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Abstract

Log files, which are produced in almost all larger computer systems today, contain highly
valuable information about the health and behavior of the system and thus they are
consulted very often in order to analyze behavioral aspects of the system. Because of
the very high number of log entries produced in some systems, it is however extremely
difficult to find relevant information in these files. Computer-based log analysis techniques
are therefore indispensable for the process of finding relevant data in log files. However,
a big problem in finding important events in log files is, that one single event without
any context does not always provide enough information to detect the cause of the error,
nor enough information to be detected by simple algorithms like the search with regular
expressions. In this work, three different data representations for textual information are
developed and evaluated, which focus on the contextual relationship between the data
in the input. A new position-based anomaly detection algorithm is implemented and
compared to various existing algorithms based on the three new representations. The
algorithms are executed on a semantically filtered set of a labeled BlueGene/L log file and
evaluated by analyzing the correlation between the labels contained in the log file and the
anomalous events created by the algorithms. The results show, that the developed anomaly
detection algorithm generates the most correlating set of anomalies by using one of the
three representations.
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Zusammenfassung

Logdateien werden heutzutage in nahezu allen größeren Computersystemen produziert.
Diese enthalten wertvolle Informationen über den Zustand und das Verhalten des darun-
terliegenden Systems. Aus diesem Grund werden sie sehr häufig als erstes im Falle eines
Fehlers oder sonstigem Fehlverhalten in einem System konsultiert. Wegen der enormen
Anzahl an Ereignissen, die in Logdateien gespeichert werden, wird die Suche nach Einträ-
gen, welche Informationen über einen Fehler im System besitzen, jedoch sehr erschwert.
Computerbasierte Analysetechniken werden aus diesem Grund mehr und mehr uner-
lässlich für die Diagnose von Fehlverhalten aus Logdateien. In dieser Arbeit werden drei
verschiedene Repräsentationsformen für textuelle Informationen vorgestellt und evaluiert,
welche sich auf kontextuelle Abhängigkeiten zwischen den Daten in der Eingabe beschäfti-
gen. Zusätzlich wird, basierend auf den drei entwickelten Repräsentationen, ein neuer
positionsbasierter Algorithmus zum Erkennen von Anomalien vorgestellt, implementiert
und mit verschiedenen anderen Algorithmen verglichen. Die Algorithmen werden auf
einer semantisch gefilterten Instanz einer beschrifteten Logdatei ausgeführt, die von dem
Supercomputer BlueGene/L stammt. Die Ergebnisse der Ausführung werden anschließend
evaluiert, indem die Korrelation zwischen den vorhandenen Beschriftungen und den
Ereignissen, die als anomal eingestuft wurden, analysiert wird. Die Ergebnisse zeigen,
dass der entwickelte Algorithmus in zwei der drei Repräsentationen die insgesamt beste
Korrelation zwischen Ereignissen, die als anomal eingestuft wurden und den beschrifteten
Ereignissen, erzeugt.
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Chapter 1

Introduction

1.1 Motivation

The increasing importance of analyzing log files in large computer systems makes it
necessary to develop automated analysis techniques that are able to extract the relevant
information of log files without the need of human input. Log files contain many infor-
mation about the status of the corresponding system since basically all actions a system
does are listed in them. Therefore, they are a great source of information for all kinds of
system-related questions. Often, log files are even the only way to get information about
errors that occurred in the system [Valdman, 2001]: distributed systems are sometimes
impossible to debug. Even if they were, debugging long-running systems that are used for
commercial purposes is often not viable. Also, systems that are installed by a customer
itself cannot be maintained in real-time, which is why log files might be the only way for
the software to communicate.

There are many ways to analyze a log file, starting with simple regular expression pattern
search algorithms that find all events with a specified structure. More advanced techniques
are based on pattern extraction and data mining that are often designed so that no
human interaction with the analysis is necessary (unsupervised approaches). Those more
advanced techniques not only search for structural equivalency of events, but also consider,
for example, the contextual relation in which an event stands to other events. It is obvious,
that this kind of analysis requires the algorithm to have a better understanding of the
inner structure and semantic of the object to analyze. Therefore, these techniques have
to deal with several problems like analyzing the semantic context without the help of
training sets or other manually-generated information. One common approach for failure
analysis in computer systems is the concept of anomaly detection. Anomaly detection
refers to finding patterns in a set of data that do not correspond to the regular behavior
within the set [Chandola et al., 2009]. It is particularly useful for applications that want to
make sense of large amounts of information, but can also be used for other applications.
Many approaches are using anomaly detection in order to monitor the health of the system
and its components[Ray, 2004] or to detect error-prone structures in the developing phase
[Hangal and Lam, 2002]. These applications of anomaly detection are crucial for large
systems where manual debugging would not be possible or very expensive under normal
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1. Introduction

conditions. Another large area of application is the detection of unwanted actions by
external entities, in particular preventing intruders from accessing important parts of the
system [Lazarevic et al., 2003] or detecting different kinds of fraud approaches [Phua et al.,
2010] or even suspicious actions of certain groups, like terrorists or robbers [Eberle and
Holder, 2009]. Anomaly detection is therefore already researched quite well and there are
many methodologies that have been developed to solve different problems in particular as
well as generic approaches that try to provide a universal analysis technique in order to
improve the general idea of anomaly detection itself. The algorithm that will be developed
in this work will extend this knowledge with a new methodology for classifying anomalous
data points in a set of data. It will be analyzed whether or not this algorithm is able
to outclass existing anomaly detection methods by comparing the results with existing
approaches.

The general design of the approach itself is as follows: First, the labeled BlueGene/L
log file, which will be used in this study, is filtered by using the Adaptive Semantic Filter
(Section 3.2) in order to reduce the amount of irrelevant and duplicate events in the data
set. Based on that, the three new number representations (Section 3.3) are generated, which
transform the event messages into a numeric vector. The number representations merge
events, that are temporally close to each other, into one single numeric vector. This enables
the analysis of contextual relations in the next steps. Based on this representation, the
different anomaly detection algorithms, presented in Section 2.6, are executed. For the
position-based anomaly detection algorithm developed in this work, the data set is first
clustered by using the X-Means clustering technique and then processed by using the actual
algorithm. The last step is the result evaluation (Chapter 5), in which the anomaly detection
results for all three number representations will be compared with each other.

1.2 Document Structure

The remainder of this thesis is structured as follows. Chapter 2 presents relevant foun-
dations and technologies that can be used in order to achieve the goals mentioned in the
preceding section. Chapter 3 and Chapter 4 describes the envisioned approach, i.e., concep-
tual ideas and strategies for organizational purposes as well as the implementation details.
Chapter 5 presents the results and findings of the study by evaluating and comparing the
results of the anomaly detection algorithms. Chapter 6 discusses the related work. Finally,
Chapter 7 draws the conclusions and outlines future work.
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Chapter 2

Foundations and Technologies

This chapter describes different techniques, tools and technologies that will be used in this
work. The listed tools and techniques are mostly used for the implementation and in the
general approach explained in Chapter 3 and Chapter 4.

2.1 Types of Anomalies

As already mentioned in Chapter 1, anomaly detection has a wide range of use and is
applied to many approaches that try to detect points of interest in a set of data. There are
basically three different types of anomalies that have to be considered while analyzing the
data [Chandola et al., 2009]:

1. Point Anomalies are single, outstanding data points that do not conform with the remain-
der of the data. As an example, consider Figure 2.1. The green and purple dots are
considered point anomalies, since they differ from the normal data points. Detecting
point anomalies in a data set is rather simple, since it is sufficient to define some kind of
metric or static measurement and apply it to the data. There is no need to set the data
points in relation to each other or to know about the structure of the data set as a whole.

2. Contextual anomalies on the other hand, are single data points or groups of data, that
are outstanding only when seen in context to other, surrounding data points or data
structures. These anomalies are much harder to detect, because they are only considered
anomalous in a specific situation, like, for example, they are appearing at a position
in time or space where they are actually not supposed to be. If these data points were
looked at individually, without any contextual relation, they would not be anomalous.
To detect these points, it is therefore necessary to have extended knowledge about the
structure and behavior of the system. Figure 2.2 provides an example data set with a
data point that is anomalous when seen in context to the structure of the remaining data
(data point marked red in the diagram).

3. Collective anomalies at last, are groups of data that are considered anomalous compared
to the remaining data set. The data points in the collection itself do not necessary have

3



2. Foundations and Technologies
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Figure 2.1. Example of anomalous single data points.
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Figure 2.2. Contextual Anomaly - The red data point is anomalous in the context of the data structure.
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Figure 2.3. Collective Anomalies - The red data points form a collection that is anomalous when
compared to the rest of the data structure

to be anomalous, the occurrence as a group at a specific position however leads to an
anomalous structure. Figure 2.3 provides an example for this type of anomaly. As can
be seen, the collection of data points in the center of the diagram (marked red) form a
group of anomalies.

Especially when it comes to analyzing log files, contextual and collective anomalies might
be of strong interest for the user. Detecting these structures is related to the concept of
Event Correlation - according to [Sahoo et al., 2004], it is likely that periodically repeating
events or long-term correlation effects (relation with events that happened a log time ago)
are frequently occurring in log files. When applied to log files, events that occur within
a similar time, close range or are occurring periodically might be related to each other.
Especially when events do not contain important data individually but are important for
the user because of the constellation they are in, these types of structures are hard to detect.
Example: Consider the following events:

1: INFO Reading file A (MsgId: 1)

...

2: ERROR Bad file descriptor (File A)

...

3: ERROR - Could not process content of file A (MsgId: 3)
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2. Foundations and Technologies

Each of the above events on their own do not contain enough information to let the user
fully understand what is going on: The third event logs the occurrence of an error while
processing file A. It is however unclear what error actually caused the system to fail - many
other causes like an error in the processing routine could have been the reason for this
event. The second event tells the user that a bad file descriptor caused an error regarding
file A. Since there is however no ID coming with the error, it is not possible to relate the
event to a location in the code. Lastly, the first event states, that the system is going to read
file A. This message does whatsoever not contain any information about an error since it
was generated before any error occurred. When all three events are related to each other,
the source of the error (ID 1, file A), the cause (bad file descriptor) and the consequence
(processing error in file A) can easily be found out. This information makes it easy to
understand, locate and correct the error. The same applies for anomaly detection: Looking
only on single events might not lead to the detection of these correlated events. Therefore, it
is necessary to identify correlation structures in the file and group the anomalies according
to these correlations.

2.2 Analysis Techniques

There are quite a lot analysis techniques for anomaly detection that have been developed in
order to solve different problems in various fields of applications. The following presents
two approaches that are related to this work.

� Clustering-based techniques

Clustering based approaches perform a categorization of data points in a set in order to
retrieve different partitions which can then be analyzed separately [Leung and Leckie,
2005; Chandola et al., 2009]. There are different approaches for clustering-based anomaly
detection, basically, they can be split up into four groups.

1. Density-based techniques cluster the data into groups according to the density of a
certain region. Therefore, each data point in a cluster has to be near a certain amount
of other points within the cluster [Leung and Leckie, 2005].

2. Grid-based techniques define several cells or hypercubes in the set of data, which then
are used to cluster the space into groups of interest [Leung and Leckie, 2005].

