Contents

Preface XV
List of Contributors XVII
List of Abbreviations XXI

1 General Ring-Closing Metathesis 1
Paul R. Hanson, Soma Maitra, Rambabu Chegondi, and Jana L. Markley
1.1 Introduction 1
1.2 Carbocycles (Introduction) 3
1.2.1 Small-Sized Carbocycles 3
1.2.2 Medium-Sized Carbocycles 9
1.2.3 Spiro Carbocycles 20
1.3 Synthesis of Bridged Bicycloalkenes 25
1.4 Synthesis of Heterocycles Containing Si, P, S, or B 29
1.4.1 Si-Heterocycles 29
1.4.2 P-Heterocycles 34
1.4.3 S-Heterocycles 42
1.4.4 B-Heterocycles 46
1.5 Synthesis of O-Heterocycles 51
1.5.1 Small and Medium-Size Cyclic Ethers 51
1.5.2 Polycyclic Ethers 59
1.6 Synthesis of N-Heterocycles 63
1.6.1 N-Heterocycles 63
1.6.2 Small and Medium-Sized Lactams 73
1.7 Synthesis of Cyclic Conjugated Dienes 77
1.8 Alkyne Metathesis 86
1.9 Enyne Metathesis 89
1.9.1 General Enyne Metathesis 90
1.9.2 Dienyne Metathesis 93
1.10 Tandem Processes 93
1.10.1 Tandem ROM/RCM 98
1.10.2 Other Tandem RCMs 103
1.11 Synthesis of Macrocycles 105
1.11.1 Macrocycles 105
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.11.2</td>
<td>Macrolactones</td>
<td>110</td>
</tr>
<tr>
<td>1.11.3</td>
<td>Macrolactams</td>
<td>126</td>
</tr>
<tr>
<td>1.12</td>
<td>RCM and Isomerization via Ru-H</td>
<td>147</td>
</tr>
<tr>
<td>1.13</td>
<td>Relay RCM (RRCM)</td>
<td>149</td>
</tr>
<tr>
<td>1.14</td>
<td>Z-Selective RCM</td>
<td>155</td>
</tr>
<tr>
<td>1.14.1</td>
<td>Substrate-Controlled Z-Selective RCM</td>
<td>155</td>
</tr>
<tr>
<td>1.14.2</td>
<td>Catalyst-Controlled Z-Selective RCM</td>
<td>155</td>
</tr>
<tr>
<td>1.15</td>
<td>Enantioselective RCM</td>
<td>158</td>
</tr>
<tr>
<td>1.16</td>
<td>Conclusion</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>162</td>
</tr>
</tbody>
</table>

