Contents

List of Contributors XIII
Preface XIX

1 Chemical Reactions for the Synthesis of Organic Nanomaterials on Surfaces 1
Hong-Ying Gao, Oscar Diaz Arado, Harry Mö nig, and Harald Fuchs
1.1 Introduction 1
1.1.1 Ullmann Coupling 2
1.1.2 Condensation Reactions 5
1.2 Alkane Polymerization 6
1.3 Azide–Alkyne Cycloaddition 6
1.4 Glaser Coupling 9
1.5 Decarboxylative Polymerization of Acids 13
1.6 Conclusions 16
Acknowledgments 17
References 17

2 Self-Assembly of Organic Molecules into Nanostructures 21
Long Qin, Kai Lv, Zhaocun Shen, and Minghua Liu
2.1 Introduction 21
2.2 Classification of Nanostructures 22
2.3 General Self-Assembly Method for the Construction of Nanostructures 23
2.3.1 Reprecipitation 24
2.3.2 Gelation 26
2.3.3 Langmuir–Blodgett Technique 27
2.3.4 Layer-by-Layer Assembly 29
2.3.5 Self-Assembly in Solution 31
2.4 Molecular Design and Building Blocks 33
2.4.1 Amphiphiles 33
2.4.1.1 Typical Amphiphiles 35
2.4.1.2 Bolaamphiphiles 35
2.4.1.3 Gemini Amphiphiles 37
2.4.1.4 Triangular Amphiphiles 38
2.4.1.5 Supra-amphiphiles 40
2.4.2 Gelators 41
2.4.2.1 Cholesterol-Based Gelators 41
2.4.2.2 Alkane- and Fatty Acid-Based Gelators 43
2.4.2.3 Nucleoside-Based Gelators 43
2.4.2.4 Amino Acid- and Peptide-Based Gelators 45
2.4.2.5 Carbohydrate-Based Gelators 50
2.4.3 π-Functionalized System 51
2.4.3.1 Porphyrin 51
2.4.3.2 Molecular Graphene 53
2.4.3.3 π-Conjugated Gelators 54
2.4.4 Dendrimers 55
2.5 Functions of Some Typical Nanostructures 56
2.5.1 Vesicles/Hollow Spheres 56
2.5.2 Nanotubes 62
2.5.2.1 Self-Assembled Lipid Nanotubes 62
2.5.2.2 Self-Assembled Peptide Nanotubes 65
2.5.2.3 Functionalization of Nanotubes 69
2.5.3 Nanofibers 74
2.6 Conclusions and Outlook 79
References 80

3 Supramolecular Nanotechnology: Soft Assembly of Hard Nanomaterials 95
Katsuhiko Ariga, Qingmin Ji, and Jonathan P. Hill
3.1 Introduction 95
3.2 Soft Cell-Like Structures with Hard Nanomaterials 96
3.2.1 Cerasome: Inorganic Surface Cell 96
3.2.2 Flake–Shell Capsule 98
3.2.3 Metallic Cells 100
3.3 For Hierarchical Assembly: LbL and Others 101
3.3.1 Mesoporous Carbon in Hierarchical Assembly 101
3.3.2 Mesoporous Carbon Capsule in Layer-by-Layer Film 103
3.3.3 Layer-by-Layer Assembly of Graphene and Ionic Liquids 104
3.3.4 LbL Films of Mesoporous Silica Capsule for Controlled Release 105
3.4 Summary 107
Acknowledgments 107
References 107
4 Nanoparticles: Important Tools to Overcome the Blood–Brain Barrier and Their Use for Brain Imaging 109
Ruirui Qiao, Mingyuan Gao, and Hans-Joachim Galla

