Contents

Preface XV
List of Contributors XVII

1 Introduction and General Survey of Metal–Metal Bonds 1
 John E. McGrady
 1.1 Introduction 1
 1.2 Metal–Metal Bonds Involving s Orbitals 3
 1.3 Metal–Metal Bonds Involving d Orbitals 5
 1.4 Metal–Metal Bonds Between f Orbitals 16
 1.5 Metal–Metal Bonds Between p Orbitals 17
 1.6 Concluding Remarks 19
 References 20

2 s-Block Metal–Metal Bonds 23
 Cameron Jones, Philip Mountford, Andreas Stasch, and Matthew P. Blake
 2.1 Introduction 23
 2.2 Group 1 Bimetallics 23
 2.2.1 Group 1 Diatomics and Related Species 23
 2.2.2 Stable Complexes with Group 1 Metal–Metal Bonding Interactions, and Related Species 25
 2.2.3 Stable Metal–Metal Bonded Complexes Involving One Group 1 Metal 25
 2.3 Group 2 Homobimetallics 27
 2.3.1 Group 2 Diatomics and Related Species 27
 2.3.2 Transient Group 2 Metal(I)–Metal(I) Bonded Dimers 28
 2.3.3 Isolable Group 2 Metal(I)–Metal(I) Bonded Dimers 29
 2.3.3.1 Synthesis and Physical Properties 29
 2.3.3.2 Structure and Bonding 31
 2.3.3.3 Reactivity 32
 2.4 Group 2 Heterobimetallics 34
 2.4.1 Group 2–Transition Metal Complexes 34
 2.4.2 Group 2–Main Group Metal Complexes 39
 References 42

3 Group 3, Lanthanide, and Actinide Metal–Metal Bonds 47
 Benjamin Oelkers and Rhett Kempe
 3.1 Introduction 47
 3.1.1 The Isocarbonyl Problem 48
3.2 Preparation 48
3.2.1 Salt Elimination 48
3.2.1.1 f-Element–TM Bond Formation 48
3.2.1.2 f-Element–MM Bond Formation 51
3.2.2 Alkane and Amine Elimination 51
3.2.3 Reductive Cleavage of Metal–Metal Bonds 54
3.2.4 Adduct Formation 57.
3.3 Reactivity 59
3.3.1 Deprotonation of Acidic Substrates 60
3.3.2 Intramolecular Deprotonation and C–H Activation 61
3.3.3 Oxidation of the Metal–Metal Bond 62
3.4 Solid-State Structures 63
3.4.1 Typical Structures 63
3.4.2 Metal–Metal Bond Lengths 64
3.5 Theoretical Calculations and Bonding 66
3.5.1 Complexes with Rare Earth Metals 66
3.5.2 Complexes with Actinide Metals 69
References 69

4 Group 4 Metal–Metal Bonds 73
Lutz H. Gade
4.1 Introduction 73
4.2 Homodinuclear Group 4 Complexes: Metal–Metal Bonding or Not? 73
4.3 Heterobimetallic Complexes Containing Metal–Metal Bonds Involving Group 4 Metals 74
4.3.1 Metal–Metal Bond Polarity in Early-Late Heterobimetallic Complexes Involving Group 4 Metals 75
4.3.2 Synthetic Strategies for the Generation of Highly Polar Metal–Metal Bonds 77
4.3.3 Factors Influencing the Stability of “Unsupported” Metal–Metal Bonds in Ti/Zr/Hf–M Heterobimetallic Complexes 79
4.4 Basic Patterns of Reactivity Observed for Metal–Metal Bonded Early-Late Heterodinuclear Complexes 81
4.4.1 Insertions into Polar Metal–Metal Bonds and Subsequent Transformations 82
4.4.2 Reactivity of Phosphinoamide-Bridged Zr–Co Heterobimetallic Complexes 85
4.5 Early-Late Heterobimetallic Complexes of Group 4 Metals as Potential Catalysts 85
References 88

