Contents

Preface of the First Edition XI
Preface of the Second Edition XIII
Physical Constants and Energy Equivalents XV

1 Crystal Structures 1
1.1 General Description of Crystal Structures 2
1.2 Some Important Crystal Structures 4
1.2.1 Cubic Structures 4
1.2.2 Close-Packed Structures 5
1.2.3 Structures of Covalently Bonded Solids 6
1.3 Crystal Structure Determination 7
1.3.1 X-Ray Diffraction 7
1.3.1.1 Bragg Theory 7
1.3.1.2 Lattice Planes and Miller Indices 8
1.3.1.3 General Diffraction Theory 9
1.3.1.4 The Reciprocal Lattice 11
1.3.1.5 The Meaning of the Reciprocal Lattice 12
1.3.1.6 X-Ray Diffraction from Periodic Structures 14
1.3.1.7 The Ewald Construction 15
1.3.1.8 Relation Between Bragg and Laue Theory 16
1.3.2 Other Methods for Structural Determination 17
1.3.3 Inelastic Scattering 17
1.4 Further Reading 18
1.5 Discussion and Problems 18

2 Bonding in Solids 23
2.1 Attractive and Repulsive Forces 23
2.2 Ionic Bonding 24
2.3 Covalent Bonding 25
2.4 Metallic Bonding 28
2.5 Hydrogen Bonding 29
2.6 van der Waals Bonding 29
Contents

2.7 Further Reading 30
2.8 Discussion and Problems 30

3 Mechanical Properties 33
3.1 Elastic Deformation 35
3.1.1 Macroscopic Picture 35
3.1.1.1 Elastic Constants 35
3.1.1.2 Poisson's Ratio 36
3.1.1.3 Relation between Elastic Constants 37
3.1.2 Microscopic Picture 37
3.2 Plastic Deformation 38
3.2.1 Estimate of the Yield Stress 39
3.2.2 Point Defects and Dislocations 41
3.2.3 The Role of Defects in Plastic Deformation 41
3.3 Fracture 43
3.4 Further Reading 44
3.5 Discussion and Problems 45

4 Thermal Properties of the Lattice 47
4.1 Lattice Vibrations 47
4.1.1 A Simple Harmonic Oscillator 47
4.1.2 An Infinite Chain of Atoms 48
4.1.2.1 One Atom Per Unit Cell 48
4.1.2.2 The First Brillouin Zone 51
4.1.2.3 Two Atoms per Unit Cell 52
4.1.3 A Finite Chain of Atoms 53
4.1.4 Quantized Vibrations, Phonons 55
4.1.5 Three-Dimensional Solids 57
4.1.5.1 Generalization to Three Dimensions 57
4.1.5.2 Estimate of the Vibrational Frequencies from the Elastic Constants 58
4.2 Heat Capacity of the Lattice 60
4.2.1 Classical Theory and Experimental Results 60
4.2.2 Einstein Model 62
4.2.3 Debye Model 63
4.3 Thermal Conductivity 67
4.4 Thermal Expansion 70
4.5 Allotropic Phase Transitions and Melting 71
References 74
4.6 Further Reading 74
4.7 Discussion and Problems 74

5 Electronic Properties of Metals: Classical Approach 77
5.1 Basic Assumptions of the Drude Model 77
5.2 Results from the Drude Model 79
Contents

5.2.1 DC Electrical Conductivity 79
5.2.2 Hall Effect 81
5.2.3 Optical Reflectivity of Metals 82
5.2.4 The Wiedemann–Franz Law 85
5.3 Shortcomings of the Drude Model 86
5.4 Further Reading 87
5.5 Discussion and Problems 87

6 Electronic Properties of Solids: Quantum Mechanical Approach 91
6.1 The Idea of Energy Bands 92
6.2 Free Electron Model 94
6.2.1 The Quantum Mechanical Eigenstates 94
6.2.2 Electronic Heat Capacity 99
6.2.3 The Wiedemann–Franz Law 100
6.2.4 Screening 101
6.3 The General Form of the Electronic States 103
6.4 Nearly Free Electron Model 106
6.5 Tight-binding Model 111
6.6 Energy Bands in Real Solids 116
6.7 Transport Properties 122
6.8 Brief Review of Some Key Ideas 126
6.9 References 127
6.10 Further Reading 127
6.11 Discussion and Problems 127

7 Semiconductors 131
7.1 Intrinsic Semiconductors 132
7.1.1 Temperature Dependence of the Carrier Density 134
7.1.2 Doped Semiconductors 139
7.2 Carrier Density 141
7.2.1 n and p Doping 139
7.2.2 Conductivity of Semiconductors 144
7.3 Semiconductor Devices 145
7.4 The pn Junction 145
7.4.1 Transistors 150
7.4.3 Optoelectronic Devices 151
7.5 Further Reading 155
7.6 Discussion and Problems 155

8 Magnetism 159
8.1 Macroscopic Description 159
8.2 Quantum Mechanical Description of Magnetism 161
8.3 Paramagnetism and Diamagnetism in Atoms 163
8.4 Weak Magnetism in Solids 166
8.4.1 Diamagnetic Contributions 167