TABLE OF CONTENTS

SUMMARY

ZUSAMMENFASSUNG

1 GENERAL INTRODUCTION

1.1 Epilepsy

1.1.1 Definition and Significance

1.1.2 Pharmacoresistant Epilepsies and Alternative Treatment Strategies

1.2 Neurotransplantation in Epilepsy Research

1.3 Role of Basal Ganglia in Seizure Modulation

1.4 Neurotransplantation into Basal Ganglia in Epilepsy Research

1.4.1 Transplantation of Neuronal Precursor Cells into Basal Ganglia in Epilepsy Research

1.4.2 Transplantation of GABAergic Cell Lines into the Basal Ganglia in Epilepsy Research

1.4.3 The Subthalamic Nucleus as Target Region for Neurotransplantation

1.5 Immunomodulation to Prevent Graft Rejection

1.5.1 Pharmacological Immunosuppression

1.5.2 Induction of Immunological Tolerance

1.6 Timed Intravenous Pentylenetetrazole Seizure Threshold Test and Amygdala-Kindling Model

1.7 Aim of the Studies

1.7.1 Study 1: Grafting GABAergic Cells into the Subthalamic Nucleus

1.7.2 Study 2: Effects of Cyclosporine A on Seizure Thresholds

1.7.3 Study 3: Porcine Cell Grafting and Induction of Tolerance
Table of Contents

2 Anticonvulsant Effects by Bilateral and Unilateral Transplantation of GABA-Producing Cells into the Subthalamic Nucleus in an Acute Seizure Model .. 27

3 Comprehensive Study of Acute and Chronic Treatment with Different Preparations, Doses, and Administration Routes of Cyclosporine A on Seizure Thresholds and Adverse Effects .. 29

3.1 Abstract .. 30

3.2 Introduction .. 30

3.3 Experimental Procedures ... 32

3.3.1 Animals .. 32

3.3.2 Timed Intravenous PTZ Seizure Threshold Test 33

3.3.3 Implantation of Kindling Electrode and Kindling 34

3.3.4 CsA Treatment Regimens ... 35

3.3.5 CsA Treatment in the PTZ Model .. 37

3.3.6 CsA Treatment in the Kindling Model .. 38

3.3.7 Blood Sampling and Whole Blood Drug Analysis 38

3.3.8 Behavioral Testing Battery and Physiological Measures 39

3.3.9 Histological Verification of Kindling Site ... 40

3.3.10 Statistics ... 41

3.4 Results ... 41

3.4.1 CsA Whole Blood Concentration ... 41

3.4.2 Basal (pre-drug) PTZ Seizure Thresholds .. 44

3.4.3 Lack of Robust Acute and Chronic Effects of CsA on PTZ Seizure Thresholds .. 44

3.4.4 Kindling Development and Basal (pre-drug) Kindling Parameters 46

3.4.5 Lack of Acute and Chronic Effects of CsA on Kindled Seizure Parameters .. 46
3.4.6 Effects of CsA on Rat Behavior ... 47
3.4.7 Effects of CsA on Defecation .. 50
3.4.8 Effects of CsA on Body Temperature 50
3.4.9 Effects of CsA on Body Weight .. 51

3.5 Discussion ... 52
3.5.1 Lack of Robust CsA Effects on Seizure Thresholds 52
3.5.2 Bioavailability of CsA .. 55
3.5.3 Adverse Effects Induced by CsA .. 55

3.6 Conclusion .. 56

3.7 References ... 58

4 IMMUNOMODULATION FOR LONG-LASTING ANTICONVULSANT EFFECTS AFTER NEURAL XENOGRAFTING IN RATS – NEONATAL INDUCTION OF TOLERANCE VERSUS PHARMACOLOGICAL IMMunosuppression ... 63

4.1 Abstract .. 64

4.2 Introduction ... 64

4.3 Material and Methods ... 66
4.3.1 Animals ... 67
4.3.2 Cell Cultivation ... 67
 4.3.2.1 Preparation of Primary Cell Culture 68
 4.3.2.2 Preparation of pNPCs for Tolerance Induction and Neurotransplantation ... 68
4.3.3 Induction of Immunological Tolerance 69
4.3.4 Pharmacological Immunosuppression 69
4.3.5 PTZ Seizure Threshold Test ... 69
4.3.6 Transplantation of Porcine Neuronal Precursor Cells 71
4.3.7 Behavioral Tests ... 71
 4.3.7.1 Open Field .. 72
4.3.7.2 Elevated Plus Maze Test

4.3.8 Histological Verification of Graft Localization

4.3.9 Statistical Analysis

4.4 Results

4.4.1 Localization of Grafted pNPCs

4.4.2 Basal (control) PTZ Seizure Thresholds

4.4.3 Anticonvulsant Effects of pNPC Transplantation in the PTZ Seizure Threshold Test

4.4.4 Behavioral Tests

4.4.4.1 Body Weight and Body Temperature

4.4.4.2 Behavior in the Open Field

4.4.4.3 Behavior in the Elevated Plus Maze

4.5 Discussion

4.5.1 Anticonvulsant Efficacy of pNPCs Grafted into the STN

4.5.2 Adverse Effects caused by CsA treatment

4.6 Conclusion

4.7 References

5 General Discussion

5.1 Anticonvulsant Efficacy of GABAergic Cell Lines and Porcine Neuronal Precursor Cells Transplanted into Rats

5.1.1 Anticonvulsant Effects of a Bilateral Neurotransplantation into the Subthalamic Nucleus

5.1.2 Anticonvulsant Effects of an Unilateral Transplantation into the Subthalamic Nucleus

5.1.3 Lack of Long-lasting Anticonvulsant Effects

5.2 Necessity, Efficacy, and Safety of an Immunomodulation for Neurotransplantations in Experimental Epilepsy Research
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.1 Tissue Reactions after Neurotransplantation of hGAD-overexpressing Cells</td>
<td>93</td>
</tr>
<tr>
<td>5.2.2 Cyclosporine A does not Robustly Influence Seizure Thresholds</td>
<td>94</td>
</tr>
<tr>
<td>5.2.3 Adverse Effects of Treatment with Cyclosporine A</td>
<td>95</td>
</tr>
<tr>
<td>5.2.4 Comparison of Immunomodulatory Strategies to Promote and Prolong the Anticonvulsant Efficacy of Grafted Porcine Neuronal Precursor Cells</td>
<td>97</td>
</tr>
<tr>
<td>5.3 Localization of the Neural Grafts — Methodical Issues</td>
<td>98</td>
</tr>
<tr>
<td>5.4 Conclusions and Outlook</td>
<td>100</td>
</tr>
<tr>
<td>6 REFERENCES</td>
<td>101</td>
</tr>
<tr>
<td>7 SUPPLEMENTS</td>
<td>119</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>121</td>
</tr>
</tbody>
</table>