CONTENTS

INTRODUCTION

1. **DIE CASTING OF METALS**

2. **DIE CASTING OF MACHINES**
 - 2.1 Hot-chamber Die Casting Machines
 - 2.2 Cold-chamber Die Casting Machines

3. **MAIN STRUCTURAL NODES OF DIE CASTING MACHINES**
 - 3.1 General Characteristics of Die Casting Machines
 - 3.2 Locking Mechanism
 - 3.3 Pressing Mechanism
 - 3.4 Drive of Machines
 - 3.5 Hydraulic Distributor
 - 3.6 Covering of Die Casting Machines

4. **THEORETICAL ANALYSIS OF DIE CASTING OF METALS**
 - 4.1 Equations of Motion of Die Casting Processes of Metals
 - 4.1.1 Speed of Pressing
 - 4.1.2 Pressing Pressure
 - 4.1.3 Process Control

5. **BASIC PARAMETERS OF DIE CASTING MACHINES**
 - 5.1 Locking Joint Mechanism
 - 5.2 Ratios of Forces of Pressing Plunger
 - 5.3 Process of Pressing Plunger Movement inside the Filling Chamber
 Impacting the Processes of Pressing Cylinder Movement
 - 5.4 Assessment of Pressing Mechanism
 - 5.5 Chamber Filling Modes

6. **ATTACHMENTS FOR DIE CASTING**
 - 6.1 Feed Equipment
 - 6.2 Casting Removal Equipment
 - 6.3 Mould Treatment Equipment
 - 6.4 Trimming Press
 - 6.5 Equipment for Additional Heating of Operational Liquid

7. **THEORETICAL ANALYSIS PROCESSES OF ATTACHMENTS**
 - 7.1 Regulation of Delimitation of Metal Level Decrease in the Furnace in case of Pneumatic Dosing Device of Metal
 - 7.2 Dynamics of Metal Dosing during Die Casting
 - 7.3 Dynamics of Treatment Device for Die Casting of Metals
8 AUTOMATION OF DIE CASTING WORKSTATIONS

8.1 Basic Principles
8.2 The Positives of Automation of Technological Workstations of Die Casting
8.3 Automated Technological Workstations of Die Casting (ATW DC)

8.3.1 Basic Structural Parts of ATW DC

9 DIE CASTING MOULDS

9.1 Hydrodynamic based of Liquid Metal Flow in a Mould Cavity
9.1.1 Filling Mode in a Mould Cavity
9.1.2 Filling Process in a Mould Cavity

9.2 Structural Mould Designs
9.2.1 Design of a Mould Gating System
9.2.2 Design of a Mould Venting System
9.2.3 Mould Cooling and Tempering System

9.3 Mould Operation Cycle
9.4 Mould Treatment
9.5 Mould Production Materials
9.5.1 Basic Properties Laid upon Mould Materials
9.5.2 Influence of Alloying Elements upon Properties of Basic Mould Material
9.5.3 Development Trends of Mould Production Material

9.6 Shrinkage of Castings
9.7 Theoretical Analysis of the Processes in the Mould during Die Casting
9.7.1 Dynamics of Casting Cooling during Die Casting
9.7.2 Dynamics of Core Extraction during Die Casting
9.7.3 Formation and Spread of Cracks due to Heat Fatigue in Metal Moulds

9.8 Melting and Keeping of Alloys in the Molten State
9.8.1 General Knowledge on Melting
9.8.2 Melting and Holding of Metals
9.8.2.1 Returnable Material
9.8.3 Melting Aggregates (Furnaces)
9.8.3.1 Electric Furnaces
9.8.3.2 Shaft Furnaces
9.8.3.3 Flame Furnaces

10 DIE CASTING DEFECTS

10.1 Classification of Casting Defects
10.2 Defect Types of Castings and Causes heir Occurrence
10.2.1 Shape, Dimensions and Weight Defects
10.2.2 Surface Defects
10.2.3 Continuity Interruption
10.2.4 Cavities 166
10.2.5 Macroscopic Inclusions and Macrostructure Defects 169
10.2.6 Structure Defects 169
10.2.7 Chemical Composition Defects, Incorrect Physical or Mechanical Properties 170

11 CA TECHNOLOGIES IN FOUNDRY INDUSTRY 171
11.1 Simulation Technologies in Foundry Industry 171
11.1.1 Mathematical Description of Casting and Solidification 171
11.1.2 ProCAST Simulation Program 172
11.1.3 MAGMAsoft Simulation Program 173
11.1.4 SIMULOR Simulation Program 175
11.2 Rapid Prototyping 176
11.3 Economic and Technological Evaluation of CA Technologies 177
Implementation in Foundry Industry 177
11.3.1 Technological Comparison of Simulation Softwares 177

12 PROGRESSIVE TRENDS OF DIE CASTING 179
12.1 Vacuum Treatment of Casting Mould 180
12.1.1 Aspects of Implementation of Vacuum Treatment of Die Casting Moulds 181
12.1.2 Development of Vacuum Die Casting of Metals 181
12.1.3 Requirements on Moulds in Vacuum Treatment of Die Casting Moulds 182
12.1.4 Structural Design of Vacuum Treatment of Die Casting Moulds 182
12.1.5 Advantages of Vacuum 185
12.1.6 Analysis of Influence of Casting Mould Vacuum Treatment upon Porosity of Castings 186
12.2 Squeeze Casting 188
12.3 Semi Solid Metal (SSM) Process 191
12.3.1 Rheocasting 192
12.3.2 Thixocasting 193
12.3.3 Thixoforming 194
12.5.4 Thixomoulding 194
12.5.5 Sub – Liquidus – Casting 195

REFERENCES 197