5 Group 5 Metal–Metal Bonds 91
Sundargopal Ghosh and Dipak Kumar Roy
5.1 General Remarks 91
5.2 Vanadium Complexes 91
5.2.1 Carbonyl Complexes 92
5.2.2 Amido, Imido and Nitride Complexes 92
5.2.3 Hydride, Alkyl and Aryl Complexes 95
5.2.4 Chalcogenide Complexes 97
5.2.5 Vanadaboranes 99
5.2.6 Vanadaheteroboranes 101
5.2.7 Triple-Decker Complexes 103
5.2.8 Paddlewheel Complexes 104
5.3 Niobium Complexes 106
5.3.1 Hydride, Alkyl, and Aryl Complexes 106
5.3.2 Nitride Complexes 108
5.3.3 Triple-Decker Complexes 109
5.3.4 Paddlewheel Complexes 110
5.3.5 Niobaborane and Niobaheteroboranes 111
5.4 Tantalum Complexes 114
5.4.1 Carbonyl Complexes 114
5.4.2 Hydride, Alkyl, and Aryl Complexes 114
5.4.3 Alkyliden and Alkylidyne Complexes 119
5.4.4 Nitride and Phosphine Complexes 120
5.4.5 Tantalaboranes 121
5.4.6 Cluster Growth Reaction of Ditantalaboranes 126
5.4.7 μ-Acyl Complexes 127
5.4.8 Oxametallaboranes 129
5.4.9 Triply Bridged Borylene Complexes 129
References 131

6 Group 6 Metal–Metal Bonds 139
Malcolm H. Chisholm and Nathan J. Patmore
6.1 Metal–Metal Quadruple Bonds 139
6.1.1 Synthesis and Characterization 139
6.1.1.1 Chromium 139
6.1.1.2 Molybdenum and Tungsten 141
6.1.2 Molecular Assemblies 143
6.1.3 Electronic Coupling 145
6.1.4 Photophysical Studies 151
6.1.4.1 Absorption and Steady State Emission; Homoleptic Compounds 151
6.1.4.2 Heteroleptic Compounds 152
6.1.4.3 Transient Absorption Spectra 155
6.1.4.4 Time-Resolved Infrared Studies, TRIR 156
6.2 Quintuple Bonds 162
6.2.1 Discovery 162
6.2.2 Synthesis 163
6.2.2.1 Arylchromium Dimers 163
6.2.2.2 Dichromium Compounds with N-Donor Ligands 164
6.2.2.3 Dimolybdenum Compounds 165
6.2.3 Structure 166
6.2.4 Theoretical Studies 169
6.2.5 Reactivity 170
References 172

7 Group 7 Metal–Metal Bonds 175
Frederic Poineau, Alfred P. Sattelberger, Erlu Lu, and Stephen T. Liddle
7.1 Manganese 175
7.1.1 Introduction 175
7.1.2 Complexes with Mn$_2^{4+}$ Core 175
7.1.3 Complexes with Mn$_2^{3+}$ Core 176
7.1.4 Complexes with Mn$_2^{2+}$ Core 177
7.1.4.1 Complexes with Carbene/Borylene Bridging Ligands 177
7.1.4.2 Complexes with Unsupported Mn–Mn Bonds 178
7.1.4.3 Complexes with Chalcogenide and Related Bridging Ligands 181
7.1.5 Complexes with Mn$_2^0$ Core 183
7.2 Technetium 185
 7.2.1 Introduction 185
 7.2.2 Complexes with a Tc_6^{6+} Core 186
 7.2.3 Complexes with a Tc_5^{5+} Core 193
 7.2.4 Complexes with a Tc_4^{4+} Core 196
 7.2.5 Miscellaneous Complexes with Tc–Tc Multiple Bonds 200
7.3 Rhenium 202
 7.3.1 Introduction 202
 7.3.2 Complexes with the Re_2^{8+} Core 203
 7.3.3 Complexes with the Re_2^{7+} Core 204
 7.3.4 Complexes with the Re_2^{6+} Core 205
 7.3.4.1 Compounds with No Bridging Ligands 205
 7.3.4.2 Compounds with (O, O) Bridging Ligands 206
 7.3.4.3 Compounds with (O, O) and (N, N) Bridging Ligands 209
 7.3.4.4 Compounds with (N, N) Bridging Ligands 211
 7.3.5 Complexes with the Re_3^{5+} Core 216
 7.3.6 Complexes with the Re_3^{4+} Core 216
 7.3.7 Complexes with the Re_3^{3+} Core 220
References 222

