Contents

Abstract xi

Zusammenfassung xiii

1 Introduction 1
 1.1 Carbon ion radiotherapy 1
 1.2 Scope of the present thesis 3
 1.2.1 Investigations on passive and active beam delivery systems 3
 1.2.2 Investigations on RBE predictions of LEM I and LEM IV 4
 1.3 Impact of the present study 5
 1.4 Outline of the thesis 6

2 Physical and biological basics of carbon ion radiotherapy 7
 2.1 Energy deposition and dose 7
 2.1.1 Dose definitions 7
 2.1.2 Stopping of high-energy ions 8
 2.1.3 Linear Energy Transfer (LET) 8
 2.1.4 Energy loss and range straggling 9
 2.1.5 Lateral beam spread 10
 2.1.6 Nuclear fragmentation 10
 2.2 The accelerator 11
 2.2.1 Ion sources 12
 2.2.2 Low energy beam transport 12
 2.2.3 Linear accelerator 12
 2.2.4 Middle energy beam transport 13
 2.2.5 Synchrotron and high energy beam transport 13
 2.2.6 Treatment rooms 13
 2.3 Beam delivery systems 15
 2.3.1 Passive beam delivery (on the example of NIRS) 16
 2.3.2 Active beam delivery (on the example of HIT) 19
 2.4 Relative biological effectiveness (RBE) 21
 2.4.1 Microscopic track structure and radial dose distribution of ion beams 22
 2.4.2 DNA damage and cell inactivation, Linear-quadratic model 25
 2.4.3 Definition of RBE 27
2.4.4 Dependencies of RBE .. 27
2.5 Radiobiological models .. 29
 2.5.1 Radiobiological modeling at NIRS 29
 2.5.2 Radiobiological modeling at HIT 31
2.6 Treatment planning in carbon ion radiotherapy 37

3 Materials and Methods .. 39
 3.1 Investigations on passive and active beam delivery systems at NIRS and at HIT ... 39
 3.1.1 Patient characteristics and original clinical treatment planning ... 39
 3.1.2 Recalculation of treatment plans 39
 3.1.2.1 Modifications of original clinical treatment plans 39
 3.1.2.2 Recalculation of treatment plans at NIRS 41
 3.1.2.3 Recalculation of treatment plans at HIT 42
 3.1.3 Analysis of RBE-weighted dose distributions calculated at NIRS and at HIT ... 42
 3.1.3.1 Analysis / Read-out of dose distributions 42
 3.1.3.2 Comparison of dose distributions 43
 3.2 Investigations on RBE predictions by LEM I and LEM IV 45
 3.2.1 Patient characteristics and treatment planning 45
 3.2.1.1 Patient collective 45
 3.2.1.2 Volume definitions 45
 3.2.1.3 Dose prescription 45
 3.2.1.4 Dose rescaling 46
 3.2.1.5 Original treatment plans 46
 3.2.1.6 Recalculation of treatment plans using LEM IV 47
 3.2.1.7 Validation of recalculation process 48
 3.2.2 Qualitative and quantitative comparison of original (LEM I-based) and recalculated (LEM IV-based) RBE-weighted dose distributions ... 48
 3.2.3 Assessment of tolerances to radiation-induced temporal lobe reactions predicted by LEM I and LEM IV 50
 3.2.3.1 Clinical follow-up 50
 3.2.3.2 Multivariate statistical analysis of DVH variables 50
 3.2.3.3 Dose-response analysis 52

4 Results .. 53
 4.1 Investigations on passive and active beam delivery systems at NIRS and at HIT ... 53
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.1 Basis of comparison</td>
<td>53</td>
</tr>
<tr>
<td>4.1.1.1 Dose distributions</td>
<td>53</td>
</tr>
<tr>
<td>4.1.1.2 Quantitative analysis</td>
<td>54</td>
</tr>
<tr>
<td>4.1.1.3 Conclusions</td>
<td>55</td>
</tr>
<tr>
<td>4.1.2 General analysis</td>
<td>55</td>
</tr>
<tr>
<td>4.1.2.1 Dose distributions</td>
<td>55</td>
</tr>
<tr>
<td>4.1.2.2 Quantitative analysis</td>
<td>58</td>
</tr>
<tr>
<td>4.1.3 Field-dependent evaluation</td>
<td>59</td>
</tr>
<tr>
<td>4.1.3.1 Dose distributions</td>
<td>59</td>
</tr>
<tr>
<td>4.1.3.2 Quantitative analysis</td>
<td>65</td>
</tr>
<tr>
<td>4.2 Investigations on RBE predictions by LEM I and LEM IV</td>
<td>77</td>
</tr>
<tr>
<td>4.2.1 Qualitative and quantitative comparison of original (LEM I-based) and recalculated (LEM IV-based) RBE-weighted dose distributions</td>
<td>77</td>
</tr>
<tr>
<td>4.2.1.1 Target</td>
<td>77</td>
</tr>
<tr>
<td>4.2.1.2 Residual volumes</td>
<td>87</td>
</tr>
<tr>
<td>4.2.1.3 Temporal lobes</td>
<td>89</td>
</tr>
<tr>
<td>4.2.2 Tolerances to radiation-induced temporal lobe reactions predicted by LEM I and LEM IV</td>
<td>93</td>
</tr>
<tr>
<td>5 Discussion</td>
<td>103</td>
</tr>
<tr>
<td>5.1 Investigations on passive and active beam delivery systems</td>
<td>103</td>
</tr>
<tr>
<td>5.1.1 Basis of comparison</td>
<td>103</td>
</tr>
<tr>
<td>5.1.2 General evaluation</td>
<td>104</td>
</tr>
<tr>
<td>5.1.3 Impact of the number of applied treatment fields</td>
<td>109</td>
</tr>
<tr>
<td>5.1.4 Transferability of the present results to the clinical situation</td>
<td>112</td>
</tr>
<tr>
<td>5.1.5 Impact of different radiobiological models</td>
<td>112</td>
</tr>
<tr>
<td>5.2 Investigations on RBE predictions by LEM I and LEM IV</td>
<td>113</td>
</tr>
<tr>
<td>5.2.1 Systematics between LEM I and LEM IV</td>
<td>115</td>
</tr>
<tr>
<td>5.2.1.1 Target</td>
<td>115</td>
</tr>
<tr>
<td>5.2.1.2 Residual volumes</td>
<td>118</td>
</tr>
<tr>
<td>5.2.1.3 Temporal lobes</td>
<td>118</td>
</tr>
<tr>
<td>5.2.2 Comparison of RBE predictions by LEM I and LEM IV to clinical data</td>
<td>120</td>
</tr>
<tr>
<td>5.2.2.1 Impact of LEM IV on local control rates of skull base chordoma patients</td>
<td>120</td>
</tr>
<tr>
<td>5.2.2.2 Impact of LEM IV on tolerance doses to radiation-induced temporal lobe reactions</td>
<td>122</td>
</tr>
</tbody>
</table>
6 Conclusions and Outlook

6.1 Investigations on passive and active beam delivery systems
 6.1.1 Conclusions
 6.1.2 Outlook

6.2 Investigations on RBE predictions by LEM I and LEM IV
 6.2.1 Conclusions
 6.2.2 Future clinical implementation of LEM IV
 6.2.3 Outlook

A Appendix

A.1 Detailed quantitative analysis of passive and active beam delivery systems at NIRS and at HIT
A.2 Detailed quantitative analysis of RBE predictions by LEM I and LEM IV

Bibliography

List of Figures

List of Tables

Abbreviations

Publications related to this work

Curriculum Vitae