4.1 Introduction 109
4.2 Physiology of the Blood–Brain Barrier 110
4.2.1 The Endothelial Blood–Brain Barrier 110
4.2.2 The Blood–CSF Barrier 111
4.2.3 Regulation of the Barrier Tightness 112
4.2.4 Transport Routes and Drug Permeability across the Blood–Brain Barrier 112
4.2.5 In vitro Models of the BBB and Blood–CSF Barrier 114
4.3 Definition and Type of Nanoparticles and Nanocarriers for Brain Uptake 115
4.3.1 Organic Nanoparticles 115
4.3.1.1 Polymeric Nanoparticles 116
4.3.1.2 Liposomes and Lipidic Nanoparticles 117
4.3.1.3 Nanomeric Emulsions, Micelles, and Nanogels 117
4.3.1.4 Carbohydrates 118
4.3.2 Inorganic Nanoparticles 118
4.3.2.1 Magnetic Nanoparticles 119
4.3.2.2 Semiconductor Nanoparticles 119
4.3.2.3 Gold Nanoparticles 120
4.3.3 Surface Functionalization of Nanoparticles for BBB Transport 120
4.4 Nanoparticles and Imaging 122
4.4.1 Magnetic Resonance Imaging (MRI) 122
4.4.2 Optical Imaging 123
4.5 Conclusion and Outlook 124
Acknowledgment 124
References 125

5 Organic Nanophotonics: Controllable Assembly of Optofunctional Molecules toward Low-Dimensional Materials with Desired Photonic Properties 131
Yongli Yan and Yong Sheng Zhao

5.1 Introduction 131
5.2 From Molecules to Assembly 132
5.2.1 Inherent Intermolecular Interactions 133
5.2.2 Influences of External Factors 137
5.2.2.1 Solvent Effect in Assembly 137
5.2.2.2 Site-Selected Assembly on Specific Substrates 138
5.3 From Assembly to Structures 139
5.3.1 Structure Control through Intermolecular Interactions 140
5.3.1.1 Controlling the Structures via Molecular Design 140
5.3.1.2 Structures Obtained from the Synergistic Assembly of Different Compounds 141
5.3.2 Structure Modulation through External Factors 143
 5.3.2.1 Structures versus Aging Time 143
 5.3.2.2 Heterostructures through Site-Specific Epitaxial Growth 144
5.4 From Structures to Photonic Properties 145
 5.4.1 Nanowire Heterojunctions 145
 5.4.1.1 Dendritic Heterostructures as Optical Routers 146
 5.4.1.2 Nanowire p–n Junctions as Photoelectric Transducers 146
 5.4.2 Doped Nanostructures 149
 5.4.2.1 Uniformly Doped Structures 149
 5.4.2.2 Gradiently Doped Structures 151
 5.4.2.3 Core/Sheath Structures 153
5.5 Conclusions 154
Acknowledgments 157
References 157

6 Functional Lipid Assemblies by Dip-Pen Nanolithography and Polymer Pen Lithography 161
 Michael Hirtz, Sylwia Sekula-Neuner, Ainhoa Urtizberea, and Harald Fuchs

 6.1 Introduction 161
 6.2 Techniques and Methods 161
 6.2.1 Dip-Pen Nanolithography 161
 6.2.2 Polymer Pen Lithography 163
 6.3 Ink Transfer Models 164
 6.3.1 DPN of Liquid Inks 165
 6.3.2 DPN of Diffusive Inks 165
 6.3.3 DPN of Lipid Inks 166
 6.3.4 Ink Transfer in PPL 170
 6.4 Applications 172
 6.4.1 Applications in Sensing 172
 6.4.2 Biological Applications 176
 6.5 Conclusions 182
Acknowledgments 182
References 182

7 PEG-Based Antigen-Presenting Cell Surrogates for Immunological Applications 187
 Ilia Platzman, Gerri Kannenberg, Jan-Willi Janiesch, Jovana Matić, and Joachim P. Spatz