2 | Cross-Metathesis | 171 |
| Daniel J. O'Leary and Gregory W. O'Neill |

2.1 | Early Examples Using Well-Defined Molybdenum and Ruthenium Catalysts | 171 |
2.2 | The General Model for Selectivity in CM Reactions | 172 |
2.3 | Definition of Cross-Metathesis Reaction Categories and Chapter Organization | 176 |
2.4 | Hydrocarbons | 177 |
2.4.1 | Alkane Extensions | 177 |
2.4.2 | Unsaturated Hydrocarbons, Including Styrene | 182 |
2.4.3 | Ethylene Cross-Metathesis | 188 |
2.5 | Boron | 188 |
2.6 | Nitrogen | 195 |
2.6.1 | Amines | 195 |
2.6.2 | Amines as CM Partners in Heterocycle Syntheses | 198 |
2.6.3 | Acrylonitrile and Other Nitrile-Based CM Applications | 202 |
2.6.4 | Other Nitrogenous Substrates | 203 |
2.7 | Oxygen | 205 |
2.7.1 | Primary Allylic Alcohols and Derivatives | 205 |
2.7.2 | Secondary Allylic Alcohols and Derivatives | 209 |
2.7.3 | Tertiary Allylic Alcohols and Derivatives | 213 |
2.7.4 | Homoallylic Alcohols and Derivatives | 215 |
2.7.5 | Vinyl Ethers | 216 |
2.7.6 | Acrolein, Crotonaldehyde, and Methacrolein | 218 |
2.7.7 | Methyl Vinyl Ketone and Related Systems | 224 |
2.7.8 | Acrylic Acid | 230 |
2.7.9 | Acrylic Acid Derivatives, Including Esters, Thioesters, and Amides | 232 |
2.8 | Halides | 247 |
2.9 | Phosphorus | 252 |
2.10 | Sulfur | 255 |
2.11 | Fragment Coupling Reactions | 257 |
2.11.1 | Acetogenins | 258 |
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.11.2 Cross-Metathesis Selectivity</td>
<td>262</td>
</tr>
<tr>
<td>2.11.3 Tuning Metathesis Selectivity</td>
<td>267</td>
</tr>
<tr>
<td>2.11.4 CM as an Alternative Coupling Strategy</td>
<td>269</td>
</tr>
<tr>
<td>2.11.5 CM-Based Analog Synthesis</td>
<td>271</td>
</tr>
<tr>
<td>2.11.6 Polyene Metathesis</td>
<td>273</td>
</tr>
<tr>
<td>2.11.7 Cross-Metathesis Reaction Optimization: Pinnaic Acid</td>
<td>275</td>
</tr>
<tr>
<td>2.12 Conclusions</td>
<td>280</td>
</tr>
<tr>
<td>References</td>
<td>282</td>
</tr>
</tbody>
</table>

Vignette: Extending the Application of Metathesis in Chemical Biology – The Development of Site-Selective Peptide and Protein Modifications

Yuya A. Lin and Benjamin G. Davis

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction</td>
<td>295</td>
</tr>
<tr>
<td>3.2 Cross-Metathesis Methodology Studies in Aqueous Media</td>
<td>296</td>
</tr>
<tr>
<td>3.2.1 Allyl Sulfides are Reactive Substrates in Olefin Metathesis</td>
<td>296</td>
</tr>
<tr>
<td>3.2.2 Sulfur-Related Cross-Metathesis</td>
<td>297</td>
</tr>
<tr>
<td>3.2.3 Application of Aqueous Metathesis of Allyl Sulfides in Synthesis</td>
<td>300</td>
</tr>
<tr>
<td>3.2.4 Cross-Metathesis of Se-Allyl Selenocysteine</td>
<td>300</td>
</tr>
<tr>
<td>3.3 Strategies for Allyl Chalogenide Incorporation into Proteins</td>
<td>301</td>
</tr>
<tr>
<td>3.3.1 Conjugate Addition to Dehydroalanine</td>
<td>302</td>
</tr>
<tr>
<td>3.3.2 Allyl Selenenylsulfide Rearrangement</td>
<td>302</td>
</tr>
<tr>
<td>3.3.3 S-Allyl Cysteine as a Methionine Surrogate</td>
<td>303</td>
</tr>
<tr>
<td>3.3.4 Other Genetic Incorporation Strategies</td>
<td>303</td>
</tr>
<tr>
<td>3.4 Olefin Metathesis on Proteins</td>
<td>304</td>
</tr>
<tr>
<td>3.4.1 Magnesium(II) is an Essential Additive in Olefin Metathesis on Proteins</td>
<td>304</td>
</tr>
<tr>
<td>3.4.2 Further Investigation of Allyl Ethers and Allyl Sulfides in RCM of Proteins and Peptides</td>
<td>304</td>
</tr>
<tr>
<td>3.4.3 Expanding the Scope of Cross-Metathesis on Proteins</td>
<td>306</td>
</tr>
<tr>
<td>3.5 Outlook</td>
<td>307</td>
</tr>
<tr>
<td>References</td>
<td>307</td>
</tr>
</tbody>
</table>

