Contents

Preface vii

1 Introduction 1
 1.1 Why study numerical methods? 1
 1.2 Terminology 2
 1.3 Convergence terminology 4
 1.4 Exercises 5

2 Computer representation of numbers and roundoff error 7
 2.1 Examples of the effects of roundoff error 7
 2.2 Binary numbers 10
 2.3 64 bit floating point numbers 12
 2.3.1 Avoid adding large and small numbers 14
 2.3.2 Subtracting two nearly equal numbers is bad 14
 2.4 Exercises 16

3 Solving linear systems of equations 17
 3.1 Linear systems of equations and solvability 17
 3.2 Solving triangular systems 19
 3.3 Gaussian elimination 21
 3.4 The backslash operator 25
 3.5 LU decomposition 25
 3.6 Exercises 26

4 Finite difference methods 28
 4.1 Approximating the first derivative 29
 4.1.1 Forward and backward differences 29
 4.1.2 Centered difference 32
 4.1.3 Three point difference formulas 35
 4.1.4 Further notes 36
 4.2 Approximating the second derivative 36
 4.3 Application: Initial value ODE's using the forward Euler method 37
 4.4 Application: Boundary value ODE's 40
 4.5 Exercises 45

5 Solving nonlinear equations 46
 5.1 The bisection method 47
 5.2 Newton's method 51
 5.3 Secant method 54
5.4 Comparing bisection, Newton, secant method — 54
5.5 Combining secant and bisection and the \textit{fzero} command — 55
5.6 Equation solving in higher dimensions — 57
5.7 Exercises — 59

6 Accuracy in solving linear systems — 61
6.1 Gauss–Jordan elimination and finding matrix inverses — 61
6.2 Matrix and vector norms and condition number — 64
6.3 Sensitivity in linear system solving — 66
6.4 Exercises — 68

7 Eigenvalues and eigenvectors — 69
7.1 Mathematical definition — 69
7.2 Power method — 71
7.3 Application: Population dynamics — 74
7.4 Exercises — 75

8 Fitting curves to data — 77
8.1 Interpolation — 77
8.1.1 Interpolation by a single polynomial — 77
8.1.2 Piecewise polynomial interpolation — 80
8.2 Curve fitting — 83
8.2.1 Line of best fit — 83
8.2.2 Curve of best fit — 86
8.3 Exercises — 89

9 Numerical integration — 91
9.1 Newton–Cotes methods — 91
9.2 Composite rules — 95
9.3 MATLAB’s integral function — 99
9.4 Gauss quadrature — 99
9.5 Exercises — 102

10 Initial value ODEs — 104
10.1 Reduction of higher order ODEs to first order — 104
10.2 Common methods and derivation from integration rules — 106
10.2.1 Backward Euler — 107
10.2.2 Crank–Nicolson — 108
10.2.3 Runge–Kutta 4 — 108
10.3 Comparison of speed of implicit versus explicit solvers — 109
10.4 Stability of ODE solvers — 111
10.4.1 Stability of forward Euler — 111
10.4.2 Stability of backward Euler — 112
10.4.3 Stability of Crank–Nicolson — 114
10.4.4 Stability of Runge–Kutta 4 — 115
10.5 Accuracy of ODE solvers — 115
10.5.1 Forward Euler — 115
10.5.2 Backward Euler — 116
10.5.3 Crank–Nicolson — 117
10.5.4 Runge–Kutta 4 — 118
10.6 Summary, general strategy, and MATLAB ODE solvers — 119
10.7 Exercises — 121

A Getting started with Octave and MATLAB — 123
A.1 Basic operations — 123
A.2 Arrays — 126
A.3 Operating on arrays — 129
A.4 Script files — 131
A.5 Function files — 132
A.5.1 Inline functions — 132
A.5.2 Passing functions to other functions — 133
A.6 Outputting information — 133
A.7 Programming in MATLAB — 134
A.8 Plotting — 135
A.9 Exercises — 136