 7.1 Introduction 187
 7.2 Elastic Nanopatterned and Specifically Biofunctionalized 2D PEG-DA Hydrogels: General Properties 189
 7.2.1 Block Copolymer Micellar Nanolithography (BCML) 189
 7.2.2 Fabrication and Characterization of Nanopatterned PEG-DA Hydrogels 191
 7.2.3 Biofunctionalization 194
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.4 Cell Experiments</td>
<td>195</td>
</tr>
<tr>
<td>7.2.4.1 T-Cells Isolation</td>
<td>195</td>
</tr>
<tr>
<td>7.2.4.2 T-Cells Stimulation</td>
<td>195</td>
</tr>
<tr>
<td>7.2.4.3 T-Cells Proliferation</td>
<td>196</td>
</tr>
<tr>
<td>7.2.4.4 Results</td>
<td>196</td>
</tr>
<tr>
<td>7.3 Nanostructured PEG-DA Hydrogel Beads: General Properties</td>
<td>198</td>
</tr>
<tr>
<td>7.3.1 Surfactant Synthesis</td>
<td>200</td>
</tr>
<tr>
<td>7.3.2 Fabrication of Nanostructured PEG-DA Hydrogel Beads by Droplet-Based Microfluidics</td>
<td>201</td>
</tr>
<tr>
<td>7.3.3 Characterization of Nanostructured PEG-DA Hydrogel Beads</td>
<td>203</td>
</tr>
<tr>
<td>7.3.4 Biofunctionalization</td>
<td>204</td>
</tr>
<tr>
<td>7.4 Nanostructured and Specifically Biofunctionalized Droplets of Water-in-Oil Emulsion: General Properties</td>
<td>205</td>
</tr>
<tr>
<td>7.4.1 Surfactant Synthesis</td>
<td>207</td>
</tr>
<tr>
<td>7.4.2 Droplet-Based Microfluidics</td>
<td>209</td>
</tr>
<tr>
<td>7.4.3 Characterization of the Gold Nanostructured Droplets of Water-in-Oil Emulsion</td>
<td>209</td>
</tr>
<tr>
<td>7.4.4 Biofunctionalization of the Nanostructured Droplets</td>
<td>209</td>
</tr>
<tr>
<td>7.4.5 Cell Experiments</td>
<td>211</td>
</tr>
<tr>
<td>7.4.5.1 Cell Culture</td>
<td>211</td>
</tr>
<tr>
<td>7.4.5.2 Cell Recovery and Live/Dead Staining</td>
<td>212</td>
</tr>
<tr>
<td>7.4.5.3 Results</td>
<td>212</td>
</tr>
<tr>
<td>7.5 Summary and Outlook for the Future</td>
<td>213</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>213</td>
</tr>
<tr>
<td>References</td>
<td>213</td>
</tr>
<tr>
<td>8 Soft Matter Assembly for Atomically Precise Fabrication of Solid Oxide</td>
<td>217</td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>217</td>
</tr>
<tr>
<td>8.2 The Ultimate Goal of Nanotechnology: Atomically Precise Fabrication</td>
<td>217</td>
</tr>
<tr>
<td>8.3 Soft Mater Assembly for Atomically Precise Oxide Layers</td>
<td>220</td>
</tr>
<tr>
<td>8.4 Soft Matter Assembly for Atomically Precise Oxide Dots</td>
<td>221</td>
</tr>
<tr>
<td>8.5 Summary for the Future Works</td>
<td>224</td>
</tr>
<tr>
<td>References</td>
<td>225</td>
</tr>
<tr>
<td>9 Conductive Polymer Nanostructures</td>
<td>233</td>
</tr>
<tr>
<td>9.1 Introduction</td>
<td>233</td>
</tr>
<tr>
<td>9.2 Solution-Based Synthesis of Conducting Polymer Nanostructures</td>
<td>234</td>
</tr>
<tr>
<td>9.2.1 Soft Template Synthesis</td>
<td>234</td>
</tr>
<tr>
<td>9.2.2 Hard Template Method</td>
<td>236</td>
</tr>
</tbody>
</table>
9.3 Substrate-Based Fabrication of Conducting Polymer Nanostructures 237
9.3.1 Add to Surface 237
9.3.1.1 Direct Writing 237
9.3.1.2 In Situ Synthesis or Assembly 238
9.3.2 Remove from Surface 242
9.3.2.1 Nanoscratching 242
9.3.2.2 Etching 243
9.4 Electrospinning Technique of Conducting Polymer 245
9.5 Summary and Outlook 250
References 251

