinetic inductance of superconducting nanowires 15
 2.2.4 Transit-time spread of SNSPDs 17
 2.2.5 Multipixel and multiphoton detection concepts 19
 2.3 Summary .. 19

3 Cryogenic setup for characterization of SNSPDs 21
 3.1 Dip stick cryostat 21
 3.2 BiasT design based on hybrid components 25
 3.3 RF readout of SNSPDs and data acquisition 29
 3.4 Low noise setup and current source for detector bias 31
 3.5 Fiber-based radiation coupling 33
 3.6 Radiation sources and optical source calibration 34
 3.7 Readout concept for jitter measurements of SNSPDs with high time resolution ... 38
 3.7.1 Time-correlated single-photon counting method 39
 3.7.2 Improved jitter measurement by a 10 GHz analog front end 42
 3.8 Summary .. 48
4 Improved performance of SNSPDs

4.1 Detection limits, detector fabrication and analysis of basic detector dependencies

4.1.1 Energy threshold of the hot-spot formation

4.1.2 Detector fabrication and characterization

4.1.3 Free-space optic bath cryostat

4.1.4 Study of the detector response and analysis of the detection efficiency

4.1.4.1 Study of the SNSPD response concerning spectral bandwidth and thickness

4.1.4.2 Dependence of count rate and detection efficiency on bias current, wavelength and thickness

4.1.5 Intrinsic detection efficiency for different film thicknesses

4.1.6 Vortex-based detection mechanism for infrared radiation

4.2 Modeling of the dark count rate vs. thermal coupling, temperature and stoichiometry

4.2.1 Dark count model

4.2.2 Reduction of vortex fluctuations in the superconductor by improved cooling interface of the detector mounting

4.2.3 Variation of the excitation energy by different operation temperature conditions

4.2.4 Enhancement of the potential vortex barrier of the meander line by variation of film parameter

4.2.5 Comparison of all three types of modifications of DCR versus influence on detection efficiency

4.3 Summary

5 Readout concepts for SNSPDs multipixel arrays

5.1 Multipixel systems

5.2 Signal conversion of a single-pixel SNSPD by RSFQ electronics

5.2.1 RSFQ interface for SNSPD readout

5.2.2 "Proof of principle" of an RSFQ input stage for SNSPDs

5.3 Multipixel readout with RSFQ electronics for imaging applications

5.3.1 RSFQ based signal conversion with pulse merger functionality

5.3.2 4-pixel detector design

5.3.3 Cryogenic setup for time-gated SNSPD-RSFQ measurements

5.3.4 Limitation of the counting accuracy of an SNSPD-RSFQ measurement

5.3.5 Principle of code division multiplexing access (CDMA) for SNSPD readout

5.3.6 CDMA measurements and analysis of counting accuracy
5.3.7 Comparison between CDMA and TDMA 114
5.3.8 Summary and outlook ... 117
5.4 Real-time multipixel readout of SNSPDs with time-tagged detector arrays 118
5.4.1 Time-tagged multiplexing .. 118
5.4.2 Definition of delay time ... 119
5.4.3 Design of a multipixel detector 120
5.4.4 Time-tagged measurement setup 123
5.4.5 "Proof of principle" of time-tagged multiplexing with two-pixel SNSPD ... 124
5.4.6 Analysis of the response pulse of a two-pixel SNSPD 125
5.4.7 Time-tagged multiplexing with a four-pixel SNSPD. 131
5.4.8 Dual readout of time-tagged multiplexed SNSPDs for continuous wave radiation 133
5.4.9 Summary .. 135

6 Conclusion .. 137

A BiasT based on superconducting planar structures 141
 Planar capacity ... 142
 Planar inductance ... 144
 Summary .. 155

B List of Figures ... 157

C List of Tables ... 163

D Bibliography .. 165

E Own publications ... 177

F Supervised student theses ... 181

G Contributions to international conferences 183