8 Group 8 Metal–Metal Bonds 225
 Stephen J. Tereniak and Connie C. Lu
 8.1 Introduction 225
 8.2 Group 8 Homobimetals 225
 8.2.1 Diiron 225
 8.2.1.1 Tetragonal Complexes (Paddlewheel and Non-Paddlewheel) 226
 8.2.1.2 Trigonal Paddlewheel 228
 8.2.1.3 Planar Paddlewheel 231
 8.2.1.4 Non-Paddlewheel 231
 8.2.1.5 Summary of Diiron 233
 8.2.1.6 Fe–Fe Bonding in Clusters 233
 8.2.2 Diruthenium 237
 8.2.2.1 Paddlewheel 237
 8.2.2.2 Non-Paddlewheel 246
 8.2.3 Diosmium 250
 8.2.3.1 Paddlewheel 250
 8.2.3.2 Non-Paddlewheel 253
 8.2.3.3 Summary of Diosmium 255
 8.3 Group 8 Heterobimetals 256
 8.3.1 Intratriad Heterobimetals 257
 8.3.2 Intertriad Heterobimetals 258
 8.3.2.1 Fe–M Heterobimetals 258
 8.3.2.2 Ru–M Heterobimetals 266
 8.3.2.3 Os–M Heterobimetals 271
References 272

9 Group 9 Metal–Metal Bonds 279
 Helen T. Chifotides, Biswajit Saha, Nathan J. Patmore, Kim R. Dunbar, and Jitendra K. Bera
 9.1 Cobalt 279
 9.1.1 Overview 279
 9.1.2 Dicobalt Compounds with Short Co–Co Bonds 279
9.1.3 Cobalt Extended Metal Chains 282
9.2 Rhodium 285
9.2.1 Introduction 285
9.2.2 Catalysis 286
9.2.2.1 Cyclopropanation and Cyclopropenation 286
9.2.2.2 Functionalization of C–H Bonds 293
9.2.2.3 Formation of C–N Bonds 298
9.2.2.4 Functionalization of Si–H and S–H Bonds 300
9.2.2.5 Allylic and Benzylic Oxidations by Dirhodium(II) Caprolactamate 301
9.2.2.6 Other C–C Bond Formation Reactions 301
9.2.3 Dirhodium Complexes with Photochemical and Other Applications 303
9.2.3.1 Dirhodium Complexes as Photocatalytic Mediators for O₂ Reduction to H₂O Photocatalytic H₂ Production, and Potential Mediators in Solar Energy Conversion 303
9.2.3.2 Dirhodium Metallopeptides in Catalysis and Site-Selective Protein Modifications 305
9.2.3.3 Dirhodium Frameworks as Hosts for Gas-Adsorption 305
9.2.3.4 Dirhodium Adducts Exhibiting π-Polyarene Interactions 306
9.2.3.5 Dirhodium Adducts Exhibiting π-Back Bonding 308
9.2.3.6 Dimers with Rhodium in Multimetallic Assemblies 310
9.2.4 Perspective 314
9.3 Iridium 315
9.3.1 Synthesis and Characterization of Diiridium Compounds 315
9.3.2 Small Molecule and Bond Activation by Diiridium Compounds 316
References 317

10 Group 10 Metal–Metal Bonds 325
Erli Lu and Stephen T. Liddle
10.1 Introduction 325
10.2 Bimetallic Compounds 325
10.2.1 Dinickel Compounds 326
10.2.1.1 Dinickel(0) Compounds 326
10.2.1.2 Dinickel(I) Compounds 328
10.2.1.3 Dinickel(II) Compounds 340
10.2.1.4 Dinickel(III) Compounds 344
10.2.1.5 Mixed-Valent Dinickel Compounds 345
10.2.2 Dipalladium Compounds 347
10.2.2.1 Dipalladium(0) Compounds 347
10.2.2.2 Dipalladium(I) Compounds 349
10.2.2.3 Dipalladium(II) Compounds 363
10.2.2.4 Dipalladium(III) Compounds 366
10.2.2.5 Mixed-Valent Dipalladium Compounds 368
10.2.3 Diplatinum Compounds 370
10.2.3.1 Diplatinum(0) Compounds 371
10.2.3.2 Diplatinum(I) Compounds 371
10.2.3.3 Diplatinum(II) Compounds 376
10.2.3.4 Diplatinum(III) Compounds 379
10.2.3.5 Mixed-Valent Diplatinum Compounds 382
10.2.4 Heterobimetallic Compounds 384
10.3 Multimetallic Sandwich Compounds – a Brief Introduction 387
References 390
Contents