3. Centroid-based techniques assume that anomalous data points are not within close
range of cluster centroids [Chandola et al., 2009]. These techniques detect anomalies
by evaluating how far away a single data point is from a cluster centroid. If the
distance exceeds a certain threshold value, the data point is considered anomalous.

4. Nearest Neighbor-based techniques: Techniques that are based on nearest neighbor ap-
proaches assume that all normal data points are located close to each other while all
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2.3. Principal Component Analysis (PCA)

other data points are considered anomalous [Chandola et al., 2009]. Therefore, simple
nearest neighbor based approaches are not capable of detecting contextual or even
collective anomalies in data sets. However, there are approaches that use complex
metrics in order to enhance the process of finding contextual anomalies [Boriah et al.,
2008]. There are also approaches that first cluster the data set with an appropriate
clustering algorithm, for example the k-nearest neighbor algorithm and prune all
clusters that cannot be anomalous. The anomalies are then calculated based on this
condensed set [Ramaswamy et al., 2000].

� Classification-based techniques

These techniques decide about anomalous data by evaluating whether or not the data
instance belongs to a cluster [Chandola et al., 2009]. Therefore, only a special set of
clustering algorithms that allow some data points not to be in any cluster can be used
for this approach. Classification-based clustering techniques are commonly supervised,
since the algorithm needs to learn how to differentiate between anomalous and normal
data points.

2.3 Principal Component Analysis (PCA)

“In summary, PCA captures dominant patterns in data to construct a (low) k-
dimensional normal subspace Sd in the original n-dimensional space. The remaining
(n� k) dimensions form the abnormal subspace Sa. By projecting the vector y on Sa
(separating out its component on Sd), it is much easier to identify abnormal vectors.
This forms the basis for anomaly detection.” Xu et al. [2009]

PCA can be used to structuralize and simplify large data sets with high dimensions. It is
commonly used in image processing tasks but also in various other fields of application
like information retrieval or text mining where it is important to reduce the raw amount of
available data in order to come to a result in an acceptable time. In the context of detecting
anomalies in log files, PCA can help to filter frequently repeating patterns in the data
which makes it easier to detect anomalies. Basically, PCA finds dimensions that have the
largest variances and sorts the dimensions in such a way that the first dimension contains
the largest portion of the total variance and the last dimension the lowest portion [Ding
and He, 2004]. In order to reduce the dimensionality, the last dimensions in the vector
space can therefore be omitted after PCA has been applied, since those dimensions contain
no valuable information. As a requirement for PCA, it is necessary, that all clusters have a
lower variance within themselves compared to the variance between the clusters, since this
would result in picking the wrong dimension (that contains little or no information at all)
as illustrated in Figure 2.4
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(which contains more information about the
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Figure 2.4. PCA example for two dimensions.

Therefore, when the principal components analysis is applied to a numeric data set, the
first dimensions that will be removed are those that contain little to no varaiance. Therefore,
the information loss when removing those dimensions is as little as possible. In fact,
the removal of dimensions that have a small variance might even lead to better results
since these dimensions consist mostly of noise and would therefore reduce the weight of
dimenions that contain more information.

2.4 Clustering

This section will present different clustering techniques that can be applied to a data set in
order to detect certain points of interest. The goal is to find a clustering algorithm that is
able to reliably cluster the data set without the need of a labeled training set.

2.4.1 K-Means

The k-means clustering algorithm is commonly used for cluster analysis since it is fast
and rather easy to implement. The algorithm tries to find groups of data instances with
similar size and low variance [Kanungo et al., 2002]. Given a number k and an initial set of
cluster centroids, standard k-means first assigns each data instance in the set to the nearest

8
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centroid using the euclidean metric. It then calculates a new centroid for each cluster by
computing the means between all data points in the cluster. These two steps are repeated
recursively until the centroid for all clusters does not change anymore. The K-Means
algorithm is closely related to the k-Medoids algorithm that will be explained below and
the k-center problem [Kanungo et al., 2002; Agarwal and Procopiuc, 2002] that tries to
minimize the overall distance from the center to every other data point. According to
[Mahajan et al., 2009], the K-Means problem is NP-hard and therefore no efficient solutions
for solving this problem are known. The common procedure for the k-means problem is to
iteratively execute the algorithm until a local minimum has been found [Kanungo et al.,
2002]. This process is usually referred to as the k-means algorithm [Kanungo et al., 2002;
MacQueen et al., 1967]. The algorithm is based on the assumption that the best center
point for a cluster is the center of the cluster itself [Kanungo et al., 2002]. Of course, this
assumption can lead to a high distortion of the center point when some data points in the
cluster lie far away from the rest of the data points. Several approaches like the k-medoids
try to reduce this effect. Because of the popularity of this algorithm, there are quite a few
extensions to it that try to improve the precision and performance of the approach, like for
example the k-means++ algorithm that tries to find better starting points or the k-medoids
algorithm.

2.4.2 K-Medoids

The k-medoids algorithm [Arora et al., 1998] is a variation to the k-means algorithm
mentioned above. The clustering algorithm chooses a set of k data points to represent the
k clusters in the collection in such a way, that the data points that are not selected to be
representative points can be clustered by evaluating the minimum distance between the
data point and all the representative objects [Chu et al., 2002]. The data point then belongs
to the cluster of the representative point with minimal distance. The general procedure of
the algorithm is as follows (cf. [Chu et al., 2002]):

1. Arbitrarily choose an initial set M of k-medoids

2. Create a new set Mnew by swapping one of the data points in the old set of M with a
data set in the collection for which the total distance from the points in the collection to
Mnew is the lowest possible. Then set M := Mnew

3. Repeat step 2 until no point in M changes anymore. Then save the data points and
terminate the program.

The algorithm is considered to be more robust compared to the standard k-means approach,
mainly because a medoid is less influenced by noise and outstanding data points than the
mean score. The disadvantage with this approach is, that the calculation is less time-efficient
than the calculation of standard k-means.

9
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2.4.3 X-Means

The X-Means approach extends the standard K-Means by computationally determining the
numbers of clusters to be created and additionally by speeding up the whole algorithm
itself [Pelleg et al., 2000]. The main problems with the standard K-Means implementation
is, that it does not scale well for larger data sets and that the number of clusters have to
be specified manually [Pelleg et al., 2000]. There are several other approaches that simply
rerun the standard algorithm for different values of k to solve the second problem. This
however still takes a lot of time to execute and might result in finding bad, local optima.
According to Pelleg et al. [2000], the X-Means algorithm produces better results, since the
algorithm is able to dynamically change the number of k in the process. Basically, the
algorithm optimizes the Bayesian Information Criterion (BIC) by choosing the number of
clusters and the position of the cluster centroids in the data set. The K-Means algorithm is
used for selecting the best subset of data points that is then refined in a further step (for
more details, see [Pelleg et al., 2000]).

2.5 Tools

Since anomaly detection is a well researched and often used technology, there are a lot
of frameworks and tools that can be used for data clustering, data representation, etc.
The goal of this work is to create and evaluate different number representations and
anomaly detection algorithms. The framework used in this work was chosen to be the
Kieker framework (see Section 2.5.3). Weka is used for data visualization and clustering
whereas ELKI provides several anomaly detection algorithms that are used for evaluating
the different data representations and algorithms.

2.5.1 Weka

Weka1 is a well known tool for machine learning and statistical analysis that is written
in Java and licensed under the GNU General Public License. Weka provides both a java
library that can be used within the code itself as well as a graphical user interface to
access its various functionalities. It is mostly used for machine learning tasks such as
data classification or for educational purposes. Amongst others, its features include data
visualization, cross-validation, data clustering and data classification [Holmes et al., 1994].
The Weka Library workbench is completely open source and since April 2000 entirely
rewritten in Java, including the implementations of all algorithms [Hall et al., 2009]. In this
work, Weka will be used for data clustering as well as for creating the principal components
in some approaches and visualizing the result sets.

1http://www.cs.waikato.ac.nz/ml/weka/
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2.5. Tools

2.5.2 ELKI

ELKI2 (Environment for DeveLoping KDD-Applications Supported by Index-Structures) is
a framework for knowledge discovery in databases that is mostly used in research areas
[Achtert et al., 2008]. Many data mining algorithms are quickly forgotten again after being
presented. According to Achtert et al. [2008], the reason for that is, that the implementations
for the algorithms are not available and that they cannot be fairly compared with each
other. ELKI provides therefore a standardized schema for implementing these data mining
algorithms so that they can be better compared with each other [Achtert et al., 2008]. The
ELKI framework is open source and written in Java. It consists of a graphical user interface
and several data mining algorithms, as well as a Java Library. The algorithms provided are
mostly algorithms for data clustering, classification, item-set mining and outlier detection
[Achtert et al., 2008]. In this work, the outlier detection algorithms of the ELKI framework
will be used for evaluating the constructed data sets and anomaly detection algorithms
created.

2.5.3 Kieker Framework

The Kieker framework is a powerful framework that can be used to monitor software
runtime behavior and the inner structure of software systems [van Hoorn et al., 2009, 2012].
It was built in order to be modular, extensible and flexible [van Hoorn et al., 2012]. The
framework is open source and can be used for Java applications. Basically, Kieker consists
of three different parts:

1. The Monitoring components gather the input data that will be observed. By default,
Kieker already provides several monitoring probes, e.g. for collecting memory usage or
CPU data [van Hoorn et al., 2012].

2. The collected data will then be written into a data storage by using the Monitoring
Writer component [van Hoorn et al., 2012].

3. The last part of the framework will then analyze the data by reading the monitoring
data collected in the previous step.

The main idea of the structure in Kieker is the concept of analysis chains which can
be created by connecting different plugins with each other. This is especially useful for
classification purposes or machine learning algorithms since these techniques process
a data collection sequentially. The framework is designed so that it produces a low
overhead for each processing step and therefore allows many iterations to be executed in
the program.

2http://elki.dbs.ifi.lmu.de/
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2. Foundations and Technologies

2.6 Outlier Detection Algorithms

This section describes the anomaly detection algorithms that will be used for evaluation
and comparison. The implementation of the following algorithms are taken from the ELKI
Framework. The algorithms are applied to the three different number representations
described in Section 3.3.

2.6.1 LOF

LOF (Local Outlier Factor) is an outlier detection algorithm that calculates the degree to
which a data point is anomalous [Breunig et al., 2000]. The local outlier factor for a data
point is calculated by analyzing the neighborhood around that data point which is done by
measuring the density in this neighborhood. Basically, the algorithm consists of two steps:
First, a local density measure for a data point is calculated to approximate the density of
the neighborhood. This is done by computing the inverse average reachability distance
between the current data point and all other data points in the neighborhood. Equation 2.1
shows the computation of the local reachability density for a specified parameter k.

lrd(a) = (
∑bPNk(a) reachability_distk(a, b)

|Nk(a)|
)( � 1) (2.1)

The reachability distance between two data points is defined as the maximum of either the
real distance d(a, b) between the two data points or the k-distance of b. Nk(a) is a shortcut
for Nk�distance(a)(a). In principle, the k-distance is the distance between a data point and
another point, so that a certain amount of neighbor data points have an equal or less
distance to the data point than that distance. A more detailed description of the formula
can be found in the work by Breunig et al. [2000].
The second step of the algorithm is to create the LOF-value for all data points based on the
approximated local density for each point.

