2.4 Molecular Biology Methods

2.4.1 DNA amplification through polymerase chain reaction (PCR)

2.4.2 DNA separation and purification through agarose gel electrophoresis

2.4.3 DNA restriction digestion

2.4.4 Ligation

2.4.5 Sequencing

2.4.6 Gene modification through homologous recombination

2.5 Transformation methods

2.5.1 Heat shock transformation of \textit{E. coli}

2.5.2 Lithium acetate transformation of \textit{S. cerevisiae}

2.5.3 Electroporation transformation of \textit{S. cerevisiae}

2.6 Yeast genetics methods

2.6.1 Crossing of \textit{S. cerevisiae} strains

2.6.2 Sporulation of diploid \textit{S. cerevisiae} cells

2.6.3 Tetrad analysis with the micromanipulator

2.6.4 Mating type identification through the halo test

2.6.5 Measurement of cell growth through spot assays

2.6.6 Measurement of cell growth through growth curves

2.6.7 Synthetic genetic array (SGA)

2.7 Protein biochemistry methods

2.7.1 Cell disruption through glass bead extraction

2.7.2 Total protein isolation

2.7.3 Protein concentration measurement

2.7.4 TAP- purification of protein complexes

2.7.5 Immunoprecipitation

2.7.6 Protein separation by SDS PAGE

2.7.7 Protein staining in SDS gels

2.7.8 Drying of polyacrylamide gels

2.7.9 Transfer and immunodetection of proteins

2.7.9.1 Western blot

2.7.9.2 Ponceau stain

2.7.9.3 Immunodecoration

2.7.10 Radiogel exposure and detection

2.8 Imaging methods

2.8.1 Culture conditions for imaging

2.8.2 Sample preparation for live cell imaging
2.8.3 Imaging presets ... 43
2.8.4 FRAP experiments ... 44
2.8.5 Electron microscopy .. 44
2.8.6 Image processing ... 44
2.9 Construction of particular strains and plasmids 45
2.9.1 Construction of BiFC strains ... 45
2.9.2 Construction of the pRER1 plasmid 46
2.9.3 Construction of the pHDEL plasmid 46

3 Results .. 47
3.1 Evaluation of the suitability of the BiFC approach 48
3.1.1 Fluorescence signal specificity and localization 50
3.1.2 BiFC signal formation between non-cognate interaction partners 51
3.1.3 Viability and cell morphology of yeast strains 52
3.1.4 Effects of tag addition on protein expression levels 55
3.1.5 Biochemical analysis of the BiFC interactions between Dsll complex and COP-I coat subunits .. 57
3.2 in vivo interactions of the Dsll complex with COP-I coated vesicles ... 58
3.2.1 BiFC signals between different Dsll complex/ COP-I subunits ... 58
3.2.2 Comparison of BiFC signals to overall protein fluorescence 59
3.2.3 Polarization and dynamics of the Dsll complex/ COP-I coat interaction 60
 3.2.3.1 Polarization throughout the cell cycle 60
 3.2.3.2 Dynamics of spatial reorientation 63
 3.2.3.3 BiFC signal recovery after whole cell bleaching 63
3.2.4 Dependence of signal polarization on growth 65
3.2.5 in vivo interactions of Dsll complex and coatomer with COP-I cargo receptor Rerlp ... 67
3.2.6 Fluorescence complementation in the binding-deficient dsll-5WA mutant 71
3.2.7 COP-I vesicle polarization in Dsllp-depleted cells 72
3.3 Association of BiFC Dsll complex/coatomer interactions with organelle dynamics and inheritance .. 74
 3.3.1 ER association ... 74
 3.3.2 Association with different Golgi subcompartments 76
 3.3.3 Actin dependence of the BiFC signal polarization 79
 3.3.4 Involvement of myosin motors in the polarization of BiFC signals 80
 3.3.5 Association of BiFC interaction signals with ER exit sites 81
 3.3.6 Temporal and spatial positioning of BiFC foci to sites of secretory vesicle release 84
3.3.7 Electron microscopic evaluation of the subcellular structures involved in BiFC foci appearance ... 85

3.4 Investigating the function of the Dsl1p loop ... 87

3.4.1 Biochemical analysis of BiFC-induced binding in DSL1 wild type and dsl1-5WA mutant cells ... 87

3.4.2 Synthetic genetic arrays for the identification of proteins associated with Dsl1p function ... 88

4 Discussion ... 93

4.1 The introduction of BiFC tags has no adverse effects on protein levels and cell viability 93

4.2 Bimolecular fluorescence complementation yields specific protein-protein interaction signals .. 94

4.3 The Dsl1 complex interacts with COP-I coat vesicles *in vivo*, and interaction sites are polarized ... 95

4.3.1 The Dsl1 complex interacts with the COP-I coat .. 95

4.3.2 The Dsl1 complex interacts with COP-I vesicles at spatially defined sites at the ER 97

4.4 ER arrival sites can be visualized independently of the use of BiFC 97

4.5 ER arrival site polarization is dependent on growth .. 98

4.6 Interactions between Dsl1 complex and COP-I vesicles in context of organelle inheritance ... 98

4.6.1 BiFC polarization depends on the actin cytoskeleton and Myo2p-mediated transport 99

4.6.2 BiFC signals always appear adjacent to Golgi .. 100

4.6.3 ER arrival sites of COP-I vesicles are always found at the ER and show a juxtapost pattern with ER exit sites .. 101

4.6.4 ER arrival sites trail the exocyst during budding .. 102

4.6.5 Organelle associations suggest a role of COP-I transport in *de novo* formation of cis- Golgi ... 102

4.7 General assessment of BiFC in *S. cerevisiae* ... 104

4.7.1 FRAP experiments show a recovery of the BiFC signal within minutes after bleaching .. 104

4.7.2 TAP pulldowns of metabolically labeled BiFC strains confirm the irreversibility of complementation *in vitro* .. 104

4.8 Synthetic lethality screens reveal a link between Dsl1p and p24 proteins 106

4.9 Summary of findings .. 108

5 Bibliography .. 109

6 Appendix .. 125