Contents

List of Symbols VIII
Abstract XXIII
Kurzzusammenfassung XXIV

1 Introduction 1
 1.1 SHM - General principles and current research activities 1
 1.2 Numerical methods for wave propagation analysis 9
 1.3 Working hypotheses and outline 15

2 Lamb waves 18
 2.1 Governing equations of elastic wave propagation 18
 2.1.1 Navier’s equation for an isotropic body 18
 2.1.2 Helmholtz decomposition for isotropic media 19
 2.1.3 Rayleigh-Lamb wave equation 20
 2.2 Application of ultrasonic guided waves to SHM problems 25

3 Piezoelectricity 28
 3.1 The piezoelectric effect 28
 3.2 Constitutive equations of piezoelectricity 32

4 Higher Order Finite Element Method 35
 4.1 HO-FEM for electro-mechanically coupled problems 36
 4.1.1 Weak form of equilibrium 37
 4.2 Matrix of shape functions 43
 4.3 Transient analysis for structures including piezoelectric elements 46
 4.3.1 Dynamic equations of a piezoelectric body 46
 4.3.2 Central difference method 47
 4.3.3 Newmark algorithm 48
 4.4 Representation of the geometry - Mapping 50
 4.4.1 Blending function method 51
 4.4.2 Sub-parametric mapping concept 52
 4.5 Implementation of boundary conditions 53
 4.5.1 Dirichlet boundary conditions 53
 4.5.2 Neumann boundary conditions 55
 4.6 Diagonalization of the mass matrix 56
 4.6.1 Nodal quadrature technique 57
 4.6.2 Row-sum technique 57
 4.6.3 HRZ-lumping technique 58
5 Higher Order Fictitious Domain Method
 5.1 Basic concept of the FCM/SCM for smart structure applications
 5.2 Representation of the geometry - Adaptive integration
 5.2.1 Gauß quadrature
 5.2.2 Adaptive quadrature scheme
 5.2.3 Improved adaptive integration concepts
 5.2.4 Vector integration and hp-spectral quadrature algorithm

6 Shape Functions
 6.1 One-dimensional shape functions
 6.1.1 One-dimensional shape functions: FEM
 6.1.2 One-dimensional shape functions: SEM
 6.1.3 One-dimensional shape functions: p-FEM
 6.1.4 One-dimensional shape functions: Fourier-p-FEM
 6.1.5 Generation of one-dimensional hierarchic shape functions
 6.2 Multi-dimensional shape functions
 6.3 Comparison of different one-dimensional Ansatz functions
 6.3.1 Hierarchic vs. non-hierarchic shape functions
 6.3.2 Critical time-step and condition number
 6.4 C_0-continuity

7 Convergence Studies
 7.1 Model set-up
 7.2 Convergence behavior of the SEM
 7.2.1 h-Refinement in x_1-direction
 7.2.2 p-Refinement in x_2-direction
 7.3 Convergence behavior of the p-FEM
 7.3.1 h-Refinement in x_1-direction
 7.3.2 p-Refinement in x_2-direction
 7.4 Convergence behavior of the Fourier-p-FEM
 7.4.1 h-Refinement in x_1-direction
 7.4.2 p-Refinement in x_2-direction
 7.5 Comparison of different higher order finite element approaches
 7.5.1 h-Refinement in x_1-direction
 7.6 Influence of the time-step width Δt
 7.7 Influence of the chosen signal processing method: CWT
 7.8 Convergence disturbance
 7.8.1 Numerical model
 7.8.2 Modal analysis of a single finite element
 7.8.3 Frequency dependency of the elemental eigenfrequency effect
 7.8.4 Modal analysis of a group of finite elements

8 Numerical Results
 8.1 Modal analysis of a piezoelectric disc
 8.2 2D perforated plate
 8.3 2D porous plate
 8.4 2D plate: A_1-mode
8.5 3D plate with a conical hole .. 158
8.6 Validation - Aluminum plate with sensor network 164

9 Bandgaps .. 168
 9.1 Bandgap structures .. 170
 9.1.1 Fibonacci lattice .. 170
 9.1.2 Square hole arrangement 171
 9.2 Simulation results .. 171
 9.2.1 Fibonacci lattice .. 172
 9.2.2 Square hole arrangement 174

10 Conclusion & Outlook .. 180

A Piezoelectric constitutive matrices 184

B 3D shape functions: p-FEM .. 187

C Ansatz spaces for higher order finite elements 191
 C.1 The trunk space for 2D quadrilateral finite elements 191
 C.2 The tensor product space for 2D quadrilateral finite elements 192
 C.3 The trunk space for 3D hexahedral finite elements 192
 C.4 The tensor product space for 3D hexahedral finite elements 193

D Numerical Quadrature - points and weights 195
 D.1 Gauß-Legendre quadrature 195
 D.2 Gauß-Lobatto quadrature 197

References ... 199