LOFk(a) =
∑bPNk(a) lrd(b)

|Nk(a)|
�

1
lrd(a)

(2.2)

As can be seen in Equation 2.2, the Local Outlier Factor is the average reachability distance
of all neighbors of a divided by the actual reachability distance of the data point itself.
Henceforth, if for a data point a LOF is computed that is approximately 1, it means,
that the density in the region of that data point is comparable to the average density of
the data points in the neighborhood. A value greater than 1 indicates on the contrary,
that the density around the data point is lower compared to the average density in the
neighborhood. The lower the density gets, the more outstanding the position of this data
point will become. Therefore, a relatively high LOF indicates local anomalous data points
in that region.
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The fact, that the LOF values are computed using only a local section of data points is very
beneficial in data sets with varying density regions. Simple outlier detection algorithms
would not be able to differentiate between these regions and would therefore misinterpret
the regions with lower density as anomalous. Since there are no geometrical functions
used in the algorithm, various different metrics that are not required to fulfill the triangle
inequality can be applied to the approach easily.
The main problem of the LOF outlier detection algorithm is however the result interpreta-
tion. The only output of the algorithm are LOF-values for each data point. A value that
is greater than 1 does however not necessarily mean, that the data point is anomalous.
In data sets with a high density deviation between the data points, a value greater than
2 might be related to a normal data point. On the other hand, for data sets with almost
equally distributed data points, a value greater than 1.2 might already indicate a significant
anomaly.

2.6.2 KNNOutlier

The KNNOutlier algorithm is a grid-based anomaly detection approach for mining distance-
based outliers [Ramaswamy et al., 2000]. The concept of the algorithm is to create partitions
in the data sets which are then analyzed separately. As soon as the algorithm has deter-
mined, that a partition cannot contain any outliers, the whole partition is pruned. Other
partitions are analyzed for outliers which are classified based on the distance to their
neighbors.
The main idea for the algorithms is the (slightly changed) definition from Knox and Ng
[1998]: “A point in a data set is an outlier with respect to parameters k and d if no more than k
points in the data set are at a distance of d or less from p.” (cf. [Ramaswamy et al., 2000]).
An algorithm that is implemented to exactly match this definition would however face
three problems that are difficult to solve:

1. The definition of the parameter d is hard to determine. An approximate good number
may only be found by trial-and-error approaches like iteratively repeating the algorithm
with different values for d.

2. The algorithm would only be able to classify the data points into two categories (anoma-
lous and non-anomalous). Determining the degree of outlierness of a data point would be
impossible.

3. cell-based approaches that have linear complexity do not scale with a high number of
dimensions. Determining the data points by distance d would therefore be complicated
for high dimensional data.

To fix these problems, the KNNOutlier algorithm uses the k-nearest neighbor approach
instead of the raw distances. The outlier ranking is done by sorting the data points based
on the distance to its kth nearest neighbor. That way, the user can clearly see in the end
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results to what degree a data point is anomalous compared to its neighborhood. As a
solution to the expensiveness of algorithms with similar implementations, Ramaswamy
et al. [2000] developed a partition-based approach in order to analyze the data set faster.
The main idea is, that, in order to retrieve the top n outliers, data points with a very small
distance to their kth nearest neighbor do not have to be included in the analysis since
there is no way that these points can be outliers. According to Ramaswamy et al. [2000],
these distances can be approximated without actually computing the precise values by
partitioning the data set which may result in a significant performance increase due to I/O
as well as computation savings. The steps for partitioning are as follows (for a detailed
explanation, see [Ramaswamy et al., 2000]):

1. Partition Computation: A clustering algorithm determines the partitions used in the
following steps.

2. Approximation of the KNN bounds within each partition: The lower and upper
bounds of the k-nearest neighbor distances in the partitions are calculated.

3. Relevant partition identification: All partitions that may contain outliers are selected
in this step.

4. Outlier detection in candidate partitions: In every relevant partition, the outlier detec-
tion algorithm is being executed.

By following these steps, a big portion of data points can be filtered out from the data set
before running the actual outlier detection routine.

2.6.3 SOF

The spatial outlier factor (SOF) is a spatial outlier detection algorithm that is designed
to be efficient and able to distinguish spatial (like locations, etc.) and non-spatial (text,
statistical data, ...) dimensions [Huang and Qin, 2004]. Similar to LOF, this algorithm will
also produce a factor, i.e. a degree to which a data point is anomalous.
The computation of SOF consists of two steps: The first step is to calculate the local density
ld for a data point. This is computed through Equation 2.3.

ld(a) =
|impact_neighborhood(a)|

∑bPimpact_neighborhood(a) attrdist(a, b)
(2.3)

where impact_neighborhood(a) is a list of neighbors for a determined by a reflexive and sym-
metric spatial relation and attr_dist(a, b) the distance between a and b in an n-dimensional
euclidean space (for more information, see [Huang and Qin, 2004]). The local density of a
data point a therefore is the inverse average distance of the neighbor data points to a.
The next step is to calculate the spacial outlier factor for the data point. Equation 2.4 shows
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the computation of the SOF value.

SOF(a) = ∑
bPimpact_neighborhood(a)

ld(b)
ld(a)

�
1

|impact_neighborhood(a)|
(2.4)

If the SOF value for a data point is high, it means, that the local density around that point
is low compared to the density of the neighbors of that data point. Therefore, the higher
the SOF for a data point, the more likely it is, that this data point is an outlier.

2.6.4 ODIN

The Outlier Detection using Indegree Number (ODIN) algorithm uses the k-nearest neighbor
graph in order to determine outlier data points [Hautamäki et al., 2004]. The main idea is
to calculate a kNN graph with unidirectional edges and determine the indegree for all odes
in the graph. If the indegree is lower than the threshold parameter T, the data point will be
marked as an outlier. The kNN graph hereby is a weighted, directed graph that represents
all data points as vertexes. Every vertex has exactly k edges to its k-nearest neighbors. The
weight of an edge ei,j is the distance between the vertex vi and vj, which is provided by the
distance function. the ODIN algorithm uses an extended version of this kNN graph where
the graph has an edge between vi and vj if the original kNN graph has both an edge from
vi to vj and en edge from vj to vi.
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Chapter 3

General Approach

This chapter will give detailed insight in the solution finding process as well as the
developed techniques used in this approach. The chapter is structured into four parts that
explain each step of the general approach individually, starting with the description of
the developed number representations, followed by the data filtering, data clustering and
anomaly detection part.

3.1 Overview

The general idea of the algorithm is to group different data points into one single instance
in order to find anomalous structures in the data set. Common approaches for anomaly
detection mostly focus on the analysis of contextual relationships between single data
points or, in the case of cluster-based approaches, between data points and clusters. The
algorithm developed in this work especially focuses on the relation between different
groups of data points and is therefore an approach that tries to detect outstanding areas
in the data set. The general approach of this work consists of five different steps (see
Figure 3.1):

1. The filtering step (Section 3.2) reduces the amount of events that are considered in the
next steps. This step is crucial for the further analysis because it reduces the amount
of redundant messages in the collection. This way, every message in the filtered data
set gains more weight and importance and the created blocks of events become more
significant.

2. The next step is to create the number representation (Section 3.3) of the events in the
filtered collection. This is another crucial step in order to get decent results when
detecting the anomalous data points. In this step, every event, respective every block
of events, is assigned a vector that represents the content of the events. This work will
evaluate three different number representation approaches in order to determine which
of them is the most applicable for this type of data.

3. Based on the number representations created in the previous step, the data can then be
processed by a data clustering algorithm (Section 3.4). This step may be skipped by the
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external algorithms that will also be used for anomaly detection. The anomaly detection
approaches developed in this work will however be executed on the clustered collection.
The main reason to cluster the data set is to detect the different types of events.

4. The anomaly detection step (Section 3.5) then analyzes the preprocessed data set and
detects potential outliers in the collection. For this purpose, several external outlier
detection algorithms and one outlier algorithm developed in this work will be used
together with the three developed number representations.

5. The final step is the result evaluation (Chapter 5), where the different number represen-
tation approaches and anomaly detection algorithms will be compared.

3.2 Data Filtering

Finding and removing duplicate or unrelated events that contain no information in a log file
as a preprocessing step can be beneficial for further steps like the number representation
generation. Merging or removing these events from the log file significantly reduces the
number of event messages that need to be analyzed. When filtering a data set, it is very
important to recognize possible correlation structures that might occur within the set. If
certain events are in relation with each other, it might be crucial to analyze them as a whole.
Therefore, deleting these events should be avoided when filtering the data set.
There are several approaches for filtering textual data like log files - the used techniques
can basically be categorized into two groups, “Temporal Reduction” and “Spatial Reduc-
tion”.

3.2.1 Temporal Reduction

The temporal reduction of events is based on the assumption, that events which were
produced within a short time period, are likely to be coming from the same error [Tang
et al., 1990]. Events of the same type, coming from the same source are merged into a single
event within a short time span. Depending on the particular algorithm, different types
of events within close range produce several different merged events. Choosing the time
span in which these events are merged needs to be analyzed for each data set individual.
Choosing a very long time span might result in merged events that have nothing particular
in common while choosing the time span to short, duplicate messages will not be filtered
out.
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Figure 3.1. General approach.
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3.2.2 Spatial Reduction

Distributed systems pose another challenge for filtering event logs. Logs may be gathered
across a large number of different machines and centralized for a better analysis of the
whole system [Liang et al., 2005]. The log events from these machines can be spatially
correlated with each other in order to filter or merge messages that were caused by the
same error but were distributed by several nodes in the system. If a failure is occurring on
different machines in a distributed system, the error produced by these nodes can lead to
multiple other errors in other nodes that were not the source of the error. With temporal
filtering alone, these errors cannot be detected since they might be emitted from different
nodes.

Spatial filtering can be done for example by defining a causal order of events and creating
a graph that represents the event transmissions within the system nodes [Zheng et al.,
2009]. By analyzing the relations between the vertexes in the graph, a spacial filtering
algorithm might be able to associate the different events with each other and remove spacial
duplicates.

3.2.3 Adaptive Semantic Filter

The filtering technique used in this work in order to preprocess the BlueGene/L log file
is called the Adaptive Semantic Filter (ASF), which was developed by Liang [2007]. The
implementation that is used in this thesis was developed by Pitakrat et al. [2014]. The
disadvantage of most of the temporal and spacial filtering techniques is, that they require
a deep understanding of the domain they are used in and that they often need a human
operator in order to deal with new types of events [Liang, 2007]. Furthermore, simple
techniques that use thresholds for identifying temporal or spatial relations are often not
suitable to handle more complex situations and can produce wrong results [Liang, 2007].
The procedure of the ASF-filtering method basically consists of three steps: The first step is
to create a keyword dictionary that contains all keywords contained in the input file. The
keywords can be iteratively appended to the dictionary while filtering the data set. All
encountered event descriptions will be normalized using several transformation rules like
replacing hexadecimal numbers by a keyword or removing punctuations, prepositions or
articles.
The second step is to create a number representation for every event, which is a binary
vector that contains one dimension for each keyword. Every dimension is related to a
particular keyword and the value of a vector at the respective position represents whether
or not that keyword is contained in the event description.
The third and last step is to apply the ASF-filter by computing a correlation value that
determines the relationship of an event to another event, known as the φ-correlation [Liang,
2007; Reynolds and Reynolds, 1977]. Based on this correlation coefficient, the adaptive
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semantic filtering is applied. The main idea behind this filtering is, that events that are
close to each other but differ more in their descriptions might still be related to each other,
whereas events that have the same description but are temporarily far away might already
be unrelated since they are likely to come from two different sources.

