Contents

Preface — V

1 Introduction — 1

2 Structure and properties of water — 7
 2.1 Structure of water — 7
 2.2 Properties of water — 10
 2.2.1 Density — 10
 2.2.2 Phase diagram – melting point and boiling point — 13
 2.2.3 Energetic quantities — 15
 2.2.4 Viscosity — 17
 2.2.5 Surface tension — 18
 2.3 Water as a solvent — 23
 2.4 Problems — 26

3 Concentrations and activities — 27
 3.1 Introduction — 27
 3.2 Concentrations — 27
 3.3 Conversion of concentration units — 31
 3.3.1 Introduction and basic equations — 31
 3.3.2 Conversion of mass concentration — 31
 3.3.3 Conversion of molar concentration — 32
 3.3.4 Conversion of molality — 33
 3.3.5 Conversion of mole fraction — 33
 3.3.6 Conversion of mass fraction — 34
 3.4 Element-related concentrations — 35
 3.5 Gas phase concentrations — 36
 3.6 Electroneutrality condition and ion balance — 37
 3.7 Hardness as a specific concentration measure — 38
 3.8 Activities and activity coefficients — 42
 3.9 Problems — 46

4 Colligative properties — 47
 4.1 Introduction — 47
 4.2 Vapor pressure lowering — 47
 4.3 Boiling point elevation and freezing point depression — 49
 4.4 Osmotic pressure — 51
 4.5 Colligative properties of real solutions — 53
 4.6 Problems — 53
VIII — Contents

5 The chemical equilibrium: Some general aspects — 55
 5.1 Introduction — 55
 5.2 Law of mass action and equilibrium constants — 55
 5.3 Conventions on the use of concentration measures in the law of mass action — 57
 5.4 Relationships between Gibbs energy of reaction, equilibrium constants, and reaction quotients — 58
 5.5 Estimation of equilibrium constants — 59
 5.6 Equilibrium constants of reverse and overall reactions — 60
 5.7 Problems — 61

6 Gas–water partitioning — 63
 6.1 Introduction — 63
 6.2 Henry’s law — 63
 6.3 Alternative formulations of Henry’s law — 65
 6.4 Estimation of Henry’s law constants for volatile substances — 67
 6.5 Open and closed systems — 67
 6.6 Solubilities of atmospheric gases in water — 68
 6.7 Calculation of equilibrium concentrations in closed systems — 70
 6.8 Problems — 72

7 Acid/base equilibria — 73
 7.1 Introduction — 73
 7.2 Brønsted’s acid/base theory — 73
 7.3 Water as an acid/base system — 76
 7.4 Protolysis of acids and bases — 77
 7.5 pH of aqueous solutions of acids, bases, and salts — 81
 7.5.1 pH of acid solutions — 81
 7.5.2 pH of base solutions — 84
 7.5.3 pH of salt solutions — 84
 7.4 Buffer systems — 89
 7.6 Degree of protolysis and acid/base speciation — 91
 7.6.1 Monoprotic acids — 91
 7.6.2 Polyprotic acids — 93
 7.7 Carbonic acid — 95
 7.7.1 Relevance — 95
 7.7.2 Speciation of carbonic acid — 96
 7.7.3 Determination of the carbonic acid species by acid/base titrations — 96
 7.7.4 General definitions of the alkalinitities and acidities on the basis of proton balances — 104
 7.7.5 The conservative character of alkalinity — 105
10.5.4 Boundary lines for pure redox systems with oxidant and reductant in dissolved form — 154
10.5.5 Boundary lines for pH-dependent redox systems with oxidant and reductant in dissolved form — 155
10.5.6 Boundary lines for pH-dependent redox systems where only one partner occurs in dissolved form — 155
10.5.7 Example: The pe–pH diagram of iron — 156
10.5.8 Example: The pe–pH diagram of sulfur — 162
10.6 Complete redox reactions — 164
10.6.1 Basic relationships — 164
10.6.2 Redox reactions within the global carbon cycle — 170
10.6.3 Further oxidation reactions mediated by microorganisms — 172
10.7 Problems — 173

11 Complex formation — 175
11.1 Introduction — 175
11.2 Ligands in aquatic systems — 177
11.3 Equilibrium relationships and constants — 179
11.4 Strength of complexation: Monodentate versus polydentate ligands — 180
11.5 Complex formation and solubility — 182
11.6 Hydrolysis of hydrated metal ions — 183
11.7 Speciation of metal ions — 185
11.7.1 Introduction — 185
11.7.2 Speciation of dissolved metal ions at constant total metal concentration — 185
11.7.3 Speciation in presence of a solid that determines the liquid-phase concentrations — 190
11.8 Problems — 193

12 Sorption — 196
12.1 Introduction — 196
12.2 Geosorbents — 197
12.3 Sorption isotherms — 198
12.3.1 General considerations — 198
12.3.2 Isotherm equations — 199
12.3.3 Speciation — 203
12.4 Sorption onto charged surfaces — 204
12.4.1 Introduction — 204
12.4.2 Mathematical description of the surface protonation/deprotonation — 205
12.4.3 Modeling of ion sorption — 211
12.5 Sorption of organic species onto organic material —— 214
12.6 Problems —— 218

13 Solutions to the problems —— 219

A Appendix —— 263
A.1 Some important constants —— 263
A.2 Some important logarithm rules —— 263
A.3 List of important equations —— 264

Nomenclature —— 277

Bibliography —— 283

Index —— 284