Contents

S 1 Keynote I
L 1.1 Innovative technology makes electricity-neutral wastewater treatment for municipalities possible
G.H. KOOPS — GE Water & Process Technologies

S 2 Emerging processes
L 2.1 Recovery of organic solvents by membrane filtration of high viscosity solutions
F.P. CUPERUS — SolSep B.V.

L 2.2 Aquaporin-based biomimetic membranes for water separation processes
J. HABEL — Aquaporin A/S

L 2.3 OSN : Successful API recovery from a distillation residue at Sitech-DSM
A. BUEKENHOUĐT — VITO B.V.

S 3 Membrane contactors
L 3.1 Filtration performance of permanently hydrophilized polyethylene membranes
M. AVRAMESCU — Lydall Solutech

L 3.2 Enabling flexibility in process water deoxygenation with gas transfer membranes
M. ULBRICHT — Membrana GmbH

L 3.3 New module design development for membrane distillation
B. NELEMANS — Aquastill B.V.
Membranes in modular and disposable biotech applications
P. SCHWAN — Bayer Technology Services

In situ product recovery of antibodies in a continuous operating membrane bioreactor
K. MEIER — RWTH Aachen University - AVT.BioVT

Galacto-oligosaccharide production in a mixed matrix membrane reactor
W. DOYEN — Vito B.V.

New developments in tubular membranes for wastewater filtration
J. POTRECK — Pentair X-Flow

Feed spacers biofouling comparison for small simulators and industrial systems
G. GILABERT-ORIOL — Dow Chemical Iberica

Cleaning strategies for reverse osmosis membranes processing swine wastewater
M.S. CAMILLERI-RUMBAU — University of Southern Denmark

Highly selective SEPURAN Membranes for recovery of helium and hydrogen
I. VELTHOEN — Evonik Fibres GmbH

CO2 removal from power plant flue gases: Gas permeation pilot plant experiments
J. POHLMANN — Helmholtz-Zentrum Geesthacht

Mixed matrix membranes as an alternative for carbon membranes in gas separation
J. DIDDEN — KU Leuven

Convergence SDI/MFI inspector
F.V. BROENS — Convergence Industry B.V.
L 7.2 BIO-CEL XL - the world's largest flatsheet submerged module for MBR- applications
C. HOFFMANN — MICRODYN-NADIR GmbH

L 7.3 The effect of DOC removal in pretreatment to desalination
J. LÖWENBERG — FHNW

S 8 Keynote II & plenary talk

L 8.1 Advanced membranes based on polymers of intrinsic microporosity: Past, present and future
I. PINNAU — King Abdullah University of Science and Technology, Saudi Arabia

L 8.2 Tubular electrochemical membrane reactors
Y. GENDEL — DWI - Leibniz Institute for Interactive Materials

S 9 Membranes I

L 9.1 Easy to apply surface grafting technique using a novel initiator system
M. QUILITZSCH — Lehrstuhl für Technische Chemie II, Duisburg

L 9.2 Can Chemistry lead to more Efficiency in Water Treatment?
C. STAUDT — BASF

L 9.3 Influence of operational parameters and membrane materials on fouling
F. ARNDT — Karlsruher Institut für Technologie (KIT)

S 10 Desalination

L 10.1 Efficient production integrated separation with ceramic NF membranes
I. VOIGT — Fraunhofer Institute for Ceramic Technologies and Systems

L 10.2 Water capturing and energy savings in the paperboard industry and power plants
Z. BORNEMAN — European Membrane Institute Twente

L 10.3 Optimization of seawater desalination systems
A. MITSOS — AVT.SVT, RWTH Aachen University
L 11.1 Process development for membranes produced via evaporative casting
G. NIÑO- AMÉZQUITA — Sartorius-Stedim Biotech GmbH . 187

L 11.2 Novel hybrid ceramic metal membrane
S.J. METZ — Metalmembranes 189

L 11.3 High-frequency flow reversal enables stable MicroSieve filtration
F. LIEBERMANN — MicroSieve Technologies GmbH 195