3.3 Data Representation

A very important element in finding outstanding structures in the data set is to compute
a representation for the points within the collection. When gathering information out of
textual data like the description of a particular log entry, there are many steps necessary in
order to achieve a result that is able to represent the extracted information in an acceptable
way. Numerical representations of a text should be able to determine which data points
are similar to each other. Good representations therefore maximize the distance between
dissimilar data points and minimize the distance for similar or equal text values. That
way, classification algorithms are able to distinguish between the different kinds of data
structures within a collection.

In this work, three different number representation algorithms are developed (described in
the following). The main idea behind each of them is to group multiple events from the
log file together and represent them as a single data point. This is done by sequentially
reading the log file and storing a certain number of events into a collection (called the
sliding window) while reading through the data set. When a new event enew is read from
the log file, the sliding window contains the new event and all previously read events
that are “near” enew. Both the Tf.Idf number representation (Section 3.3.1) as well as the
Feature Vector number representation (Section 3.3.3) allow the sliding window size to vary.
Therefore, for these two approaches, the sliding window contains all previously read
events that are within a certain time span, the sliding window size. If the sliding window
size is for example 300 seconds, the sliding window contains all previously read events
where |time_stamp(enew)� time_stamp(e)| ¤ 300 holds. For the Random Index representation
(Section 3.3.2), the sliding window size cannot be varied since the number of events grouped
together represents the number of dimensions for this data point. Therefore, the sliding
window for this approach contains always the same number of events.
Figure 3.2 shows the general process for creating numerical data points (data instances).
Based on the filtered data set, the program is sequentially reading the data points. For
every new event read, the sliding window is updated so that is always contains related
events. Next, the data representation algorithms are executed which transform all the data
points in the sliding window into one numerical data instance. These data instances are
stored and used in the next steps.
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Figure 3.2. General process for creating data instances.

3.3.1 Tf.Idf Representation

A common approach for the numerical transformation of textual data is to represent
the textual information as multidimensional Tf.Idf (term frequency, inverse document
frequency) vectors. These values are relatively easy to extract, since it is only necessary
to create a mapping from the term itself to the overall occurrence of the term in the data
set. In a second preprocessing step, the Tf.Idf values can then be computed for each event.
The extracted feature vector, which has one dimension for each relevant term, can then be
used as a comparator to decide which events are similar and which are not. This is usually
achieved by some kind of distance measure, like for example the euclidean distance. The
approach of using Tf.Idf vectors for the retrieval of textual information is very common in
information retrieval when it is necessary to retrieve textual information that is structured
as chunks of data like documents in a large collection [Aizawa, 2003]. The idea of Tf.Idf is
to determine the frequency (relative to the collection) of a word in a certain document while
words that do not occur in very many documents have a higher Tf.Idf value than words
that occur very frequently [Ramos, 2003]. The Tf.Idf value consists of two components:
the first component, called term frequency, measures the number of occurrences within
the document. The second component, called inverse document frequency, represents
the rareness of a term relative to the collection. When multiplying these two values, the
intuitive result is a measure of the relevance of a term in a specific document.

The mathematical definition of the Tf.Idf value varies from application to application, but a
common definition would be like the following (c.f. [Ramos, 2003]). Given a collection of
documents D, an arbitrary word w, and a particular document d P D, the term frequency
of a document is calculated as shown in Equation 3.1

d fd(term) = ∑
tPTerms(d)

equals(term, t) (3.1)
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where Terms(d P D) consists of all terms that are contained in the document and
equals(term, t) is defined as in Equation 3.2.

equals(a, b) =
{

0 , i f a  ¡ b
1 , i f a = b

(3.2)

The document frequency computes how many documents contain a specific word. It is
therefore defined as the folowing.

d fd(term) = |{d : d P DX term P Term(d)}| (3.3)

Finally, the Tf.Idf value is computed as shown in Equation 3.4

t f .id f (term, d) = t fd(term)
|D|

d fd(term)
(3.4)

It is simple to apply the Tf.Idf values to log files by splitting up the file into blocks
of events which are then considered documents. An enhanced approach would be to
overlap the groups by a certain rate in order to better detect structural anomalies that are
located between two blocks. This can be achieved by implementing a sliding window that,
beginning with the first event in the log file, groups events that are temporally close to each
other. By advancing the sliding window with the next event that has to be processed, it
ensures, that all events in the current event collection of the window that have a timestamp
difference of more than the threshold value are removed again from the collection. For
every event in the log file, this changing collection can then be directly used as a document
and the Tf.Idf values can be computed out of that group. Figure 3.3 visualizes the idea of
the Tf.Idf computation.

Steps of the algorithm

� Step 1: Calculate the term frequency for each term.

� Step 2: The sliding window returns a group of temporally close events.

� Step 3: The Tf.Idf values are computed for each event in this group

� Step 4: The values are added component-wise. This is equivalent to calculating the Tf.Idf
values from the group as a whole, but the advantage in adding the values component-
wise and calculating them for each term separately is that the values can be computed
in a separate preprocessing step.

� Step 5: In a post-processing step, the generated numerical data set will be compressed
by using the principal components algorithm described in Section 2.3.
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Figure 3.3. Basic idea of the Tf.Idf approach.

Advantages and Disadvantages of Tf.Idf

Advantages:

� events with high Tf.Idf scores impact the values the most.

� The more infrequent, rare terms in a group, the higher the value will get.

� The groups can vary in size - temporal correlations can be considered.

Disadvantages:

� Use for online analysis might be difficult since all vectors and clusters have to be updated
when a new word appears.

� Dimensionality of the vector space depends on the number of terms in the data set.
The dimensionality might have to be compressed by using techniques like principal
component analysis.

Inverted Index Construction

An inverted index is a data structure that is used to map a term to a collection of doc-
uments that contain the term (so called postings list) [Cutting and Pedersen, 1989]. This
data structure is used in the tf.idf approach to efficiently compute the inverse document
frequency values. In the context of application in this work, a single event in a log file is
here considered a document. Therefore, in the tf.idf algorithm, every event or block of event
(depending on the number representation settings) in the log file is seen as a individual
document and the values are computed individually for each event(-block).
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3.3.2 Random Indexing Representation

The Tf.Idf representation above can only be used for larger data sets, if the number of
dimensions is significantly reduced, for example by using the principal component analysis
or by using special processing algorithms for sparse data. Reducing the dimension of the
data can be very slow, especially when the data set does not fit into the memory anymore
while sparse data always comes with the problem of processing high dimensional data
(curse of dimensionality).

The random index representation solves the problem of high-dimensional vectors. The
random indexing creates only one single value to represent an event in the log file (in
contrast to the Tf.Idf approach that creates |Terms| dimensions for one event). Therefore,
for analyzing contextual anomalies, several events in the log can simply be combined by
creating a vector where each dimension represents one event. The number of dimensions
is then related to the block size for which the events are grouped into one instance.

Given a set of events E, the algorithm first creates a random number Rt for all terms in the
collection. After removing irrelevant terms (e.g. frequent terms or stop words) from this
mapping, the algorithm then computes for each event a representative number by adding
all the random numbers in the event into one value.

R(e P E) = ∑
tPTermse

Rt (3.5)

After computing these values for all events in the collection, the next step is to group
every block of events created by the sliding window into a vector of the size d to enable
contextual analysis of the data. The resulting vector vi can then be used for further steps
(clustering, anomaly detection). Equation 3.6 shows the computation of the vector vi P Nd

for the block ci P N in the collection.

vi =



R((ci � d) + 1)
...

R((ci � d) + j)
...

R((ci � d) + d)

 (3.6)

Figure 3.4 illustrates the process of creating the random index representation.

Advantages and Disadvantages of Random Indexing

Advantages:

� The algorithm produces only one dimension for one event. The dimensionality is
therefore independent of the grammar in the data set.
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Figure 3.4. Basic idea of random indexing.

� The dimension of a data point in the resulting collection can be adjusted by the user. A
higher dimension correlates to the detection radius for contextual anomalies.

� The temporal ordering of events can be considered - it is possible to detect chronologi-
cally outstanding anomalies.

� New words do not lead to new dimensions. An online approach can be realized with
little effort.

� Equally rare terms are differentiated - Tf.Idf representations thread equally frequent
words as the exact same word.

� No sparse data, no need for dimensionality reduction algorithms.

� Other dimensions that are added to the data set have greater impact (e.g. a separate
dimension for the severity of an event, or even user-defined new dimensions for any
kind of data)

Disadvantages:

� Rare terms have no effect on the score. All terms are equally rare.

� Frequent terms therefore have to be filtered out in a preprocessing step.

� The number of events in one representation has to be static. This is an important
disadvantage because events in a filtered log file may vary much in their temporal
distance to their neighbors.
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3.3.3 Feature Vector Representation

Another approach for representing the events in the log files as numerical values is to
choose the dimensionality of the vector space so that it matches the number of event
types in the log file. A number in a particular dimension then represents the occurrence
of that type of event in the current block. Figure 3.5 visualizes this approach. The red
box represents the current position of the sliding window in the log file. The figure
demonstrates how the dimensions are retrieved in the log file and how the resulting vectors
are generated. In the example, the log file consists of 4 different event types. Therefore,
generated vectors for each event has four dimensions. The sliding window contains five
events of the third event type and two events of the fourth event type. The resulting
numerical representation is therefore the vector v = (0, 0, 5, 2)T . By filtering out event
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Figure 3.5. General idea of the feature vector representaation. The log file consists of 4 different
event types, therefore 4 dimensions are generated. The vector representation is computed for each
block of events (sliding window).

types that do not occur a certain number of times in the log file, the number of dimensions
can be reduced. The Evaluation in Chapter 5 will filter out event types for which there are
less than five occurrences in the log file. However, with only this possibility of dimension
reduction, the approach still needs to be post-processed by using the principal components
to reduce the dimensions even more.
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Advantages and Disadvantages of the Feature Vector Representation

Advantages:

� The groups can vary in size - temporal correlations can be considered.

� The number of dimensions can be reduced by filtering out event types with low occur-
rence.

� New dimensions can simply be appended to the vector - if a new type of event occurs
in the data set, the representation does not have to be rebuilt again.

Disadvantages:

� Dimensionality of the vector space depends on the number of event types in the data
set. The dimensionality might have to be compressed by using techniques like principal
component analysis.

� The rareness of events cannot be represented with this approach.

3.4 Data Clustering

Data clustering will be used in some of the algorithms analyzed in this work. There are
many clustering algorithms available that can be used for the approach in this work, how-
ever, not all are equally suited for the task. The following criteria should be fulfilled:

1. The number of clusters are unknown. The clustering algorithm should therefore be able
to automatically determine the number of clusters on its own.

2. There are many data points in the data set. Therefore the clustering algorithm has to be
fast and scalable. The overhead produced should be as low as possible.