Ruthenium-Catalyzed Tandem Metathesis/Non-Metathesis Processes

Youn H. Nam and Marc L. Snapper

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>311</td>
</tr>
<tr>
<td>4.2 Metathesis/Isomerization</td>
<td>311</td>
</tr>
<tr>
<td>4.2.1 RCM/Isomerization</td>
<td>311</td>
</tr>
<tr>
<td>4.2.2 Isomerization/RCM</td>
<td>322</td>
</tr>
<tr>
<td>4.2.3 CM/Isomerization</td>
<td>325</td>
</tr>
<tr>
<td>4.2.4 Enyne Metathesis/Isomerization</td>
<td>327</td>
</tr>
<tr>
<td>4.2.5 Isomerization/Enyne Metathesis</td>
<td>329</td>
</tr>
<tr>
<td>4.3 Metathesis/Hydrogenation</td>
<td>329</td>
</tr>
</tbody>
</table>
5 Enyne Metathesis 381

Jingwei Li and Daesung Lee

5.1 Introduction 381

5.2 Enyne Metathesis 382

5.2.1 Brief Historical Background (1985–2002) 382

5.2.2 Mechanistic Studies and Selectivity Issues 384

5.2.2.1 Dichotomy of Mechanism – “Ene-First” or “Yne-First" 384

5.2.2.2 Regioselectivity in Enyne Ring-Closing Metathesis 388

5.2.2.3 Regio and Stereoselectivity in Enyne Cross Metathesis 391

5.2.3 Enyne Metathesis and Metallotropic [1, 3] Shift (M&M) 395

5.2.4 Other Metal-Catalyzed Enyne Metatheses (Skeletal Reorganizations) 399

5.2.4.1 Introduction 399

5.2.4.2 Formation of Type-1 exo Products 400
5.2.4.3 Formation of Type-II exo Products 400
5.2.4.4 Formation of endo Products 403
5.2.4.5 Miscellaneous 404
5.3 Strategic Application of Enyne Metathesis in Organic Synthesis 405
 5.3.1 Enyne Metathesis 405
 5.3.1.1 Enyne RCM in Synthesis of Carbocycles and Heterocycles 405
 5.3.1.2 Enyne CM 410
 5.3.1.3 Enyne Metathesis in Natural Products Synthesis 412
 5.3.2 Tandem Enyne Metathesis 415
 5.3.2.1 Dienyne Metathesis 417
 5.3.2.2 Enyne RCM–CM Sequence 425
 5.3.3 Enyne Ring-Rearrangement Metathesis (RRM) 427
 5.3.3.1 Multiple Enyne Metathesis 430
 5.3.3.2 Enyne CM–RCM Sequence 431
 5.3.3.3 Tandem Enyne Metathesis–Diels–Alder Reaction Sequences 432
 5.3.3.1 Enyne Metathesis–Intermolecular Diels–Alder Reaction 432
 5.3.3.2 Enyne Metathesis–Intramolecular Diels–Alder Reaction 436
 5.3.4 Other Tandem Enyne Metathesis Sequences 437
 5.4 Perspective 438
References 439