11 Group 11 Metal–Metal Bonds 397
Thomas G. Gray and Joseph P. Sadighi

11.1 Introduction 397
11.2 Formally Noncovalent Metal–Metal Interactions 397
11.2.1 Copper(I)–Copper(I) Interactions 398
11.2.1.1 Early Identification of Close Approaches 398
11.2.1.2 Theoretical Studies 398
11.2.1.3 Three-Center, Two-Electron Bonding in Copper(I) Complexes 400
11.2.1.4 Unsupported Copper(I)–Copper(I) Interactions 402
11.2.2 Silver(I)–Silver(I) Interactions 403
11.2.3 Supported and Semi-Supported Gold(I)–Gold(I) Interactions 406
11.2.3.1 Diauration at Hydrogen 407
11.2.3.2 Geminal Auration at Carbon 407
11.2.3.3 Redox Reactions with Bimetallic Cooperation 409
11.2.3.4 Luminescent Complexes 410
11.2.3.5 Reagents for Thin-Film Deposition 411
11.2.3.6 Photocatalysis with Di-gold(I) Complexes 412
11.2.4 Unsupported Gold(I)–Gold(I) Interactions 412
11.2.5 Metallophilic Interactions Involving Gold(III) 414
11.3 Covalent Metal–Metal Bonding 415
11.3.1 Paddlewheel Complexes of Copper(II) 415
11.3.2 Mixed-Valent Copper(I)/Copper(II) Complexes 415
11.3.3 Silver–Silver Bonding 418
11.3.4 Gold–Gold Bonding 419
11.3.4.1 Semi- and Fully Supported Gold–Gold Bonds 419
11.3.4.2 Unsupported Gold–Gold Bonds 420
11.4 Heterobimetallic Complexes of the Group 11 Metals 421
References 424

12 Group 12 Metal–Metal Bonds 429
Xian Wu and Sjoerd Harder

12.1 Introduction 429
12.2 Homobimetallics 430
12.2.1 Synthesis and Structures 430
12.2.1.1 \([\text{G12–G12}]^{2+}\) Ions 430
12.2.1.2 Molecular G12–G12 Bonded Complexes 431
12.2.2 Reactivity 434
12.2.2.1 \([\text{G12–G12}]^{2+}\) Ions 434
12.2.2.2 Molecular G12–G12 Bonded Complexes 434
12.3 Heterobimetallics 437
12.3.1 Bonding between G12 and Late Main Group Metals 437
12.3.1.1 G12–G13 Bonds 437
12.3.1.2 G12–G14 Bonds 439
12.3.1.3 G12–G15 Bonds 440
12.3.2 Bonding Between G12 and Transition Metals 441
12.4 Summary and Perspectives 449
References 450

13 Group 13 Metal–Metal Bonds 455
Joseph A.B. Abdalla and Simon Aldridge

13.1 Preamble 455
13.2 s-Block to Group 13 Metal Bonds 455
13.2.1 Group 1 Metal Complexes 456
13.2.2 Group 2 Metal Complexes 457
13.3 p-Block to Group 13 Metal Bonds 458
13.3.1 Group 12 Metal Complexes 458
13.3.2 Group 13–Group 13 Metal–Metal Bonds 459
13.3.2.1 Formal Oxidation State +2 and Related Systems 459
13.3.2.2 Formal Oxidation State +1 and Related Systems 461
13.3.2.3 Formal Oxidation States of Less Than +1 464
13.3.3 Group 14 Metal Complexes 464
13.4 d-Block–Group 13 Metal Bonds 464
13.4.1 Synthesis via Salt Elimination 465
13.4.2 Synthesis via Alkane Elimination 466
13.4.3 Oxidative Addition versus Adduct Formation: a Fine Electronic Balance 466
13.4.4 Metal-Only Lewis Pairs 467
13.4.5 Double Salt Elimination as Access to the +1 Oxidation State 468
13.4.6 Halide Abstraction as a Route to Cationic Diyl Systems 469
13.4.7 Direct Reactions with M^+ Species 471
13.4.7.1 Insertion of M^+ Halides into $M-X$ and $M-M$ Bonds 471
13.4.7.2 Ligand Displacement Reactions Utilizing Group 13 Diyls, RM 471
13.4.7.3 Reactions with M^+ Heterocycles 473
13.5 f-Block–Group 13 Metal Bonds 476
Abbreviations 477
References 477