L 12.1 How to control fouling? The self-regulating BioPulse filtration system
K.S. ROELOFS — Berghof Membrane Technology GmbH . 205

L 12.2 Impact of initial permeability varying over RO membrane length on biofouling
W. DING — Technische Universität Dresden 211

L 12.3 Fouling and effective antifouling strategies in reverse electrodialysis
K. NIJMEIJER — University of Twente, Netherlands 217
P 1 Process engineering 219

P 1.1 Simulation of inorganic electrodialytic processes
G. MARTIN — Freiberg University of Mining and Technology 221

P 1.2 Performance of a novel module concept for membrane distillation
A. HAGEDORN — Hamburg University of Technology 227

P 1.3 Filtration behaviour of W/O pickering emulsions
T. SKALE — HTW Berlin University 233

P 1.4 Membrane-Based purification of nanoparticle dispersions
N. ALELE — University Duisburg-Essen 239

P 1.5 Efficacy of chemical cleaning for pressured hollow fibre membrane
C.K. LEE — Korea Institute of Construction and Building Technology 245

P 2 Water treatment 251

P 2.1 Analyzing the chlorine-resistance of nanofiltration membranes
D. PENG — Engler-Bunte-Institute 253

P 2.2 Applying a membrane bioreactor to a pharmaceutical effluent
H. BENALIOUCHE — University of Sciences and Technology Houari Boumediene 259

P 2.3 Modeling of the degradation of antibiotics in aqueous solution by electro-Fenton
H. KERMET-SAID — University of Medea 265

P 2.4 Metal recovery from phosphating process water
A. BÖCKING — RWTH Aachen University 271

P 2.5 Experimental Investigation on the performance of ceramic hollow fiber membranes in produced water treatment
S. KERKER — University of Applied Sciences Mittelhessen(THM) 277

P 2.6 Module design aspects for simultaneous particle filtration and disinfection in water chillers
B. GEMENDE — University of Applied Sciences Zwickau 285

P 2.7 Combination of TiO2 nanotubes with a PES membrane to remove pharmaceuticals from water
K. FISCHER — Leibniz Institute of Surface Modification 287
P 2.10 Design of fouling resistant membranes through tailored surface charge
D. BREITE — Leibniz Institute of Surface Modification 289

P 2.11 Smart surface functionalization of ceramic nanofiltration membranes to drastically decrease their fouling tendency in water treatment
A. BUEKENHOUDT — VITO 291

P 2.12 Seawater desalination for production of highly pure water using a hydrophobic PTFE membrane and direct contact membrane distillation
A. KAYVANI FARD — Qatar Foundation 293

P 2.13 An investigation into the potential of industrial low grade heat in membrane distillation for freshwater production
Y. MANAWI — Qatar Foundation 295

P 3 Membrane materials 297

P 3.1 Stimuli-responsive ultrafiltration membranes based on grafted zwitterionic polymers
M. BIRKNER — University Duisburg-Essen 299

P 3.2 Characterization of low-cost anion-exchange ceramic membranes
S. MESTRE — Instituto de Tecnología Cerámica 307

P 3.3 Nafion modified with primary amines: sorption and diffusion tests
M. KLUDSKY — Department of Physical Chemistry, Prague 313

P 3.4 Synthesis, structure and properties of functional homo- and copolymers from 1-(3,3,3-trifluoropropyl)dimethylsilyl)-1-propyne
K. KOSSOV — A.V. Topchiev Institute of Petrochemical Synthesis RAS, Russia 319

P 3.5 The influence of casting solvent on the structure of PTMSP membrane
O. VOPICKA — Department of Physical Chemistry, Prague 325

P 3.6 Designing magnetically responsive separation membranes
X. LIN — University Duisburg-Essen 329
P 3.7 Characterization of novel ultrafiltration membrane prepared from cellulose and lignin with ionic liquid as a solvent
D. NEVSTRUEVA — University of Technology, Finland . . . 335