10 DNA-Induced Nanoparticle Assembly 259
Anne Buchkremer and Ulrich Simon
10.1 Introduction 259
10.2 DNA as a Template Material 262
10.2.1 On Modified Linear DNA Strands 262
10.2.2 On DNA Origami Structures 265
10.2.3 On Geometrically Tailored DNA 266
10.3 DNA as Ligand 267
10.3.1 DNA Functionalization of Gold Nanoparticles and Network Formation 267
10.3.2 Extended Superstructures 271
10.3.3 Finite Size DNA–AuNP Assemblies 273
10.3.4 Aggregates Composed of Different Particle Geometries and Morphologies 279
10.4 Applications 282
10.5 Summary 286
References 287

11 Nanostructured Substrates for Circulating Tumor Cell Capturing 293
Jingxin Meng, Hongliang Liu, and Shutao Wang
11.1 Introduction 293
11.2 Nanostructured Substrates for CTC Capturing 294
11.2.1 Nanoparticles 295
11.2.2 Nanofractals 297
11.2.3 Nanowires 298
11.2.4 Nanoposts/pillars 300
11.2.5 Nanotubes 302
11.2.6 Nanofibers 303
11.2.7 Nanopores 304
11.3 Nanostructured Substrates for Other Cells Capturing 306
11.4 Conclusions and Perspectives 306
References 307
Contents

12 Organic Nano Field-Effect Transistor 309
Yonggang Zhen and Wenping Hu
12.1 Introduction 309
12.2 The Fabrication of Organic Semiconductor Nanostructures 310
12.2.1 Vapor-Phase Method 310
12.2.2 Solution Process 317
12.2.3 Other Methods 328
12.3 Device Structures of Organic Nano Field-Effect Transistor 332
12.4 The Preparation of Organic Nano Field-Effect Transistor 335
12.4.1 The Transfer of Organic Nanocrystals 335
12.4.2 Electrode of Organic Semiconductor Nanocrystal Field-Effect Transistor 339
12.5 Properties of Organic Nanoscale Field-Effect Transistor 345
12.6 Application of Organic Nano-FETs 347
12.7 Summary and Outlook 350
References 351

13 Advanced Dynamic Gels 357
Rekha G. Shrestha and Masanobu Naito
13.1 Introduction 357
13.2 Gels in Nature 358
13.3 Characterization of VEGs 359
13.3.1 Rheometer 359
13.3.2 Small-Angle Scattering 360
13.3.3 Transmission Electron Microscopy 361
13.4 Redox-Responsive VEGs 362
13.5 pH-Responsive VEGs 363
13.6 Temperature-Responsive VEGs 364
13.7 Photoresponsive VEGs 369
13.8 Applications 373
13.9 Conclusions 374
13.10 Theory 375
References 379

14 Micro/Nanocrystal Conversion beyond Inorganic Nanostructures 385
Jiansheng Wu, Li Junbo, and Qichun Zhang
14.1 Introduction 385
14.2 Micro/Nanostructure Conversion through Charge Transfer Complex Formation 385
14.3 Micro/Nanostructure Conversion through Ion and Ligand Exchange 388
14.4 Micro/Nanostructure Conversion through Reduction 391
14.5 Micro/Nanostructure Conversion through Photoinduced Reaction 392
14.6 Micro/Nanostructure Conversion through Thermal-induced Reaction 394
14.7 Properties and Applications 395
14.7.1 Optical Properties 395
14.7.2 Electronic Properties and Information Storage 396
14.7.3 Mechanical Properties and Photomechanical Actuator 397
14.8 Summary and Outlook 397
References 398

15 Self-Healing Electronic Nanodevices 401
Li Zhang, Bevita K. Chandran, and Xiaodong Chen
15.1 Introduction 401
15.2 Self-Healing Materials 402
15.3 Self-Healing Electrical Conductors 403
15.4 Self-Healing in Energy Storage Devices 408
15.5 Self-Healing Electronic Skin 414
15.6 Conclusive Remarks and Outlook 415
References 416

Index 419