3. The clustering must be able to create a decent categorization of the items contained in
the data set.

As already explained in Section 2.4, the X-Means algorithm is able to determine the number
of clusters and quickly cluster the data set and will therefore be used for the clustering
task.

3.4.1 Advantages of data clustering

The main reason to cluster the data set is to split the events into groups of different event
types. A log file usually contains many different kinds of messages that might occur at
different frequencies in the collection. This however does not necessarily mean that those
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data points are more anomalous than the more frequent occurring ones. By clustering the
data points, the goal is to split these messages up so that they can be analyzed individually.
This procedure might force the anomaly detection algorithm to value the constellation
of the events more than the different types of messages and therefore could consider
contextual relationships better.
Example: Consider a system that is iteratively executing three steps:

1. Read input

2. Compute data

3. Generate result

In either of these steps, there are most likely different event messages that are occurring
only in this step. If however the computation of the data is the most complex step, there
will presumably be much more events that are related to the data computation part in
the log. Since the anomaly detection algorithm will especially mark rare events or event
constellations as anomalies, it is possible that the events that are emitted in the other two
steps will be considered anomalous. By clustering the data points, these three steps can
be separated from each other under the right conditions. The clustered data can then be
analyzed separately for the three different steps and errors within them can be detected
better.

Another reason for data clustering is, that the amount of data that will be compared with
each other gets reduced. This could be especially important for log files with a very large
amount of events.

3.5 Anomaly Detection

This section describes the approach for the developed position-based anomaly detection
algorithm. The algorithm presented in the following is developed in order to determine
how important the clusters in log file-like data sets are. The idea behind the concept is,
that each cluster defines an area of similar data relations. As explained in Section 3.3, the
numerical representations group temporal related events into one data instance. These
data instances are meant to represent the contextual difference between every instance,
i.e., they represent the context of a group of events at a given position in the log file. The
context cn of a data instance din is defined by the types of events that are contained in the
instance as well as by the temporal relations between these events. Therefore, a cluster
contains data instances with similar event type constellations (i.e. instances with similar
events), that is, with similar contexts. If a data instance is far away from the cluster center,
the hypothesized reason is, that the context of the area defined by the data instance is in
some way outstanding. This might be due to rare events, but can also be caused by an
outstanding constellation of events within this area. The more unusual the constellation
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or the events within the data instance, the farther away it gets from the majority of events
with similar contexts. Equally, clusters that consist of only a few data points define areas of
outstanding context. Even if the distances to the center is very small, data instances within
a tiny cluster have to be considered anomalous too.

Most of the existing outlier detection algorithms analyzed in this work use k-nearest
neighbor distances in order to evaluate how outstanding a data instance is. This approach
however utilizes the cluster centers as “idealized” area contexts that represent the ap-
proximated standard-context for the data instances contained in the cluster. The distance
d(din) := diideal � din represents how ordinary the data instance din in contrast to the “ideal”
data instance is. Using the k-nearest neighbors, the calculated distance between a data
instance din and its neighbors would only represent the density around din. If the same
context occurs more than once, the local density will get higher in the respective position
of din. This however does not necessarily mean, that din is not anomalous, since reports of
faulty processes are usually not reported just once in the whole log file but are reported
multiple times. The kNN distance would therefore not represent the outlierness of the
data instance but only determine, whether similar context structures have ever happened
in the log file. As mentioned before, determining the “ideal” data point will be done by
running a data clustering algorithm. Since the K-Means algorithm clusters the data by
approximating the center point as an average of all data points in the cluster, this approach
might be the best choice for determining those data points.

The proposed algorithm in this section determines the distances to the cluster center for
each data instance as described above. Similar to the LOF outlier detection, the algorithm
outputs a degree to which a data instance is anomalous. The following presents two
approaches for an anomaly detection algorithm that uses the cluster center to determine
the outlierness of data points.

3.5.1 A Position-Based Anomaly Detection Algorithm

The first approach is to order the data instances in each cluster based on their distance to
the cluster center. This order is then used to determine the level to which the data instance
is anomalous. The farther away the data point is from the center, the higher the position in
the order gets. In order to identify data points in a tiny cluster, the algorithm first computes
the global outlier level (gol) that indicates how large the cluster is in which the current data
point is contained in.
The global outlier level for a cluster C in a data set D is defined as

gol(C) = P(x R C) = 1� P(x P C) = 1�
|C|
|D|

(3.7)
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The outlier level of a data point d in its cluster Cd is then computed as

outlierLevel(d) =
position(d)

|Cd|
gol(Cd) (3.8)

The global outlier level returns a higher value when the current cluster C contains few
data points and a lower value if the cluster contains many points. It therefore can be seen
as a global weight factor for all clusters in the collection. The term position(d)

|Cd|
computes

the local outlierness of a data point within cluster Cd. The farther away the data point is
from the center of the cluster, the higher the outlierLevel becomes. Therefore, the closer
the outlierLevel is to 1, the more anomalous the data point is. Similar to LOF, there is
however no constant threshold for outlierLevel that determines between anomalous and
non-anomalous data points. It is therefore required to specify the threshold or the number
of anomalies manually.

3.5.2 Extension: Including the Rareness of Events using Tf.Idf

In extension to the algorithm above, the following approach describes another way of
detecting outliers in log files. Since the random index approach as well as the feature vector
approach do not consider the rareness of the events, it might be a good idea to include the
term rareness in the process of detecting anomalies.
Let S be the set of data points and A be the set of anomalous data points with A � S. In
order to determine the degree to which a data point is anomalous, two factors have to be
considered:

1. The level of outlierness of a specific data point (see Equation 3.8)

2. The textual rareness of an event in the context of all other events

Therefore, the level to which a data instance v P S is anomalous could be defined as
follows: anomalyLevel(v) = rareness(v) � outlierLevel(v) (3.9)

where rareness(v) determines the rareness of all terms contained in v and outlierLevel(v)
represents a measure of how much the data instance is outstanding compared to the rest
of the data.

The rareness of a data point v P S is defined as

rareness =
∑
|v|
i=0 ∑

|Terms(v)|
j=0 t f .id f (vi,j)

maxxPS

(
∑
|v|
i=0 ∑

|Terms(v)|
j=0 t f .id f (vi,j)

) (3.10)

where Terms(x) represents all relevant terms of a single event and t f .id f (x) represents the
term/document frequency as shown in Equation 3.11.
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t f .id f (term, v) = ( ∑
tPTerms(v)

equals(term, t)) � (log
|S|

|{x : x P S^ term P Term(x)}|+ 1
)

(3.11)

equals =
{

0 , i f a  ¡ b
1 , i f a = b

(3.12)

Since the rareness of events is already included in the Tf.Idf data representation, the
extension might be viable only for the two other number representations. The rareness
extension adds a third weight to the outlierLevel factor and is computed by considering
the global outlierness of a cluster, the local position of a data point within that cluster and
the rareness of the events contained in the data point.
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Chapter 4

Implementation

This chapter describes the general structure of the implementation that was used in this
work. The implementation includes every step mentioned in Chapter 3, i.e. data filtering,
creating the number representations, clustering the data set, detecting outliers and the
evaluation of the results. The code is written in Java and uses the Weka library for the
clustering part as well as the Kieker framework as a general structure. The design of the
project is mostly determined by the Kieker framework: Each step that is executed on the
data set is broken down into an execution chain, which consists of different plugins that are
sequentially executed and connected by the chain. The first plugin in each execution chain
is a log reader plugin, which reads the events of the specified log file sequentially into the
chain. In this project, there are several different execution chains that each are assigned
different tasks. The following presents the code structure and explains several aspects of
the implementation.

4.1 Filtering and Preprocessing

As already mentioned in the last Chapter, the first step is to use the Adaptive Semantic
Filter (ASF) to reduce the number of the log file. For the Feature Vector approach, another
preprocessing step is to count the different categories contained in the log file while the
Tf.Idf approach requires the inverted index data structure, that also has to be created before
the number representation construction. Figure 4.1 shows a class diagram of the first
preprocessing step. A similar preprocessing chain for the Tf.Idf approach is not illustrated
in this diagram but can be seen in Figure 4.2 (InvertedIndexConstructionPlugin). As can be
seen in the diagram, the filtering step is initialized with the RegexLogReader plugin, which
uses one or multiple regular expression definitions that can be defined by the user in a
separate configuration file to extract the events contained in the log file. To extract the
BlueGene/L events that are used in this work, the configuration file defines the following
regex command:

Regex.Pattern.DefaultBlueGene = (?<label>.).*(?<date>\\ d4-\\ d2-\\ d2)-

(?<time>\\ d2.\\ d2.\\ d2.\\ d*) \\ s(?<node>\\ S*)\\ s(?<ras>\\ w+)\\ s(?<facility>

\\ w*)\\ s(?<severity>\\ w*)\\ s*(?<description>.*)
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(the keyword DefaultBlueGene can be freely adjusted by the user.) By adding more regular
expressions to the file, more types of events can be processed. The log file reader reads one
event at a time and then passes the event to the next plugin in the execution chain, which
is the BlueGeneAdaptiveSemanticFilter plugin. this filter plugin applies the ASF filtering and
occasionally passes filtered events to the next plugin in the chain, the LogFileWriterPlugin
which then writes the filtered events into a separate file.

In order to compute the feature vector representation, the next execution chain that
is applied to the data is the CategoryCountExecutionChain. As the name suggests, this
chain counts all existing categories in the log file which is done by sequentially reading
through the filtered log file. After receiving a new message from the log file reader, the
CategoryCountPlugin normalizes the event description and stores the resulting event into a
hash-map that consists of (event, count) pairs. Once the reading is done, all stored events
that have a higher occurrence than a specified value are saved into a separate file that is
used in the feature vector number representation routine.

Similarly, the first preprocessing step of the Tf.Idf approach is computed on the filtered
data set by sequentially processing the events that are emitted by the log file reader. In
order to compute the Tf.Idf scores, an inverted index that contains of (term, event) pairs is
computed in the class InvertedIndexConstructionPlugin.

4.2 Creating the Number Representations

After the filtering and pre-preprocessing step is done, the next step is to create the
number representations. As illustrated in Figure 4.2, the main execution chain for creating
numeric representations is the NumericTransformationExecutionChain class. Depending on
the RepresentationType value, this chain creates any one of the three developed number
representations (feature vector, Tf.Idf and random index). First, the chain uses the log
file reader RegexLogReader to read the events contained in the filtered log file. Newly
read events are redirected to the specific number representation where they are further
processed.

The random index representation (class RandomIndexRepresentationPlugin) creates a static
time window with a specified number of events by receiving events from the log file reader.
Based on that, the algorithm described in the last Chapter is applied. The feature vector
and Tf.Idf approaches use a similar concept, except that they use the TimeWindow class for
a dynamic number of events based on the time-spans between received events. As a post-
procesing step for these two algorithms, the principal components algorithms is connected
between the number representation algorithm and the next plugin. The PCA algorithm is
contained in the Weka library, therefore the WekaPrincipalComponents plugin serves only
as an adapter for the Weka algorithm. After creating the numerical representations, the
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4.2. Creating the Number Representations

Figure 4.1. Class diagram of the data filtering execution chain and the preprocessing step of the
feature vector approach.
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chain uses a NumericalStorePlugin to pick up all processed events created by the previous
algorithm. These events are stored in a local list which is then used in the next step to
cluster the data set. For the ELKI algorithms used in this study, this number representation
is saved separately and then further processed by using the ELKI interface.

