Table of Contents

1 Introduction .. 11

1.1 Thesis motivation and objectives ... 11

1.2 Thesis outline .. 13

2 Fundamentals .. 17

2.1 Basics of silicon solar cells .. 17

2.1.1 Device structure and working principle of front-junction nPERT silicon solar cells .. 17

2.1.2 Current-voltage characteristic of silicon solar cells 19

2.1.3 Carrier recombination in crystalline silicon .. 21

2.1.4 Impact of electrical and optical losses on current-voltage characteristic ... 24

2.2 Rear-side metallization of silicon solar cells .. 27

2.2.1 Review and state of the art .. 27

2.2.2 Novel cell design featuring screen-printed front side and physical vapor deposited rear-side metallization ... 29

2.2.3 Physical vapor deposition of metal layers ... 31

2.3 Rear-side metallization related losses ... 34

2.3.1 Ohmic losses due to lateral resistance of rear-side metallization 34

2.3.2 Ohmic losses due to contact resistance of rear-side metallization 40
2.3.3 Optical losses due to parasitic absorption in rear-side metallization
2.3.4 Rear-side metallization related recombination losses
2.4 Requirements of rear-side metallization for double-side contacted industrial silicon solar cells
2.5 Why aluminum-based PVD rear-side metallization for n-type PERT solar cells?

3 Sputtering deposition processes of the investigated metal layers
3.1 Oerlikon SOLARIS 6 multi-layer sputtering deposition system
3.2 Sputtering-deposition processes of the metal layers
3.2.1 Process parameters and deposition rate of aluminum sputtering deposition
3.2.2 Sputtering-deposition processes of the Al-Si (1 at% Si) layers
3.2.3 Sputtering deposition processes of the silver layers
3.2.4 Sputtering deposition processes of the titanium layers
3.2.5 Maximum substrate temperature during aluminum sputtering deposition
3.3 Summary and conclusion

4 Contact formation process of aluminum-based metallization
4.1 Theoretical background on the contact-formation process of Al/Si-contacts
4.2 Characterization of contact formation process
4.3 Ti/Al stack against aluminum spiking
4.3.1 Theoretical background of titanium as a spiking barrier
4.3.2 SEM structural investigations of Ti/Al-stack
4.4 Novel Al-Si/Al-stack against Al-spiking .. 75
 4.4.1 Process simulation of Al/Al-Si/Si system 76
 4.4.2 SEM structural investigations of Al-Si/Al stack 79
4.5 Summary and conclusion .. 81

5 Specific contact resistance evaluation ... 83
 5.1 Determination of specific contact resistance of point contacts on high- doped silicon ... 84
 5.1.1 Sample structure and experimental setup 84
 5.1.2 Analytical model to extract the contact resistance of the point contact from the measured data ... 88
 5.1.3 Circular transmission line model to determine rear specific contact resistance $\rho_{\text{ct,rear}}$.. 92
 5.1.4 Verification of the analytical approximation with 3D numerical device simulations ... 95
 5.1.5 Error contributions of wafer thickness and resistivity, BSF sheet resistance and contact radius ... 97
 5.2 Specific contact resistance experimental results 99
 5.2.1 Specific contact-resistance results on lowly doped n^+-BSF 99
 5.2.2 Specific contact-resistance results on highly doped n^+-BSF 101
 5.2.3 Comparison of the experimentally obtained $\rho_{\text{ct,rear}}$ data with previously published ones .. 103
 5.2.4 Summary and conclusion ... 103

6 Detailed optical study on rear-side reflectors for nPERT solar cells 107
 6.1 Theoretical background .. 107
 6.1.1 Optical properties of dielectric materials and metals 107
6.1.2 Light paths for PERT solar cell with regular upright pyramids and frustrated total reflection ... 114

6.1.3 Reflectance of silicon/passivation/metallization-system calculated with the matrix method ... 119

6.2 Numerical 3D-device-simulations and experiments on reflection samples .. 127

6.2.1 One-layer Al-metallization with various passivation configurations ... 129

6.2.2 Multi-layer Al-based metallization with first Al-Si layer as a spiking barrier .. 132

6.2.3 Multi-layer Al-based metallization with first Ti layer as a low resistance contacting metal ... 133

6.2.4 One-layer Ag-metallization on various passivation layers 140

6.2.5 Multi-layer Al-based metallization with first thin Ag layer as an IR reflector .. 142

6.2.6 Comparison of the optimized rear-side reflectors 146

6.3 Summary and conclusion ... 147

7 Plasma-induced damage of sputtering deposition of metal layers 149

7.1 Experimental approach .. 150

7.1.1 Microwave photoconductance decay (MWPCD) 151

7.1.2 Corona Oxide Characterization of Semiconductor (COCOS) 153

7.2 Experimental results .. 155

7.2.1 Impact of aluminum sputtering on the electrical properties of Si/SiO₂ interface .. 155

7.2.2 Impact of Al sputtering on the electrical properties of Si/Al₂O₃ interface .. 157
7.2.3 Impact of Al sputtering on the electrical properties of Si/SiN\textsubscript{x} interface .. 158

7.3 Summary and conclusion .. 160

8 Cell results of front-junction nPERT solar cells .. 161

8.1 One-layer aluminum rear-side metallization (Batch-1 to Batch-4) 162

8.1.1 Batch-1: Influence of rear-side capping SiO\textsubscript{2} on current generation .. 162

8.1.2 Batch-2: Influence of rear doping profile and thermal stress on cell performance ... 163

8.1.3 Batch-3: Influence of rear contact spacing on current-voltage characteristic ... 168

8.1.4 Batch-4: Influence of aluminum layer thickness on series ohmic losses 171

8.2 Multi-layer aluminum-based rear-side metallization (Batch 5) 175

8.3 Summary and conclusion .. 177

9 Thesis summary and outlook .. 179

10 Deutsche Zusammenfassung (German summary) ... 185

References .. 191

Own publications .. 201

Acknowledgments .. 203