6 Alkyne Metathesis 445
 Alois Furstner
 6.1 Introduction 445
 6.2 Background Information 445
 6.3 Molybdenum Alkylidyne Catalysts with Silanolate Ligands 450
 6.3.1 General 450
 6.3.2 Representative Procedure: Ring-Closing Alkyne Metathesis with the Aid of a Bench-Stable Molybdenum Alkylidyne Adduct 453
 6.3.3 Molybdenum Nitrides as Precatalysts 454
 6.3.4 Structural and Mechanistic Aspects 455
 6.4 Other Catalytically Active Molybdenum Alkylidyne Complexes 458
 6.5 Novel Tungsten Alkylidyne Catalysts 461
 6.6 Basic Types of Applications 462
 6.6.1 Alkyne Self-Metathesis and Cyclo-Oligomerization Reactions 462
 6.6.2 Oligomerization and Polymerization Reactions 465
 6.6.3 Alkyne Cross Metathesis 468
 6.6.4 Ring-Closing Alkyne Metathesis 470
 6.6.5 Metathesis of Terminal Alkynes 472
 6.7 Selected Applications 474
 6.7.1 Organometallic Substrates 474
 6.7.2 Olfactory Macrocycles 475
 6.7.3 Cruentaren A 476
 6.7.4 Haliclonacyclamine C 477
 6.7.5 Nakadomarin A 478
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5.2.2 Catalytic Z-Selective Homo-Coupling</td>
<td>531</td>
</tr>
<tr>
<td>7.5.2.3 Catalytic Z-Selective Cross-Metathesis (CM)</td>
<td>532</td>
</tr>
<tr>
<td>7.5.2.4 Pure E-Alkenes by Catalytic Z-Selective Ethenolysis</td>
<td>540</td>
</tr>
<tr>
<td>7.5.2.5 Catalytic Z-Selective Macroyclic Ring-Closing Metathesis (RCM)</td>
<td>540</td>
</tr>
<tr>
<td>7.6 Z-Selective Olefin Metathesis Reactions with Ru Complexes</td>
<td>545</td>
</tr>
<tr>
<td>7.6.1 Reactions with Complexes Containing a Bidentate N-Heterocyclic</td>
<td>545</td>
</tr>
<tr>
<td>Carbene (NHC) Ligand</td>
<td></td>
</tr>
<tr>
<td>7.6.1.1 Homo-Coupling Reactions</td>
<td>545</td>
</tr>
<tr>
<td>7.6.1.2 Cross-Metathesis (CM) Reactions</td>
<td>546</td>
</tr>
<tr>
<td>7.6.1.3 Ring-Closing Metathesis (RCM) Reactions</td>
<td>547</td>
</tr>
<tr>
<td>7.6.1.4 Ring-Opening/Cross-Metathesis (ROCM) Reactions</td>
<td>548</td>
</tr>
<tr>
<td>7.6.2 Reactions with Ru Complexes Containing a Dithiolate Ligand</td>
<td>550</td>
</tr>
<tr>
<td>7.6.2.1 Catalyst Design and Synthesis</td>
<td>550</td>
</tr>
<tr>
<td>7.6.2.2 Ring-Opening/Cross-Metathesis (ROCM) Reactions</td>
<td>551</td>
</tr>
<tr>
<td>7.7 Z-Selective Ring-Opening Metathesis Polymerization</td>
<td>552</td>
</tr>
<tr>
<td>7.7.1 Reactions with Mo- and W-Based Complexes</td>
<td>552</td>
</tr>
<tr>
<td>7.7.2 Reactions with Ru-Based Carbenes</td>
<td>555</td>
</tr>
<tr>
<td>7.7.2.1 Phosphine-Containing Complexes</td>
<td>555</td>
</tr>
<tr>
<td>7.7.2.2 NHC-Containing Complexes</td>
<td>555</td>
</tr>
<tr>
<td>7.8 Conclusions and Outlook</td>
<td>556</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>558</td>
</tr>
<tr>
<td>References</td>
<td>559</td>
</tr>
</tbody>
</table>

8 Two Vignettes: RCM in Natural Product Total Synthesis 563
Christopher D. Vanderwal, Maciej A. Walczak, and Samuel J. Danishefsky

8.1 Vignette 1: Allylsilane RCM/Electrophilic Desilylation as a Means to Access Rings with Exocyclic Alkenes 563
Christopher D. Vanderwal

8.2 Vignette 2: Synthesis of Antimetastatic Agents Using Ring-Closing Metathesis 574
Maciej A. Walczak and Samuel J. Danishefsky