14 Group 14 Metal–Metal Bonds 485
Robert J. Less and Dominic S. Wright
14.1 Introduction 485
14.2 Homoaatomic Group 14–Group 14 Bonds 485
14.2.1 Cluster Compounds 485
14.2.2 Group 14–Group 14 Single Bonds (E–E) 491
14.2.2.1 Molecules and 491
14.2.2.2 Polymers 493
14.2.3 Group 14–Group 14 Double Bonds (E=E) 494
14.2.3.1 Structure and Bonding 494
14.2.3.2 Reactivity of Si=Si and Ge=Ge Bonds 497
14.2.4 Group 14–Group 14 Triple Bonds (E=E) 497
14.3 Heteroaatomic Metal–Metal Bonds 499
14.3.1 s-Block Metal–Group 14 Metal Bonds 499
14.3.2 p-Block Metal–Group 14 Bonds (Group 13 (Al–Tl and Group 15 (As–Bi)] 502
14.3.3 f-Block Metal–Group 14 Bonds (including Sc, Y, La) 504
14.3.4 Transition Metal–Group 14 Bonds 505
14.3.4.1 Single and Partial–Single Bonds (Tm-E) 505
14.3.4.2 Double Bonds (Tm=E) 508
14.3.4.3 Triple Bonds (Tm≡E) 510
References 511

15 Group 15 Metal–Metal Bonds 519
James S. Jones, Baofei Pan, and François P. Gabbaï
15.1 Introduction 519
15.2 Complexes with Sb–Sb and Bi–Bi Bonds 519
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.2.1 Synthesis and Structures of Distibines and Dibismuthines</td>
<td>519</td>
</tr>
<tr>
<td>15.2.1.1 Synthesis</td>
<td>519</td>
</tr>
<tr>
<td>15.2.1.2 Structures</td>
<td>520</td>
</tr>
<tr>
<td>15.2.2 Synthesis and Structures of cyclo-Organostibines and -Organobismuthines</td>
<td>523</td>
</tr>
<tr>
<td>15.2.2.1 cyclo-Stibines</td>
<td>523</td>
</tr>
<tr>
<td>15.2.2.2 Cyclo-bismuthines</td>
<td>524</td>
</tr>
<tr>
<td>15.2.3 Stability and Reactivity</td>
<td>525</td>
</tr>
<tr>
<td>15.2.3.1 Thermal and Photochemical Stability</td>
<td>525</td>
</tr>
<tr>
<td>15.2.3.2 Reactivity</td>
<td>526</td>
</tr>
<tr>
<td>15.2.4 Compounds with Pn–Pn (Pn = Sb, Bi) Multiple Bonds</td>
<td>529</td>
</tr>
<tr>
<td>15.2.4.1 Double-Bonded Species</td>
<td>529</td>
</tr>
<tr>
<td>15.2.4.2 Triple-Bonded Species</td>
<td>533</td>
</tr>
<tr>
<td>15.3 Complexes with M–Sb and M–Bi Bonds (M = d-Block Metal)</td>
<td>533</td>
</tr>
<tr>
<td>15.3.1 Complexes Containing R\textsubscript{2}Pn Fragments as Ligands (Pn = Sb or Bi)</td>
<td>534</td>
</tr>
<tr>
<td>15.3.1.1 Group 4 and 5 Complexes</td>
<td>534</td>
</tr>
<tr>
<td>15.3.1.2 Group 5 Complexes</td>
<td>536</td>
</tr>
<tr>
<td>15.3.1.3 Group 6 and 7 Complexes</td>
<td>536</td>
</tr>
<tr>
<td>15.3.1.4 Group 8 Complexes</td>
<td>538</td>
</tr>
<tr>
<td>15.3.1.5 Group 9 Complexes</td>
<td>540</td>
</tr>
<tr>
<td>15.3.1.6 Group 10 and 11 Complexes</td>
<td>542</td>
</tr>
<tr>
<td>15.3.2 Complexes Containing RPn Fragments as Ligands (Pn = Sb or Bi)</td>
<td>543</td>
</tr>
<tr>
<td>15.3.2.1 Complexes Containing a RPn Fragment as a Two Electron Donor</td>
<td>543</td>
</tr>
<tr>
<td>15.3.2.2 Complexes Containing a RPn Fragment as a Four Electron Donor</td>
<td>545</td>
</tr>
<tr>
<td>15.3.3 Complexes Containing Bridging or Terminal Pn Atoms as Ligands (Pn = Sb or Bi)</td>
<td>548</td>
</tr>
<tr>
<td>15.4 Metal–Antimony Bonds Involving High-Valent Antimony Fragments</td>
<td>549</td>
</tr>
<tr>
<td>15.5 Concluding Remarks</td>
<td>552</td>
</tr>
<tr>
<td>References</td>
<td>553</td>
</tr>
</tbody>
</table>

Index 559