4.3 Clustering and Anomaly Detection

For the anomaly detection approach developed in this work, the next step is to cluster the
data. This is done in the KMeansAnomaly class (Figure 4.3) before the anomaly detection
step. The class uses two enumerations to specify the clustering algorithm and the used
distance function. Notice, that not all clustering types and distance functions have been
used for the result evaluation. Another anomaly detection method has been developed,
which uses the ELKI library for EM-clustering. This algorithm is defined in ElkiEMAnomaly
but was never used for the evaluation either because the results were simply not very
good. The PerformanceMonitor class records the memory usage and the time used for the
clustering and anomaly detection. After detecting anomalous points with the proposed
algorithm developed in the previous chapter, the anomalous data points are then merged
with the filtered log file. This is done by the ResultMerge class for the developed algorithm
and by the ElkiResultMerge class for the externally created results from ELKI.

4.4 Result Evaluation

Th last step is to create result representations based on the generated set of anomalous
data points. As can be seen in Figure 4.4, there are two execution chains defined for
evaluating the result. The EvaluationExecutionChain creates label distance, distribution and
time window representations that can afterwards be used to create a graph or diagram.
The ROCEvaluationExecutionChain is used to create the true positive, false positive, true
negative and false negative rates, which are then used in various diagrams.
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Figure 4.2. Class diagram for the number representation implementation part.
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Figure 4.3. Class diagram for the clustering and anomaly detection part.
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Figure 4.4. Class diagram for the result evaluation part.
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Chapter 5

Evaluation

This chapter explains the techniques used to evaluate the results from the anomaly detection.
The general idea is to compare the results of the algorithms developed in this work to
several other anomaly detection algorithms. The used data set that contains log entries
from the supercomputer BlueGene/L provides furthermore certain labels for different
kinds of problems in the system. This will be used for the evaluation process to create
comparable results. The chapter is basically divided into three parts: The description of
the source of the input file, the description of the used evaluation techniques, followed by
the actual analysis and comparison of the results generated by the developed algorithms
and other anomaly detection algorithms.

5.1 BlueGene/L Architecture and Log Files

This study uses the event logs that have been gathered from the IBM BlueGene/L computer,
which is a parallel supercomputer that was installed at Lawrence Livermore National
Labs (LLNL) in Livermore, California and listed as the number 1 in the top 500 list of
supercomputers in June 2006 [Oliner and Stearley, 2007]. BlueGene/L is based on system-
on-a-chip technology developed by IBM and is able to work with 65536 dual-processor
nodes which can reach up to 360 teraflops [Gara et al., 2005]. The logging on BlueGene/L
is done through the Machine Monitoring and Control System (MMCS). Each mid-plane (two
per rack) runs one service node in which one MMCS is executed [Oliner and Stearley, 2007;
Adiga et al., 2002]. The events are stored on each node locally until they are pulled and
collected with the JTAG-mailbox protocol and then redirected to a central DB2 database
[Oliner and Stearley, 2007], which is the source of the log file used in this work. The log file
includes all levels of errors and the time can be determined down to microseconds [Oliner
and Stearley, 2007]. The system data was collected over 215 days, starting at the beginning
of August 2005. In this time, the system produced 4,747,963 event messages which sum up
to 1.207 GB of data, containing 348,460 alerts and 41 categories [Oliner and Stearley, 2007].
These were created by executing various tasks, which were amongst others hydrodynamics
and climate modeling [Liang, 2007].
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An event message in the BlueGene/L log file mostly contains the date and time, the node
from which it has been sent, the facility that contains the component where the event has
occurred (e.g. MMCS, APP or KERNEL), the event type which specifies through what
entity the event has been recorded and the event description. Furthermore, the log file has
been provided with labels that indicate several different system states. These labels will be
used in the Evaluation (Chapter 5) to compare the anomaly detection results.

5.2 Parameter Adjustment

This section gives a short overview over evaluation results that have been used for parameter
adjustment. For each approach that is considered in this approach, there are many
parameters to be considered. When it comes to creating the numeric representations for
the log files, it has to be determined how many dimensions the result should have. The
clustering process also often needs some adjustments like for example the resulting number
of clusters or some other threshold value depending on the used algorithm. The anomaly
detection algorithms all have unique parameters like, for example, the number of nearest
neighbors to consider that also have to be individually adjusted. The result evaluation
then needs to decide which and how many anomalies are included in the final result set.
All algorithms used generate a ranking of events that are anomalous, so deciding which
anomalies are included is a simple task for the result evaluation routine, but deciding
how many anomalies to include (i.e. which threshold value indicates an anomalous event)
cannot be easily done. Also, in order to get comparable results, it has to be taken care that
the parameters are set so that they have the same meaning, if possible.

The following analysis uses the rates defined in Figure 5.1 in order to compare and
evaluate the different algorithms with each other and to preset the results of the parameter
adjustments as well as general results.

Metric Equation

True positive rate (Recall) TP
TP+FN

False positive rate FP
FP+TN

Precision TP
TP+FN

F-Measure 2�precision�recall
precision+recall

Figure 5.1. Metrics used for the comparison of the algorithms

42



5.2. Parameter Adjustment

5.2.1 Number Representation Adjustments

As mentioned above, the number representations require the dimensions to be set man-
ually. Especially the random index approach cannot be executed without specifying the
number of dimensions. The Tf.Idf and feature vector approaches however could be run
without specifying the number of dimensions when executed without using the principal
component analysis. This would however result in many dimensions that may not contain
useful information and would require special analysis techniques in the further steps like,
for example, using clustering algorithms that are specifically designed to cluster sparse
data.

Getting a good number of dimensions is not easy, since creating the principal components
requires a very long time. One way of determining the number of dimensions is to run
the algorithms multiple times using another value each time and then take the number
that produces the best result. In order to obtain a comparable result, it would be best if
the number of dimensions would be constant for each approach, therefore it has to be
evaluated whether there is a number that is good for all approaches.

Another parameter that has to be considered when creating the number representations
for the Tf.Idf and feature vector approach is the size of the sliding window that is used to
group the different events. Those two approaches use a sliding window to determine the
number of events that might be temporally correlated and create a multidimensional data
point to represent all events currently contained in the sliding window.

The following sections describe the parameter adjustments that have been made for the
number representations in order to improve the overall result of the anomaly detection
algorithms.

Feature Vector: Varying the dimensions of the PCA output

The feature vector number representation can be varied in two ways:

1. Changing the principal components output dimensions.

2. Changing the sliding window size that determines the time span in which events are
grouped into one vector.

When changing the PCA dimensions, the dimensions itself gain more value due to com-
puting linear correlation and orthogonal transformations for the original (sparse) vector
space. As can be seen in Figure 5.2, generating 80 dimensions in the PCA algorithm
seems to be the best choice. Interestingly, creating only one dimension is the second best
alternative. The one dimension approach even seems to have the lowest number of false
positive classified events.
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Figure 5.2. Feature Vector representation with 300 seconds sliding window and varying PCA
dimensions applied to the position-based anomaly detection method.

Tf.Idf: Varying the dimensions of the PCA output

The Tf.Idf approach can be varied in the same way as the feature vector approach. They
both use a sliding window to determine the number of events to group into one instance
and use the principal components algorithm to reduce the resulting dimensions. Figure 5.3
shows the results for different dimensions for the Tf.Idf data representation. The diagram
shows, that the F-Measure for 80 dimensions (0.65) is the highest, while the F-Measure for
1 dimension (0.27) has the lowest value.

Random Index: Varying the dimensions

The random index number representation does not require dimension reduction algorithms
such as principal components. Therefore, there is only one parameter adjustable. The
dimensions of the vector space represent the number of events that are grouped together
into one data instance. Changing the dimensions therefore means increasing or decreasing
the number of correlated events in a data instance. As can be seen in Figure 5.4, the best
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Figure 5.3. Tf.Idf representation with 300 seconds sliding window and varying PCA dimensions
applied to the position-based anomaly detection method.

choice for the dimensions is approximately 5 events.

5.2.2 Clustering Parameter Adjustments

Depending on the used cluster technique, there are no parameters to adjust in the algorithm
itself. The generated data representation strongly influences the outcome of the clustering.
There are however different clustering techniques to choose from that can be used for the
task. The chosen algorithm for all further evaluation is the X-Means clustering algorithm
because it is fast and produces mostly satisfying results. Figure 5.5 shows the results of the
clustering using X-Means and the three different number representations.

5.2.3 Anomaly Detection Parameter Adjustments

The adjustment of the different parameters for the anomaly detection methods is very
difficult since they are all different from each other and hard to compare. For the developed
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Figure 5.4. Random Index representation with varying dimensions applied to the position-based
anomaly detection method.

position-based approach, there is no specific parameter that has to be adjusted. Aside from
that, all other algorithms that will be evaluated have at least one parameter that has to be
manually defined.

Elki Outlier Parameter Adjustments

Most of the external anomaly detection algorithms are nearest-neighbor based and thus
have the parameter k. Increasing k might lead to points being more integrated into the
whole vector space, while decreasing it could lead to more individual or little data groups.
Figure 5.6 shows the F-Measure for different values of k and different outlier algorithms.
The diagram shows, that for all algorithms, choosing a k of 5 to 10 leads to the best results.
Therefore, the following evaluation of those algorithms will be done using a k of 5.
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(a) Feature Vector representa-
tion with 80 dimensions, 300
seconds sliding window. Clus-
tered with the X-Means algo-
rithm that produced 6 clusters.
The image visualizes the first 2
dimensions (classified the most
relevant by PCA).

(b) Random Index with 10 di-
mensions. Clustered with the X-
Means algorithm that produced
5 clusters. The image visual-
izes the first two dimensions, all
other dimension pairs look sim-
ilar.

(c) Tf.Idf with 80 dimensions,
300 seconds sliding window.
Clustered with the X-Means al-
gorithm that produced 5 clus-
ters. The image visualizes the
first 2 dimensions (classified the
most relevant by PCA).

Figure 5.5. Cluster Visualization for the different number representations.

0

0,1

0,2

0,3

0,4

0,5

0,6

0 50 100 150 200 250

k 

KNNOutlier

ODIN

LOF

SOF

Figure 5.6. F-Measure for different algorithms and different numbers of k that were executed o the
Tf.Idf data representation.

5.2.4 Parameter Adjustments for the Result Evaluation

For the determination of true positive, false positive, true negative and false negative events
in the result set, a sliding window will be used that determines for every event in the
collection, if there is a labeled event within close range. Computing the true and false
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Figure 5.7. Time between Labeled events in the BlueGene/L log file.

positive events cannot be simply done by determining if an “anomalous” event is labeled
or not, since anomalous data points are not supposed to be the error messages itself, but
instead the events that lead to the erroneous system state.
The problem with analyzing the data set this way is, that the range in which to search
for labeled data has to be set manually. It is not necessarily clear in which time span to
search - setting the time span too high results in classifying all relevant data points as true
positives while setting the time span too low leads to classifying all data points as false
positives. One approach to find a good value for the used time span is to visualize the
distance between the labels in the log file. This way, it might be possible to determine a
good threshold by looking at the average time span between two labels. The threshold for
the analysis should then be lower that this average time. Figure 5.7 shows the temporal
distances between labeled events in the source log file. The graph shows, that most of the
labels occur approximately within a 60 seconds time frame in the log file. As can be seen
in Figure 5.8, one of the anomaly detection algorithms that showed relatively good results
starts at about a 300x3 second time frame to show good F-measure.