References 581

9 Metathesis of Silicon-Containing Olefins 583
Cezary Pietraszuk, Piotr Pawluć, and Bogdan Marciniec

9.1 Introduction 583
9.2 Homo and Cross-Metathesis versus Silylative Coupling of Vinylsilicon Compounds 584
9.3 Homometathesis of Allylsilanes and Their Cross-Metathesis with Olefins 594
9.4 Silylative Coupling versus Cross-Metathesis of Vinylsilanes in Sequential Synthesis of Functionalized Alkenes 597
9.5 Silylative Coupling Cyclization of Silicon-Containing Dienes 603
9.6 Ring-Closing Metathesis of Silicon-Containing Dienes 605
9.6.1 Ring-Closing Metathesis of Vinylsilicon Compounds 606
9.6.2 Ring-Closing Metathesis of Allylsilicon Compounds 609
9.6.3 Ring-Closing Metathesis of Alkenyl-Substituted Silaketals 612
9.6.4 Asymmetric Ring-Closing Metathesis 616
9.7 Acyclic Diene Metathesis (ADMET) versus Silylative Coupling (SC) Polycondensation of Silicon-Containing Dienes 617
9.8 Ring-Opening Metathesis Polymerization of Silyl-Substituted Cycloalkenes 622
References 626

10 Ring-Closing Metathesis in the Large-Scale Synthesis of Pharmaceuticals 633
Vittorio Farina and András Horváth
10.1 Introduction 633
10.2 Ciluprevir (BILN2061) and Analogs 634
10.3 Vaniprevir (MK-7009) 639
10.4 Simeprevir (TMC435) 641
10.5 SB-462795 643
10.6 Approaches to the Scale-Up of RCM Reactions 646
10.6.1 Choice of Catalyst 647
10.6.2 Choice of Solvent 648
10.6.3 Use of Additives 649
10.6.4 Determining and Controlling Side Reactions 649
10.6.5 Controlling the Initiation Site 651
10.6.6 Effective Molarity: How to Achieve Practical Concentrations 653
10.6.7 Effect of Solvent, Reagent, and Substrate Impurities on TON and TOF 655
10.6.8 Effect of Air and Moisture 656
10.6.9 Isolation and Ruthenium Removal 656
References 657

11 Metathesis Strategies in Diversity-Oriented Synthesis 659
Alan Rolfe and Lisa A. Marcaurelle
11.1 Introduction 659
11.2 Synthesis of Small- to Medium-Sized Rings via Metathesis Strategies 659
11.3 Synthesis of Macrocycles via Metathesis Strategies 670
11.4 Metathesis Cascade Strategies in Diversity-Oriented Synthesis 673
11.5 Synthesis of Small- to Medium-Sized Rings via Metathesis Cascade Strategies 674
11.6 Synthesis of Macrocycles via Metathesis Cascade Strategies 681
11.7 Metathesis Strategies in Solid-Phase Library Synthesis 684
11.8 Immobilized Scavengers and Catalysts 692
11.9 Conclusions 693
Acknowledgments 695
References 695

12 Olefin Metathesis: Commercial Applications and Future Opportunities 699

Diana Stoianova, Adam Johns, and Richard Pederson

12.1 Introduction 699
12.2 Ruthenium Olefin Metathesis Catalysts 700
12.3 Renewable Seed Oil Feedstocks 702
12.3.1 Background 702
12.3.2 Value-Added Products from the Metathesis of Seed Oils 703
12.4 Production of Fatty acids and Amino Acids from Renewables 706
12.4.1 α,ω-Diacids from Renewables 706
12.4.2 α-Aminoacids from Renewables 708
12.5 Olefin Metathesis and Natural Materials Chemistry 710
12.5.1 Hydrogenated Metathesized Soybean Oil (HMSBO) Wax 710
12.5.2 Higher Melting Point HMSBO Compositions 711
12.5.3 Terpenes 711
12.5.4 Natural Rubber 712
12.5.5 Hydrogenated Nitrile-Butadiene Rubber (HNBR) 714
12.6 Pharmaceutical Applications 715
12.6.1 Hepatitis C Protease Inhibitor 715
12.6.2 Stapled Peptides 716
12.7 ROMP-Derived Oligomers for Facilitated Synthesis 717
12.7.1 Introduction and Background 717
12.7.2 Oligomeric Monoamine Hydrochloride (OMAm-HCl) 718
12.7.3 Oligomeric Bis-acid Chloride (OBAC) 719
12.7.4 Oligomeric Triphenylphosphine (OTPP) 719
12.7.5 Ethylene from Renewable Feedstocks 721
12.8 Conclusion 721
References 722

Index 727