P 3.8 Membrane-related losses of nanoparticles in field flow fractionation (FFF)
G.N. ANKAH — INM - Leibniz Institute for New Materials . 341

P 3.9 Interfacially polymerized thin film composite membranes for CO2 separation
O. SIZHUK — Friedrich-Alexander University Erlangen . . 347

P 3.10 Functionalized UV curable perfluoropolyethers for membrane distillation application
P. CAMPANELLI — Solvay Specialty Polymers, Italy 353

P 3.11 Development of ceramic hollow fiber membranes and their application in water/oil separation processes (produced water treatment)
S. SCHUETZ — MANN+HUMMEL GmbH 357

P 3.12 Permeation in Redox-flow batteries ERMEATION
D. DÜRERKOP. — Ostfalia - University of Applied Sciences . 369

P 3.13 Calibration and validation of a fouling model for a rotating membrane bioreactor system
P. PAUL — Brunei University . 375

P 3.14 Asymmetric membranes from amphiphilic block copolymers via NIPS processes
C. HÖRENZ — Friedrich-Schiller-University Jena 387

P 3.15 Treatment of synthetic wastewater containing heavy metal ions by nanofiltration
J.H. KOHOLI — University of Tehran 399

P 3.16 Analysis of the thermodynamic interaction of raw materials for membrane production
G. NIÑO-AMÉZQUITA — Sartorius-Stedim Biotech GmbH . 405

P 3.17 Improvement of polymeric ultrafiltration membranes by controlled blend modifications with ZnO nanoparticles
T. VAN DEN BERG — University Duisburg-Essen 415
P 3.18 Recovery of metal ions from highly diluted solutions by membrane processes
K. NIEDERGALL — Fraunhofer Institute for Interfacial Engineering and Biotechnology

P 3.19 FunMem: functionalised ceramic membranes for affinity separation in organic solvent nanofiltration
A. BUEKENHOUDT — VITO B.V.

P 3.20 Nano and macro porous membranes á la carte
M. LELONEK — SmartMembranes GmbH

P 3.21 Grafting of hydrophilic polymers to hydrophobic membrane surfaces via electron beam irradiation
A. SCHULZE — Leibniz Institute of Surface Modification

P 4 Gas separation

P 4.1 Measuring the sorption of azeotrope forming vapour mixtures
O. VOPICKA — Technicka 5, Prague

P 4.2 Membrane technology for the CO2 enrichment from flue gas for the cultivation of algae in photobioreactors
T. WOLFF — Helmholtz-Zentrum Geesthacht

P 4.3 Development of high permeable hollow fiber membrane and gas separation properties by using synthesized polyimde
S.J. KIM — Airrane Co., Ltd.

P 4.4 The study of perfluorocompound gases separation and recovery with hollow fiber membrane processes
S.J. KIM — Airrane Co., Ltd.

P 4.5 Optimized incident flow of a new counter-current flat sheet membrane module
S. LUHR — Forschungszentrum Jülich GmbH
P 5 Microfiltration 459
P 5.1 In situ characterisation of microfiltration Membranes in the ESEM
M. NACHTNEBEL — Graz University of Technology, Austria 461

P 6 Ultrafiltration 467
P 6.1 Novel hybrid schemes coupling submerged ultrafiltration and advanced oxidation processes
A.J. KARABELAS — Laboratory of Natural Resources and Renewable Energies (NRRE) 469

P 7 Solvent recovery 475
P 7.1 Hybrid silica nanofiltration membranes with low MWCO values
H. VAN VEEN — Energy research Centre of the Netherlands 477
P 7.2 Up to new horizons in ceramic membrane pervaporation
M. WOLF — Pervatech BV 483
P 7.3 One stage solutes fractionation with organic solvent nanofiltration
A. YUSHKIN — TIPS RAS 489
P 7.4 Process intensification in the preparation of industrially relevant small molecules and cyclic peptides via membrane processing methodologies
D. ORMEROD — Vito NV 491

A Annex 493
A.1 Index of Exhibitors 495
A.2 Index of Authors 499