5.3 Evaluation Techniques

This section describes how the true positive, false positive, true negative and false negative
numbers are retrieved from an anomaly detection result set. For every anomaly detection
algorithm that is being evaluated in this work, a merged result set has been constructed
that contains all the events in the original filtered BlueGene/L log file together with the
labels and the generated indication for events to be anomalous. The following snippet
shows an example of a result file (events shortened).
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Figure 5.8. Different sliding window sizes for the position-based approach using the feature vector
number representation with 80 dimensions and the euclidean metric.

...

ANOMALY (0.68) : - 18.05.09.178 KERNEL FATAL RAS interrupt threshold...0

ANOMALY (0.69) : - 18.05.16.802 KERNEL FATAL RAS start initialization...0

- 18.05.46.412 KERNEL FATAL RAS special purpose registers:

K 18.05.56.033 KERNEL FATAL RAS DDR machine check register: 0x00000000 0x00010010

- 18.06.07.673 KERNEL FATAL RAS start flushing...........................0

- 18.08.695 KERNEL FATAL RAS instruction plb error.............0

...

The task of the evaluation is now to analyze how the events that have been marked as
anomalous correlate with the labels. The following describes how the evaluation extracts
these values.
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5.3.1 Tp/Fp/Tn/Fn Rates

Unlike for classification algorithms, the anomaly detection results are not necessarily
supposed to mark the exact same event that has been labeled. This is because the labeled
events are occurring as a result of preceding problems within the system. Therefore, in
order to determine these rates, the evaluation cannot simply count every anomaly that
had been labeled as true positive and others as false positives. Instead, the evaluation
has to look for anomaly-label correlations within several events in a certain time-span.
Therefore, the evaluation routine uses two sliding windows of a few seconds (e.g. 300 s)
that are sequentially iterating over the log file. These windows contain events that have
been generated within a short time. The first time window counts the number of anomalies
contained in the current set of events. The number of labels that are contained in the
window and additionally those that are contained in the next time window decide on the
type of the anomalies: If the windows contain at least one label, the anomalous events are
considered true positive. If there are no anomalies in the first time window, the labels count
as false negative. For constellations that contain only anomalies but no labels, the false
positive rate is increased and sliding windows that neither contain labels nor anomalies
are counted as true negative. Figure 5.9 provides examples for each type of event.

The Tp/Fp/Tn/Fn rates for the evaluation will be computed by determining for each
sliding window block whether the events contained in it are true positive, false positive,
true negative or false negative. For that matter, every label-anomaly pair that is contained
in a sliding window block will increase the true positive value, while for all labels in a
sliding window block without events that are labeled anomalous, the false positive value
will increase. Since sliding window blocks can overlap, every label will be considered and
counted only once. If there are multiple anomalies in a block together with only one label,
the true positive value will only increase once. Since this does not work for windows that
do not contain labels , the true negative and false negative values will increase for each
non-overlapping block where no label and no anomalous event is contained in the block,
or where one or multiple anomalous events are contained in the block, but no label.

5.4 Comparison of the Anomaly Detection Results

In this section, the anomaly detection algorithms will be compared to each other in order to
evaluate which algorithms produce better results for the BlueGene/L fog file as input. The
comparison will be done by analyzing for each result set the true positive, false positive,
true negative and false negative rates defined as in Figure 5.1 (cf. Pitakrat et al. [2013];
Salfner et al. [2010]). The TP/FP/TN/FN values will be gathered as described previously.
In the remainder of this section, the anomaly detection algorithms will be compared with
each other by using the three different data representations developed in this work.
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Figure 5.9. Tp/Fp/Tn/Fn retrieval example. The red box marks the sliding window in which the
anomalies as well as the labels are considered while the dashed orange box marks the window in
which only labels are considered.

5.4.1 Random Index Data Representation

The random index data representation was created by using a static sliding window of 10
events. Therefore, the dimension of the data set that was used for the anomaly detection
algorithms consist of 10 dimensions for each entry. Figure 5.10 shows the calculated F-
Measure, Precision, Recall and false negative rates for the random index data representation.
As can be seen, the true positive rates for the LOF and ODIN algorithms are significantly
higher than that of any other evaluated algorithm and the false negative rates are lower
than that of any other algorithm. On the other hand, the precision of the LOF and ODIN
algorithms is quite low in comparison to the SOF algorithm. The F-Measure, which shows
the harmonic mean of the precision and recall values, indicates, that the LOF and ODIN
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algorithms have the overall best score for this data representation. The position-based
algorithm that uses the euclidean distance as the distance metric has a slightly higher score
than that of the KNNOutlier and SOF algorithm while the position-based algorithm that
uses the mahalanobis distance has the overall lowest score. The reason why the position-
based algorithm is not as good as the LOF and ODIN algorithm might be, that the k-nearest
neighbor distance works better with this data representation, i.e., the static sliding window
or the general idea of the random indexing seems to have more beneficial effects for these
algorithms compared to the other algorithms. Interestingly, the extended position-based
algorithm that includes the rareness shows equal results as the position-based algorithm
with the mahalanobis metric.
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Figure 5.10. Random Indexing Approach - true positive, false positive and false negative rates.

5.4.2 Feature Vector Data Representation

The next data representation that is analyzed is the feature vector approach. The generated
numeric representation consists of 80 dimensions, which have been created by first applying
the feature vector approach with a sliding window size of 300 seconds. Afterwards, all
message types that occurred less than 5 times were removed and ignored in the further
steps, which resulted in more than 500 dimensions when applied to the filtered BlueGene/L
log file. This result set was then reduced to 80 dimensions by using the principal component
analysis algorithm. Figure 5.11 shows, that the precision for the position-based algorithm is
significantly higher than the precision for the other algorithms while the recall is the second
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lowest. In contrast to the random index representation, the position-based approach seems
to be more effective in detecting anomalies based on this representation. The F-Measure
for the position-based algorithm that uses the euclidean distance has increased by 0.07
(0.2 increase for the mahalanobis distance) compared to the random index values. The
F-Measure for the other algorithms except for the KNNOutlier has however decreased
slightly, with KNNOutlier having the smallest F-Measure score of 0.33. Considering, that
the construction of the feature vector representation is both more time-consuming as well
as more expensive regarding the memory usage, the random index approach seems to be
the overall better choice on very large data sets.
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Figure 5.11. Feature Vector Approach - true positive, false positive and false negative rates.

5.4.3 Tf.Idf Data Representation

The last data representation evaluated is the Tf.Idf representation. Figure 5.12 shows the
TP/FP/FN rates and the F-Measure for this representation. As can be seen, the euclidean
position-based algorithm has the highest F-Measure (0.65) as well as the best precision and
false negative rate wheras the SOF algorithm has the best true positive rate but an overall
lower F-Measure (0.53). Unlike in the random index representation, the SOF algorithm
has a slightly better F-Measure than the LOF and ODIN algorithms. The F-Measure for
the euclidean position-based algorithm has the the highest value compared to all other
previously evaluated results.
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Figure 5.12. Tf.Idf Approach - true positive, false positive and false negative rates.

5.4.4 Overall F-Measure

The overall F-Measure values are shown in Figure 5.13. The feature vector data represen-
tation is an obvious bad choice when using the LOF, ODIN and KNNOutlier algorithms,
while the random index representation seems to work better for these algorithms than with
the developed position-based algorithm. The overall best F-Measure has the euclidean
position-based approach using the Tf.Idf data representation, while the KNNOutlier al-
gorithm combined with the feature vector data representation has the overall lowest
score.

5.4.5 Evaluation Summary

Table 5.1 shows the used properties and settings as well as the resulting TP, FN and
F-Measure for each evaluated algorithm. The position-based approaches were evaluated by
using different dimensions and metrics and the results are included in the table as well. As
can be seen, the extended position-based algorithm that includes the rareness in the outlier
degree only performs well when combined with the Tf.Idf representation. This might
indicate, that the rareness of the events does not correlate with anomalous data points
as well as the contextual relationships between the events. Table 5.2 lists the execution
time and the heap size for each approach. Note, that the heap size for the position-based
algorithm include the number representation construction, which used up to 237 MB for the
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Figure 5.13. Overall F-Measure.

Tf.Idf representation and 248 MB for the Feature vector representation. Figure 5.14 shows
the used heap size over time for the different data representations and the position-based
algorithm. The numbers used in the diagram in in the table can vary, since they were taken
using two different executions. The heap size values in the table have been extracted using
an external monitoring software, since the LOF, SOF, ODIN, KNNOutlier algorithms have
been executed using the ELKI front end while the actual evaluation was done within the
implementation.

5.5 Threads to Validity

This section points out the internal and external threads to the validity of this work. Some
of the algorithms that are used in this work use parameters that have a different meaning
and thus, they have to be adjusted individually, which makes them naturally difficult
to compare. The outliers that were taken from the ELKI Framework (LOF, KNNOutlier,
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Table 5.1. Algorithm Overview. SW idicates wheter the algorithm was executed on a dynamic sliding
window that considers the time between events or not. The Metric is either the euclidean metric (E)
or the mahalanobis metric (M).

Algorithm Representation SW Metric k Dim |SW| Precision TP FP F

Position-based

Tf.Idf

y E 80 300 0,83 0,53 0,17 0,65
y M 80 300 0,72 0,38 0,28 0,5
y E 1 300 0,53 0,18 0,47 0,27
y E 2 300 0,74 0,35 0,26 0,47
y E 5 300 0,78 0,36 0,22 0,5
y E 20 300 0,82 0,44 0,18 0,57
y E 200 300 0,85 0,46 0,15 0,6

Feature Vector

y E 80 300 0,84 0,4 0,16 0,54
y M 80 300 0,83 0,38 0,17 0,52
y E 1 300 0,88 0,37 0,12 0,52
y E 2 300 0,91 0,38 0,09 0,53
y E 5 300 0,64 0,24 0,36 0,34
y E 20 300 0,78 0,38 0,22 0,51
y E 200 300 0,71 0,33 0,29 0,45

Random Index

n E 10 - 0,47 0,25 0,53 0,33
n M 10 - 0,47 0,26 0,53 0,33
n E 1 - 0,45 0,3 0,55 0,36
n E 2 - 0,44 0,28 0,56 0,34
n E 5 - 0,52 0,43 0,48 0,47
n E 20 - 0,41 0,17 0,59 0,24
n E 200 - 0,35 0,09 0,65 0,15
n E 80 - 0,44 0,14 0,56 0,24

Position-based (rareness)
Tf.Idf y E 5 80 300 0,86 0,49 0,14 0,63
Feature Vector y E 5 80 300 0,85 0,36 0,14 0,51
Random Index y E 5 80 300 0,51 0,25 0,49 0,33

SOF
Tf.Idf

y E 5 80 300 0,48 0,59 0,52 0,53
y E 50 80 300 0,5 0,55 0,5 0,52
y E 100 80 300 0,49 0,49 0,49 0,49
y E 200 80 300 0,52 0,54 0,48 0,53

