Contents

1 Introduction 1
 1.1 Radiofrequency ablation - a minimally invasive cancer treatment 1
 1.2 Physics of radiofrequency ablation 2
 1.3 RFA planning systems 3
 1.4 Scope of this work 5
 1.5 Outline 7

2 The multi-objective RFA planning problem 9
 2.1 Formulating the multi-objective problem 9
 2.2 From medical imaging to representation set 12
 2.3 Global aspects of the RFA planning problem 13

3 Mathematical modeling of the non-overlapping condition 15
 3.1 Decomposition of the non-overlapping condition 16
 3.2 Feasible applicator moves 18
 3.3 Modeling with separating planes 24
 3.4 The Mangasarian Fromovitz constraint qualification 27
 3.5 Feasible descent directions 32
 3.6 A simple example 37

4 Approximation of a non-convex non-dominated set 39
 4.1 Multi-objective optimization 40
 4.2 The additive approximation ratio 42
 4.3 The Pascoletti-Serafini scalarization 45
 4.4 The hyperboxing algorithm 49

5 The adapted hyperboxing algorithm 63
 5.1 Adapted hyperboxing for a general multi-objective problem 65
 5.2 Adapted hyperboxing as a sandwiching algorithm 75
 5.3 Adapted hyperboxing for a mixed discrete problem 78
 5.4 Numerical results 82

6 Solving the scalar problems with sequential quadratic programming 93
 6.1 The SQP method 94
 6.2 The NLPQLP solver 97
7 Applications

7.1 Artificial example with two temperature based objectives 99
7.2 Extended example with three objectives 104
7.3 Implementation in MeVisLab 106
7.4 Tumor destruction measurement 107
7.5 First clinical example 108
7.6 Second clinical example 110
7.7 Navigation 113

8 Discussion and future research 117

List of symbols 121

Bibliography 123