CONTENTS

1 STATEMENT OF THE PROBLEM 1
1 INTRODUCTION 3
2 BACKGROUND 9
 2.1 Computational Cognitive Modeling 9
 2.1.1 Modeling approaches 10
 2.1.2 Goals of modeling and cognitive plausibility 13
 2.1.3 Modeling levels 18
 2.2 Embodied Conversational Agents 19
 2.2.1 Applications of ECA in HCI 21
 2.2.2 ECAs as social actors 23
 2.2.3 The importance of nonverbal behavior 26
 2.2.4 The application of ECAs in this research 27
 2.3 Summary 29
3 ICONIC GESTURES 31
 3.1 Phenomenology of gestures 31
 3.1.1 From actions to gestures, language and thought 32
 3.1.2 Gesture taxonomy 35
 3.1.3 Gestures' temporal anatomy 41
 3.1.4 Gestures in Human-Computer Interaction 42
 3.1.5 Gestures in the focus of this research 43
 3.2 Analysis of iconic gesture performances 46
 3.2.1 Three-Dimensional Iconic Gesture (3DIG) dataset 48
 3.2.2 Representational techniques of iconicity in gestures 54
 3.2.3 Structural variabilities of gesture performances 61
 3.2.4 Spatiotemporal feature variabilities of gesture performances 67
 3.3 Summary 70
ii A CONCEPTUAL COGNITIVE MODEL 71
4 COGNITIVE FOUNDATIONS 73
 4.1 Embodied social motor cognition 73
 4.2 Empirical evidence of mirroring 75
4.2.1 Neuroscience evidence 75
4.2.2 Psychological evidence 78
4.2.3 Degree of mirroring 79

4.3 Mirroring mechanisms 80
4.3.1 Priming 81
4.3.2 Mimicry 83
4.3.3 Imitation learning 84
4.3.4 Goal emulation 88
4.3.5 Mirroring mechanisms of gestures 88
4.3.6 Social effects and benefits of mirroring mechanisms 90

4.4 Hierarchical representation of motor knowledge 97
4.4.1 Hierarchical representation and perception 97
4.4.2 Hierarchical representation and motor control 99
4.4.3 Abstraction in the sense of memory consolidation 102

4.5 Intertwined processes of motor cognition 103
4.5.1 Predictive perception during motor control 103
4.5.2 Predictive perception of others' behaviors 105
4.5.3 Bottom-up perception and top-down anticipation 106
4.5.4 Anticipation results in recognition or adaptation 107

4.6 Summary 108

5 THE COGNITIVE MODEL 109
5.1 Representation of hierarchical motor knowledge 109
5.1.1 What to represent? 109
5.1.2 How to represent gestural motor knowledge? 111

5.2 Processes of motor cognition 116
5.2.1 Perception module 119
5.2.2 Prediction module 120
5.2.3 Control module 123
5.2.4 Realization module 125
5.2.5 Mirroring mechanisms 126

5.3 Derivation of computational requirements 134
5.3.1 Handling uncertain perception 134
5.3.2 Handling uncertain generation 137
5.3.3 Fast learning and recognition 138
5.3.4 Predictive perception and incremental recognition 138
5.3.5 Generalization and incremental learning 139
5.4 Summary 140

iii COMPUTATIONAL APPROACHES 141

6 EMPIRICAL BAYESIAN BELIEF UPDATE 143
6.1 Related work 144
 6.1.1 Related cognitive models 144
 6.1.2 Related technical models 146
6.2 Pre-processing 147
 6.2.1 Perception and preparation 147
 6.2.2 Segmentation 148
6.3 Graph-based representation 150
6.4 Cognitive processes 152
 6.4.1 Bottom-up perception 152
 6.4.2 Top-down prediction 158
 6.4.3 Acquiring motor knowledge from observation 161
 6.4.4 Perception-action link 163
6.5 Evaluation of EBBU based on ECA-human interaction 166
 6.5.1 Detecting and learning new gestures 167
 6.5.2 Recognizing familiar gestures 170
 6.5.3 Perception-action link and mirroring mechanisms 176
6.6 Summary 181

7 FEATURE-BASED STOCHASTIC CONTEXT-FREE GRAMMAR 183
7.1 Related work 183
7.2 A probabilistic framework for FSCFG 185
 7.2.1 Parsing 187
 7.2.2 Structure learning 192
 7.2.3 Parameter learning 195
 7.2.4 Handling uncertain input 197
7.3 Application to the problem 199
 7.3.1 Segmentation 199
 7.3.2 Initializing FSCFG and incorporating samples 201
 7.3.3 Supervised and unsupervised learning of motor knowledge 201
 7.3.4 Generation of gesture performances 203
7.4 Evaluation of FSCFG based on 3DIG dataset 203
 7.4.1 Supervised learning 205
7.4.2 Classification confusions 209
7.4.3 Classification metrics 212
7.4.4 Human judgment as base-line 214
7.4.5 Comparing to other classifiers 217
7.4.6 Analysis of learned grammar models 218
7.4.7 Hyper-parameter exploration 221
7.4.8 Unsupervised learning 227
7.4.9 The grammar behind motor knowledge 234

7.5 Summary 236

iv CONCLUDING DISCUSSIONS 239

8 CONCLUSION AND OUTLOOK 241
8.1 What has been gained? 242
8.1.1 Hierarchical representation of gestural motor knowledge 242
8.1.2 Modeling the processes of motor cognition 243
8.1.3 Realizing mirroring mechanisms of gestural interaction 244
8.2 Combinations of EBBU and FSCFG 245
8.2.1 Combining processes 245
8.2.2 Common representation 247
8.3 Limitations and outlook 253

BIBLIOGRAPHY 257

ACRONYMS 277

NOMENCLATURE 279

INDEX 281