Random Index n E 10 - 0,67 0,33 0,44 0,44

KNNOutlier
Tf.Idf

y E 5 80 300 0,47 0,25 0,53 0,33
y E 50 80 300 0,48 0,2 0,52 0,28
y E 100 80 300 0,5 0,21 0,5 0,3
y E 200 80 300 0,53 0,23 0,47 0,32

Feature Vector y E 80 300 0,11 0,1 0,89 0,1
Random Index n E 10 - 0,33 0,59 0,41 0,43

ODIN
Tf.Idf

y E 5 80 300 0,49 0,44 0,51 0,46
y E 50 80 300 0,51 0,48 0,49 0,5
y E 100 80 300 0,49 0,47 0,51 0,48
y E 200 80 300 0,5 0,51 0,5 0,51

Feature Vector y E 80 300 0,13 0,15 0,87 0,14
Random Index n E 10 - 0,44 0,64 0,36 0,53

LOF
Tf.Idf

y E 5 80 300 0,47 0,54 0,53 0,51
y E 50 80 300 0,5 0,54 0,5 0,52
y E 100 80 300 0,49 0,49 0,51 0,49
y E 200 80 300 0,52 0,51 0,48 0,52

Feature Vector y E 80 300 0,14 0,18 0,86 0,16
Random Index n E 10 - 0,43 0,67 0,33 0,53

SOF and ODIN) are mostly using the k-nearest neighbor distances in order to determine
anomalous data points. The position-based approach developed in this work however is
not based on the k-nearest neighbors and therefore has no such parameter. A possible
parameter for this approach would instead be the weight of the global and local outlier
factors described in Section 3.5.1. In the study, every algorithm that is based on the
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Table 5.2. Execution Time and Memory Usage. SW idicates wheter the algorithm was executed on a
dynamic sliding window that considers the time between events or not.

Algorithm Representation SW Metric Time (S) Heap (MB) Used Heap (MB)

Position-based

Tf.Idf y euclidean 4156 986 757
y mahalanobis 4432 795 624

Feature Vector y euclidean 1511 872 639
y mahalanobis 1766 851 579

Random Index n euclidean 100 168 117
n mahalanobis 139 185 163

SOF Tf.Idf y euclidean 4707 144 71
Random Index n euclidean 234 288 118

KNNOutlier
Tf.Idf y euclidean 4717 162 131
Feature Vector y euclidean 2210 198 129
Random Index n euclidean 223 190 95

ODIN
Tf.Idf y euclidean 4957 178 120
Feature Vector y euclidean 2102 206 135
Random Index n euclidean 235 187 98

LOF
Tf.Idf y euclidean 4789 181 135
Feature Vector y euclidean 2374 233 209
Random Index n euclidean 226 272 113

k-nearest neighbor distance was executed with the same parameter for k. However, that
does not necessarily mean, that they are comparable with each other in the context of the
different techniques used by each algorithm.

Another aspect is the number of anomalies that were considered for each approach. In
order to get a more comparable result, the number of anomalies was set to be a constant
number (6000 anomalies) for each approach. However, setting the number to a constant
also comes with the disadvantage, that the degree to which an outlier is anomalous has
to be ignored. It is possible, that the different algorithms produce more precise results by
carefully evaluating the outlierness of the events and determining the number of anomalies
individually for each approach. This however would lead to an even more hard-to-compare
result set since the chances to detect an outlier increases with the overall number of
anomalies that are considered.

When comparing the number representations with each other, another thread to validity is
the difference in the sliding window for the random index approach and the other two
representations. The random index representation requires a constant number of events
that are grouped into one instance, while the feature vector and Tf.Idf approach can vary
the number of events for each data instance. Therefore, the last two representations can
consider the temporal difference between the events in the log file, while the random index
approach simply groups a constant number of events together into one instance.

A thread to the external validity of this study is, that the only log file that was used
was produced by the BlueGene/L supercomputer. Therefore, the algorithms and number
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representations have not been tested with other log files, which means, that the results
might look differently for other inputs.
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Figure 5.14. Used heap size over time for the position-based algorithm and different number
representations.

59





Chapter 6

Related Work

Fronza et al. [2013] developed a failure prediction algorithm for log files that uses support
vector machines and Random Indexing (RI) similar to the data representation researched
in this work. Originally, the concept was proposed by Sahlgren [2005], who used random
indexing as an alternative to the latent semantic analysis. His research found, that random
indexing is an efficient and scalable alternative to the standard method [Sahlgren, 2005].
The main advantage of the RI representation in his approach is, that no co-occurrence
matrix has to be built and no dimension reduction phase has to be done which lead to
a significant speedup of the procedure. The original construction of the random index
vectors (called context vectors in the study) is to first build atomic index vectors for each
context (like documents or words) that are unique, high dimensional vectors with varying
+1 and �1 entries. While scanning the text, these vectors are added to the context vectors
of the particular context. This produces a pseudo-unique vector for each context that
can be retrieved iteratively by scanning the text. The construction of the random index
vectors therefore can be seen as a reversal to the traditional approach where first the
co-occurrence matrix was calculated and afterwards the context vectors were extracted
from the matrix.

The concept of the Tf.Idf data representation used in this work is a well-known technique
which is very common in textual information retrieval tasks [Forman, 2008; Blei et al., 2003].
Han and Karypis [2000] developed a supervised centroid-based algorithm for document
classification that, based on the tf.idf representation and the cosine measure, classifies a
document collection into different classes by determining the similarity of a document and
the k cluster centers in the data set. The document is then assigned to the class to which it
is the most similar. The hypothesis of this study as to why the centroid-based algorithm
performed well in comparison with other algorithms, is that the centroids represent the
average behavior of the documents contained in it. By classifying a document based on its
similarity or distance to each centroid, the algorithm measures how much the document
fits into this average behavior. This process allows for dynamic adjustments for classes with
different densities and is able to consider the dependencies between different terms within
a class. This is similar to the explanation given in this work, which is, that the cluster
centroids of the position-based algorithm represent the average contextual relationship and
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behavior between different events in the contained cluster. The farther away a document is
from any cluster center, the more outstanding, i.e. anomalous it becomes.

The idea of distance based outliers was originally developed by Knox and Ng [1998], who
defined outliers to be data points for which there are less than k neighbor data points
within a distance d. The two presented algorithms in their study where the first one was
a simple implementation for their definition with a time complexity of O(δN2) with δ
being the number of dimensions and N the number of data points. The second algorithm
was a cell-based approach whose complexity could be reduced to O(cδ + N) where c is
inversely proportional to the cell length d

2
√

δ
with d being a parameter for the algorithm.

The distance-based approach has been picked up by various other studies, including the
KNNOutlier algorithm mentioned in Section 2.6.

In contrast to the existing work, this study focuses on the contextual relationship between
textual information in log file-like input files. Therefore, the focus lies more on the
interpretation of the in this work developed umber representations, which are designed
to group temporally close events into one single data point. The position-based anomaly
detection algorithm presented in this work was developed in order to analyze whether
the number representations of this work arrange the data points around different centroid
points that indicate normalized instances for data point relations. In contrast to that, most
of the anomaly detection algorithms that were considered in this study are based on the
density of regions in the data set or are otherwise utilizing the k-nearest neighbors for
determining the local outlierness relative to neighbor points.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

With increasingly larger systems and workflows, log files increase in size and complexity
as well. A manual search for system errors in log files therefore becomes continually
superfluous, while automated search algorithms become more and more indispensable.
However, the contextual relationships between log file events and the importance of the
context between them itself makes it very hard to algorithmically determine relevant events
in a log file. The goal of this work is to develop and analyze techniques that might ease
the process of finding these relations in a data set. In this work, three different numerical
representations have been developed and applied to the BlueGene/L log file. All three
representations are designed to represent multiple events together as one single data
instance in the vector space. This enables an implicit contextual analysis of the data points
by all outlier algorithms that are executed on these data representations. Based on the
data representations, various existing anomaly detection algorithms and one new approach
have been analyzed and compared with each other. The Random Index representation,
which uses randomly generated numbers in order to represent the different types of events,
enables a data representation that can be computed fast and efficiently and does not need
dimension reduction techniques as a post-processing step. The Tf.Idf data representation
uses the popular Tf.Idf values to create the vector space. The resulting dimensions for this
approach are however proportional to the number of unique terms in the log file, which
makes dimension reduction in the post-processing step necessary. The same holds for
the third data representation, the feature vector approach. This approach creates a new
dimension for each encountered type of event and represents an instance by adding the
vectors of all included events into a new vector. The last two data representations are able
to vary the number of events that are contained in a single data instance, which has the
advantage, that the temporal difference between events in the log file can be considered.
The random index representation however uses a constant number of events for each data
instance. This approach is therefore not able to consider the time between events but is, on
the other hand, able to consider the order of the events within the data instance.

The developed anomaly detection algorithm is a clustering-based approach that orders all
data points according to their distance to the cluster center. The resulting outlier factor is
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then computed based on that distance, as well as the size and outlierness of the cluster in
which the data point is included in. Since the feature vector and random index approach
are however not able to consider the rareness of an event, an extension to this position-
based algorithm was presented, that uses the rareness of an event to compute the outlier
degree. Compared to the other two representations, the random index approach resulted
in an overall lower F-Measure for the position-based algorithm, while the KNNOutlier and
LOF algorithm delivered the best results using this data representation. The overall best
results were computed using the position-based algorithm combined with the Tf.Idf data
representation and the euclidean metric.

The evaluation of the anomaly detection algorithms indicates, that the developed algorithm
has an advantage to the other algorithms (when using the feature vector or Tf.Idf data
representation), which are mostly using the k-nearest neighbor distances to evaluate their
outlier degree.

The hypothesized reason for that is, that for log files like the BlueGene/L log file, the center
of the cluster might refer to some kind of normalized event that represents the type of
events that this cluster contains. The farther away a data point is from that center, the more
anomalous it becomes. Using kNN instead, the data points are locally compared with their
neighbor data points and the distance from a data point to its neighbor points is used
for outlier detection. This however only measures the local outlierness of data points in
context to their neighbors. In log files, the occurrence of similar events in the data set does
not necessarily mean, that these events are non-anomalous, since the same error at different
times is no indicator for an event to be non-anomalous. Since the position-based approach
computes the distance to a center data point instead, the occurrence of similar events
does not have such a high impact on the distances compared to the k-nearest neighbor
approach.

7.2 Future Work

This study has shown, that the use of centroid-based approaches for detecting outliers is a
good choice for analyzing log files. The random index data representation currently uses a
static sliding window that consists of a specified number of events. A future improvement
for this representation would therefore be to extend the algorithm so, that the number
of events contained in an instance can be varied for each data point and to evaluate how
much this change affects the results of the different anomaly detection algorithms. Another
extension to this work is to compare more outlier detection algorithms with each other
and to determine whether centroid-based approaches create generally better results than
k-nearest neighbor approaches when using the provided data representations. A possible
issue of the position-based algorithm presented in this work is, that the clustering step of
the algorithm can be sensitive to outliers in the data set. Another preprocessing step in

64



7.2. Future Work

order to decrease the impact of these outliers may therefore result in a better detection of
anomalies in the data set. For example, the program could be executed twice, where the
results of the first run is used to remove the anomalies from the data set while clustering
the data in the second execution.
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